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Abstract Let Rzzz(n) be the classical domain of type ZZZ with n > 2. This article
is devoted to a deep study of the Schwarz lemma on Rzzz(n) via not only exploring the
smooth boundary points of Rzzz(n) but also proving the Schwarz lemma at the smooth
boundary point for holomorphic self-mappings of Rzzz(n).
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1 Introduction

Schwarz lemma is one of the most important results in the classical complex analysis. A
great deal of work has been devoted to generalizations of Schwarz lemma to more general
settings. We refer to [1-8] for a more complete insight on the Schwarz lemma.

In the case of several complex variables, the Schwarz lemma originated from the work of

Cartan. In [9], Cartan obtained the following rigidity theorem for holomorphic mappings.

Theorem 1.1 (cf. [9]) Let Q be a bounded domain in C™. If f : Q — Q is a holomorphic
mapping such that f(z) = z+ o(||z — z0|) as z — zo for some zy € Q, then f(z) = z.

On the other hand, Look first considered the properties of the Jacobian matrix of holomor-

phic mapping in [10].

Theorem 1.2 (cf. [10]) Let Q be a bounded domain in C™, and let f be a holomorphic
self-mapping of Q which fizves a point p € Q. Then the eigenvalues of Jr(p) all have modulus
not exceeding 1 and |det J;(p)| < 1. Moreover, if |det Jr(p)| = 1, then f is a biholomorphism
of Q.

It is natural to explore the high-dimensional versions of the Schwarz lemma at the boundary.

Motivated by Theorem 1.1, Burns and Krantz first studied the boundary Schwarz lemma and
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the rigidity problem for holomorphic mappings in [11]. See [12-16] for more on these matters.
Motivated by Theorem 1.2, we focused on the characterizations of the Jacobian matrix of holo-
morphic mapping at the boundary point of some domains in C", and established the boundary
Schwarz lemmas (see [17-18]).

These results are widely applied in many fields. By the classical Schwarz lemma at the
boundary, Bonk improved the Bloch constant in [19], and Liu, Ren, Gong and Zhang ob-
tained the growth, covering and distortion theorems for biholomorphic convex mappings or
quasi-convex mappings on some domains in [20-22]. Recently, using the Schwarz lemma at the
boundary of the unit ball, we gave a new and simple proof of the distortion theorem of de-
terminants for biholomorphic convex mappings in [18], and established the distortion theorem
of determinants and the distortion theorem of matrices at extreme points for biholomorphic
starlike mappings in [23].

Let Rz(m,n) be the classical domain of type Z in C"™*" with 1 < m < n. And let Rzz(n)
be the classical domain of type ZZ. More recently, we investigated the Schwarz lemmas at
the boundary on Rz(m,n) and Rzz(n) in [24-25], respectively. In this paper, we consider the
case of the classical domain of type ZZZ. We first characterize the properties of the smooth
boundary points of Rzzz(n), and then prove the Schwarz lemma at the boundary. Namely,
we obtain the optimal estimates of the eigenvalues of the Fréchet derivative of holomorphic
self-mapping at the smooth boundary point of Rzzz(n).

Remark 1.1 Notice that the corresponding inner products are different on these classical
domains, which means that the methods and techniques of matrix are completely different on
these classical domains. We need to find a different approach for such a study. For instance,
because there are multiple roots for the characteristic polynomial of 77 on Rzzz(n) we can
not apply directly the implicit function existence theorem to study the smooth boundary point

of Rzzz(n) by the methods and techniques similar to Rz(m,n) and Rzz(n).

Remark 1.2 Although Rzzz(n) is a convex domain, Rzzz(n) is not a strongly pseudocon-
vex domain and ORzzz(n) is not smooth. Therefore, we can not apply the similar method in

[17] to prove the main result of this paper.

Remark 1.3 The Carathéodory metric and Kobayashi metric of Rzzz(n) are difficult to
characterize explicitly. We must find some new approaches to prove the Schwarz lemma at the
boundary of Rzzz(n), which means that the proof is completely different from that of [18] in
the unit ball.

The rest of the article is organized as follows. In Section 2, we develop some properties of
the smooth boundary points of Rzzz(n). In Section 3, we present some lemmas. In Section 4,

we give the main result of the article and its proof.

2 Smooth Boundary Points of Rzzz(n)

In this section, we present some characterizations of the smooth boundary points of Rzzz(n),
which will be used in the subsequent sections.

We first introduce some notations and definitions. Let C™*™ be the set of all complex square
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matrices of order n. For n > 2, let

n(n—1)

CZ ={ZeCv".7 =—-2}

be the family of all anti-symmetric complex square matrices of order n. Throughout this

paper, Z' and Z represent the transpose and the complex conjugate of Z, respectively. For any
n(n—1)

Z,W € C,;7 , the inner product and the corresponding norm are given by

_ 1 —/ 1
(Z,W) = Z ZijWij = EtT(ZW ), 2l =(2,2)=,
1<i<j<n

n(n—1)
where Z = (2i;)nxn and W = (w;; )nxn. It is well known that C;;2  is an

n(n—1)
2

Hilbert space and ||- || is a Euclidean norm. As real vectors in R*(®~1 Z and W are orthogonal
if and only if R(Z, W) = 0.
The classical domain of type ZZZ, denoted by Rzzz(n), is defined as

-dimensional

n(n—1) —
Rrzz(n) ={Z € C;;2 :1,—ZZ >0},

where I, is the unit square matrix of order n, and the inequality sign means that the left-hand
side is positive definite. Let 9Rzzz(n) be the boundary of Rzzz(n), and write C1*" = C". Let
B™ C C" be the open unit ball under the Euclidean metric. The Minkowski functional p(Z) of
Rzzr(n) is defined by

n(n—1)

p(Z) = max{||aZ||: a € 0B"}, Z e C,;3

(n—-1)

By [26], it is easy to see that p(Z) is a Banach norm of C;I% , (p(2))? is the largest eigenvalue
_ n(n=1)
of 27, Rzzz(n) = {Z € C;3 : p(Z) < 1}, and Rzzz(n) is a bounded convex circular

n(n—1)
domain in C;;Z . In particular, Rzzz(2) is just the open unit disk A in the complex plane

C, and Rzzz(3) = B3. For the unitary square matrix U of order n, it is clear that
Z € RIII(TL) s UZU € RIII(TL), Z € aRzzz(n) = UZU € aRzzz(n).

