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Abstract The author obtains that the asymptotic relations

P

(

n
∑

i=1

θiXi > x
)

∼ P

(

max
1≤m≤n

m
∑

i=1

θiXi > x
)

∼ P

(

max
1≤i≤n

θiXi > x
)

∼

n
∑

i=1

P(θiXi > x)

hold as x → ∞, where the random weights θ1, · · · , θn are bounded away both from 0 and
from ∞ with no dependency assumptions, independent of the primary random variables
X1, · · · , Xn which have a certain kind of dependence structure and follow non-identically
subexponential distributions. In particular, the asymptotic relations remain true when
X1, · · · , Xn jointly follow a pairwise Sarmanov distribution.
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1 Introduction

Throughout, all limit relationships are for x→ ∞ unless stated otherwise. For two positive

functions a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)
b(x) = 1; we write a(x) = O(b(x)) if

lim sup a(x)
b(x) < ∞; we write a(x) ≍ b(x) if both a(x) = O(b(x)) and b(x) = O(a(x)) hold; and

we write a(x) = o(b(x)) if lim a(x)
b(x) = 0. For any distribution F , we denote its (right) tail by

F (x) = 1− F (x) = F (x,∞), x ∈ (−∞,∞).

Throughout, let n ≥ 1 be a fixed integer and let X1, · · · , Xn be n real-valued random vari-

ables (r.v.s), called primary r.v.s, and let θ1 · · · , θn be n positive r.v.s, called random weights,

independent of the primary r.v.s.

In this note, we will continue to investigate the tail behavior of the randomly weighted sums

Sθ
n and the maximum Mθ

n, which are defined by

Sθ
n =

n
∑

i=1

θiXi, Mθ
n = max

1≤m≤n
Sθ
m. (1.1)

The randomly weighted sums and their maximum in (1.1) play important roles in many

applied probability fields such as financial insurance, risk theory, queueing theory and so on. A

well-known example in risk theory interprets the weights as discount factors and the primary
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r.v.s as the net losses of an insurance company to analyze the ruin probability (see [11]). In

economics, the primary r.v.s can be interpreted as net incomes of an investment and the weights

as random return rates (see [12]). Hence, the randomly weighted sums and their maximum have

been well studied in the literature. One of the famous results is described below, which was

obtained by [11].

Theorem 1.1 Let X1, · · · , Xn be independent r.v.s with a common subexponential distri-

bution F (see Definition 2.1 below) and let the random weights θ1, · · · , θn be bounded away both

from 0 and from ∞, that is, there are two positive constants a and b such that

P(a ≤ θi ≤ b) = 1 for i = 1, 2, · · · , n. (1.2)

Then it holds that

P(Sθ
n > x) ∼ P(Mθ

n > x) ∼ P

(

max
1≤i≤n

θiXi > x
)

∼

n
∑

i=1

P(θiXi > x). (1.3)

However, the assumption of independence among the primary r.v.s is far unrealistic, and

hence, many scholars have proved that the relations (1.3) still hold in which the primary r.v.s

have a kind of dependence structure and belong to some subclasses of the subexponential

distribution class, see [2, 6, 10, 13, 16], etc. It is worth noting that the above results usually

need an additional condition that the primary r.v.s have negligible left tail with respect to the

right tail, that is,

F (−x) = o(F (x)). (1.4)

Recently, Cheng and Cheng [3] proved that the asymptotic relations (1.3) still hold when the

primary r.v.s are dependent and subexponential under an extra condition that

lim sup
c∈[a,b]

F
(

−
h(x)

c

)

F
(x

c

) = 0 (1.5)

holds for some positive function h.

However, both (1.4) and (1.5) are superfluous in Theorem 1.1, which exclude many primary

r.v.s (e.g. r.v.s with symmetrical distributions) that satisfy Theorem 1.1.

In this note, we will relax the condition (1.5) to that

P(Xi > x,Xj ≤ −h(x)) = o(P(Xi > x)), 1 ≤ i, j ≤ n (1.6)

holds for some positive function h, and will obtain that the asymptotic relations (1.3) still hold

when X1, · · · , Xn are dependent r.v.s with non-identically subexponential distributions. We

remark that, when the primary r.v.s are independent, then they automatically satisfy the extra

conditions (1.6), and hence, our result covers Theorem 1.1. Furthermore, if the primary r.v.s

have a pairwise Sarmanov distribution (see Section 2 below), they automatically satisfy the

condition (1.6) also.

