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Abstract This paper deals with the Briot-Bouquet differential equations with degree

three. The previous result shows that all the meromorphic solutions belong to W. Here,

by applying the Kowalevski-Gambier method, the authors give all the possible explicit

meromorphic solutions. The result is more applicable. Also, this method can be used to

deal with the more general Briot-Bouquet differential equations.
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1 Introduction

As we all know, equations, mostly arising from geometry, physical, engineering and economic

sources, are of importance in the exploration of nature, such as the NLS equation, the KdV

equation. The Briot-Bouquet differential equation is also an important one. For example, in

2007, Zhang applied the real options to bank loan decision based on internal rate of return

(IRR for short), and obtained a Briot-Bouquet differential equation (cf. [14]). This conclusion

simplifies the previous results. In fact, Briot and Bouquet showed that every meromorphic

solution of Briot-Bouquet differential equation belongs to W (cf. [3–4]), where we denote by W

the class of meromorphic functions consisting of elliptic functions, and their degenerates, i.e.,

the rational functions of one exponential eaz, a ∈ C and rational functions. Other properties

of Briot-Bouquet differential equation were also studied by Hille (cf. [8, 11]). Many results for

higher-order Briot-Bouquet differential equation are also exhibited in a series of papers (cf. [2,

6–7, 9–10]). However, it is still difficult to find the explicit solutions.

In this paper, we shall use the Kowalevski-Gambier method (cf. [5]) to consider the cubic

Briot-Bouquet differential equations

a1f
′3 + a2f

′2f + a3f
′f2 + a4f

3 + a5f
′2 + a6f

′f + a7f
2 + a8f

′ + a9f + a10 = 0, (1.1)

where aj (j = 1, 2, · · · , 10) are constants.
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The notations and the fundamental results are adopted as shown in [1, 12–13]. And in order

to make our paper more readable, we first introduce the Kowalevski-Gambier method. Suppose

that we are given an ODE written in the form

E = E(z, f (N), · · · , f ′, f) ≡ 0. (1.2)

If (1.2) has a meromorphic solution f = f(z) which has a pole at z = z0 of order −p > 0, then

we can use a Laurent series to represent f locally, namely

f =
+∞∑

j=0

uj(z − z0)
j+p, u0 6= 0, p < 0.

When we put the Laurent series back into (1.2), we have the form

E =

+∞∑

j=0

Ej(z − z0)
j+q ≡ 0, (1.3)

where q is the smallest integer among the list of leading powers and we shall call those terms

involved in E0 as dominant terms and we write them collectively as Ê. The key idea of this

method is to express the necessary conditions for (1.3) to vanish identically, i.e.,

Ej ≡ 0, ∀j ≥ 0.

Firstly, there exists some negative integer p in (1.3) such that u0 6= 0. Secondly, notice that for

j = 1, 2, · · · , we have the linearized equation

Ej ≡ P (u0, j)uj +Qj({ul | l < j}).

Thirdly, for each j, in order to have such an equation vanish identically, we would require either

(1) P vanishes for some indices j and Qj vanish; or

(2) uj is uniquely determined by P and Qj .

For case 2, f will be uniquely determined by u0. Here P (u0, j) is always a polynomial and

P (u0, j) = 0 is usually called the indicial equation of the given ODE. The indicial equation can

be computed by the following formula.

Definition 1.1 (Indicial Equation) The indicial equation of a system E = 0 is

P (u0, j) = lim
z→z0

(z − z0)
−j−qÊ′(z, u0(z − z0)

p)(z − z0)
j+p = 0,

where Ê′(z, f) is defined as

∀h, Ê′(z, f)h = lim
t→0

Ê(z, f + th)− Ê(z, f)

t
.

If the indicial equation has no positive integer solution, then there exists a Laurent series

depending on the coefficients of the dominant terms, so one can represent the general solution

by a locally singlevalued expression.

Using this method, we can get the following results.
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Theorem 1.1 The entire solutions of (1.1) must be in the following two forms:

(1) f(z) = enazP (eaz), where P is a polynomial with degP ≤ 3, n ∈ Z, a is a nonzero

constant, and − degP ≤ n ≤ 0 if a5a9 6= 0 or a5a9 = 0, a6a7 = 0;

(2) f is a polynomial with deg f ≤ 3.

