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Construction of Lagrangian Submanifolds in
Complex Hyperquadric*
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Abstract In this paper, the authors present a method to construct the minimal and
H-minimal Lagrangian submanifolds in complex hyperquadric @, from submanifolds with
special properties in odd-dimensional spheres. The authors also provide some detailed
examples.
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1 Introduction

Let (N, J,g,w) be a Kahler manifold with complex dimension n, where .J is the complex
structure, g is the Riemann metric and w is the Kéhler form. An immersion f : ¥ — N from a
real n-dimensional manifold ¥ into N is called Lagrangian if f*w = 0. A vector field V along
a Lagrangian immersion f is called Hamiltonian variation (see [19]) if the associated 1-form
ay = (V]w)y is exact on . A smooth family {f;} of immersions from ¥ into N is called
Hamiltonian deformation if its derivative is Hamiltonian, and a Lagrangian immersion f is
called Hamiltonian minimal (or H-minimal for short) if it satisfies <& | o Vol(fi(X)) = 0 for all
Hamiltonian deformation. The Euler-Lagrange equation of H-minimal Lagrangian submanifolds
is day = 0, where H is the mean curvature vector field of f and ¢ is the co-differential operator
on ¥ with respect to the induced metric. In particular, minimal Lagrangian submanifolds are
trivially H-minimal.

In the past few decades, many geometricians constructed minimal or H-minimal Lagrangian
submanifolds in the complex space forms. Anciaux and Castro [1] constructed examples of
H-minimal Lagrangian immersions in C" by using curves in two-dimensional space forms and
Legendrian immersions in odd-dimensional spheres. Castro, Li and Urbano [2] used the Leg-

endrian immersions in odd-dimensional spheres and anti-de Sitter spaces to construct minimal
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and H-minimal Lagrangian submanifolds in CP" and CH". Castro and Urbano [3] gave new
examples of minimal Lagrangian tori in CP?, and in [4] they constructed unstable H-minimal
Lagrangian tori in C2. Chen and Garay [6] classified H-minimal Lagrangian submanifolds with
constant curvature in CP? with positive nullity. Helen and Romon [8-9] studied a general con-
struction of H-minimal Lagrangian surfaces in C2 and CP? from the point of view of completely
integrable systems. Ma and her cooperators [11-12, 14] studied the Lagrangian tori in CP? from
different viewpoints. Mironov [15-18] constructed some examples of H-minimal and minimal
Lagrangian submanifolds in C™ and CP™ for higher dimensional cases. Li, Ma and Wei [10]
constructed a class of compact minimal Lagrangian submanifolds in complex hyperquadrics by
studying Gauss maps of compact rotational hypersurfaces in the unit sphere. Ma and Ohnita
[13] determined completely the Hamiltonian stability of all compact minimal Lagrangian sub-
manifolds embedded in complex hyperquadrics which are obtained as the images of the Gauss
map of homogeneous isoparametric hypersurfaces in the unit spheres, by harmonic analysis
on homogeneous spaces and fibrations on homogeneous isoparametric hypersurfaces. In this
paper, we will construct minimal and H-minimal Lagrangian submanifolds in the complex hy-
perquadric Q,, = {[Z] € CP"*! | (Z,Z) = 0}, which is a complex submanifold of the complex

projective space CP" ',

Let C™ be the complex Euclidean space endowed with the standard Hermitian inner product
(z,w) = izjﬁj for 2 = (21, ,2n), w = (w1, - ,w,) € C". The real part of ( , )
determine;if; metric (, ) on C”, ie., (, ) = Re(, ). The Liouville 1-form on C™ is given by
Q = —1((dz, 2) — (z,dz)), and the Kéhler form of C" is wen = %2 Let S***'(1) be the (2n+1)-
dimensional unit sphere in C"*!, an immersion ¢ from n-dimensional ¥ into S?"*1(1) c C" is
called Legendrian if ¢*Q = 0. It is easy to check that an isometric immersion f : ¥ — S2"73(1),
p — Z(p) satisfies f*Q = 0 and Z - Z = 0 gives a Lagrangian immersion F = 7o f from X
into Q,,, where 7 : $*"*1(1) = CP", Z + [Z] is the Hopf fibration of $*"*1(1) on the complex
projective space CP". Basing on these fundamental facts, we can construct minimal and H-

minimal Lagrangian submanifolds in the complex hyperquadric.

