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Abstract The one-dimensional compressible non-Newtonian models are considered in this

paper. The extra-stress tensor in our models satisfies a kind of power law structure which

was proposed by O. A. Ladyzhenskaya in 1970s. In particular, the viscosity coefficient

in our models depends on the density. By using energy-estimate, the authors obtain the

existence and uniqueness of local strong solutions for which the density is non-negative.
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1 Introduction

In this paper, we consider the density-dependent compressible non-Newtonian models in

one-dimensional bounded domain







ρt + (ρu)x = 0,
(ρu)t + (ρu2)x − (µ(ρ)(ux + |ux|p−2ux))x + Px = ρf, (x, t) ∈ (0, 1)× (0, T ),
P = Aργ , A > 0, γ > 1

(1.1)

with the initial boundary conditions:

(ρ, u)|t=0 = (ρ0, u0), x ∈ I = [0, 1]; u|x=0 = u|x=1 = 0, t ∈ [0, T ], (1.2)

where µ(ρ) = 1 + ρα, and the unknown variables ρ, u, P stand for the fluid density, velocity

and pressure, respectively. The constants A, p > 2, 0 < α < 1 are given. For simplicity, it is

assumed that A = 1. External force f and initial value ρ0, u0 satisfy the following regularity

conditions:

{

0 ≤ ρα0 ∈ H1(I), u0 ∈ H1
0 (I)

⋂

H2(I),

f ∈ L2([0, T ]; L
2r
r−1 (I))

⋂

H1
0 (I)

⋂

L∞([0, T ]; L2(I)), ft ∈ L∞([0, T ]; L2(I)).
(1.3)

The research of non-Newtonian fluid dynamics involves chemistry, biology, glaciology, geolo-

gy and other important fields. Its mathematical models have attracted many experts’ attention.
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Through studying for the well-posedness of compressible non-Newtonian fluid models, we de-

scribe the movement theoretically, and analyze the essential characteristic of non-Newtonian

fluid, and also provide theoretical support for the related practical problem.

In 1970s, a new model to study some kinds of non-Newtonian fluid was proposed by La-

dyzhenskaya [1], in which the extra-stress tensor τ(Du) satisfies a kind of power law structure.

Further, Málek, Nečas, Rokyta and Růžička summarized and improved power law structure in

[2], two of which had been used widely:

τ(Du) = µ∞Du+ µ0|Du|p−2Du, Power law;

τ(Du) = µ∞Du+ µ0(1 + |Du|2)
p−2
2 Du, Carreau′s law.

In particular, the non-Newtonian model is called Ellis model for µ∞ > 0, µ0 > 0, p > 2 in

Power law structure.

For the incompressible non-Newtonian fluid, the earliest results were obtained by Ladyzhen-

skaya [1] and Lions [3]. There have been many remarkable researches concerning the well-

posedness of the weak solutions in [2, 4–6] and many others.

When density is variable, the models are the compressible non-Newtonian models. The

existence of measure-value weak solutions for the models with space dimension n ≥ 2 was

obtained in [7–9]. And Feireisl, Liao, Málek [10] proved global existence of weak solutions for

the initial and boundary problem with Carreau’s law viscous term. Mamontov [11–12] studied

the global existence and regularity estimates of solutions in one and two-dimensional space.

Recently, for the models with Carreau’s law viscous term, Xu and Yuan [13–14] proved the

existence and uniqueness of local strong solutions in one-dimensional space; Fang and Li [15]

studied the existence of classical solution for compressible non-Newtonian fluids; Yang and Tong

[16] proved the existence and uniqueness of compressible non-Newtonian fluids with Power law

viscous term. For more related results, we refer the reader to [17–20]

For the real fluid models, the viscosity coefficient is dependent on the density, so it will be

more physically meaningful to study the density-dependent model. In the past decades, there

have been a lot of literatures about the mathematical theory of the solutions of compressible

Newton fluids with density-dependent viscosity. However, there is little research on the solutions

of non-Newtonian fluids with density-dependent viscosity. Fang, Guo and Wang [21] researched

the local strong solutions to a compressible non-Newtonian fluid with Carreau’s law viscous

term and µ∞ = ρα, α ∈ (0, 1). When µ∞ = 0 and 0 < µ1 ≤ µ0(ρ) ∈ C2([0,∞)), µ0(ρ) ≤
Cρβ+1, µ′

0(ρ) ≤ Cρβ in Carreau’s law structure, Chen and Xu [22] proved the existence and

uniqueness of the solutions for a class of non-Newtonian fluids.