Theorem 1.2 The meromorphic solutions with poles of (1.1) must be in the following three

forms:

(1) f(z) = enazP (eaz)
Q(eaz) , where P and Q are all polynomials, n ∈ Z, a is a nonzero constant,

and Q has only one zero (simple or double), degP ≤ degQ, and 0 ≤ n ≤ degQ if a3a5 = 0;

(2) f(z) = − 4a5

a4
℘(z − η2) + C, where ℘ is the Weierstrass elliptic function, C and η2 are

both constants;

(3) f is a Möbus transformation or f(z) = − 4a5

a4

1
(z−ζ)2 + a6

a4

1
z−ζ

+ C, where ζ and C are

both constants.

2 Proof of Theorem 1.1

Suppose that f is an entire solution of (1.1), then f ∈ W. When f is transcendental, if f ′ has

no zeros, then f ′(z) = A1ae
az, hence f(z) = A2+A1e

az, where A1, A2, a are constants. If f ′ has

zeros, we may assume that f has at least one multiple zero. Otherwise, we use f1 = f − f(z0)

instead of f, where z0 is a zero of f ′. Since f ∈ W, f has infinitely many multiple zeros. Let

f = 1
g
. Then g has infinitely many multiple poles and (1.1) becomes

a1g
′3 − a2g

′2g + a3g
′g2 − a4g

3 − a5g
′2g2 + a6g

′g3 − a7g
4 + a8g

′g4 − a9g
5 − a10g

6 = 0. (2.1)

In the following, our proof will be divided into serveral parts.

2.1 a1 6= 0

In this case, all the solutions of (1.1) are entire.

Case I g has infinitely many multiple poles whose multiplicities are at least three. Let z3

be such a movable pole. By comparing the multiplicity of pole at z3 of both sides of (2.1), we

see that z3 must be a triple pole, and a5 = a6 = a8 = a9 = a10 = 0, a7 6= 0. On this occasion,

(2.1) becomes

a1g
′3 − a2g

′2g + a3g
′g2 − a4g

3 − a7g
4 = 0. (2.2)

In a neighbourhood of z = z3, the Laurent series of g is in the form

g(z) = u0(z − z3)
−3 + u1(z − z3)

−2 + u2(z − z3)
−1 + · · · , u0 6= 0. (2.3)

Substituting (2.3) into (2.2) and balancing the leading terms, we must have the corresponding

coefficients Ej = 0, j = 0, 1, · · · . Particularly, E0 = −27a1u
3
0 − a7u

4
0 = 0 means that u0 takes

only one value. We want to prove that there exists only one Laurent series at z3. In order to

do this, we shall compute the indicial equation of (2.2) by the dominant terms:

Ê(g) = a1g
′3 − a7g

4.
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By the definition of indicial equation, we have

Ê′ = 3a1g
′2∂z − 4a7g

3.

Thus we get its indicial equation

P (u0, j) = 27a1u
2
0(j + 1) = 0.

Hence, the Fuchs index j = −1. Because of the absence of any positive integer in the set of value

of j, all other coefficients uj are uniquely determined by the leading coefficient u0. Therefore,

we obtain that there is only one Laurent series at z3 satisfying (2.2). We claim that g must be

periodic. Now let ξj , j = 1, 2, · · · be the infinitely many poles of g. Then all wj(z) = g(z+ξj−z3)

are solutions of (2.2) with a pole at z3. Since there exists only one meromorphic solution of

(2.2) with poles at z = z3, some of them must be equal. This implies that for some j 6= i,

g(z + ξj − z3) ≡ g(z + ξi − z3) and hence g(z) ≡ g(z + ξj − ξi) in a neighborhood of z = z3.

Recalling that g is meromorphic, we can conclude that g is a periodic function with period

ξj − ξi.

By a suitable rescaling, we may assume that g has a period of 2πi. Let D = {z : 0 ≤ Im z ≤

2π}. If g has more than one poles in D, then by the above argument, we can conclude that

g is a periodic function in D and thus it must be an elliptic function, which contradicts the

conclusion that f = 1
g
is an entire function.

