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Abstract In this paper, the author characterizes the subgroups of a finite metacyclic
group K by building a one to one correspondence between certain 3-tuples (k, l, β) ∈ N3

and all the subgroups of K. The results are applied to compute some subgroups of K as
well as to study the structure and the number of p-subgroups of K, where p is a fixed prime
number. In addition, the author gets a factorization of K, and then studies the metacyclic
p-groups, gives a different classification, and describes the characteristic subgroups of a
given metacyclic p-group when p ≥ 3. A “reciprocity” relation on enumeration of subgroups
of a metacyclic group is also given.
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1 Introduction

For a fixed finite group K, K is metacyclic if and only if ∃A � K, such that both A and

K/A are cyclic. Hölder started studying the metacyclic groups rather early (around 1890s). He

showed that a finite metacyclic group can be represented by two generators and three relations

(Hölder theorem, see [9, 19]). Basmaji [2] gave a necessary and sufficient condition to determine

whether two fixed metacyclic groups are isomorphic (see [11]). His work is based on the Hölder

theorem. Afterwards, there are several classifications of the metacyclic p-groups (see [3, 7, 9,

11–15, 17–18]). Sim [16] classified the metacyclic groups of odd order, and Hempel [9] classified

all the metacyclic groups. In both [9] and [16], the metacyclic group K was characterized by a

certain kind of 8-tuples of odd positive integers (α, β, γ, δ, ǫ, ζ, θ, κ).

Similar to [2], our discussion is based on the Hölder theorem. This makes it easier to

compute as well as enables us to use the arithmetic method (mainly congruence in Z) to study

the given group.

Now let K be a finite metacyclic group. By Hölder theorem, we can assume that

K = 〈τ, η | τn = 1, ηm = τg, ητη−1 = τh〉,

where (m,n, g, h) ∈ N4, g < n, h < n, n | g(h − 1), n | (hm − 1). Let T = {A | A ≤ K}.
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Consider the subset Γ of N3 and the map Ψ, where

Γ =
{
(k, l, β) | l | n, l | k, k | ml, β <

n

l
, β

( k
l
−1∑

j=0

h
mlj
k

)
≡ −g

(
mod

n

l

)}
,

Ψ : Γ → T (∀(k, l, β) ∈ Γ : Ψ(k, l, β) = 〈τβη
ml
k , τ

n
l 〉).

We show in Theorem 3.2 that Ψ is a one to one correspondence from Γ to T . Using Ψ, we

study the construction of the subgroups. In Theorem 3.3, for any A ≤ K, we give a necessary

and sufficient condition to determine whether A�K, and when A �K, we give the structure

of K/A. We then compute several subgroups of K, including the upper and lower central series

of K, the Carter subgroup C, the Fitting subgroup F (K) and the Frattini subgroup Φ(K). We

show that K is the semidirect product of K∞ and its Carter subgroup C, i.e.,

K = K∞C, K∞ ∩ C = {1K}, (1.1)

where K∞ is the intersection of every term in the lower central series. Conversely, for any

B ≤ K, if B is nilpotent and BK∞ = K, then B is a Carter subgroup of K. The p-subgroups

of K (where p is a prime number) are also studied, and results on counting the number of the

p-subgroups and the structure of the Sylow p-group of K are given.

Two fundamental theorems of this note are proved in Section 3 (Theorems 3.2 and 3.3), and

subgroups of K are studied in Section 4.

In Section 5, we study the metacyclic p-groups. By setting an isomorphism invariant for any

metacyclic group K (Definition 5.1), we give a different classification for metacyclic p-groups.

Section 6 and Section 7 are applications of the results we obtain. In Section 6, we consider

the problem that for a given metacyclic group K, when for any k ∈ N, k | |K|, the number of

subgroups of order k and the number of subgroups of index k are the same. Finally, in Section

7, we find all the characteristic subgroups of a given metacyclic p-group G, where p is an odd

prime number.

2 Some Notations

In this section, we give some notations we need.

First, we provide the notation of “Hölder-tuple”, which we use throughout the paper, and

it also leads to the idea of Theorem 3.2.

Definition 2.1 Consider the tuple ((m,n, g, h),K, T,Γ,Ψ). We say ((m,n, g, h),K, T,Γ,Ψ)

is a Hölder-tuple if and only if the next four conditions hold.

(1) (m,n, g, h) ∈ N4, m ≥ 1, n ≥ 1, g < n, h < n, n | g(h− 1), n | (hm − 1).

(2) K = 〈τ, η | τn = 1, ηm = τg, ητη−1 = τh〉.

(3) T = {A | A ≤ K}, and Γ is the following subset of N3,

Γ =
{
(k, l, β) | l | n, l | k, k | ml, β <

n

l
, β

( k
l
−1∑

j=0

h
mlj
k

)
≡ −g

(
mod

n

l

)}
.

(4) Ψ is the map from Γ to T defined as follows,

Ψ : Γ → T (∀(k, l, β) ∈ Γ : Ψ(k, l, β) = 〈τβη
ml
k , τ

n
l 〉).
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Throughout the paper, we denote Ω as the following subset of N4:

Ω = {(m,n, g, h) | m ≥ 1, n ≥ 1, g < n, h < n, n | g(h− 1), n | (hm − 1)}.

For any (m,n, g, h) ∈ Ω and any group K, we say K ∼= (m,n, g, h) if and only if K ∼= 〈τ, η |

τn = 1, ηm = τg , ητη−1 = τh〉. And for any two 4-tuples (m,n, g, h) and (m̃, ñ, g̃, h̃) in Ω, we

write (m,n, g, h) ∼= (m̃, ñ, g̃, h̃) if and only if the following isomorphism relation between groups

holds:

〈τ, η | τn = 1, ηm = τg , ητη−1 = τh〉 ∼= 〈u, v | uñ = 1, vm̃ = ug̃, vuv−1 = uh̃〉.

For any prime number p and a ∈ Z, a 6= 0, denote O(p, a) as the largest nonnegative integer

γ satisfying pγ | a. Let O(p, 0) = +∞ for convenience. For (b, c) ∈ Z×Z, gcd(b, c) = 1, we write

ord(c, b) as the smallest positive integer α ≥ 1 where bα ≡ 1 (mod c). For (b, c) ∈ Z×Z, c 6= 0, let

the notation
⌊
b
c

⌋
denote the largest integer β satisfying β ≤ b

c
, and let b%c denote the only

integer λ ∈ {0, 1, · · · , |c| − 1} where b ≡ λ (mod c). For fixed n ∈ N, n ≥ 2, let U(n) denote

the set {a | a ∈ N, a ≤ n, gcd(a, n) = 1}, and let ⊙(n) denote the operation on Z defined as

follows:

∀(b, c) ∈ Z× Z : b⊙(n) c = (bc)%n.

Therefore (U(n),⊙(n)) is an Abelian group with unit 1. ∀a ∈ U(n), denote 〈a〉(n) as the subgroup

of (U(n),⊙(n)) generated by {a}.

Fix a ∈ Z, let X(a) denote the set of all the prime factors of a.

Let K be a group, ∀(a, b) ∈ K × K, denote the commutator of (a, b): [a, b] = aba−1b−1.

And for any k ∈ N, k ≥ 3, ∀(x1, · · · , xk) ∈ Kk, define the commutator of (x1, · · · , xk) by

induction: [x1, · · · , xk] = [x1, [x2, · · · , xk]]. We write K∞ =
⋂

s∈N,s≥2

[K, · · · ,K︸ ︷︷ ︸
s

], Z∞(K) =

⋃
i∈N

Zi(K), where {1K} = Z0(K), and ∀i ∈ N, Zi+1(K)/Zi(K) = Z(K/Zi(K)). Following

the notations in [8] and [10], the Fitting subgroup of K is denoted as F (K) and the Frattini

subgroup of K is denoted as Φ(K). If K is finite, we write exp(K) = lcm(o(a) | a ∈ K).

Finally, we mention that for a finite metacyclic group K, K is said to be split if and only if

∃(m,n, 0, h) ∈ Ω, such that K ∼= (m,n, 0, h).

3 Characterization of the Subgroups

In this section, we state and prove our fundamental theorem (Theorems 3.2–3.3).

First, we state the following Hölder theorem (see [9, 19]), which is used throughout the

paper. We state it in a relatively specific way, in order to tell more details.

Theorem 3.1 (Hölder) (1) Let G be a finite metacyclic group, A ≤ G, where A�G, both

A and G/A are cyclic, then ∃(m1, n1, g1, h1) ∈ Ω, such that n1 = |A|, m1 = |G/A|, G ∼=

(m1, n1, g1, h1).

(2) Fix (m,n, g, h) ∈ Ω, let K = 〈τ, η | τn = 1, ηm = τg , ητη−1 = τh〉, then the following

statements hold.

(2.1) o(τ) = n, 〈τ〉 �K, ∀j ∈ {1, · · · ,m− 1} : ηj 6∈ 〈τ〉.

(2.2) K/〈τ〉 = 〈 η〈τ〉 〉, |K/〈τ〉| = m, K is metacyclic and |K| = mn.
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(2.3) ∀(a, b), (c, d) ∈ {0, 1, · · · , n− 1} × {0, 1, · · · ,m− 1}, we have:

τaηb = τcηd ⇒ (a, b) = (c, d).

Hence K = {τ iηj | (i, j) ∈ N× N, i < n, j < m}.

The following two lemmas are basic and used throughout the paper.

Lemma 3.1 Fix (m,n, g, h) ∈ Z4, m ≥ 1, n ≥ 1. Let G be a group, and fix (τ, η) ∈

G×G, such that o(τ) = n, ηm = τg, ητη−1 = τh, then

(1) g(h− 1) ≡ 0 (modn), hm ≡ 1
(
modn

)
, (m,n, g%n, h%n) ∈ Ω.

(2) Fix (a, b) ∈ Z× N, (e, f) ∈ Z× N, k ∈ N, k ≥ 1.

(2.1) (τaηb)(τeηf ) = τa+ehb

ηb+f , (τaηb)k = τ
a

( k−1∑
i=0

hbi
)
ηbk.

(2.2) (τaηb)(τeηf ) = (τeηf )(τaηb) ⇔ e(hb − 1) ≡ a(h
f

− 1) (modn).

(2.3) [τaηb, · · · , τaηb︸ ︷︷ ︸
k

, τeηf ] = τe(h
b−1)k−a(h

f
−1)(hb−1)k−1

.

Lemma 3.2 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple.