The aim of this paper is to study density-dependent compressible non-Newtonian fluids with

Power law viscous term, which makes the viscosity term to be with the stronger nonlinearity.

It should be pointed out that the viscosity coefficient µ(ρ) is more general, therefore, it is more

difficult to establish uniform estimates.

The main results of this paper are as follows.

Theorem 1.1 Assume that p > 2, and the initial values (ρ0, u0) satisfy (1.3) and the
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compatibility condition

−[µ(ρ0)(u0x + |u0x|p−2u0x)]x + Px(ρ0) =
√
ρ0g for a.e. x ∈ I (1.4)

with some g ∈ L2(I). Then there exists a time T∗ ∈ (0,+∞) and a unique strong solution (ρ, u)

to the initial boundary problem (1.1)–(1.2) such that

0 ≤ ρ, ρα ∈ C([0, T ];H1(I)), ρt ∈ C([0, T ];L2(I)),
√
ρut ∈ L∞(0, T ;L2(I)),

u ∈ C([0, T ];H1
0 (I)) ∩ L∞(0, T ;H2(I)), ut ∈ L2(0, T ;H1

0(I)).
(1.5)

The rest of this paper is organized as follows. In Section 2, we obtain the existence of local

strong solutions to the problem (1.1)–(1.2) with positive density. We complete the proof of

Theorem 1.1 in Section 3.

2 A Local Existence for Positive Density

In this section, we assume that ρ0 is a smooth function and there exists a positive number

δ (0 < δ ≪ 1) such that ρ0 ≥ δ. And we prove the local existence of strong solutions with

positive initial densities to the problem (1.1)–(1.2).

2.1 Uniform estimates of the approximate solutions

To prove the theorem, we first construct a sequence of the approximate solutions inductively

as follows:

(i) First define u0 = 0, and assume that uk−1 ∈ C([0, T ]; W 1,p
0 (I))∩L∞([0, T ]; H2(I)) was

defined for k ≥ 1.

(ii) According to the classical existence theorem of first order hyperbolic conservation law

(see [23]) and the parabolic equation (see [24]), we can obtain the unique smooth solution

(ρk, uk), satisfying the following approximate system:

ρkt + uk−1ρkx + uk−1
x ρk = 0, (2.1)

ρkuk
t + ρkuk−1uk

x − (µ(ρk)(uk
x + |uk

x|p−2uk
x))x + Px(ρ

k) = ρkf (2.2)

with the initial and boundary conditions

(ρk, uk)|t=0 = (ρ0, u0), x ∈ [0, 1], uk|x=0 = uk|x=1 = 0, t ∈ [0, T ]. (2.3)

Here ρ0 is a smooth function, and u0 ∈ H1
0 ∩H2 satisfies the compatibility condition (1.4).

Let K ≥ 1 be a fixed large integer, and let us introduce an auxiliary function ΦK(t) defined

by

ΦK(t) = max
1≤k≤K

sup
0≤s≤t

(1 + ‖uk(s)‖W 1,p

0
(I) + ‖ρk(s)‖H1(I) + ‖(ρk)α(s)‖H1(I) + ‖

√

ρkuk
t ‖L2(I)).

Firstly, we have the lemma as follows.
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Lemma 2.1 Assume that (ρk, uk) is the smooth solution of (2.1)–(2.2). There exists T ∈
(0, ∞), such that

‖uk
xx‖L2(I) ≤ CΦγ+3

K (t), (2.4)

‖ρkt ‖L2(I) + ‖(ρk)αt ‖L2(I) ≤ CΦ2
K(t) (2.5)

for 1 ≤ k ≤ K, t ∈ [0, T ], where C is independent of δ, k.

Proof From (2.2), we have

[µ(ρk)(uk
x + |uk

x|p−2uk
x)]x = ρkuk

t + ρkuk−1uk
x + Px(ρ

k)− ρkf (2.6)

and

[µ(ρk)(uk
x + |uk

x|p−2uk
x)]x = µx(ρ

k)(uk
x + |uk

x|p−2uk
x) + µ(ρk)(uk

xx + (p− 1)|uk
x|p−2uk

xx), (2.7)

|µ(ρk)(uk
xx + (p− 1)|uk

x|p−2uk
xx)| ≥ |uk

xx|(1 + |uk
x|p−2). (2.8)

Combining (2.6)–(2.8), we have

|uk
xx| ≤

1

1 + |uk
x|p−2

|ρkuk
t + ρkuk−1uk

x + Px(ρ
k)− ρkf |+ 1

1 + |uk
x|p−2

|µx(ρ
k)(uk

x + |uk
x|p−2uk

x)|

≤ |ρkuk
t + ρkuk−1uk

x + Px(ρ
k)− ρkf |+ |µx(ρ

k)uk
x|.