Note that Z € Rzzz(n) shows that the elements in the principal diagonal of I, — 77 are
positive. So we have |z;| < 1 for ¢, = 1,--- ,n. We also get p(UZU’) = p(Z) for each

. n(n-1) .
For Z € C;;3 , according to [4], Z has the following polar decompositions:

0 1
(5 %) :

0 T2
Zo =U —T2 0 U/
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0 1
(4 5) :
0 )
—T2 0

or

0
-1, 0
0 0
where ry > ry > --- > 7, > 0 and U is a unitary square matrix of order n. For our later use we
denote by [z], for z € R, the greatest integer not greater than x. Notice that ORzzz(2) = 0A
and ORzz7(3) = OB? are smooth. Then from now on, we always assume that n > 4 for
Rzzz(n).

n(n—1)

Theorem 2.1 Let Z € C;z7  be the polar decomposition above. Then Z is a smooth
boundary point of Rrzzz(n) if and only if 1 = ry > ry > -+ > 1, > 0. Furthermore, p(Z) is
holomorphic about Z and Z near ZO, and the gradient of p at Z

0 1
(o)
Vp(2)=U 0 U’
0 0
is a unit outward normal vector to ORzrz(n) at Z with (Z,Vp(Z)) = 1.

Proof It is easy to see that 7€ ORzzz(n) if and only if r; = 1. Suppose that 1 = r; >
n(n—1)

ro > - 2>1,>0.For ZeCpj |, let

(—rlo(Z) 7ﬁlE)Z)> 0
ro(Z
7 =U(Z) (—7“20(2) E) )) Uz
’ <ﬂ&m ”f§
or
0 r(2)
(—rl(Z) 0 ) ( 0 r2(2)> 0
Z=U(Z) ez uz),

(ﬂ&m ”fﬁ

where p(Z) = r(Z) > ro(Z) > -+ > rp(Z) > 0, U(Z) is a unitary square matrix of order

o o

n, r(Z) = 1,r2(Z) = ro, - ,rp(Zo) = rp and U(Z) = U. Then the characteristic polynomial

0
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. _ _ _ p
of Z7 is det(al, — ZZ ) = a® — tr(ZZ )a" L + -+ + (=1)"det(ZZ ) = H (z —r2(2))? or

_ p
det(z1,, — ZZI) z ] (z —r}(Z))% Write
k=1
P P
H z—ri(Z)) or H r—1ri(Z

pi k=1
Then ®[(p(Z))?, Z] = 0. Because

a—(I)(l,Z") = ﬁ(l —12) >0,

D(1,2) = o
k=2

(2.1)
by the implicit function existence theorem we know that (p(Z))? is a holomorphic function about
Z and Z near Z, and satisfies (p(Z ))? = 1. Therefore, p(Z) is also a holomorphic function about
Z and Z near Z. Now, we compute Vp(Z). Since ®[(p(Z))2, Z] = (det[(p(Z))1,, — Z?l])% =0
near Z , we get

oo, o Op 0o

—(1,2)2p(2 Z 1,Z)=0, 1<i<j<n.
5o (L 22D G 2) 51, 2) =0, 1<i<j<n
This, together with (2.1), gives
i . Ob .
[T =) (Vo(2))i; + 5(1,2) =0. (2.2)

k=2 v

Notice that when € € (0, 1), we have det(zL,, — 52Z7/)|(z,z):(1,z°) = det(
and

(1-¢ 1)1 0

1, — 2T 27U (1= ehni)ls
n — €& =

I, —2U ZZU)|,_y,

0 (1 - 627”12))12

or
(1—e2r?)l,
_, (1 — E 2)12
I, — 52UIZOZO U=

(1- 6%‘3)12

0

1

— o5/
Then the algebraic cofactor of the element at s-th row and ¢-th column for det(I,, — U 77U )

is

P
(1—527‘[25+1]) H (1—e%*r})?, 1<s=t<n,
Jst - N k¢[s~2#1]7k:1
0, s #t,
or
P
(I—EQT[QM]) H (1—e*r)? 1<s=t<n-—1,
e
Jst =40, s#t,
P
H(1—52rz)2, s=t=mn.
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On the other hand,
P —! =/ 1
det(I, — T ZZ'U)|,_; = H 1—e%r})?, ®(1,eZ) = [det(l, — U ZZ U))=.