(1) Fix (k, l, β) ∈ Γ, then Ψ(k, l, β) ∼=
(
k
l
, l,

(
β
( k

l
−1∑

j=0

h

mlj
k

)
+g

)
%n

n
l

, h
ml
k %l

)
∈ Ω. Moreover,

|Ψ(k, l, β)| = k, |Ψ(k, l, β) ∩ 〈τ〉| = l, Ψ(k, l, β) ∩ 〈τ〉 = 〈τ
n
l 〉.

(2) Fix (ρ, δ, ς) ∈ Γ, and (e, f) ∈ N× {0, 1, · · · ,m}, then

τeηf ∈ Ψ(ρ, δ, ς) ⇔ mδ | fρ, e ≡ ς
( ρf

mδ
−1∑

j=0

h
mδj
ρ

) (
mod

n

δ

)
.

(3) Fix (c, d) ∈ N2, c | n, c | g, d | m, then
(
mn
cd
, n

c
, 0
)
∈ Γ, Ψ

(
mn
cd
, n

c
, 0
)
= 〈τc, ηd〉.

Moreover, ∀(a, b) ∈ N2 : (τaηb) ∈ 〈τc, ηd〉 ⇔ c | a, d | b.

Proof (1) Write

ϑ =

(
β
( k

l
−1∑

j=0

h
mlj
k
)
+ g

)
%n

n

l

.

Since (k, l, β) ∈ Γ, hence ϑ ∈ Z. By (2.1) of Theorem 3.1, ∀w ∈ N, 1 ≤ w < k
l
: (τβη

ml
k )

w

6∈ 〈τ〉.

Consider (τ
n
l , τβη

ml
k ) and (k

l
, l, ϑ, h

ml
k %l) ∈ N4. By Lemma 3.1 (2), we have:

o
(
τ

n
l

)
= l,

(
τβη

ml
k

) k
l

=
(
τ

n
l

)ϑ
,

(
τβη

ml
k

)
τ

n
l

(
τβη

ml
k

)−1
=

(
τ

n
l

)(h
ml
k

%l)
.

Hence |Ψ(k, l, β)| = k, and by Lemma 3.1, the rest follows.

(2) ⇐ Write µ = fρ
mδ

. Let λ ∈ Z, where

nλ

δ
= e− ς

( ρf
mδ

−1∑

j=0

h
mδj
ρ

)
.
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By Lemma 3.1 (2), we have τeηf = τ
nλ
δ (τ ςη

mδ
ρ )

µ

∈ Ψ(ρ, δ, ς).

⇒ By (1), ∃(λ1, µ1) ∈ Z ×
{
1, · · · , ρ

δ

}
, such that τeηf = τ

nλ1
δ

(
τ ςη

mδ
ρ

)µ1
. If f = 0, then

τe ∈ Ψ(ρ, δ, ς) ∩ 〈τ〉 = 〈τ
n
δ 〉, and n

δ
| e. If f 6= 0, by Lemma 3.1 (2), f ≡ mδµ1

ρ
(modm),

1 ≤ f ≤ m, 1 ≤ mδµ1

ρ
≤ m, thus f = mδµ1

ρ
, µ1 = ρf

mδ
. Since o(τ) = n, we deduce that

e ≡ ς
( ρf

mδ
−1∑

j=0

h
mδj
ρ

) (
mod

n

δ

)
.

(3) This follows from (2) and the fact τaηb = τa+⌊
b
m⌋gηb%m.

Now we state and prove our two fundamental theorems.

Theorem 3.2 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple.

(1) Fix (b, a, α) ∈ Γ, (f, e, γ) ∈ Γ, then

Ψ(b, a, α) ⊆ Ψ(f, e, γ) ⇔ a | e, be | af, α ≡ γ
( af

be
−1∑

j=0

h
mej
f

) (
mod

n

e

)
.

(2) Ψ is a one to one correspondence from Γ to T .

Proof (1) This follows immediately from Lemma 3.2 (2).

(2) (1) already implies that Ψ is injective, and it remains to show Ψ[Γ] = T . To show

Ψ[Γ] = T , we fix H ≤ K. Let ρ = |H |, δ = |H ∩ 〈τ〉|. Hence we get

δ | ρ, δ | n, H ∩ 〈τ〉 = 〈τ
n
δ 〉, |H/H ∩ 〈τ〉| = |H〈τ〉/〈τ〉| =

ρ

δ
,

ρ

δ
| m.

Since K/〈τ〉 is cyclic and |K/〈τ〉| = m, we have (〈τ〉η
mδ
ρ ) ∈ H〈τ〉/〈τ〉. Hence ∃v ∈ H , 〈τ〉v =

〈τ〉η
mδ
ρ . Thus ∃π ∈ N, where v = τπη

mδ
ρ . Since 〈τ

n
δ 〉 = H∩〈τ〉�H, v ∈ H , we have v

ρ
δ ∈ 〈τ

n
δ 〉.

Write χ =

ρ
δ
−1∑

j=0

h
mδj
ρ

. By Lemma 3.1 (2), o
(
v

ρ
δ = τπχ+g . Hence we get

n

δ
| (πχ+ g),

(
ρ, δ, π%

n

δ

)
∈ Γ.

Notice that Ψ
(
ρ, δ, π%n

δ

)
⊆ H , and by Lemma 3.2 (1), |Ψ(ρ, δ, π%n

δ
)| = ρ = |H |, hence

H = Ψ
(
ρ, δ, π%n

δ

)
.

Theorem 3.3 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, fix (ρ, δ, ς) ∈ Γ.

(1) ∀(c, d) ∈ Z× N : (τcηd) ∈ NK(Ψ(ρ, δ, ς)) ⇔ c
(
h

mδ
ρ

− 1
)
≡ ς(hd − 1)

(
mod n

δ

)
.

(2) Ψ(ρ, δ, ς)�K ⇔ ς(h− 1) ≡ 0
(
mod n

δ

)
, h

mδ
ρ

≡ 1
(
mod n

δ

)
.

(3) If Ψ(ρ, δ, ς) �K, then K/Ψ(ρ, δ, ς) ∼=
(
mδ
ρ
, n
δ
, (−ς)%n

δ
, h%n

δ

)
∈ Ω.

Proof (1) Since Ψ is injective, using Lemma 3.1 (2), (1) follows from the following fact

(
ρ, δ, (c(1− h

mδ
ρ

) + ςhd)%
n

δ

)
∈ Γ,

together with the equation:

(τcηd)Ψ(ρ, δ, ς)(τcηd)−1 = Ψ
(
ρ, δ, (c(1− h

mδ
ρ
) + ςhdv)%

n

δ

)
.
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(2) Take (c, d) = (1, 0) and (c, d) = (0, 1) in (1), and (2) follows.

(3) Write B = Ψ(ρ, δ, ς), (3) follows from Lemma 3.1 and the following relations:

τ
n
δ B = B, η

mδ
ρ B = τ (−ς)%n

δ B, (ηB)(τB)(η−1B) = τh%
n
δ B, |K/B| =

mn

ρ
.

Using Theorem 3.2, we get the following Proposition 3.1 which gives a way to count the

number of subgroups of a given order.

Proposition 3.1 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple.

(1) Fix (ρ, δ) ∈ N2, such that δ | ρ, δ | n, ρ | mδ, let Υ denote the set

{B | B ≤ K, |B| = ρ, |B ∩ 〈τ〉| = δ},

then we have

Υ 6= ∅ ⇔ gcd
(n
δ
,

ρ
δ
−1∑

j=0

h
mδj
ρ

)∣∣∣g.

Moreover, once Υ 6= ∅, then |Υ| = gcd
(
n
δ
,

ρ
δ
−1∑

j=0

h
mδj
ρ

)
.

(2) Fix k ∈ N, k | mn. Then we have

|{C | C ≤ K, |C| = k}| =
∑

l∈Θ

gcd
(n
l
,

k
l
−1∑

j=0

h
mlj
k

)
,

where

Θ =
{
l | l ∈ N, l | n, l | k, k | ml, gcd

(n
l
,

k
l
−1∑

j=0

h
mlj
k

)∣∣∣g
}
.

Proposition 3.2 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, denote ϑ =
m−1∑
i=0

hi. Let Y

be the following set

{a | a ∈ {0, 1, · · · , n− 1}, ϑa ≡ −g (modn)},

and let W = {E | E ≤ K,E ∩ 〈τ〉 = {1K}, 〈τ〉E = K}. Then

(1) W 6= ∅ ⇔ gcd(n, ϑ) | g. Moreover, once W 6= ∅, then we have

|W | = |Y | = gcd(n, ϑ).

(2) Assume that gcd(n, ϑ) | g. Fix D ∈W . Then (m,n, g, h) ∼= (m,n, 0, h), and we have

NK(D) = CK(D), |{uDu−1 | u ∈ K}| =
n

gcd(n, h− 1)
.

Moreover, any two complements of 〈τ〉 in K are conjugate in K if and only if the following

equation holds:

n = gcd(n, h− 1)gcd(n, ϑ).
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Proof (1) Since for any a ∈ {0, 1, · · · , n− 1} : (m, 1, a) ∈ Γ ⇔ a ∈ Y . By Theorem 3.2, we

get W = {Ψ(m, 1, a)(= 〈τaη〉) | a ∈ Y }, and (1) follows.

(2) By (1), Y 6= ∅. Fix a ∈ Y , consider (τ, τaη) ∈ K ×K, we get

K = 〈τ, τaη〉, o(τ) = n, o(τaη) = m, (τaη)τ(τaη)−1 = τh, 〈τaη〉 ∩ 〈τ〉 = {1K}.

Hence (m,n, g, h) ∼= K ∼= (m,n, 0, h). Now fix D ∈ W , by (1), ∃! a ∈ Y, D = Ψ(m, 1, a). For

any (α, β) ∈ N2, by Lemma 3.1 (2) and Theorem 3.3 (1), we have

(ταηβ) ∈ NK(D) ⇔ α(h− 1) ≡ a(hβ − 1) (modn) ⇔ (ταηβ) ∈ CK(D).

This implies CK(D) = NK(D). Now we compute |CK(D)|. By the previous discussion and

Theorem 3.1 (2), we deduce that

|CK(D)| = |{(α, β) ∈ N2| 0 ≤ α < n, 0 ≤ β < m, α(h− 1) ≡ a(hβ − 1) (modn)}|.

Since for any β ∈ {0, 1, · · · ,m− 1}, we have gcd(n, h− 1) | a(hβ − 1), and

|{α| α ∈ {0, 1, · · · , n− 1}, α(h− 1) ≡ a(hβ − 1) (modn)}| = gcd(n, h− 1),

it follows that |CK(D)| = m · gcd(n, h − 1). Since CK(D) = NK(D), we get NK(D) = m ·

gcd(n, h − 1), and |{uDu−1 | u ∈ K}| = n
gcd(n,h−1) . Now the last part follows from the fact

|W | = gcd(n, ϑ).