Now we know g has only one pole in D. Since g ∈ W, we have g = R(eaz), where R has only

one triple pole in C− {0}. Thus, we can write g as

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

Z −X1
+

b2

(Z −X1)2
+

b3

(Z −X1)3
+Q(Z), (2.4)

where Q is a polynomial in Z = eaz and b3 6= 0. Substituting (2.4) into (2.2) and letting Z

tend to infinity, we can conclude that Q equals some constant C. Then letting Z tend to 0, we

can deduce that rn = · · · = r1 = 0. Hence g(z) = b1
Z−X1

+ b2
(Z−X1)2

+ b3
(Z−X1)3

+ C. Therefore,

f(z) = 1
g
= Aenaz(eaz − Z1)

3, n = 0,−1,−2,−3. In this case and in the following discussion,

the constants denoted by the same alphabet may be different in different cases.

Case II g has infinitely many double poles. Let z2 be a movable double pole of g. By

comparing the multiplicity of (2.1), we get that all the multiple poles of g must be double and

a8 = a10 = 0. Then, (2.1) becomes

a1g
′3 − a2g

′2g + a3g
′g2 − a4g

3 − a5g
′2g2 + a6g

′g3 − a7g
4 − a9g

5 = 0. (2.5)

Subcase i a5a9 6= 0. In a neighbourhood of z = z2, the Laurent series of g is in the form

g(z) = u0(z − z2)
−2 + u1(z − z2)

−1 + u2 + · · · , u0 6= 0. (2.6)

Substituting (2.6) into (2.5) and balancing the leading terms, we obtain the condition E0 =

−4a5u
6
0 − a9u

7
0 = 0, which means that u0 takes only one value. Now the dominant terms are

Ê(g) = −a5g
′2g2 − a9g

5.
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Thus we get its indicial equation

P (u0, j) = 4a5u
3
0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I, we obtain that there exists only one

Laurent series at z2. On this occasion, g may also have simple poles. By the same arguments

in Case I, we can write g as

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

Z − Z1
+

b2

Z − Y1
+

b3

(Z − Y1)2
+Q(Z), (2.7)

where Q is a polynomial in Z = eaz and b3 6= 0. Substituting (2.7) into (2.5) and letting Z

tend to infinity, we can conclude that Q equals some constant C. Then letting Z tend to 0,

we can deduce that rn = · · · = r1 = 0. Hence g(z) = b1
Z−Z1

+ b2
Z−Y1

+ b3
(Z−Y1)2

+ C. Therefore,

f = Aenaz(eaz − X1)(e
az − Y1)

2, where n = 0,−1,−2,−3. If g only has double poles, then

g(z) = b2
Z−Y1

+ b3
(Z−Y1)2

+ C. Hence, f(z) = Aenaz(eaz − Y1)
2, where n = 0,−1,−2.

Subcase ii a5a9 = 0. Since g has double poles, we must have a5 = a9 = 0 and a6 6= 0 by

(2.5). Then (2.5) becomes

a1g
′3 − a2g

′2g + a3g
′g2 − a4g

3 + a6g
′g3 − a7g

4 = 0. (2.8)

Substituting (2.6) into (2.8) we get the condition E0 = −8a1u
3
0 − 2a6u

4
0 = 0, which means that

u0 takes only one value. The dominant terms are

Ê(g) = a1g
′3 + a6g

′g3.

Thus we get its indicial equation

P (u0, j) = 8a1u
2
0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I, we obtain that there is only one

Laurent series at z2. From (2.8), we see that g does not have simple poles, i.e., g only has double

poles. Then we can write g as

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

(Z − Y1)
+

b2

(Z − Y1)2
+Q(Z), (2.9)

where Q is a polynomial in Z = eaz and b2 6= 0. Hence, f(z) = Aenaz(eaz − Y1)
2, where n ∈ Z.

Furthermore, if a7 = 0, putting (2.9) into (2.8) and letting Z tend to infinity, we can conclude

that Q equals some constant C. Then letting Z tend to 0, we can deduce that rn = · · · = r1 = 0.

Hence g(z) = b1
(Z−Y1)

+ b2
(Z−Y1)2

+ C. Therefore, f(z) = Aenaz(eaz − Y1)
2, where n = 0,−1,−2.

