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The Subgroups of Finite Metacyclic Groups*

Xu YANG!

Abstract In this paper, the author characterizes the subgroups of a finite metacyclic
group K by building a one to one correspondence between certain 3-tuples (k, [, 3) € N3
and all the subgroups of K. The results are applied to compute some subgroups of K as
well as to study the structure and the number of p-subgroups of K, where p is a fixed prime
number. In addition, the author gets a factorization of K, and then studies the metacyclic
p-groups, gives a different classification, and describes the characteristic subgroups of a
given metacyclic p-group when p > 3. A “reciprocity” relation on enumeration of subgroups
of a metacyclic group is also given.

Keywords Metacyclic groups, Subgroups, Metacyclic p-groups, Characteristic sub-
groups
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1 Introduction

For a fixed finite group K, K is metacyclic if and only if 34 < K, such that both A and
K/A are cyclic. Holder started studying the metacyclic groups rather early (around 1890s). He
showed that a finite metacyclic group can be represented by two generators and three relations
(Holder theorem, see [9, 19]). Basmayji [2] gave a necessary and sufficient condition to determine
whether two fixed metacyclic groups are isomorphic (see [11]). His work is based on the Holder
theorem. Afterwards, there are several classifications of the metacyclic p-groups (see [3, 7, 9,
11-15, 17-18]). Sim [16] classified the metacyclic groups of odd order, and Hempel [9] classified
all the metacyclic groups. In both [9] and [16], the metacyclic group K was characterized by a
certain kind of 8-tuples of odd positive integers («, 8,7, 9,¢,(, 0, k).

Similar to [2], our discussion is based on the Holder theorem. This makes it easier to
compute as well as enables us to use the arithmetic method (mainly congruence in Z) to study
the given group.

Now let K be a finite metacyclic group. By Hélder theorem, we can assume that
K={(rn|r"=1n"=1%nm ' =7"),

where (m,n,g,h) € N*, g <n, h<n, n|gh-1), n| (hm—1). Let T = {A| A < K}.
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Consider the subset I' of N® and the map ¥, where

~=

P = {08 | 1] 0| k| mil, B < %ﬂ( _lh%i) = —g (mod 7).
j=0
1

U: T =T Mk1,B) eT: (kI B)= (% 7).

We show in Theorem 3.2 that W is a one to one correspondence from I' to 7. Using ¥, we
study the construction of the subgroups. In Theorem 3.3, for any A < K, we give a necessary
and sufficient condition to determine whether A < K, and when A <1 K, we give the structure
of K/A. We then compute several subgroups of K, including the upper and lower central series
of K, the Carter subgroup C, the Fitting subgroup F'(K) and the Frattini subgroup ®(K). We
show that K is the semidirect product of K, and its Carter subgroup C, i.e.,

K =K.C, KonC={lg}, (1.1)

where K, is the intersection of every term in the lower central series. Conversely, for any
B < K, if B is nilpotent and BK,, = K, then B is a Carter subgroup of K. The p-subgroups
of K (where p is a prime number) are also studied, and results on counting the number of the
p-subgroups and the structure of the Sylow p-group of K are given.

Two fundamental theorems of this note are proved in Section 3 (Theorems 3.2 and 3.3), and
subgroups of K are studied in Section 4.

In Section 5, we study the metacyclic p-groups. By setting an isomorphism invariant for any
metacyclic group K (Definition 5.1), we give a different classification for metacyclic p-groups.
Section 6 and Section 7 are applications of the results we obtain. In Section 6, we consider
the problem that for a given metacyclic group K, when for any k € N, k | |K|, the number of
subgroups of order k£ and the number of subgroups of index k are the same. Finally, in Section
7, we find all the characteristic subgroups of a given metacyclic p-group G, where p is an odd
prime number.

2 Some Notations

In this section, we give some notations we need.
First, we provide the notation of “Hélder-tuple”, which we use throughout the paper, and
it also leads to the idea of Theorem 3.2.

Definition 2.1 Consider the tuple ((m,n,g,h), K,T,T,¥). We say ((m,n,g,h), K,T,T, V)
is a Hélder-tuple if and only if the next four conditions hold.
(1) (manvgvh) € N4; m > 17”2 1,g<n,h< n,n | g(h_l)vn | (hm_l)
(2) K= {(r,n| ™ =1,n" =190~ ! =7h).
(3) T ={A| A< K}, and T is the following subset of N3,
n ! mlj n
— — k = — —
P ={(0,8) |1 n0| kK| ml, B < l,ﬁ(gh ) =9 (moa7)}.

(4) W is the map from T to T defined as follows,

L

U: T —T (Vk(,pB)el: Uk pB)=(r"n% 7))
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Throughout the paper, we denote Q as the following subset of N*:
Q= {(mvnagah) | m > 17”2 1ag < Tl,h <n,n | g(h_ 1),’{1 | (hm - 1)}

For any (m,n,g,h) € Q and any group K, we say K = (m,n,g,h) if and only if K = (r, |

" = 1,n™ = 19,9~ " = 7"). And for any two 4-tuples (m,n, g, h) and (ﬁz,ﬁ,ﬁ,ﬁ) in Q, we

write (m,n, g, h) = (m,n,g, h) if and only if the following isomorphism relation between groups
holds:

oy = (o | u” = 1,0™ = w9, vuv™! = uP).

(on| 7" =1,0" =79,9m0"

For any prime number p and a € Z, a # 0, denote O(p, a) as the largest nonnegative integer

~ satisfying p? | a. Let O(p,0) = +oo for convenience. For (b, ¢) € Zx Z, ged(b, c) = 1, we write
ord(c, b) as the smallest positive integer o« > 1 where b® = 1 (mod ¢). For (b, ¢) € ZxZ, ¢ # 0, let
the notation L%J denote the largest integer § satisfying § < %, and let b%c denote the only
integer A € {0,1,---,|¢[ — 1} where b = A (modc). For fixed n € N, n > 2, let U,) denote
the set {a | a € N, a < n, ged(a,n) = 1}, and let ©(,) denote the operation on Z defined as

follows:
V(b,c) €EZXTZ: bOy c= (be)Von.

Therefore (Ugy,), ©(n)) is an Abelian group with unit 1. Va € U(,), denote <a>(n) as the subgroup
of (U(ny, ®(n)) generated by {a}.

Fix a € Z, let X (a) denote the set of all the prime factors of a.

Let K be a group, V(a,b) € K x K, denote the commutator of (a,b): [a,b] = aba=tb~".
And for any k € N,k > 3, V(z1,--- ,2x) € K*, define the commutator of (z1,---,xz%) by

induction: [x1,---,xx] = [z1,[x2, - ,25]]. We write Koo = [\ [K, -+, K|, Zoo(K) =
SEN, §>2 S————"

U Zi(K), where {1x} = Zo(K), and Vi € N, Z;11(K)/Z;(K) = Z(K/Z;(K)). Following

i€N

the notations in [8] and [10], the Fitting subgroup of K is denoted as F(K) and the Frattini

subgroup of K is denoted as ®(K). If K is finite, we write exp(K) = lem(o(a) | a € K).
Finally, we mention that for a finite metacyclic group K, K is said to be split if and only if

A(m,n,0,h) € Q, such that K = (m,n,0,h).

3 Characterization of the Subgroups

In this section, we state and prove our fundamental theorem (Theorems 3.2-3.3).
First, we state the following Holder theorem (see [9, 19]), which is used throughout the
paper. We state it in a relatively specific way, in order to tell more details.

Theorem 3.1 (Hoélder) (1) Let G be a finite metacyclic group, A < G, where A <G, both
A and G/A are cyclic, then I(m1,n1,91,h1) € Q, such that ny = |A4], m1 = |G/A|, G =
(m1,n1, g1, ha).

(2) Fiz (m,n,g,h) € Q, let K = (r,n | 7" = 1,n™ = 79, nmn~" = 1), then the following
statements hold.

2.1) o(r)=n, (T) <K, Vje{l,---,m—1}: o & (7).

(2.2) K/{t) = ( n{r) ), |K/{T)| =m, K is metacyclic and |K| = mn.
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— 1}, we have:

(2.3) Y(a,b), (¢,d) €{0,1,--- ,n—1} x {0,1,--- ,m
= (¢, d).

