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Abstract This paper deals with constrained trace, matrix and constrained matrix Harnack

inequalities for the nonlinear heat equation ωt = ∆ω+ aω lnω on closed manifolds. A new

interpolated Harnack inequality for ωt = ∆ω−ω lnω+εRω on closed surfaces under ε-Ricci

flow is also derived. Finally, the author proves a new differential Harnack inequality for

ωt = ∆ω−ω lnω under Ricci flow without any curvature condition. Among these Harnack

inequalities, the correction terms are all time-exponential functions, which are superior to

time-polynomial functions.
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1 Introduction

Recently, Cao, Fayyazuddin Ljungberg and Liu [4] improved gradient estimates of Ma [26]

and Yang [33]. They proved a new differential Harnack inequality for any positive solution

ω(x, t) to the nonlinear heat equation

∂

∂t
ω = ∆ω + aω lnω, (1.1)

where a is a nonzero real constant, on a complete smooth manifold.

Theorem A (see [4]) Let (Mn, g) be an n-dimensional complete manifold without boundary

with nonnegative Ricci curvature. Let ω(x, t) be a positive solution to (1.1). Then in any of the

three cases:

(i) a > 0 and M is closed,

(ii) a < 0 and M is closed,

(iii) a > 0 and M is complete noncompact,

the following inequality holds for all x ∈Mn, t > 0,

∆ lnω +
an

2(1− e−at)
≥ 0. (1.2)
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Since (1.1) is related to the gradient Ricci soliton (see [26]) and the logarithmic Sobolev

constant (see [12]), the Harnack inequality (1.2) is useful in understanding these geometric

invariants, even the singularities of Ricci flow. The essential idea of proving Theorem A is

the parabolic maximum principle, which was ever used by Li and Yau [23] to prove differential

Harnack estimates for the heat equation. One novel feature of Cao-Fayyazuddin Ljungberg-Liu

Harnack inequalities is the correction term, which is an exponential function:

an

2(1− e−at)
. (1.3)

This term is obviously different from the polynomial correction term n
2t
, which appears in the

following classical Li-Yau Harnack inequality.

Theorem B (see [23]) Let (Mn, g) be a complete Riemannian manifold with nonnegative

Ricci curvature. Let ω(x, t) be a positive solution to the linear heat equation. Then for all

x ∈Mn, t > 0,

∆ lnω +
n

2t
≥ 0.

As we all know, Li-Yau Harnack inequality is sharp for the linear heat equation and the

equality case holds for the fundamental solution

H(x, t) :=
1

(4πt)
n
2

exp
(
−

‖x‖2

4t

)

of linear heat equation in Euclidean space. For (1.1), Cao, Fayyazuddin Ljungberg and Liu

showed that (1.2) is sharp in case (iii) of Theorem A. That is, there exists a family of particular

solutions of (1.1) on R
n (see [30]),

ω(x, t) = −
a‖x‖2

4(1− e−at)
−
n

2
e−at ln |1− e−at|+ Ceat,

where C ∈ R is an arbitrary constant, such that (1.2) becomes an equality. The Harnack

inequality (1.2) with new correction term (1.3) stimulates us to find more superior possible

differential Harnack inequalities of (1.1) and its related equations.

In this paper, inspired by the work of Cao, Fayyazuddin Ljungberg and Liu [4], we can

derive constrained trace Harnack inequalities, matrix Harnack inequalities and constrained

matrix Harnack inequalities for the nonlinear heat equation

ωt = ∆ω + aω lnω

on closed manifolds with fixed metric. We also can improve previous interpolated Harnack

inequality in [31] for the nonlinear heat equation

ωt = ∆ω − ω lnω + εRω, ε ≥ 0

on closed surfaces under the ε-Ricci flow. Finally we prove a new differential Harnack inequality

for the nonlinear heat equation

ωt = ∆ω − ω lnω
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on closed manifolds along the Ricci flow without any curvature assumption. Among our differ-

ential Harnack inequalities, the correction terms are all time-exponential functions, which are

superior to time-polynomial functions.

The study of differential Harnack estimates for the heat equation originated in Li and Yau

[23] (a precursory form appeared in [1]). This method was later brought into the study of the

Ricci flow by Hamilton [18] and played an important role in the singularity analysis of the Ricci

flow. Hamilton [17] also generalized the Li-Yau Harnack inequality to a matrix Harnack form

on a class of manifolds. These results were furthermore extended to constrained, matrixed, and

interpolated Harnack inequalities by Chow and Hamilton [10], Chow [9], Ni [27] and Li [24].

See [28] for excellent discussions on this subject.

