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Abstract In this paper, the authors obtain the gradient estimates for positive solutions
to the weighted p-Laplacian Lichnerowicz equation

△p,fu+ cu
σ = 0

on noncompact smooth metric measure space, where c is a nonnegative constant, and
p, σ (1 < p ≤ 2, σ ≤ p − 1) are real constants. Moreover, by the gradient estimate, they
can get the corresponding Liouville theorem and Harnack inequality.
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1 Introduction

Recently, there has been an active interest in the study of gradient estimates for the par-

tial differential equation on manifolds. Kotschwar and Ni [7] studied p-heat equation from a

variational point and obtained some interesting results about gradient estimates and entropy

formula. Later, combing the usual maximum principle approach with some geometric tech-

niques including the use of a nonlinear Bochner formula and curvature-dimension inequality,

Wang, Yang and Chen [15] got the sharp estimate for weighted p-heat equation. For doubly

nonlinear diffusion equation (DNDE for short) on complete Riemannian manifolds with non-

negative Ricci curvature, Wang and Chen [13] proved the sharp global Li-Yau type gradient

estimates and Chen and Xiong [3] obtained some other types of gradient estimates for this e-

quation. Moreover, for the weighted p-Laplace case, Wang and Li [14] derived the lower bounds

of its first nonzero eigenvalue on compact smooth metric measure spaces.

The aim of this paper is to give some existence results for positive solutions to the Lich-

nerowicz type equations on smooth metric measure space. We know a smooth metric measure

space is a triple (M, g, dµ), where (M, g) is a complete n-dimensional Riemannian manifold

and dµ := e−fdv with f a fixed smooth real-valued function on M. Denote by ∇,△ and Hes-

s the gradient, Laplace and Hessian operators, and by dv the Riemannian volume measure.
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The smooth metric measure space carries a natural analog of the Ricci curvature, the so-called

m-Bakry-Émery Ricci curvature, which is defined as

Ricmf := Ric + Hess f − ∇f ⊗∇f
m− n

, n < m ≤ ∞.

In particular, when m = ∞,Ric∞f := Ricf := Ric + Hessf is the classical Bakry-Émery Ricci

curvature, which is introduced by Bakry and Émery [1] in the study of diffusion processes, and

then it has been extensively investigated in the theory of Ricci flow. The case where m = n is

only defined when f is a constant function. There is also a analog of the p-Laplacian, that is,

the weighted p-Laplacian, which is defined by

△p,f := efdiv(e−f |∇u|p−2∇u).

It is also understood in distribution sense.

Here we recall the Lichnerowicz equation on manifolds. Given a smooth symmetric 2-

tensor σ, a smooth vector field W, and a triple data (π, τ, ϕ) of smooth functions on M. Set

cn = n−2
4(n−1) , p =

2n
n−2 , and let

Rγ,ϕ = cn(R(γ)− |∇ϕ|2γ), Aγ,W,π = cn(|σ +DW |2γ) + π2,

B(τ, ϕ) = cn
(
n−1
n
τ2 − V (ϕ)

)
, where V : R → R is a given smooth function and R(γ) is the

scalar curvature function of γ. Then the Lichnerowicz equation for the Einstein-scalar conformal

data (π, σ, π, τ, ϕ) with the given vector field W is

△γu−Rγ,ϕu+Aγ,W,πu
−p−1 −B(τ, ϕ)up−1 = 0, u > 0.

In this paper, we first consider the local gradient estimate for the positive solutions to the

p-Laplacian Lichnerowicz equation

△p,fu+ cuσ = 0 (1.1)

on noncompact smooth metric measure space. Here c is a nonnegative constant and 1 < p ≤
2, σ ≤ p− 1 are real constants. This equation can be seen as a simple version of Lichnerowicz

equation which arises from the Hamiltonian constraint equation for the Einstein-scalar field

system in general relativity (see [4, 6, 12] and the references therein). When p = 2, Ma [8–11]

studied the existence and stability of positive solutions to Lichnerowicz equation and the first

author of the paper proved some gradient estimates for this equation which can be referred

to [16–18]. However, if p > 1, the p-Laplacian Lichnerowicz equation is referred to as the

generalized scalar curvature type equation, it is an extension of the equation of prescribed

scalar curvature. The problem of positive solutions to p-Laplacian Lichnerowicz equation was

considered in [5] in case of compact manifold, and then Benalili and Maliki [2] extended the

corresponding results to the complete Riemannian manifolds.

In this paper, we will follow the methods in [7] to establish the local and global gradient

estimates for positive solutions to equation (1.1) on smooth metric measure space.