9 = °n? = (a,b)

Hence K = {7'n/ | (i,7) e Nx N,i <n,j <m}

The following two lemmas are basic and used throughout the paper
Lemma 3.1 Fiz (m,n,g,h) € Z*, m > 1, n > 1. Let G be a group, and fix (1,n)
G x G, such that o(t) =n, n™ =719, nrn~' = 1", then
0 (modn), h™ =1 (modn), (m,n,g%n,h%n)

(1) g(h—1) =
(2) Fiz (a,b) e ZxN, (e,f)€ZxN, keN, k>1
k—1
a Rt
(21) ( a b)(Te f) a+eh b+f (Tanb)k _ (Eo )nbk
(2.2) (ronP)(renf) = (v nf)( n)@e(hb—l)za(hf —1) (modmn).
(2.3) [P, - o, renf] = 7¢ e(h*~1)* —a(h’ —1)(R*—1)*
k
Lemma 3.2 Let ((m,n,g,h), K, T,T',¥) be a Hi)'lder tuple.
( ( E h%])"'g)%” ml
b ® %) € Q. Moreover,

§=0

= (h.1, ™

(1) Fiz (k,1,8) € T, then U(k,1, )
(W(k,1,B)| =k, [W(k,1,B)n(r)| =1, W(k,I,B)N(r) = (rT).
(2) Fiz (p,d,s) €T, and (e, f) e Nx {0,1,---,m}, then
e
°n’ € U(p,8,q) & md | fp, e=c h '’ mod — ).
(50%) (st

(3) Fiz (c,d) € N®, ¢ | n, c¢| g, d| m, then (%, Z,O)EI‘, \I/(%,
) e (r¢n?) & cla, d|b.

Moreover, ¥(a,b) € N? :

Proof (1) Write
%_1 mlj
B(X AT )+g9)%n
——
n
l

Since (k,1,3) € T, hence ¥ € Z. By (2.1) of Theorem 3.1, Vw € N, 1 <w < £ : (/0% )" & (1)
ml
Pn% ) and (£,1,9,h " %) € N*. By Lemma 3.1 (2), we have:

Consider (77
#)7 = (r4)

o) =t (%) = () (o)
Hence | (k,l,3)| = k, and by Lemma 3.1, the rest follows

(2) <= Write = 2. Let \ € Z, where

nA (M hf).
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By Lemma 3.1 (2), we have 7¢n/ = T%(Tgn%&)“ € ¥(p,0,9).
n\ m
= By (1), 3(A\1, 1) € Z x {1,---, 2}, such that 7¢p/ = 775" (T*’nTJ)M. If f =0, then
¢ € U(p,6,)N (1) = (%), and % | e. If f # 0, by Lemma 3.1 (2), f = % (modm),

1<f<m,1< % <m, thus f = m‘;’“, 1 = fn—fé. Since o(1) = n, we deduce that

pf

= () ).

(3) This follows from (2) and the fact 7% = 7o+ layp%m
Now we state and prove our two fundamental theorems.

Theorem 3.2 Let ((m,n,g,h), K,T,T',V) be a Holder-tuple.
(1) Fiz (bya,a) €T, (f,e,y) €L, then

L
U(b,a,a) CU(f,e,v)<=ale, belaf, azfy(bz h—fl) (modg).
=0

(2) U is a one to one correspondence from T to T

Proof (1) This follows immediately from Lemma 3.2 (2).
(2) (1) already implies that ¥ is injective, and it remains to show WU[I'] = T. To show
U =T, we fix H< K. Let p=|H|, § = |H N (7)|. Hence we get
n PP
§lp, 6ln, HN(r)=(r%), |H/HN(n)|=|H({n)/(n)|=5, <][m
Since K/(7) is cyclic and |K/(7)| = m, we have (<T>nm76) € H(r)/(r). Hence v € H, (1)v =
<T>77m76. Thus 37 € N, where v = T”an&. Since (1%) = HN(1)<H, v € H, we have v5 € (1%).

=1 msj

Write x = >, h ” . By Lemma 3.1 (2), o(v5 = 77X+9. Hence we get
=0

% | (rx + g), (p, 5, w%%) eT.
Notice that W(p,d,7%%) C H, and by Lemma 3.2 (1), [¥(p,d,7%%)| = p = |H|, hence
H=V(p,6,7%%).
Theorem 3.3 Let ((m,n,g,h), K,T,T,V) be a Holder-tuple, fix (p,d,¢) € T.
(1) V(e,d) € Z x N : (t°n%) € Ng(¥(p, 5,5)) @f(h% —1) =¢(h? = 1) (mod %).

(2) ¥(p,0,5) <K < ¢(h—1)=0 (mod%),hmT =1 (mod%).
(3) If W(p,6,5) 9 K., then K/¥(p,6,) = (0,2, (~)%2, h%2) € Q.

Proof (1) Since U is injective, using Lemma 3.1 (2), (1) follows from the following fact

)

m
P

(po.tet=n" ) +an%%) e,

together with the equation:

md

(T (p, 8, ¢)(ron%) "t = \I/(p, S, (c(l—h" )+ <hdv)%%).
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(2) Take (¢,d) = (1,0) and (¢,d) = (0,1) in (1), and (2) follows.
(3) Write B = ¥(p,d,s), (3) follows from Lemma 3.1 and the following relations:
"B = np (%% -1y — h%% _ mn
TsB=B, nrB=rT B, (nB)(rB)(n~"B)=71""3B, |K/Bl=—.

p
Using Theorem 3.2, we get the following Proposition 3.1 which gives a way to count the
number of subgroups of a given order.

Proposition 3.1 Let ((m,n,g,h), K,T,TI', V) be a Holder-tuple.
(1) Fiz (p,0) € N2, such that & | p, § | n, p|md, let T denote the set

{B|B<K,|B|=p,|BN(7)| =6},
then we have

2_q
5
T#90 & ged (
F-1 msj
Moreover, once T # &, then |T| = ged (%, h "’ )
j

=0
(2) Fiz k € N, k| mn. Then we have

bo1
{ClC<KICI=R)=Yged (7.2 0T ).
where

€e

k1
@z{l|leN,l|n,l|k,k|ml,ng(

DIANI0s
be the following set

m—1
Proposition 3.2 Let ((m,n,g,h), K,T,T', V) be a Holder-tuple, denote 9 = > h'. LetY

i=0
{a|a€{0,1,---

,n—1}h9Ya=—g (modn)},
and let W ={F | E<K,EN{(t) ={1x},(r)E = K}. Then
(1) W # @ < ged(n,9) | g. Moreover, once W # &, then we have

(W= Y| = ged(n, ).
(2) Assume that ged(n,¥) | g. Fix D € W. Then (m,n,g,h) = (m,n,0,h), and we have
Ng(D) = Ck(D), {uDu™'|ue K}| =

n

ged(n,h — 1)
Moreover, any two complements of (1) in K are conjugate in K if and only if the following
equation holds:

n = ged(n, h — 1)ged(n, 9).
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Proof (1) Since for any a € {0,1,--- ,n—1}: (m,1,a) € ' < a € Y. By Theorem 3.2, we
get W ={¥(m,1,a)(=(1%n)) | a € Y}, and (1) follows.

(2) By (1), Y # @. Fix a € Y, consider (1,7%n) € K x K, we get
K ={(r,7n), o(t)=mn, olt*n)=m, (r*n)r(rn)~t=7" () n{r)= {1k}

Hence (m,n,g,h) = K = (m,n,0,h). Now fix D € W, by (1), ! a €Y, D= ¥(m,1,a). For
any (o, 3) € N2, by Lemma 3.1 (2) and Theorem 3.3 (1), we have

(1°1%) € Ng(D) & a(h —1) = a(h”? — 1) (modn) < (799°) € Cx (D).

This implies Cx (D) = Ng(D). Now we compute |Cx(D)|. By the previous discussion and
Theorem 3.1 (2), we deduce that

|Ck(D)| = {(a,8) eN?|0<a<n, 0<B<m, a(h—1)=a(h’ —1) (modn)}|.
Since for any 3 € {0,1,---,m — 1}, we have ged(n,h — 1) | a(h® — 1), and
Ha| a € {0,1,---,n—1}, a(h—1)=a(h® —1) (modn)}| = ged(n,h — 1),

it follows that |Cx(D)| = m - ged(n,h — 1). Since Ck (D) = Nk (D), we get N (D) = m -
ged(n,h — 1), and [{uDu=' | u € K}| =
|[W| = ged(n, 9).

m. Now the last part follows from the fact

For further discussion, we now state some lemmas and basic constructions of metacyclic
groups.

