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Abstract In this paper, the author establishes a reduction theorem for linear Schrédinger
equation with finite smooth and time-quasi-periodic potential subject to Dirichlet bound-
ary condition by means of KAM (Kolmogorov-Arnold-Moser) technique. Moreover, it is
proved that the corresponding Schrédinger operator possesses the property of pure point
spectra and zero Lyapunov exponent.
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1 Introduction

In recent years there have been many literatures to investigate the reducibility for the linear
Schrédinger equation of quasi-periodic potential, of the form

it = (Hy+eW(wt,z,—iV))u, z€R¥orz e T!=R*/(277Z)¢ (1.1)

or of the more general form, where Hy = —/A + V(z) or an abstract self-adjoint (unbounded)
operator, and the perturbation W is quasi-periodic in time ¢ and it may or may not depend on
x or/and V. From the reducibility it is proved immediately that the corresponding Schrédinger
operator is of the pure point spectrum property and zero Lyapunov exponent.

When 2 € R?, there are many interesting and important results. See [1-2, 4, 8, 14-15, 19]
and the references therein.

When z € T? with any integer d > 1, there are relatively less results. In [11], it is proved
that

i =1i((=A +eW(¢o + wt, 73w))u), =€ T (1.2)

is reduced to an autonomous equation for most values of the frequency vector w, where W is
analytic in (¢, ) and quasi-periodic in time ¢ with frequency vector w. The reduction is made
by means of T6plitz-Lipschitz property of operator and very hard KAM technique. As a special
case of (1.2) with d = 1, the reduction can be automatically derived from the earlier KAM
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theorem for nonlinear partial differential equations, while assuming that W is analytic in (¢, z).
See [13] and [16], for example.

As we know, the spectrum property depends heavily on the smoothness of the perturbation
for the discrete Schrodinger operator. For example, the Anderson localization and positivity
of the Lyapunov exponent for one frequency discrete quasi-period Schrodinger operator with
analytic potential occur in non-perturbative sense (The largeness of the potential does not
depend on the Diophantine condition. See [6] for the detail.). However, one can only get
perturbative results when the analytic property of the potential is weaken to Gevrey regularity
(see [12]). Comparing with the discrete Schrodinger operator, a natural question is whether
the spectral property of the continuous Schrédinger operator depends on the smoothness of the
potential.

Actually in his pioneer work, by reducibility Combescure [8] studied the quantum stability
problem for one-dimensional harmonic oscillator with a time-periodic perturbation. The tech-
niques in [8] were extended in [9-10], in order to deal with an abstract Schrodinger operator
—i0y + Ho + W (wt), where Hy, a self-adjoint operator acting in some Hilbert space, has a
simple discrete spectrum \,, < \,+1 obeying a gap condition of the type inf{n=*(\,+1 — \pn) :
n=1,2,---}>0foragiven « >0, 8 € R, and W = W(t) is periodic in ¢ and r times strongly
continuously differentiable as a bounded operator.

In this paper, we will extend the time-periodic W to time-quasi-periodic one. Let us consider
a linear Schrodinger equation with quasi-periodic coefficient

Lu 2 iuy — Ugy + Mu +eW (wt, 2)u = 0 (1.3)
subject to the Dirichlet boundary condition
u(t,0) = u(t,7) = 0. (1.4)

Given p > 0, let H5[0, 7] be the usual Sobolev space with the boundary condition (1.4), where
the space is understood as L3[0, 7] when p = 0.

Assumption A Assume that there is a hull function
W(0,z): T" x [0,7] - R, T"=R"/7nZ"
with
W(b,-) € CN(T", HE0, 7))

such that
W(w tvx) = W(@, x)le:wt )

where N > 180n. This implies that W is quasi-periodic in time t with frequency w € R™.
Assumption B Assume that W is an even function of x.

Assumption C Assume w = Twy, where wy is Diophantine:

[{k,wo)| > kez"\ {0} (1.5)

T
|k|n+1 ’

with 0 < v < 1 a constant, and 7 € [1,2] is a parameter.
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Theorem 1.1 Let Meas(-) denote the Lebesque measure for sets. Under Assumptions A,
B, C, for given 1 > ~ > 0, there exists € with 0 < ¢* = €*(n,v) < v, and exists a subset
IT C [1,2] with
MeasII > 1 — O(7)

such that for any 0 < € < e* and for any T € 11, there is a quasi-periodic coordinate transform
u= ®(0,z)v|,_,, with the map 6 — ®(0,-) being of class CN=#(T™, L(H5[0, nr], H}[0,7])) for
any p € (0,1) and satisfying

126, -) —idl L2z (0,7, 12 10,7)) < Cue

where id is the identity of H{[0, 7| — H{[0, 7], Cy is a constant depending on p, and L(HG[0, x],
HE[0, 7]) is the class of all bounded linear operators from Hy[0, 7] to itself, which changes (1.3)
subject to (1.4) into

i, — Vg + Mev =0, v(t,0) =v(t,7) =0, (1.6)
where M¢ is a real Fourier multiplier:
Me sin (kz) = (M + &) sin(kz), k€N

with constants & = &(1,¢) € R and & = O(g). Moreover, the Schrodinger operator L is of
pure point spectrum property and of zero Lyapunov exponent.