Applying Gagliardo-Nirenberg inequation, we have

‖uk
xx‖L2(I) ≤ ‖ρk‖

1
2

L∞(I)‖
√

ρkuk
t ‖L2(I) + ‖ρk‖L∞(I)‖uk−1‖L∞(I)‖uk

x‖L2(I) + ‖Px(ρ
k)‖L2(I)

+ ‖ρk‖L∞(I)‖f‖L2(I) + ‖[(ρk)α]x‖L2(I)‖uk
x‖L∞(I)

≤ ‖ρk‖
1
2

L∞(I)‖
√

ρkuk
t ‖L2(I) + ‖ρk‖L∞(I)‖uk−1‖L∞(I)‖uk

x‖L2(I) + ‖Px(ρ
k)‖L2(I)

+ ‖ρk‖L∞(I)‖f‖L2(I) + ‖[(ρk)α]x‖L2(I)‖uk
x‖

p

p+2

Lp(I)‖uk
xx‖

2
p+2

L2(I)

≤ ‖ρk‖
1
2

L∞(I)‖
√

ρkuk
t ‖L2(I) + ‖ρk‖L∞‖uk−1‖L∞(I)‖uk

x‖L2(I) + ‖Px(ρ
k)‖L2(I)

+ ‖ρk‖L∞(I)‖f‖L2(I) +
p

p+ 2
‖[(ρk)α]x‖

p+2

p

L2(I)‖uk
x‖Lp(I) +

1

2
‖uk

xx‖L2(I)

≤ CΦγ+3
K (t) +

1

2
‖uk

xx‖L2(I). (2.9)

So we obtain

‖uk
xx‖L2(I) ≤ CΦγ+3

K (t).

Multiplying (2.1) by α(ρk)α−1, we get that

[(ρk)α]t + [(ρk)α]xu
k−1 + α(ρk)αuk−1

x = 0. (2.10)

Applying (2.1) and (2.10) we deduce that

‖[(ρk)]t‖L2(I) ≤ ‖ρkx(t)‖L2(I)‖uk−1(t)‖L∞(I) + ‖ρk‖L∞(I)‖uk−1
x ‖L2(I) ≤ Φ2

K(t),

‖[(ρk)α]t‖L2(I) ≤ ‖[(ρk)α(I)]x(t)‖L2(I)‖uk−1(t)‖L∞(I) + α‖(ρk)α‖L∞(I)‖uk−1
x ‖L2(I) ≤ Φ2

K(t).

This completes the proof of Lemma 2.1.

Next, we estimate the first term of ΦK(t).
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Lemma 2.2 Assume that (ρk, uk) is the smooth solution of (2.1)–(2.2). There exists T ∈
(0, ∞), such that

∫ t

0

‖
√

ρkuk
t ‖2L2(I)ds+ ‖uk

x‖pLp(I) ≤ C
(

1 +

∫ t

0

Φ
2p(γ+1)+4
K (s)ds

)

for all t ∈ [0, T ].

Proof Multiplying (2.2) by uk
t and integrating over [0, 1], we have

‖
√

ρkuk
t ‖2L2(I) +

1

2

d

dt

∫ 1

0

µ(ρk)|uk
x|2dx+

1

p

d

dt

∫ 1

0

µ(ρk)|uk
x|pdx

≤ 1

2

∫ 1

0

[µ(ρk)]t|uk
x|2dx+

1

p

∫ 1

0

[µ(ρk)]t|uk
x|pdx

−
∫ 1

0

[ρkuk−1uk
xu

k
t + Ptux − (Pux)t − ρkfuk

t ]dx. (2.11)