Thus, we obtain

0P 1 0

7 (L eZ) = - det(I, — T 727'0))|,_
“ij 2fdet(1, — 2T 27 U3 9%
g2 - 0 —r _—
= (-2 5z U7Z U)St|Z:Z»JSt).
271 (1— 527%) st=1 U
k=1

It follows that

or
0P .
1,eZ
azw( 75 )
52 ity P 8 8 — _—
=-SIX I (- -T2Z0).,. Z+H (1=} (U 2Z V)anl ;4.
s=1 p[241] k=1 %ij k=1 i
Hence
oD 12 2 0 —r —
o (1,2)—_51'[(1 Y U ZZU)ul,_y
v k=2 s=1 "4
1L 2
=—3 [Ta- Z ( Z quszZtmuts) -
k=2 s= Zij I,m,t=1 -

14 2 n D O -
) [T =)D @esiyuis — msfuugs) (1<i<j<n)
k=2 s=11=1
1 p 9 —/ 2 — ° —J o e
) [T =rDIT 20500 = (T Z)riun + (T Z)ajuia — (U Z)aiuge)
1 P
) H(l — 1) (Ujpui — wintuj1 — wjiugz + uintj2)

p
H 1— rk ullujg uigujl), 1<i<y<n,

where U = (u;;)nxn and 7= (Zij)nxn- This, together with (2.2), shows

(Vp(ZD))” = U;1Uj2 — Ui2Uj1, 1<i<j<n.
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0 1
(o) o
n(n—1)

Vp(Z)=U 0 U' e Cpp2

Therefore

0 0
is a nonzero vector. This means that ORzzz(n) is smooth near Z. Moreover, utilizing

()

- 1 _ _
(W.Vp(2)) = 5tr | WT 0 ’

S

n(n—1)

forany W € C,,7  we find

(Vp(Z),Vp(Z)) =1, (Z,Vp(Z))=1.
Conversely, suppose that 7 is a smooth boundary point of Rzzz(n). Assume
127"1:7"22"'2sz0-

Then any two nonzero outward normal vectors to ORzzz(n) at Z have the same direction. We

discuss the following two different [n(n — 1) — 1]-dimensional real affine spaces through Z in
n(n—1)

2
(CIII

n(n—1) n(n—1)

Elz{ZO—FUaU/ZOZE(CII% , %041220}, 22:{Z0+UO(UI:O[€CII% R %043420}.

To simplify our notations, set

oy [E |

n(n—1)

Then T3 and T3 are the unit vectors in C;;7 . On the one hand, for any Z+UalU' € Y we

obtain

1 i
RUU', UTU') = 3Rtr(Ual'T T, U) = Ray = 0.

Hence, UT U’ is a normal vector to X; at Z. See the following figure 1.
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unu

2

Figure 1 Rzzz(n) and real affine space.

Similarly, UT5U’ is a normal vector to Y5 at Z. On the other hand, for each UWU' € Rzzz(n)
we get
o 1 .
RZ - UWU' . ULU') =1~ S Rtr(UWU'T TiU)=1- R > 0.

This shows that Rzzz(n) is located on one side of 1. That is, 37 is an affine tangent space
to ORzzz(n) at Z. Similar to the proof above, we know that 5 is also an affine tangent space
to ORzzz(n) at 7. Since Z is a smooth boundary point of Rzzz(n), this contradicts with
31 # 3¥s. Thus, we have 1 =1y > 19 > --- > r,, > 0. The proof is complete.

3 Some Lemmas

In this section, we exhibit some notations and collect several lemmas, which will be used in
the subsequent section.
n(n—1)

Let f : Rzzz(n) — Cz%2  be a holomorphic mapping. The Fréchet derivative of f at
a € Rzzz(n) is defined by

a L. n(n—1)
Lo oy, W e

(Df(@)(W),; = .

1<s<t<n

azst
n(n—1) n(n—1)

It is easy to see that D f(a) is a linear transformation from C,;2  to C,;7 anddf(Z)|z—q =

Df(a)(dZ). Let D*f(a) be the adjoint transformation of Df(a) with respect to the inner

product (-,-). That is,

n(n—1)

(D*f(a)(2),W) =(Z,Df(a)W)), Z,W €Crrz .

n(n—1) n(n—1)
D* f(a) is also a linear transformation from C,,7  to C, ;7 . Specifically,

i@ - T P zeci

z
1<s<t<n v

In fact, suppose that e;; € C*"*™ is a square matrix which has 1 at i-th row and j-th column,

and Os elsewhere. Then when i < 7 we have
(D f(a)(Z))ij = (D" f(a)(Z), eij — €5i) = <€, Df(a)(ei; —€ji))
_ <Z of (a)> = Y 0fst (424,

b
0z;; 0Z;:
v 1<s<t<n W
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It is clear that X is an eigenvalue of Df(a) if and only if X is an eigenvalue of D* f(a).
Let A be the open unit disk in the complex plane C. There is the classical boundary Schwarz
lemma as follows.

Lemma 3.1 (cf. [3]) Let f: A — A be a holomorphic function. If f is holomorphic at
z =1 with f(0) =0 and f(1) =1, then f'(1) > 1. Moreover, the inequality is sharp.

1-F(0) f(2)—£(0)

If the condition f(0) = 0 is removed, then by applying Lemma 3.1 to g(z) = 70 17031 ()

one has the following estimate instead:

/ |1_m|2
f(1)271_|f(0)|2 > 0. (3.1)

Lemma 3.2 (cf. [26]) Let

0 h
()

a=A . A e RIII(TL)

or
0 I
(% %) :
a=A . AIERIII( )
0 I
—l, 0
0 0
Write
1o O
e 7w
—h
Q=A A or Q=A . Z/,
2
0 L 12
‘/l—lg 0 1

where 1 > 1y > --- > 1, >0 and A is a unitary square matriz of order n. For any Z € Rzzz(n),
define

0a(Z2)=Q (1, — 2@ ) Ha — 2)Q.
Then the following statements hold:
(1) a(Z) is a holomorphic automorphism of Rzzz(n), and vu(Z) is biholomorphic in a

neighborhood of Rzzz(n);
(2) ¢a(0) = a,9a(a) = 0,97 = @a; 1
(3) dva(Z)|z=a = —QAZQ, dpa(Z)|z=0 = —Q'dZQ .
In what follows, we always denote by F(Z, &) the infinitesimal form of Carathéodory metric

n(n—1)
or Kobayashi metric on Rzzz(n), where Z € Rzzz(n) and £ € C,5  (see [27] for details).
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Lemma 3.3 Let p(Z) be the Minkowski functional of Rzzz(n). Then under the notations

n(n—1)

of Lemma 3.2, for any { € Cr7

F(a,€) = p(Q5Q).