For further discussion, we now state some lemmas and basic constructions of metacyclic

groups.

Lemma 3.3 (see [2]) Let p be a prime number, r ∈ Z, p | (r − 1), m ∈ N, m ≥ 1.

(1) If p ≥ 3 or p = 2, 4 | (r − 1), then O(p, rm − 1) = O(p, r − 1) +O(p,m).

(2) If p = 2, 4 | (r − 3), 2 | m, then O(2, rm − 1) = O(2, r + 1) +O(2,m).

Lemma 3.4 Fix (k, n, r) ∈ Z3, n ≥ 1, k | n, k | (rn − 1), then k
∣∣( n−1∑

j=0

rj
)
.

Proof Write µ =
n−1∑
j=0

rj . We have rn − 1 = (r − 1)µ. Fix p ∈ X(k), we now show that

O(p, k) ≤ O(p, µ). Notice that k | n, k | (rn−1), hence O(p, k) ≤ O(p, n), O(p, k) ≤ O(p, rn−1).

Next, we consider the following three cases.

(i) If p ∤ (r − 1), then O(p, µ) = O(p, rn − 1), it follows that O(p, k) ≤ O(p, µ).

(ii) If (p | (r − 1), p ≥ 3) or (p = 2, 4 | (r − 1)), by Lemma 3.3 (1), we deduce that

O(p, rn − 1) = O(p, r − 1) +O(p, n) = O(p, r − 1) +O(p, µ).

It follows that O(p, µ) = O(p, n), and O(p, k) ≤ O(p, µ).

(iii) If p = 2, 4 | (r − 3), then O(p, r − 1) = 1, O(p, r + 1) ≥ 2. Notice that p | k, we have

p | n. By Lemma 3.3 (2), we deduce that

O(p, n) ≤ O(p, rn − 1)− 2, O(p, µ) = O(p, rn − 1)− 1.

It follows that O(p, k) ≤ O(p, n) < O(p, µ).
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By case (i)–case (iii). We deduce that O(p, k) ≤ O(p, µ). Finally, since p ∈ X(k) is arbitrary,

we have k | µ.

The next two lemmas provide the numerical results we need in the discussion, and they may

be regarded as corollaries of Lemma 3.3.

Lemma 3.5 Let p be a prime number, p ≥ 3, (a, b, c) ∈ Z3, where

a 6= ±1, p ∤ a, b 6= 1, b ≡ 1 (mod 4), c 6= −1, c ≡ 3 (mod 4),

and fix k ∈ N.

(1) If k ≥ O(2, b− 1), then ord(2k, b) = 2k−O(2,b−1).

(2) If k ≥ O(2, c+ 1) + 1, then ord(2k, c) = 2k−O(2,c+1).

(3) If k ≥ O(p, aord(p,a) − 1), then ord(pk,a)
ord(p,a) = pk−O(p,aord(p,a)−1).

Lemma 3.6 (see [2]) (1) Let p be a prime number, p ≥ 3, fix k ∈ N, k ≥ 1, then

(U(pk),⊙(pk)) is cyclic, and ∀b ∈ U(pk), if b ≥ 2, p | (b − 1), then 〈b〉(pk) = 〈1 + pO(p,b−1)〉(pk).

(2) Fix m ∈ N, m ≥ 4, π ∈ U(2m).

(2.1) If π ≡ 1 (mod 4), π 6= 1, then 〈π〉(2m) = 〈1 + 2O(2,π−1)〉(2m).

(2.2) If π ≡ 3 (mod 4), then 〈π〉(2m) = 〈2O(2,π+1) − 1〉(2m).

Proposition 3.3 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple. Then the following state-

ments hold.

(1) exp(K) = mn
gcd(g,m,n) .

(2) Assume that n ≥ 2, then K is Abelian if and only if h = 1, and K is cyclic if and only

if h = 1, gcd(g,m, n) = 1.

(3) Fix (a, b) ∈ Z× N, then

o(τaηb) =
mn

gcd(b,m) gcd
(
n, a

( m
gcd(b,m)

−1∑
i=0

hbi
)
+ gb

gcd(m,b)

)
.

Proof Write λ = mn
gcd(g,m,n) . Since

lcm(o(τ), o(η)) = lcm
(
n,

mn

gcd(g, n)

)
= λ,

hence λ | exp(K). Now fix (α, β) ∈ N2, by Lemma 3.1 (2), (ταηβ)
λ

= τ
α
( λ−1∑

i=0

hβi
)
ηβλ. Since

n | (hβλ − 1), n | λ, by Lemma 3.4, n
∣∣ λ−1∑
i=0

hβi. Thus (ταηβ)
λ

= 1K . This implies exp(K) | λ.

Thus exp(K) = λ. The rest (2)–(3) is proved by using Theorem 3.1, Lemma 3.1 and (1), we

omit the details.

Using Theorems 3.2–3.3 and Proposition 3.3, we get the following proposition, in which

more details are given.

Proposition 3.4 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple.

(1) Fix (ρ, δ, ς) ∈ Γ, denote

gcd
(ρ
δ
, δ,

δ
(
ς
( ρ

δ
−1∑

j=0

h
mδj
ρ

)
+
)

n

)
= θ.
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(1.1) exp(Ψ(ρ, δ, ς)) = ρ
θ
.

(1.2) Ψ(ρ, δ, ς) is Abelian ⇔ h
mδ
ρ

≡ 1 (mod δ).

(1.3) Ψ(ρ, δ, ς) is cyclic ⇔ h
mδ
ρ

≡ 1 (mod δ), θ = 1.

(2) Fix (ρ, δ, ς) ∈ Γ, assume that Ψ(ρ, δ, ς) �K.

(2.1) exp(K/Ψ(ρ, δ, ς)) = mn

ρ gcd(mδ
ρ

,n
δ
,ς)
.

(2.2) K/Ψ(ρ, δ, ς) is cyclic ⇔ h ≡ 1
(
mod n

δ

)
, gcd

(
mδ
ρ
, n
δ
, ς
)
= 1.

(3) [K,K] = 〈τh−1〉 = 〈τgcd(n,h−1)〉, exp(K/[K,K]) = mgcd(n,h−1)
gcd(g,m,n,h−1) .

Lemma 3.7 (see [2]) Fix (m,n, t, r) ∈ Ω, (c, d) ∈ N×N, such that (m,n, c, d) ∈ Ω, 〈r〉(n) =

〈d〉(n), gcd(t, n) = gcd(c, n), then (m,n, t, r) ∼= (m,n, c, d).

Using Proposition 3.2 (2) Lemmas 3.3 and 3.5–3.7, we have the following lemma on the

metacyclic p-groups.

Lemma 3.8 Let p be a prime number, fix (l, k) ∈ N2, l ≥ 1, k ≥ 1, let b = min(l, k), fix

(t, r) ∈ N2, such that (pl, pk, t, r) ∈ Ω. Then

(1) Assume p ≥ 3 or p = 2, r ≡ 1 (mod 4). Then O(p, r − 1) + l ≥ k, and

(1.1) if r = 1, pb | t, then (pl, pk, t, r) ∼= (pl, pk, 0, 1);

(1.2) if r 6= 1, pb | t, then (pl, pk, t, r) ∼= (pl, pk, 0, 1 + pO(p,r−1));

(1.3) if r = 1, pb ∤ t, then (pl, pk, t, r) ∼= (pl, pk, pO(p,t), 1);

(1.4) if r 6= 1, pb ∤ t, then (pl, pk, t, r) ∼= (pl, pk, pO(p,t), 1 + pO(p,r−1)).

(2) Assume p = 2, r ≡ 3 (mod 4), then O(2, r + 1) + l ≥ k, t ∈ {0, 2k−1}. Moreover,

(2l, 2k, t, r) ∼= (2l, 2k, t, 2O(2,r+1) − 1).

Now we can apply Theorems 3.2–3.3 on split metacyclic p-groups. Here a simpler form of

this kind of groups is given.

Proposition 3.5 Let p be a prime number, (l, k, s) ∈ N3, where

l ≥ 1, k ≥ 2, 1 ≤ s < k, s+ l ≥ k.

Let ((pl, pk, 0, 1 + ps),K, T,Γ,Ψ) be a Hölder-tuple, and let Γ∗ denote the following set

{(a, b, c) | (a, b, c) ∈ N3, b ≤ a, b ≤ k, a ≤ b+ l, 0 ≤ c < pmin(a,k)−b}.

If p = 2, then assume k ≥ 3, s ≥ 2. Define the map Ψ∗ : Γ∗ → T, where

∀(a, b, c) ∈ Γ∗ : Ψ∗(a, b, c) = 〈τc×pk−min(a,k)

ηp
l+b−a

, τp
k−b

〉.

Then

(1) Ψ∗ is a one to one correspondence from Γ∗ to T .

(2) Fix (f, e, d) ∈ Γ∗, then we have

Ψ∗(f, e, d) �K ⇔ f − 2e ≤ l + s− k, min(f, k)− e−O(p, d) ≤ s.

Proof Define the map ϕ : Γ∗ → Z3, where

∀(a, b, c) ∈ Γ∗ : ϕ(a, b, c) = (pa, pb, c · pk−min(a,k)).

Using Lemma 3.3, we get ϕ[Γ∗] = Γ, ϕ is injective, and Ψ∗ = Ψ ◦ ϕ. Now (1) follows from

Theorem 3.2, and (2) follows from Theorem 3.3 (2) and Lemma 3.3.
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4 The Upper and Lower Central Series, Φ(K), F (K), the Carter
Subgroup C and the p-Subgroups

In this section, we compute and characterize some subgroups of a finite metacyclic group

K.

First, we write the upper and lower central series for K. Using induction when necessary, the

next lemma follows from Lemma 3.1 and Theorem 3.2.

Lemma 4.1 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple. Fix (k, l, β) ∈ Γ, (ρ, δ, ς) ∈

Γ, then

(1) [Ψ(k, l, β),K] = 〈τgcd
(
h

ml
k

−1, β(h−1),
n(h−1)

l

)
〉.

(2) [Ψ(k, l, β),K] ⊆ Ψ(ρ, δ, ς) ⇔ n
δ
| gcd

(
h

ml
k − 1, β(h− 1), n(h−1)

l

)
.

(3) ∀(s, b) ∈ N× Z, w ∈ N,

w ≥ 2 : [〈τb, ηs〉, · · · , 〈τb, ηs〉︸ ︷︷ ︸
w

] = 〈τb(h
s−1)w−1

〉.