Recently, differential Harnack inequalities for heat-type equations coupled with the Ricci

flow have become an important object. This subject was ever explored by Chow and Hamilton

[10], Chow and Knopf [11], etc. In particular, Perelman [29] discovered differential Harnack

inequalities for the fundamental solution to the backward heat equation under the Ricci flow

without any curvature assumption. This spectacular result is a crucial step in proving Poincaré

Conjecture. Perelman’s result was extended to all positive solutions by Cao [3] and indepen-

dently by Kuang and Zhang [21], whereas scalar curvature is required to be nonnegative. For

more work and progress in this direction, for example, see [2, 5–6, 8, 13–16, 20, 22, 25, 31–32,

34].

This paper is organized as follows. In Section 2, we will derive constrained trace, matrix

and constrained matrix differential Harnack inequalities for (1.1). The proof relies on the

parabolic maximum principle. In Section 3, we will prove an interpolated Harnack inequality

for ωt = ∆ω − ω lnω + εRω on closed surfaces under the ε-Ricci flow. In Section 4, we will

improve a previous Harnack inequality for ωt = ∆ω−ω lnω on closed manifolds under the Ricci

flow.

2 Constrained Trace, Matrix and Constrained Matrix

Harnack Inequalities

In this section we will study various Harnack inequalities for the nonlinear heat equation

∂

∂t
ω = ∆ω + aω lnω (2.1)

for a nonzero real constant a, on a closed n-dimensional Riemannian manifold (M, g). Inspired

by the work of Cao, Fayyazuddin Ljungberg and Liu [4], we can derive some new Harnack

inequalities of this equation, such as constrained trace Harnack inequalities, matrix Harnack

inequalities, constrained matrix Harnack inequalities. We first give constrained trace Harnack

inequalities for (2.1).

Theorem 2.1 Let (M, g) be a closed n-dimensional Riemannian manifold. Let ϕ and ψ be

two solutions to (2.1). Then in any of the two cases:

(i) a > 0, 0 < ϕ < ψ and Ric(M) ≥ 0,
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(ii) a < 0, 0 < c0ψ < ϕ < ψ, where 0 < c0 < 1 is a free parameter, and Ric(M) ≥ −aK for

some constant K ≥ −
ln c

0

1−c2
0

− 1

2
,

the following inequality holds for all x ∈M , t > 0,

∂

∂t
lnψ − |∇ lnψ|2 − a lnψ +

an

2(1− e−at)
= ∆ lnψ +

an

2(1− e−at)
≥

|∇h|2

1− h2
,

where h = ϕ
ψ
.

By integrating the above inequality in space-time we get a classical Harnack inequality.

Corollary 2.1 Suppose that ϕ and ψ satisfy the condition of Theorem 2.1. Let x1, x2 ∈M

and 0 < t1 < t2. Then we have

e−at1 lnψ(x1, t1)− e−at2 lnψ(x2, t2)

≤
a

4
·
d(x1, x2)

eat2 − eat1
+
n

2
· ln

(1− e−at2

1− e−at1

)
−

∫ t2

t1

e−at
( |∇h|2

1− h2

)
dt,

where h = ϕ
ψ
.

Theorem 2.1 can be regarded as a nonlinear version of a constrained trace Harnack inequality

proved by Chow and Hamilton [10]. Due to an additional nonlinear term: ω lnω in (2.1), the

computations and estimates in our proof seems to be complicated but straight. In order to

prove Theorem 2.1, we need some useful lemmas.

Let (M, g) be a closed n-dimensional manifold. Suppose that ϕ and ψ are two positive

solutions to (2.1) satisfying ϕ < ψ, and let h := ϕ
ψ
. We set

Pij := ∇i∇j lnψ −
∇ih∇jh

1− h2
.

Then we have the following lemma.

Lemma 2.1 Let L = lnψ. Then

∂

∂t
Pij = ∆Pij + 2∇lL∇lPij + 2PilPlj −RilPlj −RjlPli

+
2

1− h2

(
∇i∇lh+

2h∇ih∇lh

1− h2

)(
∇j∇lh+

2h∇jh∇lh

1− h2

)

+ 2RikjlPkl + 2Rikjl
∇kh∇lh

1− h2
+ 2Rikjl∇kL∇lL

− (∇iRjl +∇jRil −∇lRij)∇lL

+ aPij −
a∇ih∇jh

1− h2

(
1 +

2 lnh

1− h2

)
.

Proof Since L = lnψ, we have

∂

∂t
L = ∆L+ |∇L|2 + aL.