Theorem 1.1 Let (M, g, dµ) be a n-dimensional (n ≥ 2) noncompact smooth metric mea-

sure space and dµ = e−fdv with |∇f | ≤ C1. Suppose that u is a positive solution to (1.1) on the
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ball B(x0, R), and that on the ball sectional curvature KM ≥ −K1,Ric
m
f (M) ≥ −K2,K1,K2

are nonnegative constants. Then for any positive constant ε ≤ min
{

4
(p−m)2 ,

4
((p−2)m+p)2

}
, we

have

(p− 1)
|∇u|2
u2

≤ 4(m− 1)

4− ε(p−m)2
K2 +

C̃

R2
,

where

C̃ =
2(m− 1)

4− ε(p−m)2

{
10(2− p− α) +

20

ε(m− 1)

+ 10p(2− p) + 20(n+ p− 2)(1 +K1R) + 10 +
√
10C1R

}

and α = min
{
2, 1 + (p−1)2

m−1

}
.

From the above Theorem 1.1, let R → ∞, and ε→ 0, we can get the global gradient estimate

for the positive solutions to equation (1.1).

Theorem 1.2 Let (M, g, dµ) be a noncompact smooth metric measure space and dµ =

e−fdv with |∇f | ≤ C1. Suppose that u is a positive solution to (1.1) and that sectional curvature

KM ≥ −K1,Ric
m
f (M) ≥ −K2,K1,K2 are nonnegative constants. Then we have in the region

|∇u| > 0,

(p− 1)
|∇u|2
u2

≤ (m− 1)K2.

As an application of the Theorem 1.2, we can obtain the corresponding Liouville theorem

and Harnack inequality for the positive solutions to equation (1.1).

Theorem 1.3 Let (M, g, dµ) be a noncompact smooth metric measure space and dµ =

e−fdv with |∇f | ≤ C1. Suppose that u is a positive solution to (1.1) and that sectional curvature

KM ≥ −K1,Ric
m
f (M) ≥ 0. Then u ≡ constant.

Theorem 1.4 Under the same conditions as in the Theorem 1.2. For any x, y ∈ M, and

let γ(s) be a minimal geodesic γ(s) : [0, 1] → M,γ(0) = x, γ(1) = y. The following inequality

holds:

u(x) ≤ u(y)eρ(x,y)
[

(m−1)K2
(p−1)

] 1
2

,

where ρ = ρ(x, y)denotes the geodesic distance x and y.

2 Proof of Theorem 1.1

Assume that u is a positive solution to (1.1), let v = (p− 1) log u, then we can obtain

△p,fu+ cuσ = efdiv(e−f |∇e
v

p−1 |p−2∇e
v

p−1 ) + ce
vσ
p−1

= (p− 1)1−pev(|∇v|p +△p,fv) + ce
vσ
p−1

= 0.

That is to say,

△p,fv = −c(p− 1)p−1e(
σ

p−1−1)v − |∇v|p. (2.1)

The linearized operator of the weighted p-Laplacian at points {∇v > 0} is given by

Lf (ψ) = efdiv(e−f |∇v|p−2A(∇ψ)),
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where

Aij = gij + (p− 2)
∇v ⊗∇v
|∇v|2 .

We can get the following lemma through direct computation.

Lemma 2.1 Let w = |∇v|2,

Lf (w) = 2w
p−1
2 (|∇∇v|2 +Ricf (∇v,∇v)) − pw

p

2−1〈∇v,∇w〉

− 2c(p− 1)p−1
( σ

p− 1
− 1

)
e(

σ
p−1−1)vw +

(p
2
− 1

)
w

p

2−2|∇w|2.

Proof

Lf (w) = efdiv[e−f (w
p

2−1∇w + (p− 2)w
p

2−2〈∇v,∇w〉∇v)]

= −w p

2−1〈∇f,∇w〉 − (p− 2)w
p

2−2〈∇v,∇w〉〈∇v,∇f〉 +
(p
2
− 1

)
w

p

2−2|∇w|2

+ w
p
2−1△w +

(p
2
− 2

)
(p− 2)w

p
2−3|〈∇v,∇w〉|2 + (p− 2)w

p
2−2(〈∇∇v,∇w〉

+ 〈∇v,∇∇w〉)∇v + (p− 2)w
p

2−2〈∇v,∇w〉△v

= w
p

2−1△fw + (p− 2)w
p

2−2〈∇v,∇w〉△f v +
(p
2
− 1

)
w

p

2−2|∇w|2 + w
p

2−1△w

+
(p
2
− 2

)
(p− 2)w

p

2−3|〈∇v,∇w〉|2 + (p− 2)w
p

2−2(〈∇∇v,∇w〉 + 〈∇v,∇∇w〉)∇v

= w
p

2−1(2|∇∇v|2 + 2〈∇△fv,∇v〉+ 2Ricf (∇v,∇v))