Theorem 4.1 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple. Denote

µ =
∏

p∈X(n)∩X(h−1)

pO(p,n),

and let ν = n
µ
. Fix s ∈ N, such that ∀p ∈ X(n)∩X(h− 1) : (s− 1)O(p, h− 1) ≥ O(p, n). Then

the lower central series of K are

K ⊇ 〈τh−1〉 ⊇ · · · ⊇ 〈τ (h−1)λ〉 ⊇ · · · ⊇ [K, · · · ,K︸ ︷︷ ︸
s

] = 〈τµ〉,

and the upper central series of K are

{1K} ⊆ · · · ⊆ 〈τ
n

gcd(n,(h−1)
λ

) , η
ord( n

gcd(n,(h−1)λ−1)
, h)

〉 ⊆ · · · ⊆ Zs(K) = 〈τν , ηord(ν,h)〉.

Moreover, K is nilpotent ⇔ X(n) ⊆ X(h− 1).

Proof First, ∀w ∈ N, w ≥ 1, by Lemma 4.1 (3) [K, · · · ,K︸ ︷︷ ︸
w+1

] = 〈τ (h−1)w 〉 = 〈τgcd(n,(h−1)w)〉.

Now we prove the following Claim 1 by induction.

Claim 1 ∀w ∈ N, w ≥ 1

Zw(K) = 〈τ
n

gcd(n,(h−1)
w

) , η
ord( n

gcd(n,(h−1)w−1)
, h)

〉.

Proof of Claim 1 By (2.2) of Lemma 3.1,

Z(K) = 〈τ
n

gcd(n,h−1) , ηord(n,h)〉.

Now fix λ ∈ Z+, assume Claim 1 holds for λ. Write

f = gcd(n, (h− 1)λ−1), π = gcd(n, (h− 1)λ), θ = gcd(n, (h− 1)λ+1).
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Using Lemma 3.2, we have

Zλ(K) = Ψ
( mπ

ord
(
n
f
, h

) , π, 0
)
.

By Lemma 4.1 (2), ∀(k, l, β) ∈ Γ, we have

Ψ(k, l, β) ⊆ Zλ+1(K) ⇔ l
∣∣∣θ,

n

θ

∣∣∣|β, k|
ml

ord
(
n
π
, h

) .

By Theorem 3.2,

|Zλ+1(K)| ≤
mθ

ord
(
n
π
, h

) .

Again by Lemma 3.2 and the previous discussion, we get

( mθ

ord
(
n
π
, h

) , θ, 0
)
∈ Γ, Ψ

( mθ

ord
(
n
π
, h

) , θ, 0
)
⊆ Zλ+1(K).

This implies

Zλ+1(K) = Ψ
( mθ

ord
(
n
π
, h

) , θ, 0
)
.

The induction is completed. And the theorem follows immediately.

Now we turn to the Carter subgroup of a finite metacyclic group K. Recall that for any

group G and A ≤ G, by [5], we say A is a Carter subgroup of G, if and only if A is nilpotent

and NG(A) = A. It is well known that any finite solvable group G contains a Carter subgroup

C, and any two Carter subgroups of G are conjugate in G. Furthermore, the identity G = CG∞

always holds (see [5]).

For a finite metacyclic group K, we can say more about its Carter subgroup, and the

following is our main result on the Carter subgroup of K.

Theorem 4.2 Let K be a finite metacyclic group, fix C ≤ K, then

(1) if C is a Carter subgroup of K, then C ∩K∞ = {1K}, K = CK∞;

(2) C is a Carter subgroup of K ⇔ K = CK∞ and C is nilpotent.

Using Theorem 3.2, Theorem 4.2 follows from the next proposition.

Proposition 4.1 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple. Denote

µ =
∏

p∈X(n)∩X(h−1)

pO(p,n)

and let ν = n
µ
. Fix (k, l, β) ∈ Γ, γ ∈ N, γ < ν.

(1) If Ψ(k, l, β)K∞ = K, Ψ(k, l, β) is nilpotent, then l = µ, k = mµ.

(2) (mµ, µ, γ) ∈ Γ, Ψ(mµ, µ, γ) is a Carter subgroup of K. Moreover, we have

Ψ(mµ, µ, γ) ∩K∞ = {1K}, Ψ(mµ, µ, γ)K∞ = K.

Proof (1) By Lemma 3.2 (1), we have

Ψ(k, l, β) ∩K∞ = 〈τ
n
l 〉 ∩ 〈τµ〉 = 〈τ

n
gcd(l,ν) 〉,
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and it follows that

mn = |Ψ(k, l, β)K∞| =
kν

gcd(l, ν)
=
klcm(l, ν)

l
.

Since k
l
| m, lcm(l, ν) | n, we have k

l
= m, lcm(l, ν) = n, µ | l. Next, by Lemma 3.2,

∃θ1 ∈ N, where Ψ(k, l, β) ∼= (m, l, θ1, h%l), by Theorem 4.1, X(l) ⊆ X((h%l) − 1). Thus

X(l) ⊆ X(h− 1), l | n, and this implies l | µ. Hence µ = l, k = ml = mµ.

(2) First, we have (mµ, µ, γ) ∈ Γ, Ψ(mµ, µ, γ) = 〈τγη, τν〉. Write B = Ψ(mµ, µ, γ). By

Lemma 3.2, ∃θ2 ∈ N, such that B ∼= (m,µ, θ2, h%µ). Since X(µ) ⊆ X((h%µ)− 1), by Theorem

4.1, B is nilpotent. Next, fix (e, f) ∈ N2, where (τeηf ) ∈ NK(B). By Theorem 3.3, we have

γ(h
f

− 1) ≡ e(h− 1) (mod ν).

Notice that gcd(h− 1, ν) = 1, together with Lemma 3.2, we have

γ
( f−1∑

j=0

h
j
)
≡ e (mod ν), (τeηf ) ∈ B.

This implies B = NK(B). Finally, we deduce that

B ∩K∞ = 〈τν〉 ∩ 〈τµ〉 = 〈τνµ〉 = 〈τn〉 = {1K},

and |BK∞| = mµν = |K|, BK∞ = K.

Now we describe the Frattini subgroup Φ(K). The next lemma follows from Theorem 3.2

and the fact that every metacyclic group is supersolvable.

Lemma 4.2 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, then

(1) ∀C ≤ K : C is a proper maximal subgroup of K and 〈τ〉 ⊆ C if and only if ∃s ∈

X(m), such that C = 〈τ, ηs〉.

(2) ∀B ≤ K : B is a proper maximal subgroup of K and 〈τ〉 * B if and only if ∃q ∈

X(n), ∃β ∈ N, such that
(
mn
q
, n
q
, β

)
∈ Γ, B = Ψ

(
mn
q
, n
q
, β

)
.

Theorem 4.3 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, and let (V1, V2, V3, V4, V5) de-

note the following 5-tuple:

((X(n)−X(g)) ∩X(m), X(n)−X(gm), (X(n) ∩X(g))−X(h− 1),

(X(n) ∩X(g) ∩X(h− 1))−X(m), X(n) ∩X(g) ∩X(h− 1) ∩X(m)).

Denote

v1 =
∏

p∈X(n)∩X(g)

p, ∀i ∈ {2, 3, 4, 5} : vi =
∏

p∈Vi

p,

and denote

v6 =
∏

p∈X(m)

p, ϕ = lcm(ord(v3, h), v6).

Then ∃! (θ, λ) ∈ N2, where (θ, λ) ∈ {0, 1, · · · , v2 − 1} × {0, 1, · · · , v1v2 − 1}, and

θ
(m−1∑

j=0

h
j
)
≡ −g (mod v2), λ ≡ θ

( ϕ−1∑

i=0

h
i
)
(mod v2), λ ≡ 0 (mod v1).

Moreover,
(

mn
ϕv1v2

, n
v1v2

, λ
)
∈ Γ, Φ(K) = Ψ( mn

ϕv1v2
, n
v1v2

, λ
)
= 〈τληϕ, τv1v2〉.
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Proof The existence and uniqueness of (θ, λ) follow from gcd
(m−1∑

j=0

h
j

, v2
)
= 1 and the Chi-

nese remainder theorem. Also notice that
(

mn
ϕv1v2

, n
v1v2

, λ
)
∈ Γ,

(
mn
v2
, n
v2
, θ
)
∈ Γ, (V1, V2, V3, V4, V5)

is a partition of X(n). We compute Φ(K) by presenting a series of facts, all of which follow

from Lemma 3.2.

(1) ∀p ∈ V1, ∀β ∈ N :
(
mn
p
, n
p
, β

)
6∈ Γ.

(2) Fix p ∈ V2, then ∀β ∈ N, β < p :
(
mn
p
, n
p
, β

)
∈ Γ ⇔ β = θ%p.

(3)
⋂

p∈V2

Ψ
(
mn
p
, n
p
, θ%p

)
= 〈τθη, τv(2) 〉, 〈τθη, τv2 〉 �K.

(4) Fix p ∈ V4, β ∈ N, 0 ≤ β < p, then:
(
mn
p
, n
p
, β

)
∈ Γ⇔β = 0.

(5) Using Lemma 3.2, we get
⋂

p∈V4

Ψ
(
mn
p
, n
p
, 0
)
= 〈τv4 , η〉.

(6) Fix s ∈ V5, then ∀γ ∈ {0, 1, · · · , s− 1} :
(
mn
s
, n
s
, γ

)
∈ Γ. And we have

s−1⋂

γ=0

Ψ
(mn
s
,
n

s
, γ

)
= 〈τs, ηs〉.

(7) Using Lemma 3.2, we get
⋂

s∈V5

〈τs, ηs〉 = 〈τv5 , ηv5〉.

(8) Fix q ∈ V3, then ∀γ ∈ {0, 1, · · · , q − 1} :
(
mn
q
, n
q
, γ

)
∈ Γ. And we have

q−1⋂

γ=0

Ψ
(mn
q
,
n

q
, γ

)
= 〈τq, ηord(q,h)〉.

(9) Using Lemma 3.2, we get
⋂

q∈V3

〈τq , ηord(q,h)〉 = 〈τv3 , ηord(v3,h)〉.

(10) By lemma 4.2 (1), and (1)–(9), we get

Φ(K) = 〈τ, ηv6〉 ∩ 〈τv4 , η〉 ∩ 〈τv5 , ηv5〉 ∩ 〈τv3 , ηord(v3,h)〉 ∩ 〈τθη, τv2 〉.