We directly compute that

∂

∂t
∇i∇jL = ∆∇i∇jL+ 2Rikjl∇k∇lL−Ril∇j∇lL−Rjl∇i∇lL
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− (∇iRjl +∇jRil −∇lRij)∇lL

+ 2∇i∇lL · ∇j∇lL+ 2∇l∇i∇jL · ∇lL+ 2Rikjl∇kL∇lL

+ a∇i∇jL. (2.2)

Next we calculate the evolution of the term
∇ih∇jh

1−h2 . Set h = ϕ
ψ
. Then

∂

∂t
h = ∆h+ 2〈∇L,∇h〉+ ah · lnh

and hence its gradient satisfies

∂

∂t
(∇h) = ∇

( ∂
∂t
h
)

= ∇(∆h+ 2〈∇L,∇h〉+ ah · lnh)

= ∆∇h+ 2〈∇∇L,∇h〉+ 2〈∇L,∇∇h〉 − Ric(∇h) + a(1 + lnh)∇h,

which further implies

∂

∂t
(∇ih∇jh) = ∆(∇ih∇jh)− 2∇i∇lh∇j∇lh+ 2∇i∇lL∇lh∇jh

+ 2∇j∇lL∇lh∇ih+ 2∇lL∇l(∇ih∇jh)

−Ril∇lh∇jh−Rjl∇lh∇ih

+ 2a(1 + ln h)(∇ih∇jh).

We also have

∂

∂t
(1 − h2) = −2h

∂

∂t
h = −2h(∆h+ 2〈∇L,∇h〉+ ah · lnh)

= ∆(1− h2) + 2〈∇L,∇(1− h2)〉+ 2|∇h|2 − 2ah2 · lnh.

Using the above two evolution equations, we conclude that

∂

∂t

(∇ih∇jh

1− h2

)
= ∆

(∇ih∇jh

1− h2

)
+ 2∇lL∇l

(∇ih∇jh

1− h2

)
−

2∇ih∇jh

(1− h2)2
|∇h|2

+
1

1− h2
(−2∇i∇lh∇j∇lh+ 2∇i∇lL∇lh∇jh

+ 2∇j∇lL∇lh∇ih−Ril∇lh∇jh−Rjl∇lh∇ih)

−
4h · ∇lh

(1− h2)2
(∇i∇lh∇jh+∇ih∇j∇lh)−

8h2∇ih∇jh

(1 − h2)3
|∇h|2

+
2a∇ih∇jh

1− h2

(
1 +

lnh

1− h2

)
.

Rearranging terms yields

∂

∂t

(∇ih∇jh

1− h2

)
= ∆

(∇ih∇jh

1− h2

)
+ 2∇lL∇l

(∇ih∇jh

1− h2

)

−
2

1− h2

(
∇i∇lh+

2h∇ih∇lh

1− h2

)(
∇j∇lh+

2h∇jh∇lh

1− h2

)

+
1

1− h2
(2∇i∇lL∇lh∇jh+ 2∇j∇lL∇lh∇ih
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−Ril∇lh∇jh−Rjl∇lh∇ih)

−
2∇ih∇jh

(1− h2)2
|∇h|2 +

2a∇ih∇jh

1− h2

(
1 +

lnh

1− h2

)
.

Now we let

Pij := ∇i∇jL−
∇ih∇jh

1− h2
.

Combining the above computations, we have

∂

∂t
Pij = ∆Pij + 2∇lL∇lPij + 2PilPlj −RilPlj −RjlPli

+
2

1− h2

(
∇i∇lh+

2h∇ih∇lh

1− h2

)(
∇j∇lh+

2h∇jh∇lh

1− h2

)

+ 2RikjlPkl + 2Rikjl
∇kh∇lh

1− h2
+ 2Rikjl∇kL∇lL

− (∇iRjl +∇jRil −∇lRij)∇lL

+ aPij −
a∇ih∇jh

1− h2

(
1 +

2 lnh

1− h2

)
.

Note that we have used the second Bianchi identity in above evolution formula. The lemma

then follows.

Tracing Lemma 2.1, we immediately get the following lemma.

Lemma 2.2 If we let

P = gijPij = ∆L−
|∇h|2

1− h2
,

then

∂

∂t
P = ∆P + 2〈∇L,∇P 〉+ 2

∣∣∣∇∇L−
∇h∇h

1− h2

∣∣∣
2

+
2

(1− h2)3
|2h∇h∇h+ (1− h2)∇∇h|2

+ 2Ric(∇L,∇L) +
2

1− h2
Ric(∇h,∇h)

+ aP −
a|∇h|2

1− h2

(
1 +

2 lnh

1− h2

)
.

We now prove Theorem 2.1 by Lemma 2.2.