Integrating (2.11) over [0, t], we obtain
∫ t

0

‖
√

ρkuk
t ‖2L2(I)ds+

∫ 1

0

|uk
x|2dx+

∫ 1

0

|uk
x|pdx

≤ C +

∫ t

0

‖(ρk)αt ‖L2(I)‖uk
xx‖L2(I)‖uk

x‖Lp(I)ds+

∫ t

0

‖(ρk)αt ‖L2(I)‖uk
xx‖

p
2
L2(I)‖uk

x‖Lp(I)ds

+

∫ t

0

‖Px(ρ
k)‖L2(I)‖uk

x‖L2(I)‖uk−1‖L∞(I)ds+

∫ t

0

‖
√

ρkf‖2L2(I)ds

+
1

2
‖P (ρk)‖2L2(I) +

1

2

∫ 1

0

|uk
x|2dx+ γ

∫ t

0

‖P (ρk)‖L∞(I)‖uk−1
x ‖L2(I)‖uk

x‖L2(I)ds

+

∫ t

0

‖ρk‖L∞(I)‖uk−1‖2L∞(I)‖uk
x‖2L2(I)ds+

1

2

∫ t

0

‖
√

ρkut‖2L2(I)ds. (2.12)

We estimate ‖P (ρk)‖2
L2(I) as follows:

‖P (ρk)‖2L2(I) =

∫ 1

0

|P (ρ0)|2dx+ 2

∫ t

0

∫ 1

0

P (ρk)(P (ρk))′(−ρkxu
k−1 − ρkuk−1

x )dxds

≤ C + C

∫ t

0

‖P (ρk)‖L∞(I)‖ρk(s)‖γ−1
L∞(I)‖ρ

k(s)‖H1(I)‖uk−1‖H1(I)ds

≤ C
(

1 +

∫ t

0

Φ2γ+1
K (s)ds

)

. (2.13)

Using Lemma 2.1 and (2.13), we can obtain
∫ t

0

‖
√

ρkuk
t ‖2L2(I)ds+ ‖uk

x‖pLp(I) ≤ C
(

1 +

∫ t

0

Φ
2p(γ+1)+4
K (s)ds

)

. (2.14)

The lemma is proved.

Then, we will estimate ‖ρk(t)‖H1(I), ‖(ρk)α(t)‖H1(I).

Lemma 2.3 Assume that (ρk, uk) is the solution of (2.1)–(2.2). We have

‖ρk(t)‖H1(I) + ‖(ρk)α(t)‖H1(I) ≤ Cexp
{

∫ t

0

Φγ+3
K ds

}

(2.15)

for any t ∈ [0, T ].
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Proof Multiplying (2.1) by ρk and integrating over (0, 1), there exists T ∈ (0,∞) such that

1

2

d

dt

∫ 1

0

|ρk(t)|2dx+

∫ 1

0

(ρkuk−1)xρ
k(t)dx = 0. (2.16)

Then, we can estimate the left-hand side of (2.16) as follows:

d

dt

∫ 1

0

|ρk(t)|2dx ≤
∫ 1

0

|ρk|2|uk−1
x |(t)dx ≤ C‖uk−1

xx ‖L2‖ρk‖2L2 . (2.17)

Differentiating (2.1) with respect to x, and multiplying the resultant equation by ρkx, and

integrating it over (0, 1) on x, we obtain

1

2

d

dt

∫ 1

0

|ρkx(t)|2dx = −
∫ 1

0

[3

2
uk−1
x (ρkx)

2 + ρkρkxu
k−1
xx

]

dx

≤ C(‖uk−1
xx ‖L2(I)‖ρkx‖2L2(I) + ‖ρk‖L∞(I)‖ρkx‖L2(I)‖uk−1

xx ‖L2(I)). (2.18)

Combining (2.17)–(2.18), we have

d

dt
‖ρk(t)‖2H1(I) ≤ C‖ρk‖2H1(I)‖uk−1

xx ‖L2(I). (2.19)

From Gronwall’s inequality, we get

‖ρk(t)‖H1(I) ≤ ‖ρ0‖2H1(I) exp
(

C

∫ t

0

‖uk−1
xx ‖L2(I)ds

)

≤ C exp
(

∫ t

0

Φγ+3
K ds

)

. (2.20)

Applying (2.10), we can obtain the estimate ‖(ρk)α(t)‖H1(I) using the same method for the

estimate of ‖ρk(t)‖H1(I) as follows:

‖(ρk)α(t)‖H1(I) ≤ C exp
(

∫ t

0

Φγ+3
K ds

)

. (2.21)

The lemma is proved.

Following that, we will estimate ‖
√

ρkuk
t (t)‖2L2(I).

