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Abstract A classical problem of D. H. Lehmer suggests the study of distributions of

elements of Z/pZ of opposite parity to the multiplicative inverse mod p. Zhang initiated

this problem and found an asymptotic evaluation of the number of such elements. In this

paper, an asymptotic formula for the fourth moment of the error term of Zhang is proved,

from which one may see that Zhang’s error term is optimal up to the logarithm factor.

The method also applies to the case of arbitrary positive integral moments.
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1 Introduction

Let q be an odd positive integer and (c, q) = 1. We are interested in the set

Lq(c) = {(x, y) ∈ [1, q]2 : xy ≡ c(mod q), 2 ∤ x+ y}.

The original problem of D. H. Lehmer is concerned with the non-trivial information of Lq(1) (see

[3, Section F12] for details). The first attack is due to Zhang [12], who obtained an asymptotic

formula for |Lq(1)| as long as q is a prime power or a product of two distinct primes. Shortly

after, he generalized the case to arbitrary odd q and proved in [13] that

|Lq(1)| =
1

2
ϕ(q) +O(q

1

2 τ(q)2 log2 q), (1.1)

where τ denotes the divisor function. Various generalizations and extensions can be found in

[1, 5–8, 10–11] for instance.

It is natural to ask whether the error term in (1.1) is the best possible in the exponent of q

and a good choice is to examine the moment

Mk(q) :=
∑∗

cmod q

∆q(c)
k,

Manuscript received June 23, 2018. Revised August 30, 2018.
1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China.
E-mail: ping.xi@xjtu.edu.cn yuanyi@xjtu.edu.cn

∗This work was supported by the National Natural Science Foundation of China (No. 11601413), the
Fundamental Research Funds for the Central Universities (No. 201806078) and the Natural Science
Basic Research Plan in Shaanxi Province of China (No. 2017JQ1016).



362 P. Xi and Y. Yi

where

∆q(c) := |Lq(c)| −
1

2
ϕ(q). (1.2)

By virtue of the analytic properties of Dirichlet characters and L-functions, Zhang [14] proved

that

M2(p) =
3

4
p2 +O(p1+ε) (1.3)

for all large prime p and any ε > 0. This was later generalized by Zhang, Xu and Yi [15] to

general odd moduli.

In this paper, we focus on higher moments Mk(q) with restricting to prime moduli. In

particular, we will prove the following asymptotic formula.

Theorem 1.1 For all large prime p, we have

M4(p) = cp3 +O(p
5

2 log6 p)

with

c =
27

16
− 2336751616

22153125π8

∑

n≥1

τ(n)4

n4
≈ 1.654.

In fact, our method can be generalized to evaluate M2k(p) for each integer k ≥ 3. More

precisely, one may prove, there exists some constant ck, depending only on k, that

M2k(p) = ckp
k+1 +O(pk+

1

2
+ε),

where the implied constant depends polynomially on k. In the case of odd moments, our

argument will also lead to

M2k+1(p) ≪ pk+
1

2
+ε

for each integer k ≥ 0, where the implied constant depends polynomially on k. These would

require a generalization of Lemma 2.2 (see [2, Proposition 3.2] or [9, Lemma 4] for instance).

By the method of moments, we are then able to prove the probability distribution of ∆p(c)

as c runs over (Z/pZ)×. More precisely, there exists some function φ ∈ C(R), such that for any

given α, β ∈ R, we have

lim
p→+∞

1

p− 1
|{1 ≤ c ≤ p− 1 : αp

1

2 ≤ ∆p(c) ≤ βp
1

2 }| =
∫ β

α

φ(t)dt.

As another remark, our method also applies to the correlation

∑∗

cmod p

∏

1≤i≤k

∆p(γi · c),

where γi ∈ PGL2(Fp).
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The main tool in this paper is the normalized Kloosterman sum

Kl(x, q) =
1√
q

∑∗

amod q

e
(ax+ a

q

)

.