Lemma 3.3 (see [2]) Let p be a prime number, r €Z, p| (r—1), meN, m > 1.

(1) pr 2 3 orp = 27 4 | (T - 1)) then’ O(paTm - 1) = O(paT_ 1) +O(p7m)

(2) If p=2, 4| (r—3), 2| m, then O2,r™ —1)=0(2,r +1) + O(2,m).

n—1
Lemma 3.4 Fiz (k,n,r) €Z% n>1, k|n, k| (" —1), then k|( > 7).
§=0

n—1
Proof Write p = Y 7. We have " — 1 = (r — 1)u. Fix p € X (k), we now show that
j=0
O(p, k) < O(p, ). Notice that k | n, k | (r"—1), hence O(p, k) < O(p,n), O(p, k) < O(p,r™—1).
Next, we consider the following three cases.
(i) If p1 (r — 1), then O(p, ) = O(p,r™ — 1), it follows that O(p, k) < O(p, p).
) @@|r-1),p>3)or(p=2, 4| (r—1)), by Lemma 3.3 (1), we deduce that

O(p,r" —1) =O(p,r — 1)+ O(p,n) = O(p,7 — 1) + O(p, ).

It follows that O(p, u) = O(p,n), and O(p, k) < O(p, ).
(i) f p=2, 4| (r — 3), then O(p,r — 1) =1, O(p,r + 1) > 2. Notice that p | k, we have
p | n. By Lemma 3.3 (2), we deduce that

O(p7 n) S O(P,Tn - 1) - 27 O(p7 M) = O(p’,,,n - 1) - 1

It follows that O(p, k) < O(p,n) < O(p, p).
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By case (i)—case (iii). We deduce that O(p, k) < O(p, p). Finally, since p € X (k) is arbitrary,
we have k | p.

The next two lemmas provide the numerical results we need in the discussion, and they may
be regarded as corollaries of Lemma 3.3.

Lemma 3.5 Let p be a prime number, p > 3, (a,b,c) € Z3, where
a#=+l, pta, b#1, b=1(mod4), c# -1, c¢=3 (mod4),
and fix k € N.
(1) If k > O(2,b — 1), then ord(2F,b) = 2k-020-1),

(2) If k > O(2,c+ 1) + 1, then ord(2F,c) = 2k=0et1),

(3) If k > O(p,a™ P — 1), then %3P — pr=Opa™ 1),

Lemma 3.6 (see [2]) (1) Let p be a prime number, p > 3, fix k € N, k > 1, then
(U(pk), @(pk)) is cyclic, and Vb € U(pk), ifb>2,p | (b - 1), then <b>(pk) = <1 +p0(p,b—1)>(pk)'

(2) Fixm e N, m >4, 7 € Ugm.

(2.1) If =1 (mod4), 7 # 1, then (m)@m) = (1 + 207D 4.

(2.2) If 7 = 3 (mod4), then (m)@m) = (20@7+1) _ 1) 2my-

Proposition 3.3 Let ((m,n,g,h), K,T,T,¥) be a Holder-tuple. Then the following state-
ments hold.

(1) exp(K) = oqigmmy-

(2) Assume that n > 2, then K is Abelian if and only if h =1, and K is cyclic if and only
if h=1, ged(g,m,n) = 1.

(3) Fiz (a,b) € Z x N, then

" mn
o(t TIb) = ety — 1 ’
sod(b,m . .
ged(b,m) ged (n, a( Z;O hY) + rdg(]mb))
Proof Write A\ = m. Since
mn
1 =1 — ) =
cm(o(7),0(n)) = lem (n, 2cd (g, n)) ,
(5

hence A | exp(K). Now fix (o, 8) € N?, by Lemma 3.1 (2), (7'0‘175)A =7 =0
A—1

n | (hP* —1), n| A, by Lemma 3.4, n| > hP". Thus (7°n%)" = 1. This implies exp(K) | A.
i=0

Thus exp(K) = A. The rest (2)—(3) is p_roved by using Theorem 3.1, Lemma 3.1 and (1), we
omit the details.

n*. Since

Using Theorems 3.2-3.3 and Proposition 3.3, we get the following proposition, in which
more details are given.

Proposition 3.4 Let ((m,n,g,h), K,T,T, V) be a Holder-tuple.
(1) Fiz (p,d,5) € T, denote
-1
(X n")+)
ged (g, 0, =0 ) =40.

n

EIN)

mdj
)
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exp(¥(p,d,5)) =

(1.1)

(1.2) W(p,6,5) is Abelmn < h T =1 (mod?).

(1.3) W(p,6,5) is cyclic < hwf =1 (modJ), 6 =1.
(2) Fiz (p,d,5) € T, assume that ¥(p,d,¢) < K.
(2.1)
(2.2)

(

exp(K/¥(p,d,5)) = W-

K/U(p,6,c) is cyclic < h=1 (mod %), ged (22 7 2n¢)=1.

3) [K, K] = (7h=1) = (rEed(mh=1)) exp(K /[, K]) = jogedmhol)

Lemma 3.7 (see [2]) Fiz (m,n,t,r) € Q, (c,d) € NxN, such that (m,n,c,d) € Q, (r),) =
(d)(n), ged(t,n) = ged(c,n), then (m,n,t,r) = (m,n,c,d).

Using Proposition 3.2 (2) Lemmas 3.3 and 3.5-3.7, we have the following lemma on the
metacyclic p-groups.

Lemma 3.8 Let p be a prime number, fiv (I,k) € N2, [ > 1, k > 1, let b = min(l, k), fix
(t,r) € N2, such that (p',p¥,t,r) € Q. Then

(1) Assumep >3 orp=2, r =1 (mod4). Then O(p,r —1)+1 >k, and

(L1) ifr =1, p" [ t, then (9", p*,t,7) = (p',p*,0,1);

(1.2) if r # 1, pb |, then (p',p* t,7) = (p', p¥,0,1 4 pO®r=1)y;

(1.3) if r =1, v Ptt, then (p',pF,t,7) = (p!, p¥,p@®Pt), 1);

(1.4) if r # 1, pP 4 t, then (p',p* t,r) = (p',p*, pO@t) 1 4 pOPr=1),

(2) Assume p = 2, r = 3 (mod4), then O2,r +1)+1 >k, t € {0,257}, Moreover,

(21, 2%, t,7) = (2, 2k, 1,207 +1) _ 1),

Now we can apply Theorems 3.2-3.3 on split metacyclic p-groups. Here a simpler form of
this kind of groups is given.

Proposition 3.5 Let p be a prime number, (I,k,s) € N3, where

[>1, k>2, 1<s<k, s+I1l>k.
Let ((p', p*,0,1 + p®), K, T,T, V) be a Hélder-tuple, and let T* denote the following set
{(a,b,¢) | (a,b,c) eN] b<a,b<k,a<b+1,0<c< pmi“(“7k)_b}.
If p =2, then assume k > 3, s > 2. Define the map V* : T'* — T, where
V(a,b,c) €T*: U*(a,b,c) = (TCXPk?min(a'k)nPHbﬂ,Tpk7b>.

Then

(1) U* is a one to one correspondence from T'* to T.
(2) Fiz (f,e,d) € T'*, then we have

U (fie,d) <K& f—2e<l+s—k, min(f,k)—ec—0(p,d) <s
Proof Define the map ¢ : I'* — Z3, where
V(a,b,¢) €T : pla,b,c) = (p,p’,c-pFmmm@n),

Using Lemma 3.3, we get p[I"*] = T', ¢ is injective, and U* = W o . Now (1) follows from
Theorem 3.2, and (2) follows from Theorem 3.3 (2) and Lemma 3.3.
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4 The Upper and Lower Central Series, ®(K), F(K), the Carter
Subgroup C and the p-Subgroups

In this section, we compute and characterize some subgroups of a finite metacyclic group
K.

First, we write the upper and lower central series for K. Using induction when necessary, the
next lemma follows from Lemma 3.1 and Theorem 3.2.