Proof Note that ¢,(Z) is a holomorphic automorphism of Rzzz(n), and F(Z,§) is a
biholomorphically invariant metric on Rzzz(n). It follows that F(a,£) = F(0, Dpg(a)(§)).
This, together with Dy, (a)(dZ) = dp.(Z)|z=. and Lemma 3.2, implies

F(a,€) = F(0, Dga(a)(§)) = F(0,-Q€Q) = F(0,Q€Q).
Hence, by Lemma 3.2 in [20], we obtain F(a,¢) = F(0,Q¢Q) = p(Q£Q). The proof is complete.

n(n—1)

Lemma 3.4 Let Z be a smooth boundary point of Rzzz(n). Then for each W € C..Z

(W, Vp(2))| < p(W).

Proof Without loss of generality, we may assume W # 0. Then % € ORzzz(n). Since

Rzzr(n) is a bounded convex circular domain, we have

9‘%<Z° e ,vp(Z°)> >0

w
p(W)
for any 6 € R. It follows from this and Theorem 2.1 that

eie o o o
R———=(W,Vp(Z)) <R(Z,Vp(Z)) =1.
7 (W.V0(2) < R(ZVp(2)

This gives |(W, Vp(Z£))| < p(W). The proof is complete.

Lemma 3.5 (cf. [28]) Let f : Rzzz(n) — Rzzz(n) be a holomorphic mapping and let
f(0)=0. Then for any Z € Rzzz(n),

p(f(2)) < p(Z).

4 Schwarz Lemma at the Boundary

In this section, we establish the Schwarz lemma at the smooth boundary point for holomor-
phic self-mappings of Rzzz(n).
Let

or

0 T1
(%) ’
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be a smooth boundary point of Rzzz(n), where 1 =r; >ry >--- >, >0 and U is a unitary
n(n—1)

square matrix of order n. Then by Theorem 2.1, (UalU’,Vp(Z)) = aia for any a € C ;2
This shows that the tangent space T;(0Rzzz(n)) to ORzzz(n) at Z is

n(n—1) n(n—1)

Ty (ORzrz(n) = {6 € Cozz +R(5,Vp(2)) =0} = {Ual" 10 € Crrf ,Rany =0},

and the holomorphic tangent space Té’o(aRzzz(n)) to dRzzz(n) at 7 is

n(n—1) n(n—1)

T3°(ORzzr(n) = {B € Corf : (5.Vp(2)) =0} = {Ual:a e Crpf a1z =0},

Theorem 4.1 Let f : Rrzz(n) = Rzzz(n) be a holomorphic mapping with f(0) = a, and

let
0 T1
(8o
or

Z=U U’

( 0 rp)
—rp 0

0 0
be a smooth boundary point of Rzzz(n), where 1 =ry >rg > - > 1, >0 and U is a unitary
square matrix of order n. If f is holomorphic at Z and f(Z) = ZO, then all the eigenvalues
Mui(i=1,-+-,2(n—2)) and v;(i=1,--, W) of the linear transformation Df(Z) on

)
C;z5  have the following properties.

(1) Vp(ZO) is an eigenvector of D*f(Z) and the corresponding eigenvalue is a real number
X that we just mentioned above. That is, D* f(Z)(Vp(Z)) = AVp(Z).

1—p(a)
(2) A> 1+Z(a) > 0.

n(n—1) ce.
(3) T,°(0Rzzz(n)) = M&N, where N = {UaU": a0 € Cz7F , a1z =0, (0‘13 O”")

Q3 Qap
=0} isan W—dimensional invariant subspace of Df(Z), and M is a 2(n—2)-dimensional
invariant subspace of Df(Z). Moreover, the eigenvalues pi; of Df(Z), which is a linear trans-
formation on M, satisfy

il <V, i=1,,2(n = 2);

and the eigenvalues v; of Df(ZO), which is a linear transformation on N, satisfy

(n—2)(n—3).

i<17 ‘:17"'7
wl<1 :

7 n— 7 n—2)(n—3
(4) |det DF(Z)| < X=1, [trDF(2)] < A+ 2v/A(n — 2) + 2209,

Moreover, the inequalities in (2)—(4) are sharp.
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Proof Without loss of generality, we may assume that n = 2p is an even number. When

n = 2p+ 1 is an odd number, the proof is similar.

(1) For any f € T (Rzzz(n)), we have Df(Z)(8) € T5(0Rzzz(n)). Then
R(DF(2)(8),Vp(2)) = R(B, D" f(2)(Vp(Z))) = 0.
Hence, there is A € R such that
D*f(Z)(Vp(2)) = AVp(Z).

That is, A is an eigenvalue of D* f(Z) and Vp(Z) is an eigenvector of D* f(Z) with respect to
. Since A € R, we know that \ is also an eigenvalue of D f(Z). The proof of (1) is complete.

(2) The proof of (2) is divided into two cases.