Remark 1.1 Actually, (1.3) can be written as a Hamiltonian system. Thus, the coordinate
transform v = ®(wt, z)v can be chosen to be symplectic. Following [3], the coordinate transform
u = ®(wt, z)v can be chosen to be unitary.

Remark 1.2 We will combine the Jackson-Moser-Zehnder approximation technique(see [7]
for example) and KAM technique (see [13, 16]), which is also applied to the case in [9-10].
Thus our result extends theirs. We also mention [20] where the reducibility is dealt with for a
finite smooth and unbounded perturbation W.

2 Preliminaries

2.1 Analytical approximation lemma

In this subsection, we cite an approximation lemma which can be obtained from [17-18].

We start by recalling some definitions and setting some notations. Assume that X is a
Banach space with the norm || - ||x. First recall that C*(R™; X) for 0 < u < 1 denotes the
space of bounded Hélder continuous functions f : R” — X with the form

[flonx = sup  MDZTWIX gy ).
0<|z—y|<1 |5L‘ - y|“ rER"
If w = 0, then || f]lcu,x denotes the sup-norm. For ¢ = k + p with & € Nand 0 < p < 1,
we denote by C*(R"; X) the space of functions f : R® — X with Holder continuous partial
derivatives, ie., 0¢f € CH(R"; X,) for all multi-indices « = (a1, - ,,) € N* with the
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assumption that |a| := |a1]|+ -+ + |an| < k and X, is the Banach space of bounded operators
T : I1*(R") — X with the norm

1T xo = sup{[|T (u1, ug, - wja))llx : fJuill =1, 1 <i < af}.

We define the norm

[fllce = sup [0 fllon,x.-
| <€

Lemma 2.1 [Jackson-Moser-Zehnder] Let f € C*(R"; X) for some £ > 0 with finite C*
norm over T™. Let ¢ be a radical-symmetric, C>° function, having as support the closure of the

unit ball centered at the origin, where ¢ is completely flat and takes value 1, and let K = (E be
its Fourier transform. For all o > 0, define

fulo) =Ko = o [ K(T) fg)a.

on o

Then there exists a constant C > 1 depending only on { and n such that the following holds:
For any o > 0, the function f,(x) is a real-analytic function from C" to X such that if Al
denotes the n-dimensional complex strip of width o,

AL ={zeC"||Imz;| <o, 1 <j<n},

then Yoo € N™ such that || < £ one has

sup
TEAN

oo+
on@- Y D G| <olflee' L @)
1Bl<t—|al ' °

and for all 0 < s < o,

sup 10° fo (@) = 0 fo(@) | x.. < Ol fllcea’1o (2.2)

The function f, preserves periodicity (i.e., if f is T-periodic in any of its variable x;, so
is fo). Finally, if f depends on some parameter §& € II C R™ and if the Lipschitz-norm of f
and its x-derivatives with respect to € € 11 are uniformly bounded by ||f||8e, then all the above
estimates hold with || - || replaced by || - ||~

For the following result, the reader can refer to [20] for detail. For brevity, we will replace
| - llx by || - [|. Fix a sequence of fast decreasing numbers s, | 0, v > 0 and so < %. For a
X-valued function P(¢), construct a sequence of real analytic functions P(*)(¢) such that the
following conclusions holds:

(1) P()(¢) is real analytic on the complex strip T? = {z € C"/7Z" : [Imz| < s, } of the
width s, around T".

(2) The sequence of functions P(“)(¢) satisfies the bounds:

sup [|P®)(6) — P(9)]] < || Pllcest, (23)
¢€Tn
S [P (g) — PO < O Pl orst (24)
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where C' denotes the constant (varying in different places) depending only on n and /.
(3) The first approximate PO is “small” with the perturbation P. Precisely speaking, for
arbitrary ¢ € T? |, we have

S0

1PO@)) < [P0) - 3 TLED gy + | 3 LLED i1y g0

la|<t la|<e

<C(IPlessh+ Y IPlems)

0<m<e

14
< OlIPllge Y st

m=0

< ClIPllce Y 5"

m=0

< C|[Plce, (2.5)

where constant C' is independent of sy, and the last inequality holds due to the hypothesis that
S0 < %
(4) From (2.3) we have

“+o0
P(¢) = PO(¢) + > (P (¢) — PW)(g)), ¢ €T (2.6)
v=0

2.2 Lemmas

In this subsection, we present some lemmas that will be needed to develop this paper.