And by Lemma 3.2, Φ(K) = 〈τv1 , ηϕ〉 ∩ 〈τθη, τv2〉 = 〈τληϕ, τv1v2〉.

Now we compute F (K) for a finite metacyclic group K.

Proposition 4.2 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple. Denote ω =
∏

p∈X(n)

p. Then

F (K) = 〈τ, ηord(ω,h)〉, and moreover, ∀y ∈ K,

(1) y ∈ F (K) ⇔ ∃l ∈ N, l ≥ 1, such that ∀x ∈ K : [y, · · · , y︸ ︷︷ ︸
l

, x] = 1K .

(2) y ∈ Z∞(K) ⇔ ∃l ∈ N, l ≥ 1, such that ∀x ∈ K : [x, · · · , x︸ ︷︷ ︸
l

, y] = 1K .

Remark 4.1 Actually, by [1], (1) and (2) hold for every finite group G.

Proof First, denote µ =
∏

p∈X(n)∩X(h−1)

pO(p,n), ν = n
µ
, and ∀(α, β) ∈ K2, ∀k ∈ Z+,

denote ε(α, k, β) = [α, · · · , α︸ ︷︷ ︸
k

, β]. Let A = 〈τ, ηord(ω,h)〉. Hence A � K. Fix t ∈ N, where

n | (hord(ω,h) − 1)t. By Lemma 4.1 (3), [A, · · · , A︸ ︷︷ ︸
t+1

] = {1K}. Thus A ⊆ F (K). Using (2.3) of

Lemma 3.1 and straightforward computation, we have the following claim.
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Claim Fix (e, f) ∈ N2, then

(∃l ∈ N, l ≥ 1, such that ∀x ∈ K : ε(x, l, τeηf ) = 1K) ⇔ ν | e, ord(ν, h) | f.

(∃r ∈ N, r ≥ 1, such that ∀x ∈ K : ε(τeηf , r, x) = 1K) ⇔ ord(ω, h) | f.

By Theorem 4.1, Z∞(K) = 〈τν , ηord(ν,h)〉. Notice that the “⇒” part of (1) and (2) are trivial.

by the above two claims, Proposition 4.2 is proved.

Now we begin to study the p-subgroups of a metacyclic group K, where p is a prime

number. We mainly consider three problems: counting the number of the subgroups of or-

der pa, where a ∈ N; giving a way to judge whether the Sylow p-group of K is normal; finding

a relatively simple 4-tuple in Ω which is isomorphism to the Sylow p-group of K.

Theorem 4.4 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, and p a prime number where

p | mn. Fix P ≤ K, |P | = pO(p,mn), µ ∈ N, 1 ≤ µ ≤ O(p,mn). Let ∆ denote the following set

{V | V ≤ K, |V | = pµ}.

∀π ∈ N, π ≤ min(µ,O(p, n)), denote ψ(π) as the following integer:

ψ(π) = pmin(µ,O(p,n))−π
( ∏

q∈X(n), q 6=p, O(p,ord(q,h))≥O(p,m)+π+1−µ

qO(q,n)
)
.

(1) If p ∤ m, then P = 〈τ
n

pO(p,n) 〉, |∆| = 1. If p ∤ gcd(m,n), then P is cyclic.

(2) P �K ⇔ ∀q ∈ X(n) (p ∤ ord(q, h)).

(3) Denote f0 = max(0, µ − O(p,m),min(µ,O(p, n)) − O(p, g)). Assume that p ≥ 3, p | m

or p = 2, p | m, h ≡ 1 (mod 4). Then

|∆| =

min(µ,O(p,n))∑

π=f0

ψ(π).

(4) Assume p = 2, 2 ∤ n, 2 | m. Then

|∆| =
∏

q∈X(n), O(2,ord(q,h))≥O(2,m)−µ+1

qO(q,n).

(5) Assume p = 2, 2 | m, 2 | n, 4 ∤ n. Then 2 | g ⇒ P ∼= (2O(2,m), 2, 0, 1), and 2 ∤ g ⇒ P

is cyclic.

(6) Assume p ≥ 3, p | m, p | n or p = 2, 2 | m, 4 | n, h ≡ 1 (mod 4).

(6.1) If hord(p,h) ≡ 1 (mod pO(p,n)), O(p, g) ≥ min(O(p,m), O(p, n)), then

P ∼= (pO(p,m), pO(p,n), 0, 1).

(6.2) If hord(p,h) ≡ 1 (mod pO(p,n)), O(p, g) < min(O(p,m), O(p, n)), then

P ∼= (pO(p,m), pO(p,n), pO(p,g), 1).

(6.3) If hord(p,h) 6≡ 1 (mod pO(p,n)), O(p, g) ≥ min(O(p,m), O(p, n)), then

P ∼= (pO(p,m), pO(p,n), 0, 1 + pO(p, hord(p,h)−1)).

(6.4) If hord(p,h) 6≡ 1 (mod pO(p,n)), O(p, g) < min(O(p,m), O(p, n)), then

P ∼= (pO(p,m), pO(p,n), pO(p,g), 1 + pO(p, hord(p,h)−1)).
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Proof By Theorem 3.2, ∃! β ∈ N, β < n
pO(p,n) , and (pO(p,mn), pO(p,n), β) ∈ Γ,

P = Ψ(pO(p,mn), pO(p,n), β).

Denote

ϑ =

(
β
( pO(p,m)−1∑

j=0

h

mj

pO(p,m) )
+ g

)
%n

n

pO(p,n)

.

By Theorem 3.2, P ∼= (pO(p,m), pO(p,n), ϑ, h
m

pO(p,m)

%pO(p,n)).

(1) Using Theorem 3.1 and the Sylow theorem, we omit the details.

(2) Using Theorem 3.3 (2), we only prove the “⇐” part.

⇐ We deduce from Lemma 3.5.(3) that

h
m

pO(p,m)

≡ 1
(
mod

n

pO(p,n)

)
.

Since (pO(p,mn), pO(p,n), β) ∈ Γ, thus

βpO(p,m) ≡ −g
(
mod

n

pO(p,n)

)
.

Hence β(h− 1) ≡ 0
(
mod n

pO(p,n)

)
. By Theorem 3.3 (2), we get P �K.

(3) Consider the set

E =
{
l | l | n, l | pµ, pµ | ml, gcd

(n
l
,

pµ

l
−1∑

j=0

h
mlj
pµ

)∣∣∣g
}
.

First, fix δ ∈ N, max(0, µ−O(p,m)) ≤ δ ≤ min(µ,O(p, n)). Write

χ =

pµ−δ−1∑

j=0

h

mj

pµ−δ

.

Using lemma 3.3, we get gcd
(

n
pδ , χ

)
= ψ(δ), and

pδ ∈ E ⇔ pmin(O(p,n),µ)−δ | g ⇔ f0 ≤ δ ≤ min(µ,O(p, n)).

Now by Proposition 3.1, (3) follows from the fact

|∆| =
∑

l∈E

gcd
(n
l
,

pµ

l
−1∑

j=0

h
mlj
pµ

)
.

(4) The proof is similar to the proof in (3), we omit the details.

(5) Notice that 2 | g implies ϑ = 0, and 2 ∤ g implies ϑ = 1, the rest follows.

(6) By Lemma 3.3 and Lemma 3.8, this follows by straightforward computation, and we

omit the details.

Theorem 4.4 enables us to focus on the 2-subgroups of a metacyclic group K. First we state

a lemma, which follows from Proposition 3.3 (2) and Lemma 3.3, and is also necessary when

we classify the metacyclic 2-groups.
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Lemma 4.3 Fix (l, k) ∈ N2, l ≥ 1, k ≥ l + 2, then (2l, 2k, 0, 2k−l − 1) ∈ Ω,

(2l, 2k, 2k−1, 2k−l − 1) ∈ Ω, and (2l, 2k, 0, 2k−l − 1) ∼= (2l, 2k, 2k−1, 2k−l − 1).

Theorem 4.5 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, where 2 | m, 2 | n, h ≡

3 (mod 4). Fix Q ≤ K, |Q| = 2O(2,mn), fix ν ∈ N, such that 1 ≤ ν ≤ O(2,mn). Denote

S = {U | U ≤ K, |U | = 2ν}. ∀π ∈ N, π ≤ min(ν,O(2, n)), denote ̟(π) as the integer

̟(π) = 2min(ν,O(2,n))−π
( ∏

q∈X(n), O(2,ord(q,h))≥O(2,m)+π+1−ν

qO(q,n)
)
.

(1) If O(2, h+ 1) +O(2,m) = O(2, n), then Q ∼= (2O(2,m), 2O(2,n), 0, 2O(2,h+1) − 1).

(2) Assume O(2, h+ 1) +O(2,m) ≥ O(2, n) + 1, O(2, h+ 1) ≤ O(2, n)− 1.

(2.1) If O(2, g) ≥ O(2, n), then Q ∼= (2O(2,m), 2O(2,n), 0, 2O(2,h+1) − 1).

(2.2) If O(2, g) = O(2, n)− 1, then Q ∼= (2O(2,m), 2O(2,n), 2O(2,n)−1, 2O(2,h+1) − 1).

(3) Assume O(2, h+ 1) ≥ O(2, n).

(3.1) If O(2, g) ≥ O(2, n), then Q ∼= (2O(2,m), 2O(2,n), 0, 2O(2,n) − 1).

(3.2) If O(2, g) = O(2, n)− 1, then Q ∼= (2O(2,m), 2O(2,n), 2O(2,n)−1, 2O(2,n) − 1).

(4) Assume ν ≥ O(2,m) + 1, then

|S| =
( min(ν,O(2,n))∑

π=ν−O(2,m)+1

̟(π)
)
+ 2O(2,mn)−ν

( ∏

q∈X(n), 2|ord(q,h)

qO(q,n)
)
.

(5) Assume ν = O(2,m).

(5.1) If min(O(2, n), O(2, hm − 1)− 1) > O(2, g), then |S| =
min(ν,O(2,n))∑

π=1
̟(π).

(5.2) If min(O(2, n), O(2, hm − 1)− 1) ≤ O(2, g), then

|S| =
(min(ν,O(2,n))∑

π=1

̟(π)
)
+ 2min(O(2,n),O(2,h+1)+O(2,m)−1)

( ∏

q∈X(n), 2|ord(q,h)

qO(q,n)
)
.

(6) If ν ≤ O(2,m)− 1, then ∃! σ ∈ {0, 1}, where

|S| =

min(ν,O(2,n))∑

π=σ

̟(π).

Moreover, we have

σ = 0 ⇔ min(ν,O(2, n)) ≤ O(2, g).