2.2 a1 = 0 but a2 6= 0

In this case, all the solutions of (1.1) are entire and (2.1) becomes

a2g
′2 − a3g

′g + a4g
2 + a5g

′2g − a6g
′g2 + a7g

3 − a8g
′g3 + a9g

4 + a10g
5 = 0. (2.10)
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First, from (2.10), we know that the multiple poles must be double and a8 = a10 = 0. Then

(2.10) becomes

a2g
′2 − a3g

′g + a4g
2 + a5g

′2g − a6g
′g2 + a7g

3 + a9g
4 = 0. (2.11)

Case I a5a9 6= 0. By comparing the multiplicity of (2.11) at the pole of g, we get that g

has no simple poles. In a way similar to Case I in Subsection 2.1, we have

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

(Z − Y1)
+

b2

(Z − Y1)2
+Q(Z), (2.12)

where Q is a polynomial in Z = eaz and b2 6= 0. Substituting (2.12) into (2.11) and letting

Z tend to infinity, we can conclude that Q equals some constant C. Then letting Z tend to

0, we can deduce that rn = · · · = r1 = 0. Hence g(z) = b1
(Z−Y1)

+ b2
(Z−Y1)2

+ C. Therefore,

f(z) = Aenaz(eaz − Y1)
2, where n = 0,−1,−2.

Case II a5a9 = 0. Since g has double poles, we must have a5 = a9 = 0 and a6 = 0, a7 6= 0.

Then (2.11) becomes

a2g
′2 − a3g

′g + a4g
2 + a7g

3 = 0. (2.13)

Substituting (2.6) into (2.13), we can get E0 = 4a2u
2
0 + a7u

3
0 = 0, which means that u0 takes

at most one value. The dominant terms are

Ê(g) = a2g
′2 + a7g

3.

Thus we get its indicial equation

P (u0, j) = −4a2u0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I in Subsection 2.1, we obtain that

there exists only one Laurent series expansion at z2. From (2.13), we see that g does not have

simple poles. So we have (2.12). Substituting (2.12) into (2.13) and letting Z tend to infinity,

we can conclude that Q equals some constant C. Then letting Z tend to 0, we can deduce that

rn = · · · = r1 = 0. Hence g(z) = b1
Z−Y1

+ b2
(Z−Y1)2

+ C. Therefore, f(z) = Aenaz(eaz − Y1)
2,

n = 0,−1,−2.

2.3 a1 = a2 = 0 but a3 6= 0

In this case, (2.1) becomes

a3g
′ − a4g − a5g

′2 + a6g
′g − a7g

2 + a8g
′g2 − a9g

3 − a10g
4 = 0. (2.14)

Case I a5 = 0. It is easy to see that the solutions of (1.1) are entire. Then (2.14) turns

out to be

a3g
′ − a4g + a6g

′g − a7g
2 + a8g

′g2 − a9g
3 − a10g

4 = 0. (2.15)
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But from (2.15), we see that g can not have multiple poles.

Case II a5 6= 0. (2.14) may have meromorphic solutions f with poles, but we are not going

to discuss it here, and it will be found in the proof of Theorem 1.2. Now we just investigate

the entire solutions of (1.1). Since g has infinitely many poles, by comparing the multiplicity

of (2.14) at z2, which is a movable double pole of g, we have a8 = a10 = 0 and a9 6= 0. Then

(2.14) becomes

a3g
′ − a4g − a5g

′2 + a6g
′g − a7g

2 − a9g
3 = 0. (2.16)

In a way similar to Subcase i in Case II of Subsection 2.1, we have (2.12). Substituting (2.12)

into (2.16) and letting Z tend to infinity, we can conclude that Q equals some constant C. Then

letting Z tend to 0, we can deduce that rn = · · · = r1 = 0. Hence g(z) = b1
(Z−Y1)

+ b2
(Z−Y1)2

+C.

Therefore, f(z) = Aenaz(eaz − Y1)
2, where n = 0,−1,−2.

If a1 = a2 = a3 = a4 = 0, then (1.1) reduces to

a5f
′2 + a6f

′f + a7f
2 + a8f

′ + a9f + a10 = 0. (2.17)

2.4 a5 6= 0

Now (2.17) reduces to

a5g
′2 − a6g

′g + a7g
2 − a8g

′g2 + a9g
3 + a10g

4 = 0. (2.18)

By comparing the multiplicity of (2.18) at a movable multiple pole of g, we obtain a8 =

a10 = 0 and these poles must be double. Then (2.18) becomes

a5g
′2 − a6g

′g + a7g
2 + a9g

3 = 0. (2.19)

Substituting (2.6) into (2.19), we obtain E0 = 4a5u
2
0 + a9u

3
0 = 0, which means that u0 takes

only one value. The dominant terms are

Ê(g) = a5g
′2g + a9g

3.