Lemma 2.2 (see [5]) For0< 6 <1, v>1, one has

- v () dt+e)”
N

kezn

Lemma 2.3 (see [16]) If A = (A;;) is a bounded linear operator on (2, then also B = (B;;)

with
_ Ayl

Tl
and By; = 0 is a bounded linear operator on (2, and | B < (\%)HAH, where || - || is the (2 — (2
operator norm.
3 Main Results
Consider the differential equation:
Lu=1up — Ugy + Mu+ eW (wt,x)u =0 (3.1)

subject to the boundary condition

u(t,0) = u(t,7) = 0. (3.2)



424 J. Lt

It is well-known that the Sturm-Liouville problem
—y" + My =\y (3.3)

with the boundary condition

has the eigenvalues and eigenfunctions, respectively,

e =k +M, k=12,

ox(x) =sinkx, k=1,2,---. (3.6)
Write
z) =Y un(t)pr(x). (3.7)
k=1
Note that W is an even function of x. Write
W (wt, x) ka (wt)pr(x (3.8)
where
vr(r) = cos(2kx), k=1,2,---
For any u,v € L?[0, 7], define (u, v) = [ u x)dx. Consider
W (wt, 2)u Z Z CikVju Ok ()
k=1 l=1 j=0
where

Citk = / wjprordr = / cos(2jz) - sin(lx) - sin(kz) dz
0 0

0, k # +1 + 25,
™ N s

m
—— k=—-1+25>1.

1 J =

Then (3.1) can be expressed as

oo

o0 o0
Z (i Uk + A\pug + € Z Z lekvjul)¢k =0,
k=1 =1 j=0
which implies that

L+ Ak +€ > Y crvjur = 0. (3.10)
1=1 j=0
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This is a Hamiltonian system

OH
Tug = —aT, k>1,
Uk (3.11)
.. OH
k=5 — =
iu , k>1,
8uk

with Hamiltonian

oo o0 o0

Z)\kukuk +6ZZZCJZkUJ ulﬂk. (3.12)

k=1 1=1 j=0

For two sequences z = (z; € C, j=1,2,---), y=(y; € C, j =1,2,---), define

x,y) = ijyj.
j=1
Then we can write
H = (Au,u) + e(R(0)u, ), (3.13)

where

A=diag(A\;j:j=1,2,---), 6=uwt,
3.14
R(0) = (Rua(0) - k,1=1,2,--), R0 chlkvg (3:14)

Forpe N={0,1,2,---}, hy, denotes the Hilbert space of all complex sequences z = (21, 22, - )
with

l|2]|2 = Zk2p|zk|2 < 0. (3.15)
Let
(. 2)p =Y k*PyrZx, Vy,z € hy.

For p > 0, let HP[0, 7| be a Sobolev space. Define HE[0, 7] = {u € HP[0, 7] : w(0) = u(r) = 0}.
Recall that

W(0,z) € CP([0,7],R) for fixed § € T", W(f,z) € CN(T",R) for fixed = € [0, 7).

Note that the Fourier transformation (3.7) is isometric from u € H5[0, 7] to (uy : k =1,2,--+) €
hp. By (3.14), we have

sup H Z 0y R(0 <C, (3.16)
9T | <N hp—hp
where || - ||4,—sn, is the operator norm from hy, to hy, and a = (a1, a2, -+, an), |a| = a1 +az +

4, a; (>0)(j=1,2,---,n) are integers.
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Now we apply analytical approximation lemma to the perturbation R(¢). Take a sequence
of real numbers {s, > 0}52, with s, > s,+1 going fast to zero. Take P(f) = R(6) in (2.6).
Then by (2.6) we can write