Lemma 2.4 Assume that (ρk, uk) is the solution of (2.1)–(2.2), and satisfies compatibility

condition (1.4). There exists T ∈ (0,∞), such that

‖
√

ρkuk
t (t)‖2L2(I) +

∫ t

0

‖uk
xt‖2L2(I)ds+

∫ t

0

∫ 1

0

|uk
x|p−2|uk

xt|2dxds

≤ C
(

1 +

∫ t

τ

Φ
2p(γ+3)
K (s)ds

)

(2.22)

for 1 ≤ k ≤ K, t ∈ [0, T ], where C is independent of δ, k.

Proof Differentiating (2.2) with respect to t, multiplying this by uk
t and integrating over

(0, 1), we obtain

1

2

d

dt

∫ 1

0

ρk|uk
t |2dx+

∫ 1

0

µ(ρk)[(uk
xt)

2 + (p− 1)|uk
x|p−2(uk

xt)
2]dx
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= −
∫ 1

0

µt(ρ
k)(uk

x + |uk
x|p−2uk

x)u
k
xtdx+

∫ 1

0

(ρkuk−1)x[(u
k
t )

2 − uk−1uk
xu

k
t − fuk

t ]dx

+

∫ 1

0

Pt(ρ
k)uk

xtdx−
∫ 1

0

ρkuk−1
t uk

t u
k
xdx+

∫ 1

0

ρkftu
k
t dx

≤
∫ 1

0

|Px(ρ
k)||uk||uk

xt|dx + γ

∫ 1

0

|P (ρk)||uk
x||uk

xt|dx+ 2

∫ 1

0

|ρk||uk−1||uk
t ||uk

xt|dx

+

∫ 1

0

|ρk||uk−1|2|uk
x||uk

xt|dx+

∫ 1

0

|ρk||uk−1||uk
t ||uk−1

x ||uk
x|dx+

∫ 1

0

|ρk||uk−1|2|uk
t ||uk

xx|dx

+

∫ 1

0

|ρk||uk
t ||uk−1

t ||uk
x|dx+

∫ 1

0

|ρk||uk−1||uk
t ||fx|dx+

∫ 1

0

|ρk||uk−1||uk
xt||f |dx

+

∫ 1

0

|ρk||ft||uk
t |dx+

∫ 1

0

|[(ρk)α]t||uk
x||uk

xt|dx+

∫ 1

0

|[(ρk)α]t||uk
x|p−1|uk

xt|dx

=

12
∑

j=1

Ij . (2.23)

Applying Young’s inequality and Sobolev inequality, we obtain

I1 ≤ ‖Px(ρ
k)‖L2(I)‖uk‖L∞(I)‖uk

xt‖L2(I) ≤ CεΦ
2γ+2
K (t) + ε‖uk

xt‖2L2(I),

I2 ≤ ‖P (ρk)‖L∞(I)‖uk
x‖Lp(I)‖uk

xt‖L2(I) ≤ CεΦ
2γ+2
K (t) + ε‖uk

xt‖2L2(I),

I3 ≤ ‖ρk‖
1
2

L∞(I)‖u
k−1‖L∞(I)‖

√

ρkuk
t ‖L2(I)‖uk

xt‖L2(I) ≤ Φ
5
2

K(t)‖uk
xt‖L2(I)

≤ CεΦ
5
K(t) + ε‖uk

xt‖2L2(I),

I4 ≤ ‖ρk‖L∞(I)‖uk−1‖2L6(I)‖uk
xt‖L2(I)‖uk

x‖L6(I) ≤ CεΦ
2γ+12
K (t) + ε‖uk

xt‖2L2(I),

I5 ≤ ‖ρk‖L∞(I)‖uk−1‖L6(I)‖uk
t ‖L3(I)‖uk−1

x ‖L3(I)‖uk
t ‖L6(I) ≤ CεΦ

2γ+12
K (t) + ε‖uk

xt‖2L2(I),

I6 ≤ ‖ρk‖L∞(I)‖uk−1‖2L6(I)‖uk
t ‖L3(I)‖uk

xx‖L2(I) ≤ Φγ+6
K (t)‖uk

xt‖L2(I)

≤ CεΦ
2γ+12
K (t) + ε‖uk

xt‖2L2(I),

I7 ≤ ‖ρk‖
1
2

L∞(I)‖u
k−1
t ‖L6(I)‖uk

x‖L2(I)‖
√

ρkuk
t ‖L3(I) ≤ CΦ

9
4

K(t)‖uk−1
xt ‖L2(I)‖uk

xt‖
1
2

L2(I)