Lemma 2.1 below relates ∆p(c) to certain averages of Kloosterman sums. A classical bound

of Weil asserts that |Kl(x, q)| ≤ τ(q), which plays an important role in [13]. To evaluate

the moment Mk(p), it requires to capture more cancellations among the averages of Kloos-

terman sums. This starting point is reasonable due to the celebrated work of Katz [4] that the

Kloosterman sums Kl(x, p) become equidistributed in [−2, 2] with respected to the Sato-Tate

measure, as long as p is large enough. More precisely, we would like to reduce the evaluation

of Mk(p) to capturing cancellations among Kloosterman sums, and Lemma 2.2 plays a crucial

role while picking up the main term for M4(p).

2 Lemmas

The first lemma was already obtained by Zhang [13], which relates the error term ∆p(c) to

averages of Kloosterman sums in a certain way.

Lemma 2.1 For (c, p) = 1, we have

∆p(c) =
p

1

2

π2

∑

1≤j≤2

∑

n≤p2

(−1)jτ(n, p)

n
{Kl((−1)jcn, p)− 4Kl((−1)j2cn, p) + 4Kl((−1)j4cn, p)}

+O(log3 p),

where τ(n, x) := |{(a, b) ∈ [1, x)2 : ab = n}| is a truncated divisor function.

Given m = (m1,m2,m3,m4) ∈ [1, p− 1]4, put

T (m, p) =
∑∗

xmod p

∏

1≤i≤4

Kl(mix, p).

A crucial part of this paper is to evaluate T (m, p) while m is in different configurations.

Lemma 2.2 Keep the above notation.

(1) For m1 ≡ m2 ≡ m3 ≡ m4(mod p), we have

T (m, p) = 2p+O(p
1

2 ).

(2) For m1 ≡ m2 6≡ m3 ≡ m4(mod p), we have

T (m, p) = p+O(p
1

2 ).

(3) In the remaining cases up to permutations among m1,m2,m3,m4, we have

T (m, p) = O(p
1

2 ).

Proof The lemma is a special case of [2, Proposition 3.2] or [9, Lemma 4].
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Lemma 2.3 For any z with |z| < 1, we have

∑

k≥0

(k + 1)zk =
1

(1− z)2
,

∑

k≥0

(k + 1)2zk =
1 + z

(1− z)3
,

∑

k≥0

(k + 1)3zk =
1 + 4z + z2

(1− z)4
,

and

∑

k≥0

(k + 1)4zk =
1 + 11z + 11z2 + z3

(1− z)5
.

Proof The above identities can be obtained by differencing

∑

k≥0

zk+1 =
z

1− z

suitably.

Let α, β, γ, δ be fixed non-negative integers. Put

Y (α) =
∑

n≥1

τ(n)τ(2αn)

n2
,

Z(α, β, γ, δ) =
∑

n≥1

τ(2αn)τ(2βn)τ(2γn)τ(2δn)

n4
.

Particularly, we write Z(0) = Z(0, 0, 0, 0); i.e.,

Z(0) =
∑

n≥1

τ(n)4

n4
.

Lemma 2.4 For each given integer α ≥ 0, we have

Y (α) =
ζ(2)4

ζ(4)

(3α

5
+ 1

)

.

Proof First, we have

Y (α) =
∑

k≥0

1

4k

∑

n≥1
2∤n

τ(2k+αn)τ(2kn)

n2

=
∑

k≥0

(k + α+ 1)(k + 1)

4k

∑

n≥1
2∤n

τ(n)2

n2
. (2.1)

From Lemma 2.3, it follows that

∑

k≥0

(k + α+ 1)(k + 1)

4k
=

∑

k≥0

(k + 1)2

4k
+ α

∑

k≥0

k + 1

4k
=

16

9

(5

3
+ α

)

,
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and

∑

n≥1
2∤n

τ(n)2

n2
=

∏

p>2

∑

l≥0

τ(pl)2

p2l
=

∏

p>2

∑

l≥0

(l + 1)2

p2l
=

∏

p>2

1 + p−2

(1− p−2)3
=

27

80

ζ(2)4

ζ(4)
,

from which and (2.1) the lemma follows.