The rest of this note consists of two sections. In Section 2, after introducing some prelimi-

naries on heavy-tailed distribution subclasses and some dependence structures among r.v.s, we

will present the main results of this note. In Section 3, we will prove the main results.



Randomly Weighted Sums 443

2 Preliminaries and Main Results

2.1 Some heavy-tailed distribution subclasses

To model the dangerous claim sizes in the insurance industry, most practitioners select the

claim-size distribution from the heavy-tailed distribution class. By definition, an r.v. X or its

distribution F is said to be (right) heavy-tailed if
∫∞

0 eεyF (dy) = ∞ holds for all ε > 0. To

this end, we now introduce some important subclasses of heavy-tailed distribution class, one of

which is the subexponential distribution class.

Definition 2.1 A distribution F supported on [0,∞) is said to be subexponential, denoted

by F ∈ S, if it is unbounded above (that is, F (x) > 0 for all x ≥ 0) and the relation

F ∗n(x) ∼ nF (x)

holds for some (or equivalently for all) n = 2, 3, · · · , where F ∗n denotes the n-fold convolu-

tion of F with itself. Furthermore, a distribution F supported on (−∞,∞) is still said to be

subexponential, if F+ does so, where F+(x) = F (x)1(x ≥ 0) for x ∈ (−∞,∞) and 1(A) is the

indicator function of the set A.

It is well-known that if a distribution F supported on [0,+∞) or (−∞,+∞) is subexpo-

nential, then it is long-tailed.

Definition 2.2 A distribution F supported on [0,+∞) or (−∞,∞) is said to be long-tailed,

denoted by F ∈ L, if F is unbounded above and F (x+ t) ∼ F (x) holds for any t ∈ (−∞,∞).

The long-tailed distribution class has the following important properties: If F ∈ L, then the

function class

H(F ) =
{

h on [0,∞) : h(x) ↑ ∞,
h(x)

x
↓ 0 and F (x− h(x)) ∼ F (x)

}

is not empty, and if h ∈ H(F ), then ch ∈ H(F ) for any c > 0, for instance see [4]. It is clear

that if h1 ∈ H(F ) and h1 ≥ h2 ↑ ∞, h2(x)
x

↓ 0, then h2 ∈ H(F ). For more details on the classes

S and L, the reader can refer to [5] and so on.

2.2 Dependence structures

Inspired by [7, 14–15], Cheng [3] introduced a new dependence structure as follows.

Definition 2.3 For any fixed integer n ≥ 1, real-valued r.v.s X1, · · · , Xn are called condi-

tionally linearly wide dependent (CLWD for short) on an interval Λ ⊂ (0,∞), if there exist

positive constants x0 = x0(n) and K = K(n) such that for all x, y > x0 and 2 ≤ m ≤ n,

P

(

m−1
∑

i=1

ciX
+
i > x

∣

∣

∣
cmXm = y

)

≤ KP

(

m−1
∑

i=1

ciX
+
i > x

)

(2.1)

holds uniformly for all (c1, c2, · · · , cm) ∈ Λm, where X+
i = Xi1(Xi ≥ 0), 1 ≤ i ≤ n.

Notice that when y is not a possible value of cmXm, namely P(cmXm ∈ ∆) = 0 for some

open interval ∆ containing y, the conditional probability in (2.1) is simply understood as

unconditional probability.

The CLWD dependence structure allows a wide choice of r.v.s. For the sake of illustration,

we introduce the following pairwise Sarmanov distribution.
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Definition 2.4 Random variables X1, · · · , Xn jointly follow a pairwise Samarnov distribu-

tion, if it has the form

P

(

n
⋂

i=1

(Xi ∈ dxi)
)

=
(

1 +
∑

1≤k<j≤n

ωkjφk(xk)φj(xj)
)

n
∏

i=1

Fi(dxi), (2.2)

where F1, · · · , Fn are corresponding marginal distributions, φ1(·), · · · , φn(·) are kernel functions,

and ωkj , 1 ≤ k < j ≤ n, are real numbers such that

E[φi(Xi)] = 0, 1 ≤ i ≤ n, (2.3)

and

1 +
∑

1≤k<j≤n

ωkjφk(xk)φj(xj) ≥ 0, (x1, · · · , xn) ∈ (−∞,∞)n.