Proof of Theorem 2.1 We first prove the complex case: a < 0. By Lemma 2.2, using the

curvature assumption Ric(M) ≥ −aK for some constant K ≥ −
ln c

0

1−c2
0

− 1

2
, we obtain

∂

∂t
P ≥ ∆P + 2〈∇L,∇P 〉+

2

n
P 2 + aP −

a|∇h|2

1− h2

(
2K + 1 +

2 lnh

1− h2

)
. (2.3)

Here we have used an easy fact: Ric(∇L,∇L) ≥ 0 due to K ≥ −
ln c

0

1−c2
0

− 1

2
> 0 and a < 0 at

this case.

In the following, we claim that the assumptions of theorem

K ≥ −
ln c

0

1− c2
0

−
1

2
> 0, 0 < c0 < h < 1
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imply

2K + 1 +
2 lnh

1− h2
> 0.

Indeed we only need to check that function f(h) := lnh
1−h2 is increasing on the interval (c0, 1).

We compute its derivative

f ′(h) =
1

h
· (1− h2)− lnh · (−2h)

(1− h2)2

=
1

h
− h+ 2h · lnh

(1− h2)2
.

Let

g(h) :=
1

h
− h+ 2h · lnh.

Then g(0+) = +∞, g(1) = 0 and

g′(h) = −
1

h2
+ 1+ 2 lnh < 0

for all c0 < h < 1. So g(h) > 0 for all c0 < h < 1. Hence we have f ′(h) > 0 for all c0 < h < 1.

The claim follows.

Therefore (2.3) reduces to

∂

∂t
P ≥ ∆P + 2〈∇L,∇P 〉+

2

n
P 2 + aP.

Let

P̃ := P +
an

2(1− e−at)
.

Then

∂

∂t
P̃ ≥ ∆P̃ + 2〈∇L,∇P̃ 〉+

2

n
P̃
[
P −

an

2(1− e−at)

]
+ aP̃ (2.4)

and hence the theorem follows by applying the maximum principle to this equation. Indeed,

for t→ 0+, since a < 0, we have
an

2(1− e−at)
→ +∞.

Hence P̃ → +∞ as t → 0+. In the following we will prove P̃ ≥ 0 for all t > 0 in the closed

manifold M .

Assume that there exists some space-time (x′, t′) such that P̃ ≤ 0. Since M is closed, there

must exist a first time t0 ≤ t′ and x0 ∈ M such that P̃ < 0, where P̃ achieves its infimum.

Then at (x0, t0), we have

∆P̃ ≥ 0, ∇P̃ = 0,
∂

∂t
P̃ ≤ 0.

Therefore, combining the above inequalities with (2.4) at (x0, t0), we have

2

n
P̃
[
P −

an

2(1− e−at)

]
+ aP̃ ≤ 0. (2.5)
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However, indeed a < 0, P̃ (x0, t0) < 0 and

P (x0, t0) = P̃ (x0, t0)−
an

2(1− e−at0)
< 0.

Hence (2.5) cannot hold and this is a contradiction. Therefore P̃ ≥ 0 everywhere for all time

t > 0.

The proof of the case a > 0 is similar to that of the case a < 0. Using Lemma 2.2, a > 0

and Ric ≥ 0, we have

∂

∂t
P ≥ ∆P + 2〈∇L,∇P 〉+

2

n
P 2 + aP,

where we used the fact

1 +
2 lnh

1− h2
< 0.

Let

P̃ := P +
an

2(1− e−at)
.

Then

∂

∂t
P̃ =

∂

∂t
P −

a2 n e−at

2(1− e−at)2

≥ ∆P̃ + 2〈∇L,∇P̃ 〉+
2

n

[
P̃ −

an

2(1− e−at)

]2

+ a
[
P̃ −

an

2(1− e−at)

]
−

a2 n e−at

2(1− e−at)2

= ∆P̃ + 2〈∇L,∇P̃ 〉+
2

n
P̃ 2 + aP̃

(
1−

2

1− e−at

)
. (2.6)

Similar to the above argument, P̃ ≥ 0 follows by applying the maximum principle to this

equation.

The classical Harnack inequality is obtained by integrating the differential Harnack inequal-

ity. The process is quite standard. We include it here for completeness.

Proof of Corollary 2.1 We pick a space-time path γ(x, t) joining (x1, t1) and (x2, t2) with

t2 > t1 > 0. Along γ, considering the one-parameter function ψ(t) := ψ(γ(t), t), by Theorem

2.1 we have

d

dt
lnψ =

∂

∂t
lnψ +∇ lnψ ·

dγ

dt

≥ |∇ lnψ|2 + a lnψ −
an

2(1− e−at)
+

|∇h|2

1− h2
+∇ lnψ ·

dγ

dt

≥ −
1

4

∣∣∣
dγ

dt

∣∣∣
2

+ a lnψ −
an

2(1− e−at)
.