R(0) = Ro(0) + i Ry(6), (3.17)
=1

where Ro(0) is analytic in T} with

sup || Ro(0)ln,—n, < C, (3.18)
6T

n
S0

and R;(0) (I > 1) is analytic in T}, with

sup || Ry(0)[|n,—-n, < Csi* . (3.19)
0T,

3.1 Iterative parameters of domains

Let

ecy=¢, &, = 6(%)U, v =20,1,2,---, which measures the size of perturbation at v-th step.
1

es,=¢), v=0,1,2,---, which measures the strip-width of the analytic domain T ,

T, ={0 € C"/(aZ)" : [ImO| < s, }.
e C(v) is a constant which may be varying in different places, and it is of the form
C(v) = C12¢2",

where C1, Cy are constants.
e K, =100s;'(2)"|loge|.
e =5,0<y< 1
e A family of subsets II, C [1,2] with [1,2] DIl D --- DI, D -+, and

MeasIl, > MeasIl, 1 — Cv,_1.

e For an operator-value (or a vector value) function B(#,7), whose domain is (6,7) €
’[F’;V x 11, set

IBllry, xm, = sup  [[B(6,7)lln,—n,,
(6,7)€T?, xII,
where || - ||, -, is the operator norm, and set
IBIE v, = sup 10nB6, Dllny oty

(G,T)G'Jl'gy xIT,

3.2 Iterative lemma

In the following, for a function f(w), denote by 9, the derivative of f(w) with respect to w
in Whitney’s sense.
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Lemma 3.1 Let Ry = Ry, Ri0 = Ry, where Ry, Ry are defined by (3.17). Assume that
we have a family of Hamiltonian functions H, :

oo

= Aum + 3 eRiu@), v =01, m, (3.20)

j=1 I>v

where Ry, = Ry, (0,7) is an operator-valued function defined on the domain T7 x1II,, and

0 = wt. (3.21)
(A1),

v—1 )

A =x=2 M A =n+ Y e, vt (3.22)
i=0
and ug) = uy)( ) II; = R with
11, = sup W <Cl), 0<i<v-1, (3.23)
Tell

W1, = sup 04 (r)| < CG), 0<i<v-1. (3.24)

Tell;

(A2), Ry, = Ri,(0,7) is defined in T x I, with | > v, and is analytic in 0 for fived
Tell,, and

[R1wllry xm1, < C(v), (3.25)
1RLu I, < CW). (3.26)
Then there exists a compact set 11,41 C II,,, with

MeasIl,,+1 > MeasIl,, — Cvy, (3.27)

and ezists a symplectic coordinate transfrom

v, T? i1 X J T?m X 1L, (3.28)
1
||\I/m — id”hp—)hp <en, (0,7)c¢€ T? g1 X | P (3.29)

such that the Hamiltonian function H,, is changed into
Hyi  2H,o00,

Z Ay Z (R i1t T0), (3.30)
j=1 I>m+1

which is defined on the domain Ty x1Ly41, and /\gmﬂ)(]‘ =1,2,--+) satisfy the assumptions

(A1)pt1 and Ryt satisfy the assumptions (A2),,41.
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3.3 Derivation of homological equations

Now we want to find a symplectic transformation ¥, such that the terms Ry, (with I =v)
disappear. Let F' be a linear Hamiltonian of the form

F = (F(0,7)u,7), (3.31)
where 0 = wt, (F(0,7))T = F(6, 7). Moreover, let

U=y, =X!

EmF‘tzl’

(3.32)

where Xstm r is the flow is the Hamiltonian. Vector field X., r is the Hamiltonian ¢, F' with

o0
the symplectic structure idu Adu =1 ) du; A du;. Let

j=1
Hypir = Hp 0 Uy (3.33)
By (3.20), we write
Hpy = Ny + Ry (3.34)
with
Ny, = ixg’”)uﬂj, (3.35)
j=1
Ry =Y &Rim=Y_ e(Rim(0)u,), (3.36)
l=m l=m

where (R, (0))T = Ry m(0) when @ € T". Since the Hamiltonian H,, = H,,(wt,u, %) depends
on time ¢, we introduce a fictitious action I = constant, and let # = wt be angle variable. Then

the non-autonomous H,, (wt, u,w) can be written as
wl + Hp,(0,u,7)

with symplectic structure dI A df +idu A du. By combining (3.31)—(3.36) and Taylor formula,

we have
1
Hypn=HypoX, p

1
:Nm—l—am{Nm,F}—i—a?n/ (1= {{Nm,F},F}o X[ pdr +epw-0pF
0

[e%e) 1
+ €mRomm + ( > alle) o X! p+e? / {Rym, F} o XI_pdr, (3.37)
l=m+1 0

where {-,-} is the Poisson bracket with respect to idu A du, that is

_ _ (OH OF O0H OF
(G, Fm) =G0 55~ 52 0)
For any
F0)=">" Fk)e ™0 geTm

keZm
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define a truncation operator 'k, as follows:

Tk, f(0) =Tk, [)(0) = F(k)el R:0)
k| <K
(1-Tw,)f(0) = ((1-Tx, )00 2 > flk
[k|> K

where K, is defined in Subsection 3.1. Then
f(0) =Tk, f(0) + (1 -Tk,,)f(0).
Let
w-0pF + {Nm, F} + Tk, Ry = ([Rmm|u, @), (3.38)
where
[Rm] = diag(Ruumy;(0) 1 j =1,2,--+), (3.39)

and Rymij(0) is the matrix element of Ry, ., (0) and ﬁmmij(k) is the k-Fourier coefficient of
Rmmij (9) Then

Hm+l = Nm+1 + Cm+1Rm+17 (340)
where
Nm+1 = Nm + 5m<[Rmm u, u Z)\(m+l)ujuj7 (341)
Jj=1

A = X 4 R (0) = Aj + Zalu 1™ = Ry (0). (3.42)
C(77'L+1}%7n+1 - Em(l - FK )Rmm (343)
+63n/ (L =7){{Nm, F}, F} o X pdr (3.44)

0

1
+s’fn/ {Rpm, F}o XI pdr (3.45)

0
+ ( Z 61R1m) o X! p. (3.46)

l=m+1

The equation (3.38) is called homological equation. Developing the Poisson bracket {N,,, F'}
and comparing the coefficients of u;T; (4,5 =1,2,---), we get

w-0pF(0,7) +1(F(0,7)A™ — A F(0,7)) =Tk, Rin.m (0) — [Rrnm), (3.47)
where
AU = diag(A™ 1 j =1,2,--), (3.48)

and we assume I'g, F'(0,7) = F(0, 7). Let F;;(6) be the matrix elements of F(6, 7). Then (3.47)
can be rewritten as

w-09F(0) — i\ = XY (0) = T,y Rynig (0), i # (3.49)
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and
w - 9 F5i(0) = T,y Rinmii (0) — Rinmii (0), (3.50)
where 4,5 =1,2,--- .
3.4 Solutions of the homological equations
Lemma 3.2 There exists a compact subset 11,41 C I, with
Meas(IL,,+1) > MeasIl,,, — Cvyp, (3.51)

such that for any T € I, 41 (Recall w = Twy), the equation (3.47) has a unique solution F (0, ),
which is defined on the domain T? X I 41, with

Sm41
_2(2n+3)
IFO, D)y w110 < Cmt Dem ¥, (3.52)
r _ 6(2n+3)
1O DT | sty < Clmt Dem ¥ (3.53)

Proof By passing to Fourier coefficients, (3.49) can be rewritten as
(= (kyw) + A =A™ Eyj () = i Ry (), (3.54)
where i,j =1,2,--- ,k € Z" with |k| < K,,. Recall w = Twq. Let

Ap = [k["*2, ke Z™\ {0},
AkZI, k=0eczZ™

And let

Q) & {r € My || = (hywodr + A™ = A >|<%}, (3.55)

where i,j =1,2,---, k € Z™ with |k| < K,,,, and k # 0 when i = j. Let
g1 =1L\ U U U Q;(.Z)-
k| <Em i=1j=1

Then for any 7 € I1,,,+1, we have

m m i —J 1 m
| = () + A =2 >}2W. (3.56)

Recall that R, () is analytic in the domain T for any 7 € IL,,,
|Rynmij (k)| < C(m)e Ik, (3.57)
It follows
Rmmij (k) < Ak |Rmmz] (k)|
—(kyw) + A = AT (i =+ 1)
O(m)[ k| el
Ym(li = jl+1)

|Fij (k)] =

(3.58)
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Therefore, by (3.58), we have

sup |F3;(0,7)]
QGT:‘, XTI 41
m

< Q("”f) - Z |k|n+36—(sm—s;n)\k\
i =31+ 1) o
n+3 n+3 2 2n+3 C(m)
< n . )
< ( ) (1+e) (Sm_S;n) i =31+ 1) (by Lemma 2.2)
1 C-C(m)

< .
T (smo—sp)P T (i — g1+ 1)
_20en+3) .
S Em N . M7
(|t = jl+1)
where s, = s, — 22— Tt is easy to verify that Lemma 2.3 holds for the weight norm || - [|,,.
Then by Lemma 2.3, we have
_ 2(2n43) _ 2(2n43)

IFO,7)llms, <ty < C - Clmpytem ¥ < Clm+ Dem N (3.59)