Proof Write

E =
{
l | l | n, l | 2

ν

, 2
ν

| ml, gcd
(n
l
,

2
ν

l
−1∑

j=0

h
mlj

2
ν
)∣∣∣g

}
.

We omit the details of the proof of (1)–(3) since it is straightforward by using Lemmas 3.3 and

3.8. Now we give a claim, which follows from Lemma 3.3.

Claim 3 Fix δ ∈ N, where max(0, ν −O(2,m)) ≤ δ ≤ min(ν,O(2, n)).



The Subgroups of Finite Metacyclic Groups 257

(i) If O(2,m) + δ − ν ≥ 1, then

gcd
( n
2δ
,

2ν−δ−1∑

j=0

h
mj

2ν−δ
)
= ̟(δ).

Moreover, we have

2δ ∈ E ⇔ min(ν,O(2, n))−O(2, g) ≤ δ.

(ii) If O(2,m) + δ − ν = 0, then

gcd
( n
2δ
,

2ν−δ−1∑

j=0

h
mj

2ν−δ
)
= 2min(O(2,n)−δ, O(2,h+1)+O(2,m)−1)

( ∏

q∈X(n), 2|ord(q,h)

qO(q,n)
)
.

2δ ∈ E ⇔ min(O(2, n)− δ, O(2, h+ 1) +O(2,m)− 1) ≤ O(2, g).

Now (4)–(6) follows from the fact

|S| =
∑

l∈E

gcd
(n
l
,

2ν

l
−1∑

j=0

h
mlj

2
ν
)

(see Proposition 3.1).

5 Nonabelian Metacyclic p-Groups

In this section, we give a different classification of nonabelian metacyclic p-groups by using

the results we obtain in the previous sections.

First, we set an isomorphism invariant for all finite metacyclic groups.

Definition 5.1 Let ((m,n, g, h),K, T,Γ,Ψ) be a Hölder-tuple, we denote Λ(m,n, g, h) =

max(|A| | A ≤ K,A�K,A is cyclic,K/A is cyclic).

Lemma 5.1 Fix (m,n, g, h) ∈ Ω, (m̃, ñ, g̃, h̃) ∈ Ω, then n ≤ Λ(m,n, g, h). Assume that

(m,n, g, h) ∼= (m̃, ñ, g̃, h̃), then Λ(m,n, g, h) = Λ(m̃, ñ, g̃, h̃), mn = m̃ñ, mgcd(n, h − 1) =

m̃gcd(ñ, h̃−1), gcd(g,m, n) = gcd(g̃, m̃, ñ), gcd(g,m, n, h−1) = gcd(g̃, m̃, ñ, h̃−1). Moreover,

if n = ñ, then m = m̃, ord(n, h) = ord(n, h̃), gcd(n, h− 1) = gcd(n, h̃− 1).

Proof Using Proposition 3.3 and Proposition 3.4 (3), we omit the details.

Theorem 5.1 Let p be a prime number, fix (l, k) ∈ N2, (t, r) ∈ N2, where

l ≥ 1, k ≥ 2, (pl, pk, t, r) ∈ Ω, r 6= 1, O(p, r − 1) < O(p, t).

If p = 2, k ≥ 3, then Λ(pl, pk, t, r) = pk.

Proof Let ((pl, pk, t, r),K, T,Γ,Ψ) be a Hölder-tuple. Fix (ρ, δ, ς) ∈ Γ, such that Ψ(ρ, δ, ς)�

K, Ψ(ρ, δ, ς) is cyclic, K/Ψ(ρ, δ, ς) is cyclic. It is enough to show ρ ≤ pk. Notice that ∃! b ∈

N, δ = pb, b ≤ k, ∃! a ∈ N, ρ = pa, b ≤ a. Write χ =

ρ
δ
−1∑

j=0

r
plδj
ρ

. By Proposition 3.4, we have

r ≡ 1 (mod pk−b), r
plδ
ρ

≡ 1 (mod δ), gcd
(ρ
δ
, δ,

δ(ςχ+ t)

pk

)
= 1,
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thus k − b ≤ O(p, r − 1) < k, hence b ≥ 1, and p = 2 ∧ r ≡ 3 (mod 4) ⇒ b ≥ 2. Now assume

a ≥ k + 1. Thus a − b ≥ 1, p | ρ
δ
, this implies p ∤ δ(ςχ+t)

pk , hence pk+1−b ∤ (ςχ + t). Since

k − b ≤ O(p, r − 1) < O(p, t), thus pk+1−b | t, hence pk+1−b ∤ χ. But by Lemma 3.3, we have:

O(p, χ) = O
(
p,
ρ

δ

)
= a− b ≥ k + 1− b,

which is a contradiction. Therefore a ≤ k, and the result follows.

Proposition 5.1 Let p be a prime number, fix (l, k) ∈ N2, (ξ, w) ∈ N2, where

l ≥ 1, k ≥ 2, ξ ≤ l, 1 ≤ ξ ≤ w < k, ξ + w ≥ k.

If p = 2, l ≥ 2, k ≥ 3, w ≥ 2, then (pl, pk, pξ, 1 + pw) ∼= (pξ, pl+k−ξ, 0, 1 + pl+w−ξ).

Proof Let K = 〈x, y | xp
k

= 1, yp
l

= xp
ξ

, yxy−1 = x1+pw

〉. Consider (y, x) ∈ K ×K. Since

ξ ≤ w, we get

o(y) = pl+k−ξ, xp
ξ

= yp
l

, xyx−1 = yp
l+k−ξ−pl+w−ξ+1,

hence K ∼= (pξ, pl+k−ξ, pl, pl+k−ξ − pl+w−ξ +1) ∈ Ω. Notice that ξ ≤ l, by Lemma 3.8 (1.2), we

get K ∼= (pξ, pl+k−ξ, 0, 1 + pl+w−ξ).

Now we are ready to give the classification of the nonabelian metacyclic p-groups when p is

an odd prime number.

Theorem 5.2 Let p be an odd prime number, consider the set Met(p) :

Met(p) = {(pa, pb, 0, 1 + pc) | (a, b, c) ∈ N3, a ≥ 1, b ≥ 2, 1 ≤ c < b, a+ c ≥ b} ∪

{(pα, pβ, pγ , 1 + pθ) | (α, β, γ, θ) ∈ N4, θ + γ ≥ β, 1 ≤ θ < γ < min(α, β)}.

Then ∀G is a nonabelian metacyclic p-group, ∃! −→ω ∈ Met(p), G ∼= −→ω .

Proof First, by Lemma 3.3, we get Met(p) ⊆ Ω, we prove in two steps.

(1) Let G be a nonabelian metacyclic p-group, then ∃−→ω ∈ Met(p), G ∼= −→ω .

Proof of (1) By Theorem 3.1, since G is nonabelian, ∃(l, k) ∈ N2, ∃(t, r) ∈ N2, where

l ≥ 1, k ≥ 2, r 6= 1, G ∼= (pl, pk, t, r) ∈ Ω. We discuss in three cases.

Case 1 Assume min(l, k) ≤ O(p, t). Hence pmin(l,k) | t, by Lemma 3.8, we get

G ∼= (pl, pk, t, r) ∼= (pl, pk, 0, 1 + pO(p,r−1)) ∈ Met(p).

Case 2 Assume min(l, k) > O(p, t) ≥ O(p, r − 1) + 1. By Lemma 3.8, we get

G ∼= (pl, pk, t, r) ∼= (pl, pk, pO(p,t), 1 + pO(p,r−1)) ∈ Met(p).

Case 3 Assume min(l, k) > O(p, t), O(p, r − 1) ≥ O(p, t). By Lemma 3.8 and Proposition

5.1, we get

G ∼= (pl, pk, pO(p,t), 1 + pO(p,r−1)) ∼= (pO(p,t), pl+k−O(p,t), 0, 1 + pl+O(p,r−1)−O(p,t)) ∈ Met(p).
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And (1) is proved.

(2) Any two distinct 4-tuples in Met(p) are not isomorphism.

Proof of (2) Using Lemma 5.1 and Theorem 5.1, we omit the details.

Now we turn to the nonabelian metacyclic 2-groups, and the following lemma is well-known.

Lemma 5.2 (see [8, 10]) (1) (2, 4, 0, 3) ≇ (2, 4, 2, 3).

(2) Let A be a nonabelian group where |A| = 8, then ∃e ∈ {0, 2}, such that A ∼= (2, 4, e, 3).

(3) Fix k ∈ N, k ≥ 3. Let Y denote the following set

{(2, 2k, 0, 2k−1 ± 1)} ∪ {(2, 2k, t, 2k − 1) | t ∈ {0, 2k−1}}.

Then ∀(t, r) ∈ N2, where (2, 2k, t, r) ∈ Ω, r 6= 1, ∃! −→ω ∈ Y , such that (2, 2k, t, r) ∼= −→ω .

Proposition 5.2 Fix l ∈ N, l ≥ 2, then (2l, 4, 2, 3) ∼= (2, 2l+1, 0, 1+ 2l), and Λ(2l, 4, 0, 3) =

4.

Proof Let G = 〈x, y | x4 = 1, y2
l

= x2, yxy−1 = x3〉. Consider (y, x) ∈ G×G, we get

o(y) = 2l+1, x2 = y2
l

, xyx−1 = y2
l+1.

By Lemma 3.8 (1.2), we have

G ∼= (2l, 4, 2, 3) ∼= (2, 2l+1, 2l, 2l + 1) ∼= (2, 2l+1, 0, 2l + 1).

And similar to the proof of Theorem 5.1, we get Λ(2l, 4, 0, 3) = 4.

Proposition 5.3 Consider the following set Met(1)(2) :

Met(1)(2) = {(2a, 2b, 0, 1 + 2c) | (a, b, c) ∈ N3, a ≥ 1, b ≥ 3, 2 ≤ c < b, a+ c ≥ b} ∪

{(2α, 2β, 2γ , 1 + 2θ) | (α, β, γ, θ) ∈ N4, θ + γ ≥ β, 2 ≤ θ < γ < min(α, β)}.

Then ∀(l, k) ∈ N2, ∀(t, r) ∈ N2, where

l ≥ 1, k ≥ 3, r 6= 1, r ≡ 1 (mod 4), (2l, 2k, t, r) ∈ Ω,

∃! −→ω ∈ Met(1)(2), such that (2l, 2k, t, r) ∼= −→ω .

Proof This is similar to the proof of Theorem 5.2, we omit the details.

The following lemma follows from Lemma 5.1 and Theorem 5.1.

Lemma 5.3 Fix (l, k) ∈ N2, (t, r) ∈ N2, where

l ≥ 1, k ≥ 3, r 6= 1, (2l, 2k, t, r) ∈ Ω.