Thus we get its indicial equation

P (u0, j) = −4a5u0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I in Subsection 2.1, we obtain that

there is only one Laurent series at z2. From (2.19), we see that g does not have simple poles.

Then we have

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

(Z − Y1)
+

b2

(Z − Y1)2
+Q(Z), (2.20)

whereQ is a polynomial in Z = eaz. Substituting (2.20) into (2.19) and letting Z tend to infinity,

we can conclude that Q equals some constant C. Then letting Z tend to 0, we can deduce that

rn = · · · = r1 = 0. Hence g(z) = b1
Z−Y1

+ b2
(Z−Y1)2

+ C. Therefore, f(z) = Aenaz(eaz − Y1)
2,

n = 0,−1,−2.
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2.5 a5 = 0 but a6 6= 0

In this case, the solutions of (1.1) also must be entire. Now (2.18) becomes

a6g
′ − a7g + a8g

′g − a9g
2 − a10g

3 = 0. (2.21)

From (2.21), we obtain that g cannot have multiple poles.

2.6 Linear equation

When a5 = a6 = a7 = 0, (2.16) reduces to

a8f
′ + a9f + a10 = 0. (2.22)

It is easy to see that the solutions of (2.22) do not have multiple zeros.

To complete the proof, suppose that f is a polynomial solution of (1.1). Substituting it into

(1.1), we can obtain that the degree of f is at most three.

3 Proof of Theorem 1.2

Let f be a meromorphic solution of (1.1) with poles. Since f ∈ W, we see that f must have

infinitely many poles. From the proof of Theorem 1.1, we obtain a1 = a2 = 0.

3.1 a1 = a2 = 0 but a3a5 6= 0

We consider (1.1), i.e.,

a3f
′f2 + a4f

3 + a5f
′2 + a6f

′f + a7f
2 + a8f

′ + a9f + a10 = 0. (3.1)

Case I f is transcendental. From (3.1), we see that f can only have simple poles. Let η1

be a movable pole of f. Then the Laurent series of f is in the form

f(z) = u0(z − η1)
−1 + u1 + u2(z − η1) + · · · , u0 6= 0. (3.2)

Substituting (3.2) into (3.1), we obtain E0 = a3u
3
0 + a5u

2
0 = 0, which means that u0 takes only

one value. The dominant terms are

Ê(f) = a3f
′f2 + a5f

′2.

Thus we get its indicial equation

P (u0, j) = −a3u
2
0(j + 1) = 0.

Hence, the Fuchs index j = −1. Similarly, we can obtain that there is only one Laurent series

at η1. Thus f has the form

f(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

(Z − S1)
+Q(Z), (3.3)
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where Q is a polynomial in Z = eaz.

In the following, we shall discuss g = 1
f
. By the uniqueness of f, we know that g also has

only one Laurent series at its movable pole. It is easy to see that g can only have either simple

poles or double poles from (2.14). If g has double poles, by Case I in Subsection 2.2 in the

proof of Theorem 1.1, we have (2.12), i.e.,

g(z) = R(Z) =
b1

(Z − Y1)
+

b2

(Z − Y1)2
+ C, b2 6= 0. (3.4)

Combining (3.3)–(3.4) and f = 1
g
, we get f = Aenaz(eaz−Y1)

2

eaz−S1
, where n = 0,−1. If g has simple

poles, then we have

g(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b3

(Z − Y1)
+Q(Z), (3.5)

where Q is a polynomial in Z = eaz and b3 6= 0. Combining (3.3), (3.5) and f = 1
g
, we get

f(z) = Aenaz(eaz−Z1)
eaz−S1

, where n ∈ Z. If g has no poles, then f = Aenaz

eaz−S1
, where n ∈ Z.

Case II f is a rational function. From Case I, we know that all poles of f are simple with

the residue −a5

a3

. Hence f = −a5

a3

P ′

1

P1

+P2, where P1 is a polynomial which only has simple zeros

with degree d1 and P2 is a polynomial. Substituting f into (1.1), we get P2 = C, a constant.