+ (p− 2)w
p
2−2〈∇v,∇w〉△fv +

(p
2
− 1

)
w

p
2−2|∇w|2

+
(p
2
− 2

)
(p− 2)w

p

2−3|〈∇v,∇w〉|2

+ (p− 2)w
p

2−2(〈∇∇v,∇w〉 + 〈∇v,∇∇w〉)∇v,

where we used the weighted Bochner formula

△fw = 2|∇∇v|2 + 2〈∇△fv,∇v〉+ 2Ricf (∇v,∇v).

Note that in terms of w,

△p,fv = efdiv(e−fw
p−2
2 ∇v)

= w
p−2
2 △fv +

p− 2

2
〈∇w,∇v〉.

Therefore, (2.1) has the equivalent form

w
p−2
2 △fv +

p− 2

2
w

p−4
2 〈∇w,∇v〉 = −c(p− 1)p−1e(

σ
p−1−1)v − w

p

2 . (2.2)

Taking the gradient of both sides of (2.2) and computing its product with ∇v, we have that
(p
2
− 1

)
w

p

2−2〈∇v,∇w〉△fv +
(p
2
− 1

)(p
2
− 2

)
w

p

2−3|〈∇v,∇w〉|2

+
(p
2
− 1

)
w

p
2−2(〈∇∇v,∇w〉 + 〈∇v,∇∇w〉)∇v + p

2
w( p

2−1)〈∇v,∇w〉

+ c(p− 1)p−1
( σ

p− 1
− 1

)
e(

σ
p−1−1)vw

= 0.
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Combing the above identities, we prove the Lemma 2.1.

Now let η(x) = θ =
( r(x)

R

)
, where θ(t) is a cut-off function such that θ(t) ≡ 1 for 0 ≤ t ≤ 1

2

and θ(t) ≡ 0 for t ≥ 1. Furthermore, take the derivatives of θ to satisfy (θ′)2

θ
≤ 10 and

θ′′ ≥ −10θ ≥ −10. Here r(x) denotes the distance from some fixed x0. Let Q = ηw, which

vanishes outside B(x0, R). At the maximum point of Q, it is easy to see that

∇Q = (∇η)w + (∇w)η = 0 (2.3)

and

0 ≥ Lf (Q).

At the maximal point,

Lf (Q) = efdiv(e−fw
p

2−1(ηA(∇w) + wA(∇η)))
= ηefdiv(e−fw

p
2−1A(∇w)) + w

p
2−1〈∇η,A(∇w)〉 + efdiv(e−fw

p
2A(∇η))

= ηLf (w) −
(p
2
+ 1

)
w

p

2
〈A(∇η),∇η〉

η
+ w

p

2 efdiv(e−fA(∇η)).

Since we know,

efdiv(e−fA(∇η)) = efdiv
(
e−f

(
∇η + (p− 2)

〈∇v,∇η〉
|∇v|2 ∇v

))

= △fη + (p− 2)
〈∇v,∇η〉
|∇v|2 △fv

+ (p− 2)
(〈∇∇v,∇η〉

|∇v|2 +
〈∇v,∇∇η〉

|∇v|2
)
∇v

− (p− 2)
〈∇v,∇η〉〈∇|∇v|2,∇v〉

|∇v|4 .

From (2.2),

△fv = −
(p
2
− 1

)〈∇v,∇w〉
w

− chw
2−p

2 − w

=
(p
2
− 1

)〈∇v,∇η〉
η

− chw
2−p

2 − w,

where h = (p− 1)p−1e(
σ

p−1
−1)v.

Therefore, we get

efdiv(e−fA(∇η)) = △fη +
p

2
(p− 2)

|〈∇v,∇η〉|2
ηw

− c(p− 2)hw− p

2 〈∇v,∇η〉

−
(p
2
− 1

) |∇η|2
η

+ (p− 2)
ηijvivj

w
− (p− 2)〈∇v,∇η〉.

From Kotschwar and Ni [7], we note that

△η + (p− 2)
ηijvivj

w
≥ −20(n+ p− 2)

1 +KR

R2
− 10

R2
,
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since |∇f | ≤ C1, so we deduce |〈∇f,∇η〉| ≥ −C1|∇η| ≥ −
√
10C1

R
. At last, we get

efdiv(e−fA(∇η)) ≥ −20(n+ p− 2)
1 +KR

R2
− 10

R2
−

√
10C1

R
− c(p− 2)hw− p

2 〈∇v,∇η〉

−
(p
2
− 1

) |∇η|2
η

+ (p− 2)
ηijvivj

w
− (p− 2)〈∇v,∇η〉

+
p

2
(p− 2)

|〈∇v,∇η〉|2
ηw

.