≤ C 1
2
Φ

9
2

K(t)‖uk
xt‖L2(I) +

1

2
‖uk−1

xt ‖2L2(I) ≤ C 1
2
,ηΦ

9
K(t) + η‖uk

xt‖2L2(I) +
1

2
‖uk−1

xt ‖2L2(I),

I8 ≤ ‖ρk‖L∞(I)‖uk−1‖L6(I)‖uk
t ‖L3(I)‖fx‖L2(I) ≤ CεΦ

4
K(t) + ε‖uk

xt‖2L2(I),

I9 ≤ ‖ρk‖L∞(I)‖uk−1‖L6‖uk
xt‖L3(I)‖f‖L2(I) ≤ CΦ2

K(t)‖uk
xt‖L2(I) ≤ CεΦ

4
K(t) + ε‖uk

xt‖2L2(I),

I10 ≤ ‖ρk‖L6(I)‖ft‖L2(I)‖uk
t ‖L3(I) ≤ CεΦ

2
K(t) + ε‖uk

xt‖2L2(I),

I11 ≤ ‖[(ρk)α]t‖L2(I)‖uk
x‖L∞(I)‖uk

xt‖L2(I) ≤ CΦ3
K(t)‖uk

xt‖L2(I) ≤ CεΦ
6
K(t) + ε‖uk

xt‖2L2 ,

I12 ≤ ‖[(ρk)α]t‖L2(I)‖uk
x‖p−1

L∞(I)‖u
k
xt‖L2(I) ≤ Φp+1

K (t)‖uk
xt‖L2(I) ≤ CεΦ

2(p+1)
K (t) + ε‖uk

xt‖2L2(I).

Taking ε, η > 0 small enough, substituting these estimates into (2.23), and integrating over

(τ, t) ⊂ (0, t), we can obtain

‖
√

ρkuk
t (t)‖2L2(I) +

∫ t

τ

‖uk
xt‖2L2(I)(s)ds+

∫ t

τ

∫ 1

0

|uk
x|p−2|uk

xt|2dxds

≤ ‖
√

ρkuk
t (τ)‖2L2(I) + C

∫ t

τ

Φ
2p(γ+3)
K (s)ds+

1

2

∫ t

τ

‖uk−1
xt ‖2L2(I)ds. (2.24)
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Applying (2.2) and compatibility condition (1.4), letting τ → 0, we have

‖
√

ρkuk
t (t)‖2L2(I) ≤ C

(

1 +

∫ t

τ

Φ
2p(γ+3)
K (s)ds

)

.

So we obtain

‖
√

ρkuk
t (t)‖2L2(I) +

∫ t

τ

‖uk
xt‖2L2(I)(s)ds+

∫ t

τ

∫ 1

0

|uk
x|p−2(uk

xt)
2dxds

≤ C
(

1 +

∫ t

τ

Φ
2p(γ+3)
K (s)ds

)

(2.25)

for 1 ≤ k ≤ K. We complete the proof of lemma.

Applying Lemmas 2.2–2.4, we can deduce that

ΦK(t) ≤ C exp
(

∫ t

0

Φ
2p(γ+3)
K (s)ds

)

. (2.26)

Thanks to this integral inequality, we can easily show that there exists a time T ∗ ∈ (0, T )

depending only on initial value and parameters of C such that

sup
0≤t≤T∗

ΦK(t) ≤ C. (2.27)

So, we have the estimate as follows:

sup
0≤t≤T∗

(‖ρk(t)‖H1(I) + ‖(ρk)α(t)‖H1(I) + ‖uk(t)‖
W

1,p

0
(I)

⋂
H2(I) + ‖

√

ρkuk
t (t)‖L2(I)

+ ‖ρkt (t)‖L2(I) + ‖(ρk)αt (t)‖L2(I)) +

∫ T∗

0

‖uk
xt‖2L2(I)ds+

∫ T∗

0

∫ 1

0

|uk
x|p−2|uk

xt|2dxds

≤ C. (2.28)

Remark 2.1 The C in (2.28) is independent of the lower bound of density δ, so it also

have estimate (2.28) for vacuum state.

2.2 Convergence of approximate solutions

In this section, we will show the approximate solution (ρk, uk) to be strong convergence.

Set

ρk+1 = ρk+1 − ρk, uk+1 = uk+1 − uk.