Lemma 4.1 Let ((m,n,g,h), K,T,T,U) be a Hélder-tuple. Fiz (k,1,8) € T, (p,d,5) €
I', then

ml
k

(1) (20,1, ), K] = (reed(n T 1 A0, 22,
|

1
(2) [W(k,1,8), K] C U(p,8,5) & % | ged(hF —1, B(h —1), 2B=L)),
(3) ¥(s,b) e Nx Z, w €N,

l

w>2: (7% 0%, (70 n%)] = <7_b(h8_1)w71>.

w

Theorem 4.1 Let ((m,n,g,h), K,T,T,V) be a Holder-tuple. Denote

p= I »°m,

pEX (n)NX (h—1)

and let v = 3. Fix s €N, such that Vp € X(n)NnX(h—-1): (s—1)O(p,h—1) > O(p,n). Then
the lower central series of K are

KD (" 1Ho...D <T(h—1)x> o...

and the upper central series of K are

{1K} cC...C <7—gcd(n,(h71))\)’nord(m7 h)> c..-C ZS(K) _ <7-Va770rd(y7h)>~

Moreover, K is nilpotent < X (n) C X(h —1).

Proof First, Vw € N, w > 1, by Lemma 4.1 (3) [K,--- , K] = (700717 = (7eed(n.(h=1)"))
——
w1
Now we prove the following Claim 1 by induction.

Claim 1 YVwe N, w>1
Zw(K) = (rseatmin™y |y et oy My,
Proof of Claim 1 By (2.2) of Lemma 3.1,
Z(K) = {r = o).
Now fix A € Z*, assume Claim 1 holds for A\. Write

f=ged(n,(h—1)*Y, m=gcd(n,(h—1)7%), 6=gcd(n,(h—1)*"1).
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Using Lemma 3.2, we have

mm
IHNK)=V(——F—,m,0].
AE) (ord(?,h)’”’)
By Lemma 4.1 (2), V(k,l,8) € T, we have
n ml
Uk, 1, 8) C Zowa (K) < 1lo, 218, k|—2
(:1,) € Zya (K) (J"ﬁ |ord(;,h)

By Theorem 3.2,

mo
| Zx+1(K)| < ord(Z, 1)’

Again by Lemma 3.2 and the previous discussion, we get

(%79’0) er, W(ﬁ,@ﬂ) C Zxja1(K).

This implies
mo

Z)\-‘rl(K) = qj(ord(ﬂ h)

,9,0).

The induction is completed. And the theorem follows immediately.

Now we turn to the Carter subgroup of a finite metacyclic group K. Recall that for any
group G and A < G, by [5], we say A is a Carter subgroup of G, if and only if A is nilpotent
and Ng(A) = A. Tt is well known that any finite solvable group G contains a Carter subgroup
C, and any two Carter subgroups of GG are conjugate in G. Furthermore, the identity G = CG
always holds (see [5]).

For a finite metacyclic group K, we can say more about its Carter subgroup, and the
following is our main result on the Carter subgroup of K.

Theorem 4.2 Let K be a finite metacyclic group, fix C < K, then
(1) if C is a Carter subgroup of K, then C N Ky = {1k}, K =CKy;
(2) C is a Carter subgroup of K < K = CK and C' is nilpotent.

Using Theorem 3.2, Theorem 4.2 follows from the next proposition.

Proposition 4.1 Let ((m,n,g,h), K,T,T', V) be a Holder-tuple. Denote

o= H pO(p,n)
pEX (n)NX (h—1)

and let v = % Fiz (k,1,p) e, yeN, vy <.
(1) If U(k,l,8) Ko = K, U(k,l, ) is nilpotent, then l = p, k =mpu.
(2) (mp, p,y) €T, W(mp, p,7y) is a Carter subgroup of K. Moreover, we have

Proof (1) By Lemma 3.2 (1), we have

qj(kvlvﬁ)mKoo = <7'%> N <7_,u> = <TW>7
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and it follows that

kv klem(l, v)
= |U(k,l, ) K| = =
mn = [k LA Kool = Coi ) z
Since % | m, lem(l,v) | n, we have % = m, lem(l,v) = n, p | I. Next, by Lemma 3.2,

301 € N, where U(k,l,8) = (m,l,61,h%l), by Theorem 4.1, X(I) € X((h%l) — 1). Thus
X() € X(h—1), l|n, and this implies [ | u. Hence u =1, k =ml=mu

(2) First, we have (mu, u,v) € I, U(mp,u,v) = (170, 7). Write B = U(mpu, u,7y). By
Lemma 3.2, 365 € N, such that B = (m, u, 02, h%u). Since X (u) € X ((h%pu) — 1), by Theorem
4.1, B is nilpotent. Next, fix (e, f) € N2, where (7¢n/) € Ng(B). By Theorem 3.3, we have

(h —1)=e(h—1) (modv).

Notice that ged(h — 1,v) = 1, together with Lemma 3.2, we have
=
”y(ZhJ) =e (modv), (r°n') € B.
j=0

This implies B = Nk (B). Finally, we deduce that
BN Koo = (r) N {r") = (77") = (") = {1k},
and |BK | = muv = |K|, BKo = K.

Now we describe the Frattini subgroup ®(K). The next lemma follows from Theorem 3.2
and the fact that every metacyclic group is supersolvable.

Lemma 4.2 Let ((m,n,g,h), K,T,T, V) be a Holder-tuple, then

(1) VC < K : C is a proper mazimal subgroup of K and (t) C C if and only if Is €
X (m), such that C' = (T,7°).

(2) VB < K : B is a proper mazimal subgroup of K and (t) ¢ B if and only if 3¢ €

X(n), 3 €N, suchthat( , ,ﬁ) el', B= \I/( 7 ,q,ﬁ)

Theorem 4.3 Let ((m,n,g,h), K,T,T', V) be a Holder-tuple, and let (V1,Va, V3, V4, V5) de-
note the following 5-tuple:

(X(n) = X(9))NX(m), X(n)—X(gm), (X(n)NX(g)—X(h-1),
(X(n) N X(g) N X(h—1)) — X(m), X(n)NX(g)NX(h—1)NX(m)).

Denote

w=[[ » Vvie{2345}: vu=]]»

peX(n)NX(g) peEV;

and denote

H D, ¥ = 1cm(ord(v3, h’)v UG)'

peX(m)
Then 3! (0,\) € N2, where (6,\) € {0,1,-+- , v — 1} x {0,1,--- ;0102 — 1}, and

m—1
G(Zhj)z— (mod v2), _G(Zh) (modwz), A=0 (moduwy).
j=0
Moreover, (w?fl’;z, TR ) €T, ®(K) = \p(%’ Uﬁlz’)\) = (e, TR,
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Proof The existence and uniqueness of (6, ) follow from ged( Z v2) = 1 and the Chi-

A) €T, (’”" o 0) T, (V1, Ve, V3, Vi, V3)

vz 7 vz’

nese remainder theorem. Also notice that (le2 ) Prom

is a partition of X (n). We compute ®(K) by presenting a series of facts, all of which follow
from Lemma 3.2.

(1)VpeVi, VBEN: (m2,n ) ¢T.

2) Fixpe Vo, then VB eN, g <p: (B2 3) €T & 3 = 0%p.
N W(Z2,2,0%p) = (r'n, 7o), (99.7%) <.

(2)
(3)
(4) Fixpe Vi, B €N, 0< § < p, then: (12
(5)
(6)

3
peVs
i ng) € Tef =0
5) Using Lemma 3.2, we get () W(Z2 T ) = (7%, n).

pEVY
6) Fix s € V5, then Vy € {0,1,--- ,s — 1} :

(7) Using Lemma 3.2, we get [ (7°,n%) = (7%5,n"s).
seVs
(8) Fix ¢ € V3, then Vy € {0,1,--- ,qg— 1} : (T",%,v) € I'. And we have

(9) Using Lemma 3.2, we get [ (79,7 4@R)) = (7vs pord(vs,h)y,
(10) By lemma 4.2 (1), and (lq)e—‘g)), we get
O(K) = (r,n") N (", n)N{(r*,n") N (T”?’,nord(”?”h)) N <7'077, TV2).
And by Lemma 3.2, ®(K) = (7V1,n?) N (19, 7v2) = (7An¥, 7v1v2),
Now we compute F(K) for a finite metacyclic group K.

Proposition 4.2 Let ((m,n,g,h), K,T,T', V) be a Hélder-tuple. Denotew = [ p. Then

pEX(n)

F(K) = (1,7°"4@M) " and moreover, Yy € K,

()ye F(K)< 3 eN, 1 >1, such thatVe € K : [y, - ,y,z] = 1.