Hence
d

dt
(e−at lnψ) ≥ −e−at

(1
4

∣∣∣
dγ

dt

∣∣∣
2

+
an

2(1− e−at)
−

|∇h|2

1− h2

)
.



New Differential Harnack Inequalities for Nonlinear Heat Equations 275

Integrating this inequality from t1 to t2 yields

e−at1 lnψ(x1, t1)− e−at2 lnψ(x2, t2) ≤

∫ t2

t1

e−at
(1
4

∣∣∣
dγ

dt

∣∣∣
2

+
an

2(1− e−at)
−

|∇h|2

1− h2

)
dt.

Notice the fact ∫ t2

t1

e−at
(∣∣∣

dγ

dt

∣∣∣
2)

dt ≥ a
d(x1, x2)

2

eat2 − eat1

for any smooth path γ : [t1, t2] →M such that γ(t1) = x1 and γ(t2) = x2. Here the equality is

attained when γ is a minimal geodesic from x1 to x2 with the speed

∣∣∣
dγ

dt

∣∣∣ = a eat ·
d(x1, x2)

eat2 − eat1
.

Then we finish the proof of Corollary 2.1.

Secondly, we can prove a new version of Chow-Hamilton matrix Harnack inequalities

(see [10, Theorem 3.3]). The matrix Harnack inequalities were first considered by Hamilton

[17–18] and further extended by Chow and Hamilton [10], Chow and Knopf [11], and Ni [27].

We remark that our heat-type equation is nonlinear and the evolution of Harnack quantity is

more complicated.

Theorem 2.2 Let (M, g) be a closed Riemannian manifold with the nonnegative sectional

curvature and ∇Ric = 0. If ψ is a positive solution to (2.1), then for all x ∈Mn, t > 0,

∇i∇j lnψ +
agij

2(1− e−at)
≥ 0.

Remark 2.1 If we trace the above Harnack inequality, Theorem 2.2 recovers the Cao-

Fayyazuddin Ljungberg-Liu Harnack inequality (1.2).

Proof of Theorem 2.2 By (2.2) and the assumptions of theorem, we have

∂

∂t
∇i∇jL ≥ ∆∇i∇jL+ 2∇l∇i∇jL · ∇lL+ 2∇i∇lL · ∇j∇lL

−Ril∇j∇lL−Rjl∇i∇lL+ 2Rikjl∇k∇lL+ a∇i∇jL. (2.7)

Letting

Nij := ∇i∇jL+
agij

2(1− e−at)
,

we have

∂

∂t
Nij ≥ ∆Nij + 2∇lL∇lNij + 2Nil

[
∇l∇jL−

aglj

2(1− e−at)

]

−RilNlj −RjlNli + 2RikjlNkl + aNij .

Using the tensor maximum principle yields the desired result.

Furthermore, we can prove constrained matrix Harnack inequalities for (2.1).
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Theorem 2.3 Let (M, g) be a closed Riemannian manifold. Let ϕ and ψ be two solutions

to (2.1). Then in any of the two cases:

(i) a > 0, 0 < ϕ < ψ, ∇Ric = 0 and the curvature Rijkl(M) ≥ 0,

(ii) a < 0, 0 < c0ψ < ϕ < ψ, where 0 < c0 < 1 is a free parameter, ∇Ric = 0 and

Rikjl ≥ −aK(gijgkl − gilgjk) for some constant K ≥ −
ln c

0

1−c2
0

− 1

2
> 0,

the following inequality holds for all x ∈M , t > 0,

∇i∇j lnψ +
agij

2(1− e−at)
≥

∇ih∇jh

1− h2
,

where h = ϕ
ψ
.

Proof We first discuss the case a < 0. By Lemma 2.1, and using a < 0 and Rikjl ≥

−aK(gijgkl − gilgjk), we obtain

∂

∂t
Pij ≥ ∆Pij + 2∇lL∇lPij + 2PilPlj −RilPlj −RjlPli

+ 2RikjlPkl − 2aK|∇L|2γij + aPij −
a|∇h|2

1− h2

(
2K + 1 +

2 lnh

1− h2

)
gij .

Therefore, if

P̃ij := Pij +
agij

2(1− e−at)
,

then

∂

∂t
P̃ij ≥ ∆P̃ij + 2∇lL∇lP̃ij + 2P̃il

[
Plj −

aglj

2(1− e−at)

]
−RilP̃lj −RjlP̃li

+ 2RikjlP̃kl − 2aK|∇L|2gij + aP̃ij −
a|∇h|2

1− h2

(
2K + 1 +

2 lnh

1− h2

)
gij .