It follows from s/, > s,,+1 that

2(2n+3)
- N

IE@,T)llrr | xtpss S NFO, 717, w1100 < C(mA4 Dem

Sm41
Applying 0, to both sides of (3.54), we have

(—(k,w) + A = A0, B (k) = 10 Ry (k) + (+), (3.60)
where

(#) = = (=, wo) + 0 (™ = ™)) Fy (k). (3.61)

Recalling |k < K, = 100s;,! (2)"|loge|, using (3.23)—(3.24) with v = m, and using (3.59), we
have, for any 7 € 1,41,

_ 2(2n+43)

()| < C-Clm+ D) EKpyem ¥ e mlkl (3.62)
According to (3.26),
| Oy Ronimij (k) |< C(m + 1)e=*m Ik (3.63)
By (3.56), (3.60) and (3.62)~(3.63), we have

~ Ay
|- F (8 | Ym(li = jl+1)

Note that s, > s/, > spy41. Again using Lemmas 2.2-2.3, we have

2(2n+3)
-2

-C-Cm+ DKyt em el for i £ ;. (3.64)

IFODIE, s = [0:F O, it
_ 4(2n+3) _6(2n+3)
<C* Cm+DEKpvtem ~ <Cm+1)e, ¥ . (3.65)

The proof of the measure estimate (3.51) will be postponed to Subsection 3.7. This completes
the proof of Lemma 3.2.
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3.5 Coordinate transformation ¥ by e,, F
Recall U = ¥, = X;fmp|t:17 where X! . is the flow of the Hamiltonian ,,F, X, r is the
vector field with symplectic idu A du. So
. or .
—iu =¢epm—,
ou

More exactly,

0=w
Let z = <E) ,
u
([ —iF(0,7) 0 _
Bpn(0) = ( A 1F(977)> . 0=t (3.66)
Then
¢ .
CO) . B o0)e f—w (3.67)
dt
Let 2(0) = zo € hp x hy, 0(0) =09 € T, | be initial value. Then
¢
2(t) = 20 + /0 EmBm (0o + ws)z(s)ds, (3.68)
0(t) = 6o + wt.
By Lemmas 3.2,
_2(2n+3)
[Bm(O)lly | xir < Clm+1Dem ¥, (3.69)
_ 6(2n+3)
<Cm+1en ~ . (3.70)

XIpgp1 =

1B (0) 1
m+1

It follows from (3.68) that
¢ ¢
z(t) —z0 = / EmBm (0o + ws)zods + / EmBm (0o + ws)(z(s) — zo)ds.
0 0

Moreover, for t € [0,1], [|zo|l, < 1,
_ 2(2n+3) t
12() = 20llp < emC(m+1em ¥ + / em|Bm (0o + ws)||l|2(s) — zollpds, (3.71)
0
where | - || is the operator norm from hy, x hy, — hy, X hy.
By Gronwall’s inequality,
_ 2(2n+3) t 1
N exp (/ Em|| Bm (6o —l—ws)Hds) <eh (3.72)
0
(3.73)

12(t) = 20llp < C(m + Dem

Thus,
U, : ’H‘Zmﬂ X g1 — Ty X Ty,
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and
1
19 —id|[n,—n, < e (3.74)

Since (3.67) is linear, ¥,, is a linear coordinate transform. According to (3.68), construct Picard
sequence:

Zo(t) = 20,
t
zj+1(t) = 20 + / emB(6p +ws)z;(s)ds, j=0,1,2,---
0
By (3.74), this sequence with ¢t = 1 goes to
U, (20) = 2(1) = (id + P (60)) 20, (3.75)

where id is the identity of h, X h, — hy X hy, and P, (6p) is an operator of hy, X h, — hy, X hy
for any fixed 0y € T?

'i1r T € I, and is analytic in 0p € Ty | with

+1

1
[P (00)lITr  xT1yy < Ene (3.76)

Sm41

Note that (3.67) is a Hamiltonian system. So P,,(6p) is a symplectic linear operator from hy, x h,,
to hp X hy.

3.6 Estimates of remainders
The aim of this section is devoted to estimate the remainders:
Riy1 = (3.43) 4+ -+ + (3.46).

e Estimate of (3.43).
By (3.36), let

~ - 0 = Bom.m (0)
o = B0 1R (9) 0 7
5 ftm,m
then
e (2).(2)
So

(1 =T, )R 2 <(1 —Tx. )Ry (

gl
~——
/N

gl
S~

~~—

By the definition of truncation operator I'g, ,

1=Tr, ) Bmm = > Rpm(k)e ™0 0Tl | rell,.
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Since Ropm = ﬁmm(ﬁ) is analytic in 6 € T”

Sm?

sup (1= Tk,)) R 17, o1,
(0,7)ET XTIt
e A
[k|>Km
< ||Rmm|"2ﬂ‘g X, Z e_Q(Sm—Sm+1)\k\
[k|> K
C%(m e_ZKm(Sm—Sm+1)
) - (by (3.25))
< C*(m)en.
That is
||(1 - I‘Km)Rmm T?m+1 XTpmt1 < gmc(m + 1)
Thus

||6m(1 - FKm)RMmH'JTZer

e Estimate of (3.45).
Let

Then we can write

Then

€2 { Ry, F} = 462 (Rpum (0)T S (0) 2, 2).
Noting T? = x IL, D> TZ? |
[ R (0)l|T2
IIRmm(9>H%gmenm+l < C(m).