Now we are at the position to estimate |∇∇v|2. We only need to estimate it over the point

where w > 0. Choose a local orthonormal frame {ei}ni=1 near any such a given point so that

∇v = |∇v|e1. Then w = v21 , w1 = 2vi1vi = 2v11v1, and for j ≥ 2, wj = 2vj1v1. Hence 2vj1 =
wj

w
1
2
.

From (2.2), we immediately deduce that

n∑

j=2

vjj = −chw1− p

2 −
(p
2
− 1

)w1v1

w
− v11 + f1v1 − w

= −chw1− p

2 − (p− 1)v11 + f1v1 − w.

It is easy to see that

n∑

i,j=1

v2ij ≥ v211 + 2

n∑

j=2

v2j1 +

n∑

j=2

v2jj

≥ v211 + 2

n∑

j=2

v2j1 +
1

n− 1
(chw1− p

2 + (p− 1)v11 + w − f1v1)
2

≥ v211 + 2

n∑

j=2

v2j1 +
1

m− 1
(chw1− p

2 + (p− 1)v11 + w)2 − (f1v1)
2

m− n

≥ α

n∑

j=1

v2j1 +
1

m− 1
(chw1− p

2 + w)2 +
2(p− 1)v11
m− 1

(chw1− p
2 + w) − (f1v1)

2

m− n
,

where α = min
{
2, 1 + (p−1)2

m−1

}
, and we applied the inequality (a − b)2 ≥ a2

1+δ
− b2

δ
with δ

= m−n
n−1 > 0. Substituting the identities,

2wv11 = 〈∇v,∇w〉,
n∑

j=1

v2j1 =
1

4

|∇w|2
w

,

we can obtain

|Hess v|2 ≥ α

4

|∇w|2
w

+
w2

m− 1
(chw− p

2 + 1)2 +
p− 1

m− 1
(1 + chw− p

2 )〈∇v,∇w〉 − (f1v1)
2

m− n
,

which yields

Lf (w) ≥ 2w
p
2−1

[α
4

|∇w|2
w

+
w2

m− 1
(1 + chw− p

2 )2 +
p− 1

m− 1
(1 + chw− p

2 )〈∇v,∇w〉

+Ricmf (∇v,∇v)
]
+
(p
2
− 1

)
w

p

2−2|∇w|2 − pw
p

2−1〈∇v,∇w〉 − 2ch
( σ

p− 1
− 1

)
w.
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Therefore, the following inequalities holds

w
p

2−1Lf (w)

≥ α

2
wp−3|∇w|2 + 2wp

m− 1
(1 + chw− p

2 )2 + 2
p− 1

m− 1
wp−2(1 + chw− p

2 )〈∇v,∇w〉

− 2wp−1K2 +
(p
2
− 1

)
wp−3|∇w|2 − pwp−2〈∇v,∇w〉 − 2ch

( σ

p− 1
− 1

)
w

p

2

≥ α

2
wp−1 |∇η|2

η2
+

2wp

m− 1
(1 + chw− p

2 )2 − 2
p− 1

m− 1
wp−1(1 + chw− p

2 )
〈∇v,∇η〉

η

− 2wp−1K2 +
(p
2
− 1

)
wp−1 |∇η|2

η
+ pwp−1 〈∇v,∇η〉

η
− 2ch

( σ

p− 1
− 1

)
w

p

2 .

Now combing the previous estimates, we have

0 ≥ w
p

2−1ηp−1Lf (Q)

≥ w
p

2−1ηpLf (w) − w
p

2−1ηp−1
(p
2
+ 1

)
w

p

2
〈A(∇η),∇η〉

η
+ wp−1ηp−1efdiv(e−fA(∇η))

≥ α

2
Qp−1 |∇η|2

η
+

2Qp

m− 1
(1 + chw− p

2 )2 − 2
p− 1

m− 1
Qp−1(1 + chw− p

2 )〈∇v,∇η〉

− 2ηpwp−1K2 +
(p
2
− 1

)
Qp−1 |∇η|2

η
+ pQp−1〈∇v,∇η〉 − 2ch

( σ

p− 1
− 1

)
ηpw

p

2

−
(p
2
+ 1

)
Qp−1 〈A(∇η),∇η〉

η
+Qp−1

[
− 20(n+ p− 2)