Since

K ≥ −
ln c

0

1− c2
0

−
1

2
> 0, c0 < h < 1,

we have

2K + 1 +
2 lnh

1− h2
> 0.

Then using the maximum principle for the above system, we have P̃ij ≥ 0.

Now we prove the case a > 0. By Lemma 2.1, and using a > 0 and Rikjl ≥ 0, we obtain

∂

∂t
Pij ≥ ∆Pij + 2∇lL∇lPij + 2PilPlj −RilPlj −RjlPli

+ 2RikjlPkl + aPij −
a|∇h|2

1− h2

(
1 +

2 lnh

1− h2

)
gij .

Therefore, if

P̃ij := Pij +
agij

2(1− e−at)
,

then

∂

∂t
P̃ij ≥ ∆P̃ij + 2∇lL∇lP̃ij + 2P̃ilP̃lj −RilP̃lj −RjlP̃li
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+ 2RikjlP̃kl + aP̃ij

(
1−

2

1− e−at

)
−
a|∇h|2

1− h2

(
1 +

2 lnh

1− h2

)
gij .

Since

1 +
2 lnh

1− h2
< 0,

using the maximum principle for above tensor equation, we conclude that P̃ij ≥ 0.

The above theorems also hold on complete noncompact Riemannian manifolds as long as

the maximum principle can be used. We expect that our differential Harnack inequalities will

be useful in understanding the Ricci solitons, as the potential function of Ricci solitons links

with (2.1).

3 Interpolated Harnack Inequality

In [7], Cao and Zhang studied differential Harnack inequalities for nonlinear heat-type e-

quation

∂

∂t
ω = ∆ω − ω lnω +Rω (3.1)

coupled with Ricci flow equation

∂

∂t
gij = −2Rij (3.2)

on a closed Riemannian manifold. They proved the following result.

Theorem C (see [7]) Let (M, g(t)), t ∈ [0, T ) be a solution to the Ricci f low on a closed

manifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator. Let f be

a positive solution to the nonlinear heat equation (3.1), u = − ln f and

H := 2∆u− |∇u|2 − 3R−
2n

t
. (3.3)

Then for all time t ∈ [0, T ),

H ≤
n

4
.

Theorem C generalizes the work of Cao and Hamilton [6] (see [21]) to nonlinear case. The

motivation to study (3.1) under the Ricci flow comes from the study of expanding Ricci solitons,

which has been nicely explained in [7]. Later, on a closed surface, Wu [31] improved their result

as follows.

Theorem D (see [31]) Let (M, g(t)), t ∈ [0, T ) be a solution to the ε-Ricci f low (ε ≥ 0) :

∂

∂t
gij = −εR · gij (3.4)

on a closed surface with R > 0. Let f be a positive solution to the nonlinear heat equation

∂

∂t
ω = ∆ω − ω lnω + εRω. (3.5)
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Then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + ln f +

1

t
= ∆ ln f + εR+

1

t
≥ 0.

Remark 3.1 In Theorem D, if ε = 1, then

∆ ln f +R+
1

t
≥ 0. (3.6)

However (3.3) can be read as

2∆ ln f +
|∇f |2

f2
+ 3R+

4

t
+
n

4
≥ 0,

which can be rewritten as

(
2∆ ln f + 2R+

2

t

)
+
( |∇f |2

f2
+R+

2

t
+
n

4

)
≥ 0.

Compared this with (3.6), for the 2-dimensional surface, Theorem D is better than Theorem C.

Motivated by Theorem A, we can improve Theorem D by the following interpolated Harnack

inequality.

Theorem 3.1 Let (M, g(t)), t ∈ [0, T ) be a solution to the ε-Ricci f low (3.4) on a closed

surface with R > 0. Let f be a positive solution to the nonlinear parabolic equation (3.5). Then

for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + ln f +

1

et − 1
= ∆ ln f + εR+

1

et − 1
≥ 0.

As a consequence of Theorem 3.1, we have a classical Harnack inequality. Since the proof

is standard, we only provide the following result.

Corollary 3.1 Under the conditions of Theorem 3.1, assume that (x1, t1) and (x2, t2),

0 ≤ t1 < t2 < T , are two points in M × [0, T ). Let

Γ(x1, t1, x2, t2) :=
1

4
inf
γ

∫ t2

t1

et
∣∣∣
dγ

dt
(t)

∣∣∣
2

dt,

where γ is any space-time path joining (x1, t1) and (x2, t2), and the norm | · | is calculated at

time t. Then

et1 ln f(x1, t1)− et2 ln f(x2, t2) ≤ Γ(x1, t1, x2, t2) + ln
(1− et2

1− et1

)
.