Similarly, Fix (a, b) ∈ N2, (c, d) ∈ N2, where

a ≥ 1, b ≥ 3, d ≡ 3 (mod 4), (2a, 2b, c, d) ∈ Ω.

(1) If r ≡ 3 (mod 4), (2l, 2k, t, r) ∼= (2a, 2b, c, d), then a = l, b = k, and

(1.1) if O(2, r + 1) ≤ k − 2, then O(2, r + 1) = O(2, d+ 1);

(1.2) if O(2, r + 1) ≥ k − 1, then r ∈ {2k−1 − 1, 2k − 1}, d ∈ {2k−1 − 1, 2k − 1}.

(2) If r ≡ 1 (mod 4), O(2, r − 1) < O(2, t), then (2l, 2k, t, r) ≇ (2a, 2b, c, d).
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Lemma 5.4 (see [9]) Fix (l, k) ∈ N2, s ∈ N, where

l ≥ 2, k ≥ 3, 2 ≤ s ≤ k, s+ l ≥ k + 1,

then (2l, 2k, 0, 2s − 1) ≇ (2l, 2k, 2k−1, 2s − 1).

Proof Let

K = 〈τ, η | τ2
k

= 1, η2
l

= 1, ητη−1 = τ2
s
−1〉, L = 〈x, y | x2

k

= 1, y2
l

= x2
k−1

, yxy−1 = x2
s
−1〉.

Fix (a, b) ∈ N2, 2 ∤ b. By Lemma 3.3 and Proposition 3.3 (3), we deduce that o(τaηb) =

2l, o(xayb) = 2l+1. Hence

|{ω | ω ∈ K, o(ω) = 2l}| ≥ 2l+k−1, |{σ | σ ∈ L, o(σ) = 2l+1}| ≥ 2l+k−1.

It follows that K ≇ L.

Lemma 5.5 Fix (l, k) ∈ N2, l ≥ 2, k ≥ 3, then (2l, 2k, 0, 2k−1− 1) ≇ (2l, 2k, 0, 2k− 1), and

(2l, 2k, 2k−1, 2k−1 − 1) ∼= (2l, 2k, 2k−1, 2k − 1).

Proof First, let K = 〈τ, η | τ2
k

= 1, η2
l

= 1, ητη−1 = τ2
k−1−1〉. Now fix any (α, β, γ, θ) ∈

N4, such that (ταηβ)(τγηθ)(ταηβ)−1 = (τγηθ)2
k−1. By (2.3) of Theorem 3.1 and (2.1) of

Lemma 3.1, we get 2 | γ, and 2l−1 | θ. Using Proposition 3.3.(3), we get o(τγηθ) | 2k−1. Hence

K ≇ (2l, 2k, 0, 2k − 1).

Next, let G = 〈x, y | x2
k

= 1, y2
l

= x2
k−1

, yxy−1 = x2
k−1−1〉. Consider (xy2

l−1

, y) ∈ G×G.

Using Lemma 3.1 and Proposition 3.3.(3), we get

G = 〈xy2
l−1

, y〉, o(xy2
l−1

) = 2k, y2
l

= (xy2
l−1

)2
k−1

, y(xy2
l−1

)y−1 = (xy2
l−1

)2
k−1.

It follows that

(2l, 2k, 2k−1, 2k−1 − 1) ∼= G ∼= (2l, 2k, 2k−1, 2k − 1).

By Lemma 3.8 (2) and all the previous results in this section, we get the following classifi-

cation for nonabelian metacyclic 2-groups with order greater than 8.

Theorem 5.3 Consider the following set Met(2) :

Met(2) = {(2a, 2b, 0, 1 + 2c) | (a, b, c) ∈ N3, a ≥ 1, b ≥ 3, 2 ≤ c < b, a+ c ≥ b}

∪ {(2α, 2β, 2γ , 1 + 2θ) | (α, β, γ, θ) ∈ N4, θ + γ ≥ β, 2 ≤ θ < γ < min(α, β)}

∪ {(2l, 2k, 0, 2s − 1) | (l, k, s) ∈ N3, l ≥ 2, k ≥ 3, 2 ≤ s ≤ k, s+ l ≥ k}

∪ {(2l̃, 2k̃, 2k̃−1, 2s̃ − 1) | (l̃, k̃, s̃) ∈ N3, l̃ ≥ 2, k̃ ≥ 3, 2 ≤ s̃ < k̃, s̃+ l̃ > k̃}

∪ {(2, 2k, 0, 2k−1 − 1) | k ∈ N, k ≥ 3} ∪ {(2, 2k, 0, 2k − 1) | k ∈ N, k ≥ 3}

∪ {(2, 2k, 2k−1, 2k − 1) | k ∈ N, k ≥ 3} ∪ {(2l, 4, 0, 3) | l ∈ N, l ≥ 2}.

Then ∀G is a nonabelian metacyclic 2-group, |G| ≥ 16, ∃−→ω ∈ Met(2), such that G ∼= −→ω .

Moreover, any two distinct 4-tuples in Met(2) are not isomorphism.
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6 A “ Reciprocity ” Relation on Enumeration of Subgroups

Let G be a finite abelian group, in [4, Theorem 7.2], Birkhoff proved that for any n ∈ N, n |

|G|, the number of subgroups of order n in G is equal to the number of subgroups of index n(
i.e., of order |G|

n

)
in G. In this section, we consider the analog for a finite metacyclic group K.

For convenience, in this section, for a finite group G, we say G has property P, if and only

if for any n ∈ N, n | |G|, the number of subgroups of order n in G is equal to the number of

subgroups of order |G|
n

in G.

Also for convenience, in this section, let Θ denote the following set

{(2l, 2k, t, 2s − 1) | (l, k, s) ∈ N3, t ∈ {0, 2k−1}, 1 ≤ l < k ≤ s+ l, 2 ≤ s ≤ k}.

Now we state the main result in this section.

Theorem 6.1 Let K be a finite metacyclic group. If 2 ∤ |K|, regard {1K} as the Sylow

2-group of K. Then K has property P if and only if K is nilpotent, and the Sylow 2-group of

K is not isomorphism to any 4-tuple in Θ.

First, we provide some lemmas. The following two lemmas are deduced from Theorem 4.4

(3) and Theorem 4.5 (4)–(6).

Lemma 6.1 Fix (l, k) ∈ N2, l ≥ 1, k ≥ 2. Let p be a prime number. Fix (t, r) ∈ N2,

such that (pl, pk, t, r) ∈ Ω. Assume p ≥ 3 or p = 2, 4 | (r − 1). Let G be a finite group, where

G ∼= (pl, pk, t, r). Then G has property P. Actually, fix µ ∈ N, µ ≤ l + k, then

|{A | A ≤ G, |A| = pµ}| =

min(k,l,µ,k+l−µ,O(p,t))∑

θ=0

pθ.

Throughout the rest of this section, we fix the following notation: let (l, k) ∈ N2, (t, r) ∈ N2,

where

l ≥ 1, k ≥ 2, r ≡ 3 (mod 4), (2l, 2k, t, r) ∈ Ω.

Let G be a group, where G ∼= (2l, 2k, t, r). Write a = O(2, r + 1) + l− 1.

Lemma 6.2 Fix µ ∈ N, µ ≤ l + k, let S = {A | A ≤ G, |A| = pµ}.

(1) If µ > l, then |S| = 2min(l,k+l−µ) + 2k+l−µ − 1.

(2) If µ = l, min(k, a) > O(2, t), then |S| = 2min(µ,k) − 1.

(3) If µ = l, min(k, a) ≤ O(2, t), then |S| = 2min(µ,k) + 2min(k,a) − 1.

(4) If µ < l, min(µ, k) > O(2, t), then |S| = 2min(µ,k) − 1.

(5) If µ < l, min(µ, k) ≤ O(2, t), then |S| = 2min(µ,k)+1 − 1.

Corollary 6.1 Assume k > l. Let S1 = {A | A ≤ G, |A| = pl}, and S2 = {A | A ≤ G, |A| =

pk}. Then |S1| 6= |S2|, G does not have property P.

Proof By Lemma 6.2, ∃σ ∈ {0, 1}, |S1| = 2l + σ2min(k,a) − 1, and |S2| = 2l+1 − 1. Since

k > l, O(2, r + 1) ≥ 2, hence min(k, a) > l, |S1| 6= |S2|.

Corollary 6.2 Assume l ≥ k ≥ 2. If t = 2k−1, then assume a ≥ k. Then G has property

P. Actually, fix µ ∈ N, µ ≤ l + k, let S = {A | A ≤ G, |A| = pµ}.
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(1) If µ > l, then |S| = 2k+l−µ+1 − 1.

(2) If k ≤ µ ≤ l, then (t = 0, |S| = 2k+1 − 1) or (t = 2k−1, |S| = 2k − 1).

(3) If µ < k, then |S| = 2µ+1 − 1.

The following lemma, which is proved by using the property of normal Hall subgroups, gives

the relationship between property P and direct product which we need. We state it without

detailed proof.

Lemma 6.3 Fix s ∈ Z+, let (m1, · · · ,ms) be an s-tuple of positive integers such that

∀1 ≤ i < j ≤ s : gcd(mi,mj) = 1. Let G be a group of order m1m2 · · ·ms. Assume that

∀1 ≤ λ ≤ s, G contains a normal subgroup of order mλ · · ·ms, and the number of subgroups

of order mλ · · ·ms in G is equal to the number of subgroups of order m1 · · ·mλ−1 in G. Then

∀1 ≤ i ≤ s : ∃! Bi �G, where |Bi| = mi. Moreover, G has property P if and only if ∀1 ≤ i ≤

s : Bi has property P.

Now Fix s ≥ 1, let p1, · · · , ps be prime numbers where p1 < p2 < · · · < ps, and let

α1, · · · , αs be positive integers. Let K be a metacyclic group of order pα1
1 pα2

2 · · · pαs
s . Since K

is supersolvable, therefore ∀1 ≤ λ ≤ s, K contains a normal subgroup of order pαλ

λ · · · pαs
s . Now

Theorem 6.1 follows from Lemma 6.3 and the previous results in this section.

7 Characteristic Subgroups of a Metacyclic p-Group (p ≥ 3)

Throughout this section, let p be a fixed prime number, p ≥ 3. Using Theorem 3.2, we give

a description of the characteristic subgroups of a finite metacyclic p-group G. Particularly, we

show that if G is split, then any characteristic subgroup of G is actually closed under every

element in End (G). For any A ≤ G, we write A char G, if and only if A is a characteristic

subgroup of G.