Then (ρk+1, uk+1) satisfies the following system:

ρk+1
t + (ρk+1uk)x + (ρkuk)x = 0, (2.29)

ρk+1uk+1
t + ρk+1ukuk+1

x + Px(ρ
k+1)− Px(ρ

k)− [µ(ρk+1)(uk+1
x + |uk+1

x |p−2uk+1
x )]x

+ [µ(ρk)(uk
x + |uk

x|p−2uk
x)]x = −ρk+1uk

t − ρk+1ukuk
x − ρkukuk

x + ρk+1f (2.30)

with the initial boundary conditions

(ρk+1, uk+1)|t=0 = (ρ0, u0), x ∈ [0, 1]; uk+1|x=0 = uk+1|x=1 = 0, t ∈ [0, T ]. (2.31)
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Multiplying (2.30) by uk+1, and integrating it over (0, 1) with respect to x, we have

d

dt

∫ 1

0

ρk+1|uk+1|2dx+

∫ 1

0

(uk+1
x )2dx

≤ d

dt

∫ 1

0

ρk+1|uk+1|2dx+

∫ 1

0

(uk+1
x )2dx+ (p− 1)

∫ 1

0

µ(ρk+1)|θuk+1
x

+ (1− θ)uk
x|p−2(uk+1

x )2dx

≤ Bk(t)‖ρk+1‖2L2(I) + C‖
√

ρkuk‖2L2(I), (2.32)

where Bk(t) = C(1 + ‖uk
xt‖2L2(I)).

Multiplying (2.29) by ρk+1, and integrating it over (0, 1) with respect to x, we have

d

dt
‖ρk+1‖2L2(I) ≤ C‖ρk+1‖2L2(I)‖uk

x‖L∞(I) + ‖ρk‖H1‖uk
x‖L2(I)‖ρk+1‖L2(I)

≤ C‖ρk+1‖2L2(I)‖uk
xx‖L2(I) + Cη‖ρk‖2H1(I)‖ρk+1‖2L2(I) + η‖uk

x‖2L2(I)

≤ Dk
η(t)‖ρk+1‖2L2(I) + η‖uk

x‖2L2(I), (2.33)

where Dk
η(t) = C‖uk

xx‖L2(I) + Cη‖ρk‖2H1(I) for all t ≤ T ∗ and k ≥ 1. And duo to the estimate

(2.28), we have
∫ t

0

Bk(s)ds ≤ C(1 + t),

∫ t

0

Dk
η(s)ds ≤ C + Cηt.

Combining (2.32) with (2.33), we deduce that

d

dt
(‖
√

ρk+1uk+1(t)‖2L2(I) + ‖ρk+1(t)‖2L2(I)) +

∫ 1

0

uk+1
x dx

≤ Eη(t)‖ρk+1(t)‖2L2(I) + C‖
√

ρkuk‖2L2(I) + η‖uk
x‖2L2(I), (2.34)

where Eη(t) depends only on Bk(t) and Dk
η(t), and we have

∫ t

0

Ek
η (s)ds ≤ C + Cηt

for all t ≤ T ∗, k ≥ 1. Then integrating (2.34) over (0, t) ⊂ (0, T1) and using Gronwall’s

inequality, we obtain that

(‖
√

ρk+1uk+1(t)‖2L2(I) + ‖ρk+1(t)‖2L2(I)) +

∫ 1

0

uk+1
x dx

≤ C exp(Cηt)

∫ t

0

(‖
√

ρkuk(s)‖2L2(I) + ‖uk(s)‖2L2(I))ds.

Using recursive relation and Gronwall’s inequality, we deduce that

K
∑

k=1

[

sup
0≤t≤T∗

(‖
√

ρk+1uk+1(t)‖2L2(I) + ‖ρk+1(t)‖2L2(I)) +

∫ T1

0

‖uk+1(t)‖2L2(I)dt
]

≤ C. (2.35)

Considering (2.1), we can obtain that

ρk(t, x) ≥ δ exp
{

−
∫ T

0

‖uk−1
x (x, s)‖L∞(I)ds

}

> 0.
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So we have ρk+1 ≥ δC−1.

Combining (2.35), we deduce that (ρk, uk) converges to (ρ, u) in the following sense:

{

uk → u in L∞(0, T ∗;L2(I)) ∩ L2(0, T ∗;H1
0 (I)),

ρk → ρ in L∞(0, T ∗;L2(I))
(2.36)

as k → ∞.

By virtue of the lower semi-continuity of various norms, we deduce that (ρ, u) satisfies the

following uniform estimate:

sup
0≤t≤T∗

(‖ρ(t)‖H1(I) + ‖ρα(t)‖H1(I) + ‖u(t)‖W 1,p

0
∩H2(I)

+ ‖√ρut(t)‖L2(I) + ‖ρt(t)‖L2(I)) +

∫ T∗

0

‖uxt(s)‖2L2(I)ds ≤ C.