Note that if all ωkj are 0, then X1, · · · , Xn are independent. It is well-known that the

kernels φi and the real numbers ωkj offer us flexibility in constructing desired dependence

structures. For more details on multivariate Sarmanov distributions, one can refer to [8–9]

among others. There are many choices for the kernels φi(x). A special choice is to take

φi(x) = 1 − Fi(x) − Fi(x−), i = 1, · · · , n, which leads to the well-known pairwise Farlie-

Gumbel-Morgenstern (FGM for short) distribution (see [1]).

[3, Example 2.1] proved that, if r.v.s X1, · · · , Xn jointly follow a pairwise Sarmanov distri-

bution of the form (2.2)–(2.3) which satisfy

|φi(x)| ≤ 1, 1 ≤ i ≤ n for all x ∈ (−∞,∞), (2.4)

and

∑

1≤k<j≤n

|ωkj | < 1, (2.5)

then they are CLWD on any interval Λ ⊂ (0,∞).

2.3 Main results

Now, we are ready to state our main results as follows.

Theorem 2.1 Let X1, · · · , Xn be real-valued r.v.s with distributions F1, · · · , Fn and be

CLWD on the interval [a, b] for some real numbers 0 < a < b < ∞, and let θ1, · · · , θn be

r.v.s which satisfy (1.2), independent of the primary r.v.s X1, · · · , Xn. Assume that Fi ∈ L

and F i(x) ≍ F (x) for some F ∈ S and all i = 1, 2, · · · , n. If there exists a positive function

h ∈
n
⋂

i=1

H(Fi) such that (1.6) holds, then the relations in (1.3) hold.

Remark 2.1 Obviously, if r.v.s X1, · · · , Xn are independent, then they satisfy (1.6) auto-

matically. Hence, Theorem 2.1 covers Theorem 1.1.

From Theorem 2.1 and [3, Example 2.1], we obtain the following corollary directly.

Corollary 2.1 Suppose that X1, · · · , Xn are real-valued r.v.s with distributions F1, · · · , Fn

and jointly follow a pairwise Sarmanov distribution of the form (2.2) which satisfy (2.3)–(2.5).

Assume that Fi ∈ L and F i(x) ≍ F (x) for some F ∈ S and all i = 1, 2, · · · , n. Let θ1, · · · , θn
be r.v.s satisfying (1.2) for some real numbers 0 < a < b <∞, independent of the primary r.v.s

X1, · · · , Xn. Then the relations in (1.3) hold.
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Now, using Theorem 2.1, we will continue to investigate the asymptotic behavior for the

finite-time ruin probability in a discrete-time risk model with both insurance and financial risks,

which was discussed by many authors, see, e.g. [3] and the references therein.

Consider the following discrete-time risk model: For any integer i ≥ 1, the net insurance loss

within period i, which is equal to the total claim amount minus the total premium income, is

denoted by a real-valued r.v. Xi with a distribution Fi. Suppose that the insurer invests his/her

wealth in a discrete-time financial market consisting of a risk-free bond with a stochastic interest

rate Ii > 0 and a risky stock with a stochastic return rate Ri > −1 during period i, where

{Ii, i = 1, 2, · · · ; Ri, i = 1, 2, · · · } are independent of {Xi, i = 1, 2, · · · }. Suppose that, in

the beginning of every period, the insurer invests a constant proportion πi ∈ [0, 1) of his/her

current wealth in the stock and keeps the rest in the bond.

Denote by Ui the insurer’s wealth at time i, and by U0 = x > 0 the deterministic initial

capital. Clearly, we have

Ui = ((1 − πi)(1 + Ii) + πi(1 +Ri))Ui−1 −Xi

= Y −1
i Ui−1 −Xi, i = 1, 2, · · · , (2.6)

where

Yi =
1

(1− πi)(1 + Ii) + πi(1 +Ri)
, i = 1, 2, · · · .