The following lemma, which is similar to [16, Lemma 2.1], is needed in our discussion.

Lemma 7.1 Fix r ∈ Z, r 6= 1, p | (r − 1), write O(p, r − 1) = u, then ∀m ∈ N :

rm − 1 ≡ m(r − 1) (mod p2u+O(p,m)),
m−1∑
i=0

ri ≡ m (mod pu+O(p,m)).

Proposition 7.1 Fix (l, k) ∈ N2, r ∈ N, l ≥ 1, k ≥ 2, (pl, pk, 0, r) ∈ Ω. If r = 1, then

assume l ≤ k. Let ((pl, pk, 0, r),K, T,Γ,Ψ) be a Hölder-tuple. Fix A ≤ K, then the following

three statements are equivalent to each other.

(1) A char K.

(2) ∃(a, b) ∈ N2, where

k −max(l, k) ≤ 2b− a ≤ k −min(l, O(p, r − 1)), b ≤ a, b ≤ k, a ≤ b+ l,

and A = Ψ(pa, pb, 0) = 〈τp
k−b

, ηp
l+b−a

〉.

(3) ∀ϕ ∈ End (K) : ϕ[A] ⊆ A.

Proof Fix α ∈ U(pk), where U(pk) = 〈α〉(pk). By Theorem 3.2, ∃(a, b) ∈ N2, ∃ς ∈ N, where

b ≤ a, b ≤ k, a ≤ b+ l, ς < pk−b, (pa, pb, ς) ∈ Γ, A = Ψ(pa, pb, ς).
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Write w = max(0, l − O(p, r − 1)), v = max(0, k − l). Consider (τηp
w

, η). By Lemma 3.1 and

Lemma 7.1, it’s straightforward to verify that

(τηp
w

)p
k

= 1K , η(τηp
w

)η−1 = (τηp
w

)r.

Thus ∃! σ1 ∈ Aut (K), where

σ1(τ) = τηp
w

, σ1(η) = η.

Similarly, ∃! (σ2, σ3) ∈ Aut (K)2, where

σ2(τ) = τ, σ2(η) = τp
v

η, σ3(τ) = τα, σ3(η) = η.

(1)⇒(2) First, notice that

σ3(τ
ςηp

l+b−a

)(τ ςηp
l+b−a

)−1 = τ ς(α−1) ∈ A,

it follows that pk−b | ς(α − 1). Since p ∤ (α − 1), ς < pk−b, hence ς = 0. Write µ =

pv
( pl+b−a−1∑

i=0

ri
)
. By Lemma 3.1, ∃λ ∈ N, where

σ1(τ
pk−b

) = τληp
w+k−b

∈ A, σ2(η
pl+b−a

) = τµηp
l+b−a

∈ A.

By Lemma 3.3 and Lemma 3.2, we have pl+b−a | pw+k−b, pk−b | µ, hence we get

k −max(l, k) ≤ 2b− a ≤ k −min(l, O(p, r − 1)).

(2)⇒(3) Fix ϕ ∈ End (K), hence ∃
(
α β
π θ

) ∈ Met2(N), where

ϕ(τ) = ταηβ , ϕ(η) = τπηθ.

Thus (τπηθ)p
l

= 1K , [τ
πηθ, ταηβ ] = (ταηβ)r−1. By Lemmas 3.1 and 3.3, we deduce that

pk | πpl, pl | β(r − 1), O(p, π) ≥ v, O(p, β) ≥ u.

Consider (µ1, µ2) ∈ N
2, where

µ1 =

pk−b−1∑

i=0

rβi, µ2 =

pl+b−a−1∑

i=0

rθi,

by Lemma 3.1, we have

ϕ(τp
k−b

) = ταµ1ηβp
k−b

, ϕ(ηp
l+b−a

) = τπµ2ηθp
l+b−a

.

By Lemma 3.3, we have

O(p, πµ2) ≥ k − b, O(p, βpk−b) ≥ l+ b− a,

and by Lemma 3.2, ϕ(ηp
l+b−a

) ∈ A, ϕ(τp
k−b

) ∈ A. Hence ϕ[A] ⊆ A.

Since (3)⇒(1) is trivial, we’ve completed the proof.
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Now we consider the nonsplit case. Throughout the rest of this section, we fix the following

notation: let (l, k, ε, s) ∈ N4, where

1 ≤ s < ε < min(l, k), s+ ε ≥ k.

Moreover, let ((pl, pk, pε, 1 + ps),K, T,Γ,Ψ) be a Hölder-tuple.

We need the following lemma, which is part of [6, Theorems 3.3 and 3.5]), and gives the

generators of Aut (K).

Lemma 7.2 ∃! (σ1, σ2, σ3, σ4) ∈ Aut (K)4, where

σ1(τ) = τ, σ1(η) = η1+pk−s

, σ2(τ) = τ, σ2(η) = τp
k−min(l,k)

η,

σ4(τ) = τηp
l−s

, σ4(η) = η1+pε−s

, σ3(τ) = τ1+pmin(l,k)−ε

.

And if k ≤ l, then σ3(η) = η, if k > l, then σ3(η) = τη. Moreover, we have

Aut (K) = 〈σ1〉〈σ2〉〈σ3〉〈σ4〉.

The following lemma is deduced from Theorem 3.2 and Lemma 7.1.

Lemma 7.3 Fix A ≤ K, then ∃! (a, b, ς) ∈ N3, such that

b ≤ min(a, k), a ≤ l+ b, ς < pk−b, ςpa ≡ −pε+b (mod pk),

where (pa, pb, ς) ∈ Γ, and A = Ψ(pa, pb, ς).

The following proposition describes the characteristic subgroups of K.

Proposition 7.2 Fix (a, b, ς) ∈ N3, where

b ≤ min(a, k), a ≤ l+ b, ς < pk−b, ςpa ≡ −pε+b (mod pk).

Let A = Ψ(pa, pb, ς) = 〈τ ςηp
l+b−a

, τp
k−b

〉. Write λ0 = O(p, ς).

(1) Assume ς = 0, then A char K ⇔ k − l ≤ 2b− a ≤ k − s.

(2) Assume ς 6= 0, λ0 > ε+ b− a, then A char K if and only if the following two conditions

hold.

(2.1) (l < k, k − l ≤ 2b− a ≤ k − s) or (k ≤ l, k − l ≤ 2b− a, λ0 ≥ ε− b).

(2.2) (b + ε ≥ a+ s) or (b+ ε ≤ a+ s, λ0 ≥ k + s− ε− b).

(3) Assume λ0 = ε+ b− a, write λ1 = O(p, ς
pε+b−a + 1). Then A char K if and only if one

of the following conditions holds.

(3.1) l < k, 0 ≤ 2b− a ≤ k − s, λ1 ≥ k + a− l − 2b, λ1 ≥ k + a+ s− 2b− 2ε.

(3.2) k ≤ l, 2b ≥ a, λ1 ≥ k + a+ s− 2b− 2ε.

(4) Assume λ0 < ε+ b− a, then A char K if and only if the following two conditions hold.

(4.1) 2b− a ≤ k − s, λ0 ≥ b + s− a, 2λ0 ≥ k + s− a.

(4.2) (k ≤ l, λ0 ≥ ε− b) or (l < k, 2b ≥ a, λ0 ≥ k + ε− l− b).

Proof Assume that l < k, and the proof for the case k ≤ l is similar. Let (σ1, σ2, σ3, σ4) ∈

Aut (K)4, the same as in Lemma 7.2. By Lemma 7.2, we deduce that

A char K ⇔ ∀j ∈ {1, 2, 3, 4} : σj [A] ⊆ A.
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Using Lemmas 3.1, 3.3 and 7.1, by straightforward computation, we deduce that

σ1[A] ⊆ A⇔ ηp
k+l+b−a−s

∈ A, σ2[A] ⊆ A⇔ 2b ≥ a.

Now assume that 2b ≥ a, then we have

σ3[A] ⊆ A⇔ ςpl−ε ≡ −pl+b−a (mod pk−b),

as well as

σ4[A] ⊆ A⇔ ηp
l+k−s−b

∈ A, τ ς+
ς(ς−1)

2 pl

ηςp
l−s+(1+pε−s)pl+b−a

∈ A.

Now assume 2b ≥ a, ςpl−ε ≡ −pl+b−a (mod pk−b), therefore λ0 ≥ ε − b, and pk−b | ς(ς−1)
2 pl,

k + l + b− a− s ≥ k + l − s− b. We deduce that

τ ς+
ς(ς−1)

2 pl

ηςp
l−s+(1+pε−s)pl+b−a

∈ A⇔ ηςp
l−s+pl+b+ε−a−s

∈ A.

Using Lemma 3.2, assume that ηςp
l−s+pl+b+ε−a−s

∈ A, then we deduce that ηp
l+k−s−b

∈ A ⇔

2b− a ≤ k − s. Therefore, A char K if and only if

0 ≤ 2b− a ≤ k − s, ςpl−ε ≡ −pl+b−a (mod pk−b), ηςp
l−s+pl+b+ε−a−s

∈ A.

(1) and (2) Assume λ0 > ε+ b− a. Since ςpa ≡ −pε+b (mod pk), therefore

ε+ b ≥ k, ηςp
l−s+pl+b+ε−a−s

∈ A⇔ ηp
l+b+ε−a−s

∈ A,

and

ςpl−ε ≡ −pl+b−a (mod pk−b) ⇔ l + b− a ≥ k − b⇔ k − l ≤ 2b− a.

And by Lemmas 3.2–3.3, we deduce that ηp
l+b+ε−a−s

∈ A if and only if (b + ε ≥ a + s) or

(b+ ε ≤ a+ s, λ0 ≥ k + s− ε− b).

(3) Assume that λ0 = ε+ b− a, by Lemmas 3.2 (2) and 3.3, we deduce that

ηςp
l−s+pl+b+ε−a−s

∈ A⇔ ηp
l+b+ε−a−s+λ1

∈ A⇔ λ1 ≥ k + a+ s− 2b− 2ε.

Since ςpl−ε ≡ −pl+b−a (mod pk−b) ⇔ λ1 ≥ k + a− l − 2b, (3) is proved.

(4) Assume λ0 < ε+ b− a. Thus we have

ςpl−ε ≡ −pl+b−a (mod pk−b) ⇔ λ0 ≥ k + ε− l − b.

By Lemmas 3.2 (2) and 3.3, we deduce that

ηςp
l−s+pl+b+ε−a−s

∈ A ⇔ ηp
λ0+l−s

∈ A ⇔ λ0 ≥ b+ s− a, 2λ0 ≥ k + s− a,

and (4) is proved.
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