That is to say,

f =
−a5P

′
1 + a3CP1

a3P1
. (3.6)

Substituting (3.6) into (1.1), we obtain

a3a5(P
′2
1 − P ′′

1 P1)(−a5P
′
1 + a3CP1)

2 + a4P1(−a5P
′
1 + a3CP1)

3 + a23a
2
5(P

′2
1 − P ′′

1 P1)
2

+ a3a5a6P1(P
′2
1 − P ′′

1 P1)(−a5P
′
1 + a3CP1) + a23a7P

2
1 (−a5P

′
1 + a3CP1)

2

+ a23a5a8P
2
1 (P

′2
1 − P ′′

1 P1) + a23a9P
3
1 (−a5P

′
1 + a3CP1) + a33a10P

4
1 = 0. (3.7)

By (3.7), the zeros of P1 are the zeros of (a3 + a5)P
′4
1 . If degP > 1, because P1 only has simple

zeros, then a3 = −a5. Thus, (3.7) becomes

a3(P
′′
1 P1 − P ′2

1 )(2CP ′
1 + C2P1 + P ′′

1 ) + a4(P
′
1 + CP1)

3

− a6(P
′2
1 − P ′′

1 P1)(P
′
1 + CP1) + a7P1(P

′
1 + CP1)

2

+ a8P1(P
′2
1 − P ′′

1 P1) + a9P
2
1 (P

′
1 + CP1)

2 + a10P
3
1 = 0. (3.8)

Then the zeros of P1 are zeros of ((−2a3C + a4 − a6)P
′
1 − a3P

′′
1 )P

′2
1 . This is impossible. There-

fore, f is a Möbius transformation.

3.2 a1 = a2 = a3 = 0 but a4 6= 0

Consider (1.1), i.e.,

a4f
3 + a5f

′2 + a6f
′f + a7f

2 + a8f
′ + a9f + a10 = 0. (3.9)
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Case I a5 6= 0. Let f be transcendental. Since f ∈ W, we get that f must have infinite

poles. On this occasion, f only have double poles. Let η2 be a movable double pole of f. Then

in a neighbourhood of z = η2, the Laurent series of f is in the form

f(z) = u0(z − η2)
−2 + u1(z − η2)

−1 + u2 + · · · , u0 6= 0. (3.10)

Substituting (3.10) into (3.9), we obtain E0 = a4u
3
0 + 4a5u

2
0 = 0, which means that u0 takes at

most one value. The dominant terms are

Ê(g) = a4f
3 + a5f

′2.

Thus we get its indicial equation

P (u0, j) = −4a5u0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I in Subsection 2.1 in the proof of

Theorem 1.1, we get that there exists only one Laurent series at η2. From the discussion in

the proof of Theorem 1.1, we know that f is an elliptic function or f = R(eaz), where R is a

rational function.

Subcase i f is an elliptic function. Since η2 is the only pole in a fundamental parallelogram

and it is a double pole, in a neighbourhood of origin, the Laurent series of the Weierstrass elliptic

function ℘(z) is in the form of

℘(z) =
1

z2
+

∞∑

n=1

(2n+ 1)s2n+2(L)z
2n,

where sm(L) =
∑
ω 6=0

1
ωn

, ω ∈ L, L is a set consisting of all the lattice points of all period

parallelogram. Hence, f(z) + 4a5

a4

℘(z − η2) must be an analytic elliptic function, then it is a

constant. Therefore, we have f(z) = − 4a5

a4
℘(z − η2) + C, where C is a constant.

Subcase ii f = R(eaz). In the following, we shall determine R. By the above explanation,

we know that f can be written as

f(z) = R(Z) =
rn

Zn
+ · · ·+

r1

Z
+

b1

(Z − T1)
+

b2

(Z − T1)2
+Q(Z), (3.11)

where Q is a polynomial in Z = eaz . Substituting (3.11) into (3.9) and letting Z tend to infinity,

we can conclude that Q equals some constant C. Then letting Z tend to 0, we can deduce that

rn = · · · = r1 = 0. Hence

f(z) =
b1

(Z − T1)
+

b2

(Z − T1)2
+ C. (3.12)