Lemma 2.5 For any given non-negative integers α, β, γ, δ, we have

Z(α, β, γ, δ) =
65536

1794403125
Z(0)Z∗(α, β, γ, δ),

where

Z∗(α, β, γ, δ) = 37808 + 25680α+ 25680β + 25680γ + 25680δ+ 20400αβ + 20400αγ

+ 20400αδ + 20400βγ + 20400βδ+ 20400γδ

+ 18000αβγ + 18000αβδ + 18000αγδ+ 18000βγδ+ 16875αβγδ. (2.2)

Proof First, we have

Z(α, β, γ, δ) =
∑

k≥0

1

16k

∑

n≥1
2∤n

τ(2k+αn)τ(2k+βn)τ(2k+γn)τ(2k+δn)

n4

=
∑

k≥0

(k + α+ 1)(k + β + 1)(k + γ + 1)(k + δ + 1)

16k

∑

n≥1
2∤n

τ(n)4

n4
.

From Lemma 2.3, it follows that

∑

k≥0

(k + α+ 1)(k + β + 1)(k + γ + 1)(k + δ + 1)

16k
=

16

253125
Z∗(α, β, γ, δ),

where Z∗(α, β, γ, δ) is given by (2.2). On the other hand,

∑

n≥1
2∤n

τ(n)4

n4
=

∏

p>2

∑

l≥0

τ(pl)4

p4l
=

∏

p>2

∑

l≥0

(l + 1)4

p4l
=

∏

p>2

1 + 11p−4 + 11p−16 + p−64

(1− p−4)5

=
4096

7089

∏

p

1 + 11p−4 + 11p−16 + p−64

(1− p−4)5
=

4096

7089

∑

n≥1

τ(n)4

n4
.

The lemma then follows by combining all above evaluations.

Lemma 2.6 Let α ∈ {0, 1, 2}. For sufficiently large q, we have

∑∑

m,n≤q2

m≡2αn(mod q)

τ(m, q)τ(n, q)

mn
=

Y (α)

2α
+O(q−1+ε)

for any ε > 0.
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Proof Put σ = 2α. The congruence condition m ≡ σn(mod q) is equivalent to m = σn+ lq

for some l ∈ Z. Note that m,n ≤ q2, we thus assume 0 ≤ |l| ≪ q. If l 6= 0, we may assume

1 ≤ l ≪ q without loss of generality. Therefore,

∑

1≤l≪q

∑∑

m,n≤q2

m=σn+lq

τ(m, q)τ(n, q)

mn
=

∑

1≤l≪q

∑

n≤q2

τ(σn+ lq, q)τ(n, q)

n(σn+ lq)

≪ qε
∑

1≤l≪q

∑

n≤q2

1

nlq

≪ q−1+ε.

It then follows that

∑∑

m,n≤q2

m≡σn(mod q)

τ(m, q)τ(n, q)

mn
=

1

σ

∑

n≤q2

τ(σn, q)τ(n, q)

n2
+O(q−1+ε)

=
1

σ

∑

n≥1

τ(σn, q)τ(n, q)

n2
+O(q−1+ε).

Furthermore, we find

τ(σn, q) = τ(σn) +O
(

∑

q≤d|σn

1
)

,

for which the O-term vanishes unless σn ≥ q. This observation yields

∑∑

m,n≤q2

m≡σn(mod q)

τ(m, q)τ(n, q)

mn
=

1

σ

∑

n≥1

τ(σn)τ(n)

n2
+O(q−1+ε),

from which and Lemma 2.4, the lemma follows immediately.

Lemma 2.7 Let λ be a fixed positive integer. For sufficiently large q, we have

∑∑

m,n≤q2

m≡−λn (mod q)

τ(m, q)τ(n, q)

mn
≪ q−1+ε

for any ε > 0, where the implied constant depends on ε and λ.

Proof The congruence condition m ≡ −λn(mod q) is equivalent to m + λn = lq for some

l ∈ Z with 1 ≤ l ≪ q. We may assume m ≥ λn without loss of generality, in which case we find

m ≥ lq
2 . Note that

∑

1≤l≪q

∑

m,n≤q2

m+λn=lq
m≥λn

τ(m, q)τ(n, q)

mn
≤

∑

1≤l≪q

∑

m,n≤q2

m+λn=lq
m≥λn

2τ(m, q)τ(n, q)

lqn
≪ q−1+ε.