As usual, the probability of ruin by time n is defined as

ψ(x, n) = P
(

min
0≤i≤n

Ui < 0
∣

∣

∣
U0 = x

)

. (2.7)

Theorem 2.2 In the above-mentioned risk model, suppose that the net losses X1, · · · , Xn

are CLWD on the interval (0, 1] and there exists some constant 0 < c <∞ such that

P(0 ≤ Ii ≤ c) = 1, P(−1 < Ri ≤ c) = 1, 1 ≤ i ≤ n. (2.8)

Assume that Fi ∈ L and F i(x) ≍ F (x) for some F ∈ S and all i = 1, 2, · · · , n. If there exists a

positive function h ∈
n
⋂

i=1

H(Fi) such that (1.6) holds, then

ψ(x, n) ∼

n
∑

i=1

P
(

Xi

i
∏

j=1

Yj > x
)

. (2.9)

From Theorem 2.2 and [3, Example 2.1], we obtain the following corollary directly.

Corollary 2.2 In the above-mentioned risk model, suppose that there exists a constant

0 < c < ∞ such that (2.8) holds. Suppose that the net losses X1, · · · , Xn jointly follow a

pairwise Sarmanov distribution of the form (2.2) which satisfy (2.3)–(2.5). Assume that Fi ∈ L

and F i(x) ≍ F (x) for some F ∈ S and all i = 1, 2, · · · , n. Then the relation (2.9) holds.

Remark 2.2 Note that in Corollaries 2.1–2.2, condition (1.6) does not appear since it is

automatically satisfied.

3 Proofs of the Main Results

To prove Theorem 2.1, we will prepare a proposition on the uniformly asymptotic behavior

of weighted sums of heavy-tailed increments, which extends [11, Proposition 5.1] from the

independent case to the dependent one.
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Proposition 3.1 Let X1, · · · , Xn be real-valued r.v.s with distributions F1, · · · , Fn and be

CLWD on the interval [a, b]. Assume that Fi ∈ L and F i(x) ≍ F (x) for some F ∈ S and all

i = 1, 2, · · · , n. If there exists some positive function h ∈
n
⋂

i=1

H(Fi) such that (1.6) holds for all

1 ≤ i, j ≤ n, then the relation

P

(

n
∑

i=1

ciXi > x
)

∼
n
∑

i=1

P(ciXi > x) (3.1)

holds uniformly for all (c1, c2, · · · , cn) ∈ [a, b]
n
, where the uniformity is understood as

lim sup sup
(c1,c2,··· ,cn)∈[a,b]n

∣

∣

∣

∣

P

(

n
∑

i=1

ciXi > x
)

n
∑

i=1

P(ciXi > x)

− 1

∣

∣

∣

∣

= 0.

To prove the proposition, we need two lemmas which give the uniform asymptotic upper

and lower bounds of weighted sums of heavy-tailed increments respectively.

Following the proof of [3, Lemma 3.2] with some obvious changes, we obtain the following

lemma.

Lemma 3.1 Let X1, · · · , Xn be real-valued r.v.s with distributions F1, · · · , Fn and be CLWD

on the interval [a, b]. If Fi ∈ L and F i(x) ≍ F (x) for some F ∈ S and all i = 1, 2, · · · , n, then

we have

lim sup sup
(c1,··· ,cn)∈[a,b]n

P

(

n
∑

i=1

ciXi > x
)

n
∑

i=1

P(ciXi > x)

≤ 1. (3.2)

The next lemma deals with asymptotic lower bound for weighted sums.

Lemma 3.2 Let X1, · · · , Xn be real-valued r.v.s with distributions F1, · · · , Fn and be CLWD

on the interval [a, b]. Assume that Fi ∈ L and F i(x) ≍ F (x) for some F ∈ S and all i =

1, 2, · · · , n. If there exists a positive function h ∈
n
⋂

i=1

H(Fi) such that (1.6) holds, then we have

lim inf inf
(c1,··· ,cn)∈[a,b]n

P

(

n
∑

i=1

ciXi > x
)

n
∑

i=1

P(ciXi > x)

≥ 1. (3.3)

Proof We use the induction method. When n = 1, the conclusion is obvious. Suppose

that (3.3) holds for any fixed positive integer n = m− 1, we aim to show that it also holds for

n = m, where 2 ≤ m ≤ n. For notational convenience, we write Sc
m =

m
∑

i=1

ciXi from now on.

Let l(x) = b
a∧1h(x), where a ∧ 1 = min(a, 1). Clearly, h ∈

n
⋂

i=1

H(Fi) implies l ∈
n
⋂

i=1

H(Fi).