Theorem 3.1 improves Theorem D because the exponential correction term 1

et−1
is smaller

than 1

t
for all t > 0. If we take ε = 0, we can get the differential Harnack inequality of Cao,

Fayyazuddin Ljungberg and Liu [4] on closed surfaces.
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Corollary 3.2 (see [4]) If f :M × [0, T ) → R is a positive solution to the nonlinear heat

equation
∂

∂t
ω = ∆ω − ω lnω

on a closed surface (M, g) with R > 0, then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + ln f +

1

et − 1
= ∆ ln f +

1

et − 1
≥ 0.

If set ε = 1 in Theorem 3.1, then we have the following result.

Corollary 3.3 Let (M, g(t)), t ∈ [0, T ) be a solution to the Ricci f low on a closed surface

with R > 0. If f is a positive solution to (3.1), then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + ln f +

1

et − 1
= ∆ ln f +R +

1

et − 1
≥ 0.

Remark 3.2 Theorem 3.1 is a nonlinear version of the Chow’s interpolated Harnack in-

equality (see [9]) which links Corollary 3.2 to Corollary 3.3.

Now we prove Theorem 3.1 via the maximum principle.

Proof of Theorem 3.1 Let (M, g(t)), t ∈ [0, T ) be a solution to the ε-Ricci flow (3.4) on

a closed surface with R > 0. Let f be a positive solution to (3.5). By the maximum principle,

we conclude that the solution will remain positive along the ε-Ricci flow when scalar curvature

is positive. If

u = − ln f,

then u satisfies
∂

∂t
u = ∆u− |∇u|2 − εR− u.

The proof involves a direct computation and the parabolic maximum principle.

Under the ε-Ricci flow (3.4) on a closed surface, we have

∂R

∂t
= ε(∆R +R2)

and
∂

∂t
(∆) = εR∆,

where the Laplacian ∆ is acting on functions. Define the Harnack quantity

Hε := ∆u− εR. (3.7)

Using the evolution equations above, we first compute

∂

∂t
Hε = ∆

( ∂
∂t
u
)
+
( ∂
∂t

∆
)
u− ε

∂R

∂t

= ∆(∆u− |∇u|2 − εR− u) + εR∆u− ε
∂R

∂t

= ∆Hε −∆|∇u|2 −∆u+ εRHε + ε2R2 − ε
∂R

∂t
.
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Since

∆|∇u|2 = 2|∇∇u|2 + 2∇∆u · ∇u+R|∇u|2

on a two-dimensional surface, we then have

∂

∂t
Hε = ∆Hε − 2|∇∇u|2 − 2∇∆u · ∇u−R|∇u|2

+ εRHε + ε2R2 − ε
∂R

∂t
−∆u

= ∆Hε − 2|∇∇u|2 − 2∇Hε · ∇u − 2ε∇R · ∇u

− R|∇u|2 + εRHε + ε2R2 − ε
∂R

∂t
−∆u

= ∆Hε − 2
∣∣∣∇i∇ju−

ε

2
Rgij

∣∣∣
2

− 2εR∆u− 2∇Hε · ∇u

− 2ε∇R · ∇u−R|∇u|2 + εRHε + 2ε2R2 − ε
∂R

∂t
−∆u.

Since ∆u = Hε + εR by (3.7), these equalities become

∂

∂t
Hε = ∆Hε − 2

∣∣∣∇i∇ju−
ε

2
Rgij

∣∣∣
2

− εRHε − 2∇Hε · ∇u

− 2ε∇R · ∇u−R|∇u|2 − ε
∂R

∂t
−∆u.

Rearranging terms yields

∂

∂t
Hε = ∆Hε − 2

∣∣∣∇i∇ju−
ε

2
Rgij

∣∣∣
2

− 2∇Hε · ∇u− εRHε

−R|∇u+ ε∇ lnR|2 − εR
(∂ lnR

∂t
− ε|∇ lnR|2

)
−∆u

≤ ∆Hε −H2

ε − 2∇Hε · ∇u − (εR+ 1)Hε +
ε

t
R− εR. (3.8)

The reason for this last inequality is that the trace Harnack inequality for the ε-Ricci flow on

a closed surface proved in [9] states that

∂ lnR

∂t
− ε|∇ lnR|2 = ε(∆ lnR+R) ≥ −

1

t
,

since g(t) has positive scalar curvature. Besides this, we also used (3.7) and the elementary

inequality ∣∣∣∇i∇ju−
ε

2
Rgij

∣∣∣
2

≥
1

2
(∆u− εR)2 =

1

2
H2

ε .