1 +K1R

R2
− 10

R2
−

√
10C1

R

− c(p− 2)hw− p

2 〈∇v,∇η〉 −
(p
2
− 1

) |∇η|2
η

+ (p− 2)
ηijuiuj

w
− (p− 2)〈∇v,∇η〉

]

+
p(p− 2)

2
〈∇v,∇η〉2Qp−2

≥ α+ p− 2

2
Qp−1 |∇η|2

η
−
[
2
p−m

m− 1
+
(
p− 2 +

2p− 2

m− 1

)
chw− p

2

]
Qp−1〈∇v,∇η〉

+
2Qp

m− 1
(1 + chw− p

2 )2 − 2ch
( σ

p− 1
− 1

)
ηpw

p

2 −
[
2K2 + 20(n+ p− 2)

1 +K1R

R2

+
10

R2
+

√
10C1

R

]
Qp−1 +

p(p− 2)

2
〈∇v,∇η〉2Qp−2.

Since

p(p− 2)

2
〈∇v,∇η〉2Qp−2 ≥ p(p− 2)

2

|∇η|2
η

Qp−1,

let b = 2 p−m
m−1 +

(
p− 2 + 2p−2

m−1

)
chw− p

2 , then we have

−b〈∇v,∇η〉Qp−1 ≥ −b2(m− 1)ε

8
Qp − 2

(m− 1)ε
Qp−1 |∇η|2

η
.
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Under the above inequalities, we have

0 ≥
( 2Qp

m− 1
(1 + chw− p

2 )2 − ε(m− 1)

8
b2
)
Qp

−
{10(2− p− α)

2R2
+

10p(2− p)

2R2
+

20

(m− 1)εR2

+ 2K2 + 20(n+ p− 2)
1 +K1R

R2
+

10

R2
+

√
10C1

R

}
Qp−1

=
{( 2

m− 1
− ε(p−m)2

2(m− 1)

)
+
( 4

m− 1
− ε(p−m)(p+ (p− 2)m)

2(m− 1)

)
chw− p

2

+
( 2

m− 1
− ε((p− 2)m+ p)2

8(m− 1)

)
(chw− p

2 )2
}
Qp

−
{10(2− p− α)

2R2
+

10p(2− p)

2R2
+

20

(m− 1)εR2

+ 2K2 + 20(n+ p− 2)
1 +K1R

R2
+

10

R2
+

√
10C1

R

}
Qp−1.

Since 1 < p ≤ 2,m > n ≥ 2,m ≥ p we know

4

m− 1
− ε(p−m)(p+ (p− 2)m)

2(m− 1)
≥ 0.

We can choose the constant ε ≤ min
{

4
(p−m)2 ,

4
((p−2)m+p)2

}
to make

2

m− 1
− ε(p−m)2

2(m− 1)
≥ 0

and
2

m− 1
− ε((p− 2)m+ p)2

8(m− 1)
≥ 0.

At last, we arrive at

0 ≥
( 2

m− 1
− ε(p−m)2

2(m− 1)

)
Qp

−
{10(2− p− α)

2R2
+

10p(2− p)

2R2
+

20

(m− 1)εR2

+ 2K2 + 20(n+ p− 2)
1 +K1R

R2
+

10

R2
+

√
10C1

R

}
Qp−1.

That is to say,

Q ≤ 4(m− 1)

4− ε(p−m)2
K2 +

C̃

R2
,

where

C̃ =
2(m− 1)

4− ε(p−m)2

{
10(2− p− α) +

20

ε(m− 1)

+ (10p(2− p)) + 20(n+ p− 2)(1 +K1R) + 10 +
√
10C1R

}
,

which implies

(p− 1)
|∇u|2
u2

≤ 4(m− 1)

4− ε(p−m)2
K2 +

C̃

R2
.
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We have proved the Theorem 1.1.

Proof of Theorem 1.4 Under the same conditions as in the Theorem 1.2. Let γ(s) be a

minimal geodesic joining x1 and x2 in M, γ(s) : [0, 1] →M,γ(0) = x, γ(1) = y.

ln
u(x)

u(y)
=

∫ 1

0

d ln(u(γ(s)))

ds
ds

=

∫ 1

0

γ′∇u
u(γ(s))

ds

≤
∫ 1

0

|γ′|∇u
u

ds

= ρ(x, y)

∫ 1

0

∇u
u

ds

= ρ(x, y)
[m− 1

p− 1
K2

] 1
2

,

which implies

u(x) ≤ u(y)eρ(x,y)[
(m−1)K2

(p−1) ]
1
2
.
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