Let S,,(0) = J5,,(0). Then by Lemma 3.2, we have

rad _2(2n+3)
[1Sm(0) (SIS t A <C(m+lem, ~
~ L _ 6(2n+3)
1Sm@NTe  xm, ., < Clm+1Dem ¥
Sm+1 +
and
H—émmjsm T?m+1 Xyt < H—émmHTQerl Xy g1 H§m||T?m+1 X T t1 < C(m)C(m + 1)67_”

XM < E;C(m +1) <epp1C(im+1).

X I41, by (3.25)—(3.26) with [ = m,v =m,

XMy < ||Emm(9)||11'?m><nm < C(m),

(3.77)

(3.78)

(3.79)
(3.80)

(3.81)

(3.82)

2(2n+3)
-
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Set

Note that the vector field is linear. So, by Taylor formula, one has
(3.45) = &2 (R",(0)u, u),

where
oo

Ry (0)=>"

=1

2j+15£n_1 ~ ~ -~
T [ .. [Rmm75’m]7 . ’Sm] Sm'

(j—1)-fold

By (3.79) and (3.81),

. . _20nt3)
~ Cm)C(m+1)edt (em ¥
EACIERT S S i
=1 J:
_ 2(2n+43)
N

< Cm)C(m + 1)em

By (3.80) and (3.82),
~ - _ 6(2n+3)
1B O, e,y < COMCEm+Dem
Thus

9_ 2(2n+3)

2, Rillrs ity < CmM)C(m+Dem ¥ < Clm+ 1ems

Sm+1

and

o_ 6(2n+3)

<Cm)Cm+1)em ¥ <Clm+1emy.

D L
||E?nR:<n||Tgm 1><Hm+1 —

+

e Estimate of (3.44).
By (3.38),

{Np, F} = ([Rmm]u, @) — Tk, Ronm —w - 0gF £ RY, .
Thus
1
(3.44) = s’fn/ (1 —7){R}p, F} o XI pdr.
0

Note that R}, is a quadratic polynomial in » and @w. So we write

u

Rr, = (Rm(0,7)z, 2), z= (E)

By (3.23)—(3.24) with [ = v = m, and using (3.81)—(3.82), we have

_2(2n+3)
1 XH7n+1 S C(m)f‘:m

6(2n+3)
-5

< C(m)em ,

+1 XH7n+1 -

[Rom |72

- - Rl

435

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)
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where || - || is the operator norm in h, X h, — hy, X hy,. Recall F' = (S,,,(0)z, z). Set
[Runs Sim] = RonSm + (R Sim) ™
Using Taylor formula to (3.86), we get
(3.44) = {{Rmm,F},F} e TR FY e P4
T j-fold
— <(Z 2j+1aj Rm,S ], gm]gm)z,z>
=2 (j—1)-fold

= (R™(0,7)z,2).

By (3.81) and (3.88)—(3.89), we have

oo

271 ~
sm+1XHm+1SZ 1 [Rm (0, )H'Jl‘gmxn ( m

¢m) (emC(m+1)e w)j

IR*(0,7)

‘]

4
m+ el = C(m + 1)epmi1.

IA
Q

Similarly
HR**H%@ XMpy1 Cm+1)emq1.
Sm+1

e Estimate of (3.46).

oo

(3.46) = Y a(RimoX! p).
l=m+1

Write
le = <le (9)Z7 Z>

Then, by Taylor formula,
le o Xglm le + Z le]Z Z

where
Rim; =2 [ [Rim, Sl 1Sm €l
(j—1)-fold

By (3.25), (3.26),

Combining the last two inequalities with (3.81)—(3.82), one has

_202n+3) .
J

< C%*(m)(emem  ~

leHm S C(l)7 Hélmnﬂ%”;lxnm S C(l)

J
Tbm 1 ><Hm+15m)

SLXHm+1 < Hle||T?l><Hm+1 : (HS |‘T"+1><Hm+145m)j

(3.89)