——
l
(2)y€Zo(K)< N eN, I >1, such that Ve € K : [z, ,x,y] = 1k.
——
l
Remark 4.1 Actually, by [1], (1) and (2) hold for every finite group G.
Proof First, denote p = 11 po®n) |y = =, and V(a,B) € K2, Vk € Z7,
pEX (n)NX (h—1)
denote (o, k,8) = [o, - ,a,B8]. Let A = (r,n°"4@") Hence A < K. Fix t € N, where
——

k
n | (hord@h) — 1)t By Lemma 4.1 (3), [A,---,A] = {1x}. Thus A C F(K). Using (2.3) of
N——

t+1
Lemma 3.1 and straightforward computation, we have the following claim.
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Claim Fix (e, f) € N?, then
(3l eN, I >1, suchthatVz e K :e(x,l,7°0)) =1x) & v|e,ord(v,h)| f.
(3r €N, r>1, suchthat Vo € K : e(7°yp/,r,z) = 1x) < ord(w,h)| f.

By Theorem 4.1, Zoo(K) = (1%, 7°"4»"). Notice that the “=" part of (1) and (2) are trivial.
by the above two claims, Proposition 4.2 is proved.

Now we begin to study the p-subgroups of a metacyclic group K, where p is a prime
number. We mainly consider three problems: counting the number of the subgroups of or-
der p*, where a € N; giving a way to judge whether the Sylow p-group of K is normal; finding
a relatively simple 4-tuple in €2 which is isomorphism to the Sylow p-group of K.

Theorem 4.4 Let ((m,n,g,h), K,T,T',¥) be a Holder-tuple, and p a prime number where
p|mn. Fiz P <K, |P|=p°®™) 1 eN, 1<u<O(p,mn). Let A denote the following set

{VIV<K|V]=p'}
Vr e N, m < min(u, O(p,n)), denote b(m) as the following integer:

W(m) = pmin<u,o<p,n>>—w( I1 qo<q7n>),
q€X(n), g#p, O(p,ord(q,h))>0(p,m)+m+1—p

(1) If pt m, then P = <Tm>, |A| =1. If ptged(m,n), then P is cyclic.

(2) Pa4K & Vge X(n) (ptord(q,h)).

(3) Denote fo = max(0, 1 — O(p,m), min(p, O(p,n)) — O(p, g)). Assume that p > 3, p|m
orp=2, p|m, h=1 (mod4). Then

min(p,0(p,n))

Al= Y (.

m=fo

(4) Assumep =2, 2{n, 2| m. Then
Al = H elCEO)

geX(n), O(2,0rd(q,h))>0(2,m)—p+1

(5) Assumep =2, 2|m, 2| n, 44n. Then2|g = P = (2927 2.0,1), and2tg = P
is cyclic.

(6) Assumep >3, p|m, plnorp=2,2|m, 4|n, h=1 (mod4).

(6.1) If ho*d®h) = 1 (mod p©® ™)), O(p, g) > min(O(p, m),O0(p,n)), then

P (po(pﬂn)’po(p,n)’ O, 1)
(6.2) If AP =1 (mod p@®™), O(p,g) < min(O(p,m),O(p,n)), then
P = (pOpm) pOem) ,0p9) 1),
(6.3) If hordPh) £ 1 (mod p@®™), O(p,g) > min(O(p,m), O(p,n)), then
P = (pOrm) p0m) 1 4 pOw. h‘”‘d“)’”)—l)).
(6.4) If herd®h) £ 1 (mod p@®™), O(p, g) < min(O(p,m),O0(p,n)), then
P = (pOlem) pOm) ,0(:9) 1 4 1,0, h”d("’h)—l)).
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Proof By Theorem 3.2, 3! € N, g < po(+n), and (po(p=m"),po(p=”),ﬂ) erl,

pP= \I,(pO(p-,mn)7]90(10#1)7 ).

Denote
PO 1 iy
(6( > AT ) +g)%n
9 = =0
= T
pO(P;”)
()(Zl,m)

By Theorem 3.2, P = (pO®m) pO@.n) g p” YopC®n)),
(1) Using Theorem 3.1 and the Sylow theorem, we omit the details.
(2) Using Theorem 3.3 (2), we only prove the “<” part.
< We deduce from Lemma 3.5.(3) that

Since (p@@mn) pOP:n) 3y € T, thus

BpPPm = _g (mod _n
p

Hence S(h —1) =0 (mod po("—pn)) By Theorem 3.3 (2), we get P < K.
(3) Consider the set

E:{l| l|n,l|p“,p“|ml,gcd(%, h‘“)’g}.

<
Il
o

First, fix 6 € N, max(0,x — O(p,m)) < 6 < min(u, O(p,n)). Write

H=o_1 mj

P
X = .

Using lemma 3.3, we get ged(J5, x) = ¥(6), and

P’ € E & pmin(O®n),n)=s | g < fo <6 <min(p, O(p,n)).

Now by Proposition 3.1, (3) follows from the fact

n

~|'§

-1,
Al = cd(ﬁ, W )
| | ZGZE ° ! Jj=0
(4) The proof is similar to the proof in (3), we omit the details.
(5) Notice that 2 | g implies ¥ = 0, and 2t g implies ¢ = 1, the rest follows.
(6) By Lemma 3.3 and Lemma 3.8, this follows by straightforward computation, and we
omit the details.

Theorem 4.4 enables us to focus on the 2-subgroups of a metacyclic group K. First we state
a lemma, which follows from Proposition 3.3 (2) and Lemma 3.3, and is also necessary when
we classify the metacyclic 2-groups.
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Lemma 4.3 Fiz (k) € N2, | > 1, k > 1+ 2, then (2,,2%,0,2! — 1) € Q,
(2!, 2k 2k=1 2k=l 1) € Q, and (2',2%,0,2F~1 — 1) = (2! 2k 2k—1 2k=l 1),

Theorem 4.5 Let ((m,n,g,h), K,T,T,¥) be a Hélder-tuple, where 2 | m, 2 | n, h =
3 (mod4). Fiz Q < K, |Q| = 2°%™") fir v € N, such that 1 < v < O(2,mn). Denote
S={U|U<K,|Ul=2"}. Vr e N, 7 <min(v,0(2,n)), denote w(r) as the integer

w(w) _ 2min(u,0(27n))—7r H qO(qm)) )
geX(n), O(2,0ord(q,h))>0(2,m)+7+1—v

1) If O(2,h + 1) + O(2,m) = O(2,n), then Q = (202™) 202n) ( 20(2r+1) _ 1),
2) Assume O(2,h+1)+0(2,m) > 0(2,n) +1, O(2,h+1) <O(2,n) — 1.

2.1) If O(2,9) > O(2,n), then Q = (20(2™) 20<2 m),0,20@R+1) _ 1),

2.2) If O(2,9) = O(2,n) — 1, then Q = (20(2 m) 20(2 n) 20(2m)=1 90(2:h+1) _q),
3) Assume O(2,h +1) > O(2,n).
3.1) If O(2,9) > O(2,n), then Q = (202m) 20(2n) ( 202n) _ 1),

(2,n
3.2) If O(2,9) = O(2,n) — 1, then Q = (20<2rm>, 20<2 ) 20(2n)=1 90@2n) _ 1),
4) Assume v > O(2,m) + 1, then

/\/\/\/—\/—\/—\/\/\

min(v,0(2,n))

S| = ( DI C)) ) + 20@)7”")—”( 11 q0<q,n>)'

=v—0(2,m)+1 geX(n), 2|ord(q,h)

(5) Assume v = 0(2,m).
min(v,0(2,n))
(56.1) If min(O(2,n),0(2,A™ — 1) — 1) > O(2, g), then |S| = > w(m).

=1
(5.2) If min(O(2,n),0(2,h™ — 1) — 1) < O(2, g), then
min(v,0(2,n)) .
S| :( Z w(ﬂ)) 1 omin(0(2,7),0(2,h+1)+0(2,m)~1) H qO(q,n))'
=1 qgeX(n), 2|ord(q,h)

(6) If v < O(2,m) — 1, then 3! 0 € {0,1}, where

min(v,0(2,n))

|S| = Z w(r).