For any fixed ε > 0, from [3, Lemma 3.1] and the induction hypothesis, there exists a

constant x1 > 0 such that

P(ciXi > x+ (m− 1)l(x)) ≥ (1 − ε)P(ciXi > x), 1 ≤ i ≤ m (3.4)
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and

P(Sc
m−1 > x) ≥ (1− ε)

m−1
∑

i=1

P(ciXi > x) (3.5)

hold for all x > x1 and for all (c1, c2, · · · , cm) ∈ [a, b]m. For the sake of convenience, we can pick

the above constant x1 sufficiently large so that x ≥ (m−2)l(x) > x0 holds for all x > x1, where

x0 is determined in Definition 2.3. Hence, for all x > x1, we have the following decomposition:

P(Sc
m > x) ≥ P(Sc

m−1 > x+ l(x), cmXm > −l(x))

+ P(Sc
m−1 ∈ [−(m− 1)l(x), (m− 1)l(x)], cmXm > x+ (m− 1)l(x))

=: J1(x) + J2(x). (3.6)

First we estimate J1(x). We use the following further decomposition:

J1(x) = P(Sc
m−1 > x+ l(x)) − P(Sc

m−1 > x+ l(x), cmXm ≤ −l(x))

≥ P(Sc
m−1 > x+ l(x)) − P

(

cmXm ≤ −l(x),
m−1
⋃

i=1

{ciXi > x}
)

− P

(

Sc
m−1 > x,

m−1
⋂

i=1

{ciXi ≤ x}
)

≥ P(Sc
m−1 > x+ l(x)) −

m−1
∑

i=1

P(ciXi > x, cmXm ≤ −l(x))

− P

(

m−1
∑

i=1

ciX
+
i > x,

m−1
⋂

i=1

{ciX
+
i ≤ x}

)

=: J11(x)− J12(x) − J13(x). (3.7)

From now on, we will fix the weights (c1, c2, · · · , cm) ∈ [a, b]
m
. For J11(x), it follows from (3.4)

and (3.5) that

J11(x) ≥ (1− 2ε)
m−1
∑

i=1

P(ciXi > x) (3.8)

holds for all x > x1.

To estimate J12(x), note that condition (1.6) implies that there exists a constant x2 > 0

such that P(Xi > x,Xj ≤ −h(x)) ≤ εP(Xi > x) holds for all x > x2 and 1 ≤ i, j ≤ m, which

yields that

P(ciXi > x, cjXj ≤ −l(x)) ≤ εP(ciXi > x) (3.9)

holds for all x > bx2 and 1 ≤ i, j ≤ m. In fact, if ci > 1, then it follows from l(x) ≥ l
(

x
ci

)

that

P(ciXi > x, cjXj ≤ −l(x)) ≤ P

(

Xi >
x

ci
, Xj ≤ −

1

b
l
( x

ci

))

≤ P

(

Xi >
x

ci
, Xj ≤ −h

( x

ci

))

;

And if ci < 1, then it follows from l(x) ≥ cil
(

x
ci

)

≥ al
(

x
ci

)

that

P(ciXi > x, cjXj ≤ −l(x)) ≤ P

(

Xi >
x

ci
, Xj ≤ −

a

b
l
( x

ci

))
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= P

(

Xi >
x

ci
, Xj ≤ −h

( x

ci

))

.

Hence, (3.9) yields that

J12(x) ≤ ε

m−1
∑

i=1

P(ciXi > x) (3.10)

holds for all x > bx2. From [3, Proposition 3.2] and Lemma 3.1, there exists a positive constant

x3, independent of c1, c2, · · · , cm, such that

P

(

max
1≤k≤m−1

ckX
+
k > x

)

≥ (1− ε)

m−1
∑

i=1

P(ciXi > x)

and

P

(

m−1
∑

k=1

ckX
+
k > x

)

≤ (1 + ε)
m−1
∑

i=1

P(ciXi > x)

hold for all x > x3, which yields that

J13(x) = P

(

m−1
∑

k=1

ckX
+
k > x

)

− P

(

max
1≤k≤m−1

{ckX
+
k > x}

)

≤ 2ε

m−1
∑

i=1

P(ciXi > x) (3.11)

holds for all x > x3.