(3.90)

(3.91)

(3.92)



Reducibility for Schrodinger Operator with Finite Smooth Potential 437

and
(| Rim; %glxl'[erl < ||le|‘%gl><1‘[m+1(||sm T2 X1 4Em)’
+ ||leH'J1‘§‘l><Hm+1(||Sm %glxnmﬂfm)j
_6(2n+3)
< C?*(m)(emem
Thus, let
_ © 1 -
Rl,m+l = le + Z ﬁleja
j=1
then
(3.46) = > e(Rimi122) (3.93)
l=m+1
and
[Rtmr1lls 11,5 < C%(m) < C(m+1),
_ - ) (3.94)
[Bm1 Ty <110, < C7(m) < C(m+1)
As a whole, the remainder R,, 1 can be written as
Con1Rmi1= Y a(Ri,0um), v=m+l,
l=m+1

where Ry, (0) satisfies (3.25) and (3.26) with v = m+1, I > m+1. This shows that Assumption
(A2), with v = m + 1 holds.
By (3.42),
N;m) = R77,,55(0).
In (3.25)—(3.26), we have
57 1t < | Ry (6, 7)] < C(m),

WS NE <107 Ry (0,7)] < C(m).
This shows that Assumption (Al), with v =m + 1 holds.

3.7 Estimate of measure
Now let us return to (3.55)
m m m i — ] 1 m
Q) & {r T || = (hwohr + 2™ — x| < LA E Domy, (3.95)
Ay,
Case 1 Ifi=j, one has k # 0.

In this case,

(m) _ {T € My | [(k, wo)T| < 74—";} (3.96)
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It follows

TYm Y
k, < < .
[(k, wo)| [k[n37 S om|jn+s

Recall |{k,wo)| > |k|++1 Then QI(JZ) = 0. So,

Meas Q,m = (3.97)

Case 2 i # j.
If Q,m = (), then Meas Q,m = 0. So we assume Q,(;Z) # 0 in the sequel. Then 37 € II,,
such that

N N i1
|~ (ko) + A0 —Alm) < L j' Y. (3.98)
k
It follows from (3.22)—(3.23) that
m m) . . 2. )
A A >=22—J2+O(Eo)2§|z2—f|- (3.99)
When [i| > C|k| > |[(k,w)]| or |j| > C|k| > |(k,w)]|, by (3.99), one has
m t— 7+ 1)vm
[ = )+ A =X 2 Zick i =51 = k)] > 3li+ 1) — g1 > LI
which implies Q,(g;) = (. Then
Meas ka = (3.100)
Now assume
il <Clkl, |j] < Clkl.
Note that
N\
(e w) + N — Ay = —(k,wo)T + A — Aj = T( — (kywo) + == )
and
d Ai = Aj i — 57 Lo
—_ [— = > - - . .
| = (= thwo) + 2=) | = 5 1 0e) = gli2 - (3.101)
It follows that
.2 »2
(m) 16 [i* — 5]+ 1
Meas @y < Fp |( n vm). (3.102)
Then
Cv & Clkl gt
Meas U U ka < Z m Z o < Z < Cypm. (3.103)
k| <K i<Ck] K[ <Ko G5 T g,
J<Clk|
Combining (3.97), (3.100) and (3.103), we have
Meas U U U Qku) < CYm- (3.104)

k| <K, i=1j=1
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Let
o0
— (m)
Hm+1 - Hm\ U U Qkij .
IkISKW'L i,j=1

Then we have proved the following Lemma 3.3.

Lemma 3.3
MeasIl,,+1 > MeasIl,, — Cvyy,.

4 Proof of Theorem 1.1
Let

M = ﬁ Hma
m=1

and
U= lim PgoWVio0---0V,,.

m— 00

By (3.28)—(3.29), one has

oo : T" X Il — T x I,
1
Voo —id|ln,—sn, < €3, €0=-¢,

and by (3.30),

Hy=HoVo =Y XN°Z;Z;,
j=1
where
A® = lim A

m—oo  J

By (3.22)(3.23), the limit A\3° does exist and

A=+ Mg, g] < Ce
Putting v = > Zx(¢) sin(kz) into (1.6), we find that
k=1
satisfies the Hamiltonian equations

. OHso = OHso
12y = ———, 1Zp= , k=1,2,---
"0z, " 0z,

Let -
Fihy—HE0, 7], Zw— FZ=> Zsin(kz)
k=1
be the inverse discrete Fourier transform, which defines an isometry between the two spaces.
Let ® = F o U, o F~!. This completes the proof of Theorem 1.1.
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