Then the lemma follows immediately.
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3 Proof of Theorem 1.1

3.1 Initial reductions

First, we write

M4(p) =
p2

π8
M

∗
4(p) +O(p

5

2 (log p)6), (3.1)

where

M
∗
4(p) =

∑∗

cmod p

∣

∣

∣

∑

1≤j≤2

∑

n≤p2

(−1)jτ(n, p)

n
F (c, j, n; p)

∣

∣

∣

4

and

F (c, j, n; p) = Kl((−1)j4cn, p)− 4Kl((−1)j2cn, p) + 4Kl((−1)jcn, p).

Opening the power and switching summations, we get

M
∗
4(p) =

∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1+j2+j3+j4

n1n2n3n4
τ(n1, p)τ(n2, p)τ(n3, p)τ(n4, p)W (j,n; p),

where, for j = (j1, j2, j3, j4),n = (n1, n2, n3, n4),

W (j,n; p) =
∑∗

cmod p

∏

1≤i≤4

F (c, ji, ni; p).

Note that

∏

1≤i≤4

F (c, ji, ni; p) =
∏

1≤i≤4

{Kl((−1)ji4cni, p)− 4Kl((−1)ji2cni, p) + 4Kl((−1)jicni, p)}.

We may split W (j,n; p) as the linear combination of 34 = 81 terms, each of which is of the shape

T (m, p) upon suitable choices for m = (m1,m2,m3,m4). In our applications to W (j,n; p), we

will take m = (m1,m2,m3,m4) to be one of the following tetrads:

(±cσ1n1,±cσ2n2,±cσ3n3,±cσ3n4), (σ1, σ2, σ3, σ4) ∈ {1, 2, 4}4. (3.2)

Given m = (m1,m2,m3,m4),n = (n1, n2, n3, n4) ∈ Z4, we say that m and n are equivalent

mod p, if at least one of the following conditions holds:

(1) There exists some δ coprime to p, such that mi ≡ δni(mod p) for each i = 1, 2, 3, 4;

(2) (m1,m2,m3,m4) ≡ (σn1, σn2, σn3, σn4)(mod p) for a certain permutation σ.

Due to the symmetry among j1, j2, j3, j4 and n1, n2, n3, n4, we find that T (m, p) and T (n, p)

give the same contribution to M
∗
4(p) if m and n are equivalent mod p. With this observation,

we may characterize M∗
4(p) by

M
∗
4(p) = 513S1 − 1040S2 + 16S3 + 1632S4 − 192S5 + 96S6 − 1280S7

+ 768S8 − 768S9 + 256S10, (3.3)
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where

Sℓ :=
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1+j2+j3+j4

n1n2n3n4
τ(n1, p)τ(n2, p)τ(n3, p)τ(n4, p)S(αℓ, j,n; p),

where

S(αℓ, j,n; p) =
∑∗

cmodp

∏

1≤i≤4

Kl((−1)jiαi,ℓnic, p)

with αℓ = (α1,ℓ, α2,ℓ, α3,ℓ, α4,ℓ) ∈ {1, 2, 4}4 given by

α1 = (1, 1, 1, 1), α2 = (2, 2, 2, 1), α3 = (4, 4, 4, 1), α4 = (2, 2, 1, 1), α5 = (4, 4, 2, 1),

α6 = (4, 4, 1, 1), α7 = (2, 1, 1, 1), α8 = (4, 2, 2, 1), α9 = (4, 2, 1, 1), α10 = (4, 1, 1, 1).

3.2 Evaluations of Sℓ, ℓ ∈ {1, 2, 3, 7, 10}

Note that

S(α1, j,n; p) = T (m, p), m = ((−1)j1n1, (−1)j2n2, (−1)j3n3, (−1)j4n4).

From Lemma 2.2, it follows that

S(α1, j,n; p) =



























2p+O(p
1

2 ), (−1)j1n1 ≡ (−1)j2n2 ≡ (−1)j3n3 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j1n1 ≡ (−1)j2n2 6≡ (−1)j3n3 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j1n1 ≡ (−1)j2n3 6≡ (−1)j3n2 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j1n1 ≡ (−1)j2n4 6≡ (−1)j3n2 ≡ (−1)j4n3(mod p),

O(p
1

2 ), otherwise,

from which we find

S1 = (2p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1n1≡(−1)j2n2≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (3p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1n1≡(−1)j2n2 6≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

= (−p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1n1≡(−1)j2n2≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (3p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1n1≡(−1)j2n2, (−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p).