=0
Moreover, we have

c=0 < min(r,0(2,n)) < 0(2,9).

Proof Write

ml]

{1|l|nz|22|mlgcd( _Z__: )‘}

We omit the details of the proof of (1)—(3) since it is straightforward by using Lemmas 3.3 and
3.8. Now we give a claim, which follows from Lemma 3.3.
Claim 3 Fix 6 € N, where max(0,v — O(2,m)) < § < min(r, 0(2,n)).
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(i) If O(2,m) + 6 —v > 1, then

ng(ﬁa

Moreover, we have
2° € E < min(r,0(2,n)) — 0(2,g) < 6.

(ii) If O(2,m)+ ¢ —v =0, then

2u7(5_1 i

n 2v=5\ _ omin(O(2,n)—3, o(2,h+1)+o(2,m)—1)( o( ,n))
gcd(26, Z h ) =2 H g\,
7=0 geX(n), 2lord(q,h)

2° ¢ E < min(0(2,n) — 6, O(2,h+1)+0(2,m) —1) < 0(2,9).
Now (4)—(6) follows from the fact

-1

K =chd(%, hl'l’l)

leE j=0

N[
N

(see Proposition 3.1).

5 Nonabelian Metacyclic p-Groups

In this section, we give a different classification of nonabelian metacyclic p-groups by using
the results we obtain in the previous sections.
First, we set an isomorphism invariant for all finite metacyclic groups.

Definition 5.1 Let ((m,n,g,h), K,T,T',V) be a Holder-tuple, we denote A(m,n,g,h) =
max(|4| | A< K, A< K, Ais cyclic, K/A is cyclic).

Lemma 5.1 Fiz (m,n,g,h) € Q, (m,n,g,h) € Q, then n < A(m,n,g,h). Assume that

(myn,g,h) = (m,n,g,h), then A(m,n,g,h) = A(m,n,g,h), mn = mn, mged(n,h — 1) =

ﬁlg(}d(ﬁ,ﬁ— 1), ged(g, m,n) = ged(g, m,n), ged(g, m,n, h—1) = ged(g, m, i, h— 1). Moreover,
if n =n, then m = m, ord(n, h) = ord(n, h), ged(n,h —1) = ged(n, h —1).
Proof Using Proposition 3.3 and Proposition 3.4 (3), we omit the details.

Theorem 5.1 Let p be a prime number, fir (I,k) € N2, (t,7) € N2, where
1>1, k>2, (' p5tr) e r#1, Olp,r—1)<O0(pt).

If p=2, k>3, then A(p',p*,t,7) = p.

Proof Let ((p',p*,t,7), K, T,T,¥) be a Hélder-tuple. Fix (p, d,<) € T', such that ¥(p, d, <) <
K, ¥(p,d,) is cyclic, K/¥(p,6,s) is cyclic. It is enough to show p < p*. Notice that 3! b €

5-1 plsj
N,0=p" b<k,FacN,p=p* b<a Write x= Y. r ” . By Proposition 3.4, we have
7=0
o S(ox +t
r=1(modp*?), r° =1 (mody), gcd(g,é, @Xilj‘)) =1,
p
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thus £ — b < O(p,7 — 1) < k, hence b > 1, and p =2 Ar = 3 (mod4) = b > 2. Now assume
a>k+1 Thusa—b>1, p| %, this implies p t w, hence p**1=b t (¢x + t). Since
k—b<O(p,r—1) < O(p,t), thus p**1=b | ¢ hence p*T1=0 t x. But by Lemma 3.3, we have:

0(p,x)=0(p,§) =a—-b>k+1-0,
which is a contradiction. Therefore a < k, and the result follows.

Proposition 5.1 Let p be a prime number, fiz (I, k) € N2, (£, w) € N2, where
I1>21, k=2, ¢<I, 1<{<w<k, {+w>k.

Ifp=2,1>2, k>3, w>2, then (p',p*,p*, 1+ p*) = (p,p"*"75,0,1+ p'te=e).
Proof Let K = (z,y | 2?" = 1,y? = a#* yay=' = 2*P"). Consider (y,z) € K x K. Since
¢ < w, we get

k=€ _pltw—& 4

1 _
_yp )

oly) = pF ¢ 2 =y aya

hence K = (pS, pitF=¢ pl, piHh—¢ — pl+w=8 1 1) € Q. Notice that ¢ < I, by Lemma 3.8 (1.2), we
get K = (p&, p"th=¢,0,1 + p'tv=¢).

Now we are ready to give the classification of the nonabelian metacyclic p-groups when p is

an odd prime number.

Theorem 5.2 Let p be an odd prime number, consider the set Met(p) :

Met(p) = {(p®, p®,0,1+p°) | (a,b,¢) e N>, a>1,b>2,1<c<b,a+c>b}U
{(p* 0" 0", 14+9°) | (2, 8,7,0) €N, 0+ 7> 8,1 <0 <~ < min(a, §)}.

Then YG is a nonabelian metacyclic p-group, 3 & € Met(p), G = .

Proof First, by Lemma 3.3, we get Met(p) C 2, we prove in two steps.

(1) Let G be a nonabelian metacyclic p-group, then EmES Met(p), G = .

Proof of (1) By Theorem 3.1, since G is nonabelian, 3(/,k) € N2, 3(¢t,r) € N2, where
I1>1, k>2 r#1, G=(p,p* t,r) € Q. We discuss in three cases.

Case 1 Assume min(l, k) < O(p,t). Hence p™»*) | ¢ by Lemma 3.8, we get
G=(pp" tr) = (0, p*, 0,1+ p2PT ) € Met(p).
Case 2 Assume min(l, k) > O(p,t) > O(p,r — 1) + 1. By Lemma 3.8, we get

G = (ph,p*, t,r) = (pl,pF, pP@0) 1 4 pO =1y € Met(p).

Case 3 Assume min(/, k) > O(p,t), O(p,r —1) > O(p,t). By Lemma 3.8 and Proposition
5.1, we get

G = (p',p*, pP@t) 1 4 pOPr=Dy = (pOBD) pHh=0®t) 1 4 pHFOEr=D=0®) ¢ Met(p).
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And (1) is proved.

(2) Any two distinet 4-tuples in Met(p) are not isomorphism.
Proof of (2) Using Lemma 5.1 and Theorem 5.1, we omit the details.

Now we turn to the nonabelian metacyclic 2-groups, and the following lemma is well-known.

Lemma 5.2 (see [8,10]) (1) (2,4,0,3) 2 (2,4,2,3).
(2) Let A be a nonabelian group where |A| = 8, then Je € {0,2}, such that A = (2,4,e,3).
(3) Fiz k e N, k> 3. Let Y denote the following set

{(2,25,0,2 V£ )} U{(2.25 1,25 — 1) [t € {0,251},

Then V(t,r) € N2, where (2,25, t,7) € Q, r#1, 3! W €Y, such that (2,2F t,r) = .
Proposition 5.2 Fizl € N, | > 2, then (2,4,2,3) = (2,210, 1+ 2"), and A(2',4,0,3) =

Proof Let G = (z,y | 2* = 1y? =22, yzy~! = 23). Consider (y,7) € G x G, we get
o(y) =21, 2% = y2l, ryr~! = y2l+1.
By Lemma 3.8 (1.2), we have
G = (2,4,2,3) 2 (2,271, 2L 2t 1 1) = (2,211 0,28 +1).
And similar to the proof of Theorem 5.1, we get A(2!,4,0,3) = 4.
Proposition 5.3 Consider the following set Met 1y(2):
Met(1)(2) = {(2%,2°,0,1+2°) | (a,b,c) eN*,a > 1,b>3,2<c<ba+c>b}U
{(2%,2°,20,1+2%) | (a,8,7,0) e N*, 6 +~v > 3,2 < 0 <y < min(e, §)}.
Then V(l, k) € N2, V(t,r) € N2, where
1>1, k>3, r#1, r=1(mod4), (2',2% tr)eQ,
I T e Met1)(2), such that (2L, 2k ¢, r) = .
Proof This is similar to the proof of Theorem 5.2, we omit the details.
The following lemma follows from Lemma 5.1 and Theorem 5.1.
Lemma 5.3 Fiz (I,k) € N?, (t,r) € N, where
1>1, k>3, r#1, (2,2t cq.
Similarly, Fiz (a,b) € N2, (c,d) € N?, where
a>1, b>3, d=3(mod4), (2%2°¢d) cq.