Case 1 f(0) =a =0. For each t € (0,1), by Lemma 3.5 we obtain
p(f(t2)) < p(tZ) =t.
This, together with Lemma 3.4, yields
R(f(t2),Vp(Z)) < p(f(t2)) <. (4.1)

By Theorem 2.1, (Z,Vp(Z)) = 1. Thus, combine f(tZ) = Z—(1—t)Df(Z)(Z)+O(|t—1|2)(t —
17) and (4.1) to get

L= (L= t)R(Df(2)(2),Vp(Z)) + O(lt = 1]*) <.

This implies
R(Z,D* f(Z2)(Vp(2))) + Ot —1]) > 1.

It follows from D* f(Z)(Vp(Z)) = AVp(Z) and (Z,Vp(Z)) = 1 that
A O(t —1]) > 1.

Taking ¢t — 17, we have A > 1.

Case 2 f(0) = a # 0. Suppose that

0 h
(s

a=A A e RIII(TL)

and
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where 1 > [y > --- > [, > 0 and A is a unitary square matrix of order n. By Lemma 3.2,
g=aof:Rzzz(n) — Rzzz(n) is a holomorphic mapping, g(0) = 0 and ¢ is holomorphic at
Z. Moreover,

W =9(2) = ¢u(2) =Q (I, — Za@)'(a — 2)Q

o

is also a smooth boundary point of Rzzz(n). Notice that Dy,(Z)(8) € Ty, (0Rzzz(n)) for
each ﬁ S Té(aRzzz(n)). Then

R(Da(2)(8), Vo(W)) = 0, R(B,D"pa(Z)(Vp(W))) = 0.

It follows that there exists p € R such that

D*04(2)(Vp(W)) = uVp(Z). (4.2)
Take

hl(C) = <(¢0a(CZ)a Vp(W)>7 C € A.
Then hy : A — A is a holomorphic function, and hy is holomorphic at ¢ = 1 with hy(1) =
(W,Vp(W)) = 1. This, together with (3.1) and (4.2), shows
p=A(Z,uVp(Z)) = (Z,D"¢a(Z)(Vp(W))) = (Dpa(Z)(2), Vp(W)) = Bi(1) > 0.

Set

ha(C) = (9(CZ),Vp(W)), (€A

Then hs : A — A is a holomorphic function, and hy is holomorphic at ¢ = 1 with ho(0) = 0
and ho(1) = 1. Tt follows from Lemma 3.1, (4.2) and (1) that

This gives

Now, we estimate pu = (Do (Z)(Z),Vp(W)). For X € C™", let pn(X) = max{||aX] : a €
OB™} be the matrix norm of X. Then p,(XY) < p,(X)pn(Y) for each X, Y € C"*" and

n(n—1)

pn(Z) = p(Z) for any Z € C,;2 . Notice that

o

Da(2)(2)
=Q\(1, - Za')Za (1, — Za')Ha - 2)Q — Q7'(1,, — Za) "' ZQ
=Q NI, — za) ' Za QW + W — Q™ '(1,, — Za')"'aQ
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= Q' (ln — Za') "M (Za —1)QW + Q7 (In — Za) QW + W — QN (I, — Za') ' Qa
=Q (I, — Za)'Q(W —a)

and
Q ', — za) Ya—2)Qa —1, = Wa —1,,
Q7 ', —za) ' (a—2)Qd — (1, — Za)Q| = Wa' —1,,
Q ', —za) "' (Q —aQa) =1, - Wa,
Q1, - za)'\Q7l =1, - Wa,
Q NI, — za) ' = (I, - Wa)Q.

Then

Doo(2)(Z) = (I, — Wa)Q*(W — a).

This, together with Lemma 3.4, yields

Il
4
s

Hence, we obtain

The proof of (2) is complete.

(3) It is well known that the [@ — 1]-dimensional space TZ%’O(BRIII(n)) ={UalU' :a €

n(n—1) o
C;73 ,a12 =0} is an invariant subspace of D f(Z). That means

T DF(2) (BT )12 =0

for any g € T;O(anzu(n)). Now, we claim that

n(n—1) [e% P al
N:{UaU':ae(C 27 a2 =0 13 " :O}
177 5712 "\ogz o0 oo

is an invariant subspace of Df(Z). We only need to prove that for each

0 0
0 Q34 o Q3(p—1) Q3n
—034 0 o Qg(n—) Qan .
s=U 0 U €N,
—Q3(n—1) —4(n-1) " 0 Qn—1)n

—Q3p —0Olyn c —X(p—1)n 0
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_ o n(n—1)
if we set € = UIDf(Z)(ﬁ)U € C;73 ,thenep =0 and (?3 21") =0.
23t €2n

According to Df(Z)(B) € TZ}’O(ﬁRIII(n)), we have 12 = 0. For t € (0,1), write the polar
decompositions of tZ and f(tZ) as
0 ¢
Lo o

tZ=U U’
0 trp
0 <—trp 0 )
and
0 1 (t) 0
- (t) 0
ft2)=U() ut),
0 0 Tp(t)
—7p(t) 0
respectively, where 1 > r1(t) > ro(t) > --- > rp(t) > 0 and U(¢) is a unitary square matrix of

order n. By Lemma 3.2, corresponding to a = tZ and a = f(tZ), take

I 0
\/1—t2 .
2
Q _ U 17t27'g U/
0 Iy
and
1-ri(t)
I
1—r2(t !
Q1) =U(t) A u) .
0 L
Ni==10)
Since lim f(tZD) = Z, we obtain
t—1—
li t)y=1 li t) = . li t)=r,.
t_l)r{l—rl() , t_1>1{177“2() T2, ) t_lg{rp() Tp