3 Proof of Theorem 1.1

In Subsection 2.1, we obtain the high order regularity estimations of solution. Next we will

prove the existence of strong solution. We will finish the proof by two steps of k → ∞ and

δ → 0+.

For k → ∞. Since (ρk, uk) is a smooth solution of (2.1)–(2.2), it satisfies the following

identities:

∫ 1

0

ρk(x, t)ϕ(x, t)dx −
∫ t

0

∫ 1

0

(ρkϕt + ρkukϕx)(x, s)dxds =

∫ 1

0

ρ0ϕ(x, 0)dx, (3.1)

where ϕ ∈ C([0, T ∗];H1(I)), ϕt ∈ L∞([0, T ∗];L2(I)), and

∫ 1

0

ρk(x, t)uk(x, t)φ(x, t)dx −
∫ t

0

∫ 1

0

(ρkukφt + ρk(uk)2φx

− µ(ρk)(uk
x + |uk

x|p−2uk
x)φx + P (ρk)φx)(x, s)dxds =

∫ 1

0

ρ0u0φ(x, 0)dx, (3.2)

where ϕ ∈ C([0, T ∗];H1(I)) ∩ L∞([0, T ∗];H2(I)), ϕt ∈ L2([0, T ∗];H1
0 (I)).

Let

3
∑

i=1

Iki =

∫ 1

0

(ρk − ρ)ϕdx−
∫ t

0

∫ 1

0

[(ρk − ρ)ϕt + (ρkuk − ρu)ϕx](x, s)dxds,

6
∑

i=1

W k
i =

∫ 1

0

(ρkuk − ρu)φ(x, t)dx −
∫ t

0

∫ 1

0

[(ρkuk − ρu)φt + (ρk(uk)2 − ρu2)φx

− (µ(ρk)uk
x − µ(ρ)ux)φx − (µ(ρk)|uk

x|p−2uk
x − µ(ρ)|ux|p−2ux)φx

+ (P (ρk)− P (ρ))φx](x, s)dxds.

In a similar way as the method of proof of existence in [25], we prove that, as k → ∞,

{

Iki → 0, i = 1, 2, 3,
W k

i → 0, i = 1, 2, 3, 4, 5, 6.
(3.3)
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So (ρ, u) satisfies (3.1)–(3.2).

Secondly, for δ → 0+. Let ρδ0 = ρ0 + δ ≥ δ > 0 and u0
δ ∈ H1

0 ∩H2 satisfies the compatibility

condition (1.4). From the conclusion of Subsection 2.1, we obtain that there exists T ∗ > 0 such

that the initial-boundary problem






ρt + (ρu)x = 0,
(ρu)t + (ρu2)x − [τ(ux)]x + Px = ρf,

(ρ, u)|t=0 = (ρδ0, u
δ
0), u|x=0 = u|x=1 = 0,

exist a unique solution (ρδ, uδ) which satisfies the uniform estimate as follows

sup
0≤t≤T∗

(‖ρδ(t)‖H1(I) + ‖(ρδ)α(t)‖H1(I) + ‖uδ(t)‖W 1,p

0
(I)∩H2(I)

+ ‖
√

ρδuδ
t (t)‖L2(I) + ‖ρδt (t)‖L2(I)) +

∫ T∗

0

‖uδ
xt(s)‖2L2(I)ds ≤ C,

where C is a positive constant and is independent of δ. So we have the following strong

convergence:
{

ρδ → ρ in L∞(0, T ∗;L2(I)),
uδ → u in L∞(0, T ∗;L2(I)) ∩ L2(0, T ∗;H1

0 (I))

as δ → 0+. (ρ, u) satisfies the following uniform estimate:

sup
0≤t≤T∗

(‖ρ(t)‖H1(I) + ‖ρα(t)‖H1(I) + ‖u(t)‖W 1,p

0
(I)∩H2(I)

+ ‖√ρut(t)‖L2(I) + ‖ρt(t)‖L2(I)) +

∫ T∗

0

‖uxt(s)‖2L2(I)ds ≤ C.

The existence of solution in Theorem 1.1 is proved. Furthermore, we can obtain the unique-

ness of strong solution using the same method as in the Subsection 2.2.

Theorem 1.1 is proved.
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