Next, we shall discuss g = 1
f
. Now (2.1) becomes

a4g + a5g
′2 − a6g

′g + a7g
2 − a8g

′g2 + a9g
3 + a10g

4 = 0. (3.13)
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By the uniqueness of f, we know that g has only one Laurent series at its poles. Considering g

only has either simple poles or double poles from (3.13), we get

g(z) =
r1,n

Zn
+ · · ·+

r1,1

Z
+

b1

(Z − Z1)
+Q1(Z), (3.14)

or

g(z) =
r2,n

Zn
+ · · ·+

r2,1

Z
+

b2

(Z − Y1)
+

b3

(Z − Y1)2
+Q2(Z), (3.15)

where Q1 and Q2 are polynomials in Z = eaz. If (3.15) holds, then (3.13) reduces to

a4g + a5g
′2 − a6g

′g + a7g
2 + a9g

3 = 0. (3.16)

Substituting (3.15) into (3.16) and letting Z tend to infinity, we can conclude that Q2 equals

some constant C. Then letting Z tend to 0, we can deduce that r2,n = · · · = r2,1 = 0. Hence

g(z) =
b2

(Z − Y1)
+

b3

(Z − Y1)2
+ C. (3.17)

Combining (3.12), (3.14), (3.17) and f = 1
g
, we get f(z) = A(eaz−Y1)

2

(eaz−T1)2
or f(z) = Aenaz(eaz−Z1)

(eaz−T1)2
,

where n = 0, 1.

Now let f be a rational solution of (3.9). From the discussion above, we know that the

poles of f can only be double. Firstly, by substituting (3.11) into (3.9), we get u0 = − 4a5

a4

and

u1 =
a6

a4
. Hence

f =
4a5
a4

(P ′
1

P1

)′

+
a6

a4

P ′
1

P1
+ P2,

where P1 is a polynomial which only has simple zeros with degree d1 and P2 is a polynomial.

Substituting f into (3.9), by comparing the degree of the numerator, we immediately have

P2 = C. That is,

f =
4a5P1P

′′
1 − 4a5P

′2
1 + a6P1P

′
1 + Ca4P

2
1

a4P
2
1

. (3.18)

Substituting (3.18) into (3.9), we obtain that the zeros of P1 are the zeros of 4a5P
′′
1 + a6P

′
1.

This means that P1 is linear. Therefore,

f(z) = −
4a5
a4

1

(z − ζ)2
+

a6

a4

1

z − ζ
+ C,

where ζ and C are both constants.

Case II a5 = 0. From (3.9), we get a6 6= 0. Then (3.9) becomes

a4f
3 + a6f

′f + a7f
2 + a8f

′ + a9f + a10 = 0, (3.19)

and f only has simple poles. If f is transcendental, substituting (3.2) into (3.19), we obtain

E0 = a4u
3
0 − a6u

2
0 = 0, which means that u0 takes only one value. The dominant terms are

Ê(g) = a4f
3 + a6f

′f.
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Then its indicial equation is

P (u0, j) = a6u0(j + 1) = 0.

Hence, the Fuchs index j = −1. Similarly to Subsection 2.1 in the proof of Theorem 1.1, we

obtain that there is only one Laurent series at the pole η1. Thus f has the form

f(z) = R(Z) =
r1,n

Zn
+ · · ·+

r1,1

Z
+

b1

(Z − η1)
+Q1(Z), (3.20)

where Q1 is a polynomial in Z = eaz. Substituting (3.20) into (3.19) and letting Z tend to

infinity, we can conclude that Q1 equals some constant C. Then letting Z tend to 0, we can

deduce that r1,n = · · · = r1,1 = 0. Hence

f(z) =
b1

Z − η1
+ C. (3.21)

Let g = 1
f
. Then (3.13) becomes

a4g − a6g
′g + a7g

2 − a8g
′g2 + a9g

3 + a10g
4 = 0. (3.22)

By the uniqueness of f , we know that g also has only one Laurent series at its poles. Thus

g(z) =
r2,n

Zn
+ · · ·+

r2,1

Z
+

b2

(Z − η1)
+Q2(Z), (3.23)

where Q2 is a polynomial in Z = eaz. Substituting (3.23) into (3.22) and letting Z tend to

infinity, we can conclude that Q2 equals some constant C. Then letting Z tend to 0, we can

deduce that r2,n = · · · = r2,1 = 0. Hence

f(z) =
b2

Z − η1
+ C. (3.24)

Combining (3.21), (3.24) and f = 1
g
, we conclude that there are no meromorphic solutions in

this case.