Meanwhile, we get
Ut)=U+0(t = 1)), Df(2)() = D(Z)(B) +O(t — 1))
as t — 17. Moreover, it follows from f(tZ) = Z — (1 — t)Df(Z)(Z) + O(|t — 1|2) that

ri(t) = p(f(t2))
=1-(1-t)2R )Y =

z
1<i<j<n Y

= 1 (1-OR(DS(2)(2),Vp(2)) + O(lt — 1>
— 1= (L= OR(Z, D" J(2)(Vp(2))) + O(|t — 1)

00 (2\Df(2)(2) + Ot — 1)
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=1-A1-t)+0(t -1
as t — 17. This implies
\V1=72(t) =1 -[1=X1—t)+O0(t —112)2 = /2X(1 — t) + O(Jt — 1]?) (4.3)

ast — 17. By Lemma 3.3,

F(tZ,B)
_ I 0 I, o
\/1-t2 12
L I
1*2t27'§ — = 172t27'§ ,
=r|U T 6T U
L 0 \/135—27-2 0 1£2t27-127
[ /12 0
_Ir
= p ‘.
0 Iy
L 1/17t27'g
10 0
0 @ T [0 n— a.n 2
o4 034 aiinfg Oézn \/@
0 . . . . .
—Q3(n—1) TO4(n-1) 0 An—1)n
—O3n —Qdn —Q(n—-1)n 0 0 I
This gives
lim \/1—t2F(tZ,3) =0. (4.4)
t—1—
Similarly, we have
Flf(tZ),Df(tZ)(B)]
I
=) 0
I
1—7r2(t -
=r U0 Vi @ DF(2)(B T
1
0 1—27’2(16)
I 0
Viioo
2
—r2
1=r3(t) Uty
1
0 1—2rg(t)

Notice that

_ J—

U(t) DI2)(B)U ) =T D(Z)(B)T +O(|t —1]) = e + O(|t — 1))
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as t — 1. This, together with (4.3), shows

Jim /1 - r3(t)Ff(tZ2), Df(tZ)(B)]
Io 0
D)
Jii0

= lim \/1—7r%(t)p
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t—1—
I
0 1—27’72)(16)

O(|t—-1]) O(|t—1]) e13+0([t—1]) e1n+O([t—1])

1—ri(t) 1-r7(t) V1-r3(t) 1—r2(t)

O(|t—1]) O(|t—1]) e23+0([t—1]) e2n+O([t—1])

1—ri(t) 1-r7(t) VI-r3(t) 1—r2(t)
—e13+0(Jt—1]) —e234+0(Jt—1]) Ot -1 Ot —1

Vi-ri(®) Vi-ri(®) (It =11 gan + O(It = 1])
1t O(t=1])  —eantO(t—1]) : '

—e3, +O(]t — 1 Ot —1

w0l a0l ey, 1 O(1t - 1) (It 1)

I 0
Iy
1=r3(t)
0 N
N=10)
i 0 0 611_37«% . —Ellilrf7 T
O O €23 - E2n
1-r3 ,/l—rf7
—€13 —€23 O e O
=p 1-r2  \/1-r2
—€1n —E€2n e
\vr v Y v
By the contraction property of the Kobayashi metric, we get
FIf(t2),Df(tZ)(8) < F(tZ, ). (4.5)

Thus, by (4.3)—(4.5), we obtain

r 0 O €13 . €in T
2
l—rg \/1—7”1)
O 0 €23 . E2n
2
1—r§ l—rp
—€13 —¢&23 0 0
P 1—7“% 1—r§
—€1n —E2n O - O
2 2
L \\/1-7 1-r3 |

= lim \/1 =R F/(t2), DF(2)(5)]
m YI=10 A
< Jim Yo VI-PF(tZ,5)

T t—1-

=/ lim

t—1—

1—2F(tZ,3) = 0.
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€2n
subspace of Df(Z). Hence, there is a 2(n — 2)-dimensional invariant subspace M of D f(Z)

such that TZ%7O(8RIII(TL)) = M @ N. Because M NN = {0}, we have <313 31"> #0
23t Qo
for any 8 = UaU’ € M \ {0}.
For each eigenvalue p; of D f(Z) on M, suppose that 3 = Ua®WU’ € M\ {0} is a nonzero
eigenvector with respect to p;. Here

That means (im 61") = 0. It follows that N is an W—dimensional invariant
23

NOREENG . |
%13) %3 #07 UDf(Z)(B(l))U:NlO‘(l)v i=1,--- 72(n_2)'
Qgg 1 Qgy

By Lemma 3.3, we get

Iy 0
\1-t2
Iy
. ) 1122 )
FZ,8%)=p |U E U'sT
1o
0 1/1—1527‘%
Iy 0
V1-t2
15}
17t27§ U,
1o
0 1/17t27'127
0 0 "‘513) "‘%g
1 0 VvV 1(:)t2 vV 1(7152
Iy 0 0 ﬁ% an
—— ‘ » V1—t \Vi1—t
vV 3 O] 0! )
=p 13 23 0 . al
‘. Vi1-t2 y/1-t2 3n
0 _Ip o s :
A S VN O 0
L Vi1-t2 41—t 3n

I 0
1P}
\/1-t2r2
Iy
0 W e
This yields
I 0 0 0‘513) . O‘er i
\/1—7‘5 1/1—7‘%
o ol
0 0 23 . 2n
1—r2 1/177'127
. o ; O] @
lim V1 —22F(tZ, D) =p || o2 22 0 0 #0.
t—1— 1*7'% 1*7'%
*"‘(1172 7“&2 0 0
1—72 1—72
(- P P -
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On the other hand,
1o O

FIF(t2), DI(t2)(8)] = p |U (1)