Plugging (3.8), (3.10)–(3.11) into (3.7), it follows that

J1(x) ≥ (1− 5ε)

m−1
∑

i=1

P(ciXi > x) (3.12)

holds for all x > max{x1, bx2, x3}.

Now we estimate J2(x). We have the following decomposition:

J2(x) ≥ P(cmXm > x+ (m− 1)l(x))− P(cmXm > x, Sc
m−1 < −(m− 1)l(x))

− P(cmXm > x, Sc
m−1 > (m− 1)l(x))

=: J21(x) − J22(x)− J23(x). (3.13)

For J21(x), clearly, it follows from (3.4) that

J21(x) ≥ (1− ε)P(cmXm > x) (3.14)

holds for all x > x1.

For J22(x), it is clear that

J22(x) ≤ P

(

cmXm > x,

m−1
⋃

i=1

{ciXi ≤ −l(x)}
)

≤

m−1
∑

i=1

P(cmXm > x, ciXi ≤ −l(x))
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≤ (m− 1)εP(cmXm > x) (3.15)

holds for all x > bx2, where the last step is due to (3.9).

Finally, there is a constant x4 > bx0 such that P(bX+
i > l(x)) < ε holds for all x > x4 and

i = 1, · · · ,m. It follows that

J23(x) ≤

∫ ∞

x

P(Sc
m−1 > (m− 1)l(x) | cmXm = y)dP(cmXm ≤ y)

≤MP

(

m−1
∑

i=1

ciX
+
i > (m− 1)l(x)

)

P(cmXm > x)

≤M

m−1
∑

i=1

P(bX+
i > l(x))P(cmXm > x)

≤ (m− 1)MεP(cmXm > x) (3.16)

holds for all x > max{x1, x4}. Plugging (3.14)–(3.16) into (3.13), we obtain that

J2(x) ≥ (1− (1 + 2(m− 1)M)ε)P(cmXm > x) (3.17)

holds for all x > max{x1, x2, x4}. Clearly, it follows from (3.6), (3.12) and (3.17) that

P(Sc
m > x) > (1− (2(m− 1)M + 5)ε)

m
∑

i=1

P(ciXi > x)

holds for all x > max{x1, bx2, x3, x4}. Thus (3.3) holds for n = m due to the arbitrariness of ε.

This ends the proof of Lemma 3.2.

Proof of Proposition 3.1 The conclusion follows from Lemmas 3.1–3.2 directly.

Now we are standing in a position to prove the main results.

Proof of Theorem 2.1 Note that for each n ≥ 1, we have

Sθ
n ≤Mθ

n ≤

n
∑

i=1

θiX
+
i .

Thus by the condition on θi, 1 ≤ i ≤ n and using [3, Proposition 3.2] and Propositions 3.1, we

will obtain the relations (1.3) immediately.

Proof of Corollary 2.1 For any 1 ≤ i < j ≤ n, it is clear that (Xi, Xj) follows a bivariate

Samarnov distribution, that is,

P (Xi ∈ dxi, Xj ∈ dxj)) = (1 + ωijφi(xi)φj(xj))Fi(dxi)Fj(dxj).

Hence, (1.6) follows from (2.4) immediately, and Corollary 2.1 follows from Theorem 2.1 and

[3, Example 2.1].

Proof of Theorem 2.2 Clearly, for any real numbers 0 < a < b < ∞, X1, · · · , Xn are

CLWD on the interval [a, b]. In fact, since X1, · · · , Xn are CLWD on the interval (0, 1], for any

integer 2 ≤ m ≤ n, there exist positive numbers x0 and K such that (2.1) holds uniformly for

all (c1, c2, · · · , cm) ∈ (0, 1]m and x, y > x0, which yields that the (2.1) holds uniformly for all

(c1, c2, · · · , cm) ∈ [a, b]m and x, y > bx0 since

P

(

m−1
∑

i=1

ciX
+
i > x | cmXm = y

)

= P

(

m−1
∑

i=1

ci

b
X+

i >
x

b
|
cm

b
Xm =

y

b

)

≤ KP

(

m−1
∑

i=1

ciX
+
i > x

)

.
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The rest of the proof is similar to that of [3, Theorem 4.1], so we omit it.

Proof of Corollary 2.2 The proof is similar to that of Corollary 2.1, so we omit it.
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