If f = P1
P2

is a rational solution of (3.19), where P1 and P2 are two polynomials with degree

d1 and d2 respectively. Then by substituting it into (3.19), we get

a4P
3
1 + a6P1P

′
1P2 − a6P

2
1P

′
2 + a7P

2
1P2 + a8P

′
1P

2
2 − a8P1P

′
2P2 + a9P1P

2
2 + a10P

3
2 = 0. (3.25)

From (3.25), the zeros of both P1 and P2 are simple. Furthermore, the zeros of P1 are the zeros

of a8P
′
1 + a10P2 and the zeros of P2 are the zeros of a6P

′
2 − a4P1. If a7 6= 0, a9 6= 0 or a10 6= 0,

then d1 = d2. Hence, a8P
′
1+a10P2 = c1P1 and a6P

′
2−a4P1 = c2P2. Putting one equation above

into another, we obtain P1 and P2 cannot be nonconstant polynomials. So a7 = a9 = a10 = 0

and d2 = d1 +1. But the fact that zeros of P2 are the zeros of a8P
′
2 − a7P1 leads to d2 = 1 and

d1 = 0. Therefore, f(z) = c
z−b

.

3.3 a1 = a2 = a3 = a4 = a5 = a6 = 0 but a7 6= 0

Consider (2.17), i.e.,

a7f
2 + a8f

′ + a9f + a10 = 0. (3.26)
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Case I f is transcendental. Since f ∈ W, we see that f must have infinite poles. Moreover,

a8 6= 0 and f only has simple poles. Substituting (3.2) into (3.26), we obtain E0 = a7u
2
0−a8u0 =

0, which means that u0 takes only one value. The dominant terms are

Ê(g) = a7f
2 + a8f

′.

Thus we get its indicial equation

P (j) = −a8u0(j + 1) = 0.

Hence, the Fuchs index j = −1. In a way similar to Case I in Subsection 3.1 in the proof of

Theorem 1.1, we obtain that there is only one Laurent series at one of its movable poles. Thus,

we have

f(z) = R(Z) =
r1,n

Zn
+ · · ·+

r1,1

Z
+

b1

(Z − S1)
+Q1(Z), (3.27)

where Q is a polynomial in Z = eaz and b1 6= 0. Substituting (3.27) into (3.26) and letting Z

tend to infinity, we can conclude that Q1 equals some constant C. Then letting Z tend to 0, we

can deduce that r1,n = · · · = r1,1 = 0. Hence

f(z) =
b1

Z − S1
+ C. (3.28)

If f has no zeros, then f(z) = Aenaz

eaz−S1

, n = 0, 1. If f has zeros, by the uniqueness of f, we know

that g = 1
f
has only one Laurent series at its poles and satisfies

a7 − a8g
′ + a9g + a10g

2 = 0. (3.29)

Thus g has the form

g(z) =
r2,n

Zn
+ · · ·+

r2,1

Z
+

b2

(Z − S1)
+Q2(Z), (3.30)

where Q is a polynomial in Z = eaz and b2 6= 0. Substituting (3.30) into (3.29) and letting Z

tend to infinity, we can conclude that Q2 equals some constant C1. Then letting Z tend to 0,

we can deduce that r2,n = · · · = r2,1 = 0. Hence

g(z) =
b2

Z − S1
+ C1. (3.31)

Combining (3.28), (3.31) and g = 1
f
, we have f(z) = A(eaz−Z1)

eaz−S1
.

Case II Let f = P1
P2

be a rational solution of (3.26), where P1 and P2 are two polynomials

with degree d1 and d2 respectively. Then by substituting it into (3.26), we get

a7P
2
1 + a8P

′
1P2 − a8P1P

′
2 + a9P1P2 + a10P

2
2 = 0. (3.32)

From (3.32), the zeros of both P1 and P2 are simple. Furthermore, the zeros of P1 are the zeros

of a8P
′
1 + a10P2 and the zeros of P2 are the zeros of a8P

′
2 − a7P1. If a9 6= 0 or a10 6= 0, then

d1 = d2. Hence, a8P
′
1 + a10P2 = c1P1 and a8P

′
2 − a7P1 = c2P2. Putting one equation above

into another, we obtain that P1 and P2 cannot be nonconstant polynomials. So a9 = a10 = 0

and d2 = d1 + 1. But the zeros of P2 are the zeros of a8P
′
2 − a7P1, we get d2 = 1 and d1 = 0.

Therefore, f(z) = c
z−b

, where b and c are constants.
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