0 13’5@
12 O
_ ) | Ve
U(t) Df(t2)(8)U (1) u(t)

Iy
’ V=
Notice that U(8) Df(tZ)(BNTU) = U DF(Z)(BNT + O(|t — 1|) = ma® + O(|t — 1|) as

t— 17 and ag = 0. Then

T /1= (OFI£(t2), DI 2) (5]

I 0
_ I
171'§(t)
= lim /1 —7r?(t)p
t—1—
Ip
0 1—r§(t)
o(t-1)) o(t—1)) pioly ro(t-1)) pial +o(lt-1)
1—r{ (1) 1-rf(t) V1130 ==I0)
o(t=1)) o(t=1)) piasy) +0(t=1)) pias) +o(jt-1))
1—ri(t) 1-r3(t) V1-r2(1) 1—r2(1)
(i) (@) .
—HiQy 3 +O(Jt=1]) A ADY: +O([t=1]) o(lt — 1 . /'Oé(l) + O(lt — 1
N e (It - 1) pali) + O(1t - 1)
o o L '
—picg,, +O(t—1))  —piog, +O(t—1)) 'a(l) LO(t—1 O(lt —1
— SO ol + O - 1) (It — 1)
I2 0
15}
177'§(t)
0 I
177'127(t)
' o) < \]
0 O 1—.7‘3 o 1/1—.7‘127
0 0 ﬂ(zb)_ “(2;
12 V=
(2) (i)
= | — i3 — 23 .
lpilp iRy 0 0
RO
1n 2n 0 . 0

\Ve7 T _
= |pi| lim 1 —2F(tZ, 7).
t—1—
It follows from this and (4.3) that

1> lim F[f(té),fff(té)(ﬁ(i))]
o F(tZ,80)
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e YIS V1) FIF(t2), DI2) D) _ |l

= lim S .
=17 \/1—ri(t) V1-1? F(tZ,B0) VA
This implies

For any eigenvalue v; of Df(Z) on N, suppose that 8 = Ua®DU’ € N\ {0} is a nonzero
eigenvector with respect to v;. Here

0 _ ocga) e O‘g_)n—l) agl_,z
) ) —aéz) 0 R aff(n_l) aff,z
@ (@)
OIS Ol el : : g : :
2 n B G RN () RPN O
3(7(1;1) 4(1(1;1) @) (n—1)n
—Q3y, —Qyy e _a(n—l)n 0

and UIDf(ZO)(B(i))U =y fori=1,---, % Then by Lemma 3.3, we have

F(tz,p")
I 0
V1-t2
Iy
1— 27.2
=p U tora
0 L
\/1-t2r2
1D 0
V1-t2
15}
U/B(i)ﬁ m U/
0 L
V1-t2r2
L2 0 " 0 P (i (0
L, . “ad -1 Yan
0 ol ]
-’ 0 : S :
(1) (1) (3)
0 L T¥m-1)  T%m-1) 0 X 1)n
_ VT B
Is 0
I
V/1-t2r2
0 L

A /1—t2rg
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Hence
- 0 0 _
0 ol R Yo af)
_ 1-r3 @ﬂ ﬂ 1—r2
—of) 0 Yi(n-1) o)
N . 1*7'% mm 1*7'% 177%
lim F(tZ,8%9)=p _ _ .
t—1— 0 : . . . .
N N o
3(n—1) 4(n—1) . 0 (n—1)n
mm mm . 1-r2
o) o) . %=1 0
L 1*7% 177'2 1-7r3 177% 1_"‘% h
#0.
On the other hand,
Iy 0
1/171'%(t) .
2
5 ° i 1-72(t) — o P
Ff(t2), Df(t2)(8)] = p |U (1) ’ U(t) Df(t2)(8)U(t)
Iy
0 177'§(t)
1, b
177'%(t) 0
Iy
l—Tg(t) U(t)/
0 Ly
1/171'%(t) i

Thus we utilize U(¢) Df(t2)(BD)U () = T DF(Z)(BD)T + O(|t — 1]) = via® + O(Jt — 1|) as
t — 1~ and (4.3) to achieve

lim F[f(tZ), Df(t2)(3D)]

t—1—
=)
S ! o o1
X l—T%(t) O(It_ll) 0 \ll—Tf(t)
= lim p . T-r2(t)
t—1— . 1
0 S O(|t—1
1—r2(t) 7%[@('2) B
Iy 0
1>
V1=r3(t)
0 —L__
V/1=r2(t)
0 b2
0
=p —bi1a O
0 B

> |ui| lim F(tZ,5%),
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where

0

b12 = hm

—v;al) +0(jt — 1))

—viag), ) +O0(t = 1))

—via§) +O(|t — 1))

and

(U@ Dre2) 8 T@)

T. S. Liu, X. M.

12

t—1-—

9 4ot — 1))

ViQgzy

0

—viall), ) +0(t - 1))

—viafl] +O(jt - 1))
viall
0 i34
1—7’%
_V’iagil) 0
1—7’%
(i) (i)
Vi3, 1) Vi 1)
\/1—7“%\/1—7’72) \/1—7’%\/1—7’%

()

— Vil

(i)

—ViQyy

\/1—7“%\/1—7’72)

\/1—7’%\/1—7’%

1—ri(t)

vial) ) +0(t—1|)

vialy), ., +0(t = 1))

)

(i)

ViGg,

viall + Ot — 1))

(n—1)n

0 qua(i)
—vial) 4+ O(t - 1))
(i) i
Vi%s(n—1) vial,)
\/1—7’(%)\/1—7“2 \/1—7’%\/1—7“2
Vi%an-1) vial)

\/1—7’%\/1—7“2

0
O

_VTa(nfl)n

)
1rp

\/1—7’%\/1—7“2

(4)
Vi'a(nfl)n
1-r2

0
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+O(]t — 1))

+ O(]t — 1)
0

It follows that . . )
F[f(t2),Df(t2)(8")]

1> lim e > vl
t—1- F(tZ,p®)
This shows ) 3
| <1, i=1,--- w

’ 2
The proof of (3) is complete.

n(n—1)

(4) Note that TZ%7O(6RIII(7’L)) = {U?U' ta€Crz2 ,a12=0} =M&Nisan [@—1]-
dimensional invariant subspace of Df(Z). So, there is a one-dimensional invariant subspace L
of Df(Z) such that

n(n—1)

2
(CIII

=L®MODN.