(1) If r = 3 (mod 4), (2',2% t,7) = (2%,2° ¢,d), thena =1, b=k, and

(1.1) if O2,r+1) <k —2, then O(2,7 +1) = 0(2,d + 1);

(1.2) if O(2,7+1) >k —1, thenr € {281 —1.2F — 1}, de {2k-1 — 1,28 — 1}.
(2) If r =1 (mod4), 02,7 —1) < O(2,t), then (2',2% t,7) 2 (2¢,2° ¢, d).
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Lemma 5.4 (see [9]) Fiz (I,k) € N?, s € N, where
[1>2, k>3, 2<s<k, s+Il>k+1,

then (2,2%,0,2% — 1) 2 (2!,2F 2k=1 25 —1).
Proof Let

K = <7',77 | 7'2k = 1,772l = 1,7]7'77_1 = T25_1>, L= <$,y | 1?2k = 1,y2l = $2k717y1;y_1 = ;1325_1>.
Fix (a,b) € N2, 2 { b. By Lemma 3.3 and Proposition 3.3 (3), we deduce that o(7%n") =
2! o(x%y®) = 2!+, Hence

{wlwe K ow) =2} >2"" [{o |0 € L,o(o) =21} > 2771

It follows that K 2 L.

Lemma 5.5 Fiz (I,k) € N2, | > 2, k >3, then (2',2F,0,2F=1 —1) 2 (2!,2%,0,2% — 1), and
(21, 2k, 2k=1 gk=1 _ 1) = (21 2k k=1 9k _ 1)

Proof First, let K = (r,n | 72" = 1,72 = 1,nr~! = 72" '~1). Now fix any (a, 8,7, 0) €
N4, such that (799%)(r7n?)(ron?)~! = (T'YT]G)Qk_l. By (2.3) of Theorem 3.1 and (2.1) of
Lemma 3.1, we get 2 | v, and 2/=! | §. Using Proposition 3.3.(3), we get o(77n?) | 2¢=1. Hence
K 2 (21,2F,0,2F —1).

Next, let G = (z,y | 22" = 1,y% = 22" " yay~ = 22" '~1). Consider (zy2 ',y) € G x G.
Using Lemma 3.1 and Proposition 3.3.(3), we get

21

-1
Ty =2k ¢ = (ay

21—1)2k—1 21—1) 1

=1 ok _
y = (zy® )L

-1
G=(zy* ., y), olzy , y(zy

It follows that
(2!, 2F 2k=1 ok=1 _ 1)y = (2! 2k 2k=1 2k 1),

By Lemma 3.8 (2) and all the previous results in this section, we get the following classifi-
cation for nonabelian metacyclic 2-groups with order greater than 8.

Theorem 5.3 Consider the following set Met(2) :

Met(2) = {(2,2°,0,1+2°) | (a,b,c) €N*,a>1,b>3,2<c < b,a+c>b}
(27,272,271 4+ 2% | (o, B,7,0) € N*,0 4+ > 3,2 < 0 < v < min(a, B)}
(21,2%0,2° = 1) | (I,k,s) e N*,1 > 2k >3,2< s < k,s +1 > k}

U228 251 25 1) | (15,3 eN3 T>2k>32<5<k35+1>k}
(2,2%,0,2571 —1) | ke Nk >3} U {(2,2%,0,2 — 1) | k € N,k > 3}

U{(2,2F, 2" 2F —1) | ke Nk >3} U{(2",4,0,3) |l € N, > 2}.

Then YG is a nonabelian metacyclic 2-group, |G| > 16, I& € Met(2), such that G = .
Moreover, any two distinct 4-tuples in Met(2) are not isomorphism.
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6 A “ Reciprocity ” Relation on Enumeration of Subgroups

Let G be a finite abelian group, in [4, Theorem 7.2], Birkhoff proved that for any n € N, n |
|G|, the number of subgroups of order n in G is equal to the number of subgroups of index n
(1 e., of order ‘G‘) in G. In this section, we consider the analog for a finite metacyclic group K.

For convenience, in this section, for a finite group G, we say G has property P, if and only
if for any n € N, n | |G|, the number of subgroups of order n in G is equal to the number of
subgroups of order % in G.

Also for convenience, in this section, let © denote the following set

(@ 2% 1,25 — 1) | (I,k,s) e N}t € {0,2F" 1V 1<l <k <s+1,2<s <k}

Now we state the main result in this section.

Theorem 6.1 Let K be a finite metacyclic group. If 2 1 |K|, regard {1k} as the Sylow
2-group of K. Then K has property P if and only if K is nilpotent, and the Sylow 2-group of
K is not isomorphism to any 4-tuple in ©.

First, we provide some lemmas. The following two lemmas are deduced from Theorem 4.4
(3) and Theorem 4.5 (4)—(6).

Lemma 6.1 Fiz (I,k) € N2, | > 1, k > 2. Let p be a prime number. Fiz (t,r) € N?,
such that (p!,p¥,t,r) € Q. Assumep >3 orp=2, 4| (r —1). Let G be a finite group, where
G = (p', p*,t,r). Then G has property P. Actually, fix p € N, p <1+ k, then

min(k,l,p,k+l—p,0(p,t))

HAIA<G Al =p"} = > P’
0=0

Throughout the rest of this section, we fix the following notation: let (I, k) € N2, (t,r) € N2,
where
1>1, k>2, r=3(modd4), (2,2 1tr) ecq.
Let G be a group, where G = (2!,2% t,7). Write a = O(2,7 + 1) +1 — 1.

Lemma 6.2 Fizpi €N, p<i+k, let S ={A| A< G,[A] =p"}
D) If p>1, then |S| = 2min(kti=p) 4 ok+l=p _ 1,

(

(2) If p =1, min(k,a) > O(2,t), then |S| = 2min(k) _q

(3) If =1, min(k,a) < O(2,t), then |S| = 2min(wk) 4 omin(k,a) _ 7,
(4) If p < I, min(p, k) > O(2,t), then || = 2mn(wk) 1,

(5) If u < 1, min(u, k) < O(2,t), then |S| = 2min(wk)+1 _ 1,

Corollary 6.1 Assumek >1. Let Sy = {A| A<G,|Al =p'}, and So = {A| A< G, |A| =
pFY. Then |Si| # |S2|, G does not have property P.

Proof By Lemma 6.2, 30 € {0,1}, |S;| = 2! + o2mn(ka) 1 and |Sy| = 2!F! — 1. Since
E>1, O2,r+1)>2, hence min(k,a) >, |S1] # |Sa|.

Corollary 6.2 Assumel >k > 2. Ift = 2k=1 then assume a > k. Then G has property
P. Actually, fix p e N, p<Il+k,let S={A]| A<G,|A|l =p"}.
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(1) If uw > 1, then |S| = ok+Hl—p+l _ 1
(2) Ifk < p <1, then (¢ =0, S| = 25+ — 1) or (¢ = 2571, [S] = 2% — 1),
(3) If u < k, then |S| = 2#+1 — 1.

The following lemma, which is proved by using the property of normal Hall subgroups, gives
the relationship between property P and direct product which we need. We state it without
detailed proof.

Lemma 6.3 Fiz s € Z%, let (my,- - ,ms) be an s-tuple of positive integers such that
V1 <i<j<s:gedim;m;) =1 Let G be a group of order mims---ms. Assume that
V1l < A\ <'s, G contains a normal subgroup of order my ---mg, and the number of subgroups
of order my ---myg in G is equal to the number of subgroups of order my---mx_1 in G. Then
V1 <i<s:3 B; 9G, where |B;| = m;. Moreover, G has property P if and only if V1 < i <
s : B; has property P.

Now Fix s > 1, let p1,---,ps be prime numbers where p; < ps < --- < ps, and let
aq,- -+ ,as be positive integers. Let K be a metacyclic group of order pJ'p5? - - p%s. Since K
is supersolvable, therefore V1 < X\ <'s, K contains a normal subgroup of order p3* - - - p$. Now
Theorem 6.1 follows from Lemma 6.3 and the previous results in this section.

7 Characteristic Subgroups of a Metacyclic p-Group (p > 3)

Throughout this section, let p be a fixed prime number, p > 3. Using Theorem 3.2, we give
a description of the characteristic subgroups of a finite metacyclic p-group G. Particularly, we
show that if G is split, then any characteristic subgroup of G is actually closed under every
element in End (G). For any A < G, we write A char G, if and only if A is a characteristic
subgroup of G.