Adding − 1

et−1
to Hε in (3.8) yields

∂

∂t

(
Hε −

1

et − 1

)
≤ ∆

(
Hε −

1

et − 1

)
− 2∇

(
Hε −

1

et − 1

)
· ∇u

−
(
Hε +

1

et − 1

)(
Hε −

1

et − 1

)
− (εR+ 1)

(
Hε −

1

et − 1

)

+
et

(et − 1)2
−

1

(et − 1)2
−
εR+ 1

et − 1
+
εR

t
− εR

= ∆
(
Hε −

1

et − 1

)
− 2∇

(
Hε −

1

et − 1

)
· ∇u
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−
(
Hε +

1

et − 1

)(
Hε −

1

et − 1

)
− (εR+ 1)

(
Hε −

1

et − 1

)

− εR
( 1

et − 1
+ 1−

1

t

)
. (3.9)

Note that we claim
1

et − 1
+ 1−

1

t
> 0

for all t > 0, which can be explained as follows. We first observe

1

et − 1
+ 1−

1

t
=
tet − et + 1

t(et − 1)
.

Since t(et − 1) > 0, we only need to prove tet − et + 1 > 0. This is obvious. Since

tet − et + 1 |t=0= 0

and
d

dt
(tet − et + 1) = tet > 0

for all t > 0, the function tet − et + 1 is increasing for t ≥ 0. Therefore

tet − et + 1 > 0

for t > 0 and we prove that
1

et − 1
+ 1−

1

t
> 0

for all t > 0. Thus (3.9) becomes

∂

∂t

(
Hε −

1

et − 1

)
≤ ∆

(
Hε −

1

et − 1

)
− 2∇

(
Hε −

1

et − 1

)
· ∇u

−
(
Hε +

1

et − 1

)(
Hε −

1

et − 1

)
− (εR+ 1)

(
Hε −

1

et − 1

)
. (3.10)

Clearly, for t small enough we have

Hε −
1

et − 1
< 0.

Since R > 0, applying the maximum principle to the evolution formula (3.9) we conclude

Hε −
1

et−1
≤ 0 for all positive time t, and the proof of this theorem is completed.

Remark 3.3 A question can be naturally posed: Can one improve Theorem C (high dimen-

sional case) by considering the exponential correction term instead of the polynomial correction

term in differential Harnack quantities?

4 New Differential Harnack Inequality Without Curvature Condition

In this section, we will study differential Harnack inequalities for a positive solution f(x, t) <

1 to the nonlinear heat equation

∂

∂t
ω = ∆ω − ω lnω (4.1)
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with the metric evolved by the Ricci flow (3.2) on an n-dimensional closed manifold. This

equation has been considered by Hsu [19] and Wu [31]. In [31], Wu proved the following result

without any curvature assumption.

Theorem E (see [31]) Let (M, g(t)), t ∈ [0, T ) be a solution to the Ricci f low (3.2) on a

closed manifold. Let f < 1 be a positive solution to (4.1) and u = − ln f . Then for all t ∈ (0, T ),

|∇u|2 −
u

t
≤ 0.

Theorem E can be also regarded as a nonlinear version of Cao and Hamilton’s result (see

[6, Theorem 5.1]). Now we can improve this result as follows.

Theorem 4.1 Let (M, g(t)), t ∈ [0, T ) be a solution to the Ricci f low on a closed manifold.

Let f < 1 be a positive solution to (4.1) and u = − ln f . Then for all x ∈Mn, t ∈ (0, T ),

|∇u|2 −
u

et − 1
≤ 0.

We will prove Theorem 4.1 by the standard parabolic maximum principle. Let f(x, t) < 1

be a positive solution to nonlinear heat equation (4.1) under the Ricci flow (3.2) on a closed

manifold M . If u = − ln f , then u > 0 and u satisfies

∂

∂t
u = ∆u − |∇u|2 − u.

Note that here 0 < f < 1 is preserved under the Ricci flow by the maximum principle (see

[31]).

Proof of Theorem 4.1 Following the arguments of [31], let

H := |∇u|2 −
u

et − 1
.

We first compute that |∇u|2 satisfies

∂

∂t
|∇u|2 = ∆|∇u|2 − 2|∇∇u|2 − 2∇u · ∇(|∇u|2)− 2|∇u|2.

Then we also have

∂

∂t

( u

et − 1

)
= ∆

( u

et − 1

)
−

|∇u|2 + u

et − 1
−

uet

(et − 1)2
.

Combining above equations yields

∂

∂t
H = ∆H − 2∇u · ∇H − 2|∇∇u|2 −

(
2 +

1

et − 1

)
H.

Notice that if t is small enough, then H < 0. Then applying the maximum principle to this

equation, we obtain H < 0 for all t > 0.
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