Since LN Té’O(BRIII(n)) = {0} we have a12 # 0 for any § = UaU’ € L\ {0}. Now, we prove
that A is just the eigenvalue of Df(Z) on L. Suppose that A is an eigenvalue of Df(Z) on L,

and 8 = UaU’ € L\ {0} is a nonzero eigenvector of D f(Z) with respect to A\. Then Theorem
2.1 is utilized to derive

(DF(2)(B),Vp(2)) = \B,Vp(2))
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Meanwhile
(DI(Z)(B), Vp(2)) = (8. D" F(Z2)(Vp(Z))) = MB. Vp(Z)) = Aoz,

This, together with ayo # 0, gives X\ = \. Therefore A (=1,---,2(n—2)) and v; (z =
. n(n-1)
1, W) are all the eigenvalues of the linear transformation Df(Z) on C;,7 . This

implies
o . —-2)(n—3
et DF(Z)| < X', rDF(Z) < A+ 2R~ 2) + L2 =D,
The proof of (4) is complete.
Remark 4.1 From the view of geometry, N is an invariant subspace of Df(Z) perhaps
because the Levi form of p at Z is positive semi-definite and not positive definite on N. We
get the same conclusions of [;| < VA (i =1,---,2(n — 2)) with Theorem 3.1 in [17] perhaps

because the Levi form of p at Zis positive definite on M.

Remark 4.2 From the proof of Theorem 4.1, it is clear that we need only to assume that

the mapping f is C! up to the boundary of Rrzz(n) near Z.

Remark 4.3 When n = 2, f(0) = 0 and Rzzz(2) = A, Theorem 4.1 is just Lemma 3.1.
And when Rz77(3) = B2, Theorem 4.1 is just Theorem 3.1 in [18].

Finally, we give the following example to show that the inequalities in (2)—(4) of Theorem

(Lo o

a = (S RIII(TL)

4.1 are sharp.
Example 4.1 Let

0 0
and 0 < e < 1. Write e;; € C"*" as a square matrix, which has 1 at i-th row and j-th column,

and Os elsewhere. According to Lemma 3.2, take

1
Q= (V= “3.
0 In—2
0 1 0 1
(% o) : (5 o) :
Let 7 = or 7 = be a

0
0 0 —rp 0
—rp 0 0 0
smooth boundary point of Rzzz(n), where 1 > ry > --- > r, > 0. Define

f(Z2)=—0_a(2)=Q ' In+ Za) " (a+ 2)Q, Z € Rzzz(n).

Then f : Rrzz(n) — Rzzz(n) is a holomorphic mapping with f(0) = a, and f is holomorphic
at Z. Moreover, f has the following properties.
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W=z
(2) For any g € C.;7

1—p(a) 1—p(a)
pr)E) = V@2 O ) g(Vmmz O
O In_Q 0 In—2
/ el —e91) = L% (e19 — e91). is shows that one of eigenvalues o 7) is
3) Df(Z }+g§a§ This shows th f lues of Df(Z
1—p(a)
1+p(a)”
(4) Df(Z)(es; — eﬂ =/ 1;;’(“) (eij —ej;) (i=1,2;3 < j <n). This shows that the 2(n —2)
elgenvalues of Df(Z) are all 1 +£ (Z
D f eii —ei) =e;ii —eii(3< . This shows that the :=21n=3) eigenvalues
j—€j j —€j 2

of Df(Z) are all 1.

Proof By Lemma 3.2, it is clear that f : Rzzz(n) — Rzzz(n) is a holomorphic mapping
with f(0) = a, and f is holomorphic at Z. Without loss of generality, we may assume that

n = 2p is an even number.
(1) It is obvious that p(a) = €. Since

5, el 0 5, (1—|—E)IQ 0
Za—(o O)’ In—|—Za—( 0 Lo

and
<—(1O+ £) : —(g_ E)

a’+ZD: )

o

we have
f(2)
=Q (I, +Za) Ha+2)Q
V- 5212 0 = 0
0 In 2

14+¢
< 1+<€ 0 ) 0
. 12 O

=7

n(n—1)

(2) For any € C;-3 , we get

Df(Z)(8) = Q' (I, + Za') "' fQ

— Q7' + za) ' BA (1, + Za) M a+ 2)Q
=Q (I, +2a) Q- Q (I, + Za

LA Qf(Z)
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ﬁlg 0 — s
= Vi B@Q-dQZ)
0 In—Q
l-ey 0 L 1 0 c I, 0
- Tte 2 Bl vi-— _ (Vi ?
0 In_Q 0 In—2 0 0
C(VER 0 (Ve o
0 In_g 0 In—2
1-p(a) 1—p(a)
(V. O gV O (4.6)
0 In—2 0 In—2

(3)-(5) By (4.6) and a straightforward calculation, we can obtain (3)—(5) at once. The proof

is complete.

Acknowledgement The authors express their gratitude to the referees for useful advice.
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