The following lemma, which is similar to [16, Lemma 2.1}, is needed in our discussion.

Lemma 7.1 Fixr € Z, r # 1, p | (r — 1), write O(p,r — 1) = u, then Vm € N :

m—1
2u+O(p.,m))’ Z r=m (modpu+0(p,m))‘
i=0

1=

"™ —1=m(r—1) (modp

Proposition 7.1 Fir (k) € N2, r € N, I > 1, k> 2, (p',p*,0,7) € Q. Ifr =1, then
assume | < k. Let ((p',p*,0,7), K,T,T',¥) be a Hélder-tuple. Fiz A < K, then the following
three statements are equivalent to each other.

(1) A char K.

(2) 3(a,b) € N?, where

k—max(l,k) <2b—a <k—min(l,O(p,r —1)), b<a, b<k, a<b+l,
and A = U (p®, p®,0) = (Tpkfb,anbfa)
(3) Y € End (K) : ¢[A] C A.

Proof Fix a € Uy, where Ug,r) = () (pr). By Theorem 3.2, 3(a,b) € N2, 3¢ € N, where

b<a, b<k a<b+l, ¢<p Pt (.p’)el, A=T(p*p ).
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Write w = max(0,1 — O(p,r — 1)), v = max(0,k — [). Consider (77", 7). By Lemma 3.1 and
Lemma 7.1, it’s straightforward to verify that

w

(r P =1, (et = (")
Thus 3! 01 € Aut (K), where
ai(r) =", a1(n) =n.
Similarly, 3! (02, 03) € Aut (K)?, where

o2(r) =7, 02(n) =771, 03(r) = 7%, 03(n) = 1.
(1)=(2) First, notice that
)7t =rsleb) ¢ 4,

it follows that p*=° | ¢(a — 1). Since p f (o — 1), ¢ < pF=% hence ¢ = 0. Write p =

I+b—a_q

p’( > r'). By Lemma 3.1, 3\ € N, where

=0

l+b—a

) =T1Hn? € A

k—b A pw+k—b l+b—a

)=T1"7 €A, ax(n?

wHk=b - pk=b | 1, hence we get

By Lemma 3.3 and Lemma 3.2, we have p/**=¢ | p
k —max(l, k) < 2b—a <k —min(l,O(p,r — 1)).

(2)=(3) Fix ¢ € End (K), hence 3(* 5') € Mety(N), where

o(r) =70°, o(n) =71’

Thus (77n°)?" =1k, [7™1°, 7°0°] = (+°1°)"~!. By Lemmas 3.1 and 3.3, we deduce that
pk | ﬂ-pl7 pl | ﬁ('f’ - 1)7 O(p7 ﬂ-) 2 v, O(paﬁ) Z u.

Consider (1, p2) € IN?, where

k—b_q

P
M1 = Z 7“51, K2
i=0

|

.
>
S

by Lemma 3.1, we have

By Lemma 3.3, we have
O(p,’ﬂ'/,bg) > k_ba O(p7ﬁpk_b) 2 l+b_a7

and by Lemma 3.2, o(n? "~ ) € A, o(r?" ") € A. Hence ¢[A] C A.
Since (3)=-(1) is trivial, we’ve completed the proof.
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Now we consider the nonsplit case. Throughout the rest of this section, we fix the following
notation: let (I, k,¢,s) € N*, where

1<s<e<min(l,k), s+e>k.

Moreover, let ((p', p¥,p%,1+ p*), K, T,T,¥) be a Hélder-tuple.
We need the following lemma, which is part of [6, Theorems 3.3 and 3.5]), and gives the
generators of Aut (K).

Lemma 7.2 3! (01,02,03,04) € Aut (K)*, where

+pk—e k—min(l,k)

olr) =7, oiln) =0T, o) =7, oax(n) =7 1,

l—s £—s

oa(r) =70 ", ouln) =g, as(r) = AN

And if k <1, then o3(n) =n, if k > 1, then o3(n) = 1. Moreover, we have
Aut (K) = (o1)(02)(03){04)-

The following lemma is deduced from Theorem 3.2 and Lemma 7.1.

Lemma 7.3 Fir A < K, then 3! (a,b,s) € N3, such that
b<min(a,k), a <l+b, ¢ <p*" ¢p* = —p" (modp*),

where (p®,p®,s) €T, and A = ¥ (p®, p°, ).
The following proposition describes the characteristic subgroups of K.
Proposition 7.2 Fiz (a,b,s) € N3, where

b<min(a, k), a <l+b, ¢ <p"° ¢p®=—p" (modp").

Let A= W(p,p,¢) = (rn? """ 7" "). Write Ao = O(p, <).

(1) Assume ¢ =0, then A char K & k—1<2b—a<k-—s.

(2) Assume s #0, Ao >e+b—a, then A char K if and only if the following two conditions
hold.

21) (I<k, k—=l<2b—a<k—s)or(k<l, k—1<2b—a, \g>c—0).

(22) (b+e>a+s)or(b+e<a+s, \o>k+s—e—D).

(3) Assume Ao =&+ b — a, write A\; = O(p, ﬁ +1). Then A char K if and only if one
of the following conditions holds.

BLI<k 0<2b—a<k—-—s,\1>k+a—1—2b, 1y >k+a+s—2b—2e.

(B32)k<l,2b>a, M1 >k+a+s—2b—2¢.

(4) Assume Ao < €+ b — a, then A char K if and only if the following two conditions hold.

(41)2b—a<k—s,M>b+s—a,2\>k+s—a.

(4.2) (k<Il, do=ec=b)or(I<k, 2b>a, \o>k+ec—1-0).

Proof Assume that [ < k, and the proof for the case k <[ is similar. Let (01, 02,03,04) €
Aut (K)*, the same as in Lemma 7.2. By Lemma 7.2, we deduce that

Achar K < Vj€{1,2,3,4}:0;[4] C A
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Using Lemmas 3.1, 3.3 and 7.1, by straightforward computation, we deduce that

k4+l+b—a—s

o1[A] C Asf €A oA]C A& 20> a.
Now assume that 2b > a, then we have
0'3[14] CAe §pl_€ = _pl+b_a (mOdpk_b)v

as well as
0-4[A] g A <:> npl+k757b E A7 T§+g(qgmpln§plis+(1+psis)pl+bia E A'

Now assume 2b > a, sp'=¢ = —p't*=% (mod p

k+l+b—a—s>k+1—s—0b We deduce that

k_b), therefore \g > € — b, and pF~° | <(<2—1)pl

)

s(s—1) 1 l—s E—sS I+b—a l—s l+b+e—a—s
FotTT Popsp +(14+p°*)p €A P +p c A.

l+bte—a—s l+k—s—b

Using Lemma 3.2, assume that n§p175+p € A, then we deduce that n? cAs

2b — a < k — s. Therefore, A char K if and only if
0 < 2 —a < k— s, gpl—s = _pl+b—a (Inodpk—b)7 n<p1—3+pl+b+z—a—s cA

(1) and (2) Assume \g > £ + b — a. Since ¢p® = —p°° (mod p*), therefore

l+b+e—a—s

s l+bte—a—s
L cAseqf € A,

e+b>k, n
and

p 7= —p" (modpF ) e ltb-—a>k-bek-1<2b—a.

l+bte—a—s

And by Lemmas 3.2-3.3, we deduce that n”
(b+e<a+s, o>k+s—c—Db).
(3) Assume that \g = ¢ + b — a, by Lemmas 3.2 (2) and 3.3, we deduce that

€ Aif and only if (b+¢ > a+ s) or

gpl—s_,'_lerb#»s—a—s l+bte—a—s+Aqp

i cAsegP cAs N >k+a+s—2b—2e.

Since ¢p'=¢ = —p!**=% (mod p*=0) & Ay > k+a — [ — 20b, (3) is proved.
(4) Assume A\g < € + b — a. Thus we have

p'f = —p"* (modp* ) e Ng > k+e—1—b.
By Lemmas 3.2 (2) and 3.3, we deduce that

l—s l+bt+e—a—s
,,7§P +p GA = n

proti=s

€A s N>b+s—a, 2 o> k+s—a,

and (4) is proved.
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