By Lemmas 2.6–2.7, we further have

S1 = (−2p+O(p
1

2 ))
∑

n≥1

τ(n)4

n4
+ (12p+O(p

1

2 ))
(

∑

n≥1

τ(n)2

n2

)2

= (12Y (0)2 − 2Z(0, 0, 0, 0))p+O(p
1

2 ).
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Similarly, we have

S2 =
(

6Y (0)Y (1)− 1

4
Z(0, 1, 1, 1)

)

p+O(p
1

2 ),

S3 =
(

3Y (0)Y (2)− 1

32
Z(0, 2, 2, 2)

)

p+O(p
1

2 ),

S7 = (6Y (0)Y (1)− Z(0, 0, 0, 1))p+O(p
1

2 ),

S10 =
(

3Y (0)Y (2)− 1

2
Z(0, 0, 0, 2)

)

p+O(p
1

2 ).

3.3 Evaluations of Sℓ, ℓ ∈ {4, 5, 6, 8, 9}

Note that

S(α4, j,n; p) =



























2p+O(p
1

2 ), (−1)j12n1 ≡ (−1)j22n2 ≡ (−1)j3n3 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j12n1 ≡ (−1)j22n2 6≡ (−1)j3n3 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j12n1 ≡ (−1)j2n3 6≡ (−1)j32n2 ≡ (−1)j4n4(mod p),

p+O(p
1

2 ), (−1)j12n1 ≡ (−1)j2n4 6≡ (−1)j32n2 ≡ (−1)j4n3(mod p),

O(p
1

2 ), otherwise.

Hence

S4 = (2p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j12n1≡(−1)j22n2≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j12n1≡(−1)j22n2 6≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (2p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j12n1≡(−1)j2n3 6≡(−1)j32n2≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

= (−p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j12n1≡(−1)j22n2≡(−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j1n1≡(−1)j2n2, (−1)j3n3≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p)

+ (2p+O(p
1

2 ))
∑

· · ·
∑

1≤j1,j2,j3,j4≤2

∑

· · ·
∑

n1,n2,n3,n4≤p2

(−1)j12n1≡(−1)j2n3, (−1)j32n2≡(−1)j4n4(mod p)

∏

1≤i≤4

(−1)ji

ni

τ(ni, p).

From Lemmas 2.6–2.7, we may conclude that

S4 =
(

4Y (0)2 + 2Y (1)2 − 1

2
Z(0, 0, 1, 1)

)

p+O(p
1

2 ).
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Similarly, we have

S5 =
(

2Y (0)Y (1) + Y (1)Y (2)− 1

16
Z(0, 1, 2, 2)

)

p+O(p
1

2 ),

S6 =
(

4Y (0)2 +
1

2
Y (2)2 − 1

8
Z(0, 0, 2, 2)

)

p+O(p
1

2 ),

S8 =
(

2Y (1)2 + Y (0)Y (2)− 1

8
Z(0, 1, 1, 2)

)

p+O(p
1

2 ),

S9 =
(

(2Y (0)Y (1) + Y (1)Y (2)− 1

4
Z(0, 0, 1, 2)

)

p+O(p
1

2 ).

3.4 Concluding Theorem 1.1

Inserting all above asymptotic evaluations for Sℓ to (3.3) and in view of Lemmas 2.4–2.5,

we arrive at

M
∗
4(p) =

27

16
π8 − 2336751616

22153125
Z(0),

from which and (3.1) we conclude Theorem 1.1.

Acknowledgements The authors are grateful to Professor Wenpeng Zhang for all kind

help and inspirations in the past years. Thanks are also due to the referee for valuable sugges-

tions.

References

[1] Cobeli, C. and Zaharescu, A., Generalization of a problem of Lehmer, Manuscripta Math., 104, 2001,
301–307.
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