Our main theorems are as follows.

Theorem 1.1 Let f : ¥ — S§*73(1) € C92, p — Z(p) be an isometric immersion
from q-dimensional manifold ¥, into §*73(1), which satisfies f*Q = 0 and (Z,Z) = 0. Let
b: X9 — 8P 1) € C™, p s w(p) be a Legendrian immersion from o into §2™ 1 (r), which

satisfies (w,w) = 0. Define the new map as follows:

1

. 1 2n+3
F X1 x3oxT — S (1), (p1’p2)'_>7\/1—|——r2

(Z,e*w).

Then F = no F is a Lagrangian immersion from Y1 x Yo x TV into Q,,, where n = q + m.

Moreover, we have
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(1) F is minimal if and only if wo f : X1 — Qg is minimal and

2
~c 1—nr

HS = 5w,
¢ r2(1 + 7.2) w
where ﬁg is the complex mean curvature vector of ¢ and w is position vector of Yo in C™;
(2) F is H-minimal if and only if
504ﬁ + 50[;1 =0,
where H, H are the mean complex mean curvatures of wo f and ¢ : SoxT! — S2m=t(ry c cm,
(w,e't) — ettw, respectively.
By using Theorem 1.1 and Proposition 4.1, we have the following theorem.

Theorem 1.2 Let f: % — §*13(1) € C*2, p s Z(p) be an isometric immersion from
q-dimensional manifold X1 into §7T3(1), which satisfies f*Q =0 and (Z,Z) = 0. Let m be an
even number and ¢ +m = n, and define the map F : X1 x ™' x T' = Q,, by

(9., 6") 5 S IV3Z, 0w + 17 0)],

where J is defined in Section 4. Then, we have
(1) ifg=m—1 and o f : £1 — Qg is minimal, then F is a minimal Lagrangian immersion;

(2) if mo f: X1 — Qg is H-minimal, then F is an H-minimal Lagrangian immersion.

Remark 1.1 It is known that (see [1]) the minimal Lagrangian submanifolds and La-
grangian submanifolds with parallel mean curvature vector are automatically H-minimal. The
explicit examples provided in Section 4 are Lagrangian submanifolds with parallel mean curva-

ture vector.

Throughout this paper we will agree on the following ranges of indices:

0<A B, C,---<n; 1<aq,pB,7, - <mn;

1§j7kala§q7 q+1§A,ILL,V,"'§TL,

o
7

. . . — s
and we also agree on conventions of the conjugate like W5 = w45, f; = ete.

2 Preliminaries

2.1 Basic formulae of submanifolds in Kahler manifold

Let ¥ be a smooth Riemannian manifold with real dimension g. Locally, we choose an
orthonormal frame field {e;} of ¥, with the dual {#7}. Then the first Cartan’s structure

equation is given by

o’ = 0 NG, 0] + 05 =0, (2.1)
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where Gi are the connection 1-forms with respect to 67. Let (N, .J, g,w) be a Kihler manifold
with complex dimension n. Locally, we choose a unitary frame field {e,} of (1,0)-type of N,

with the dual {¢,}. Then the structure equation is given by

dpa = —paa Npp, a5+ ¢35, =0, (2.2)

where gz are the connection 1-forms with respect to ¢q.

Let F': ¥ — N be an isometric immersion. Set
Froo = F} 07, (2.3)
Taking the exterior derivative on both side of (2.3), using (2.1)—(2.3), we obtain
(dF® — FR0% + pgaFl) A67 = 0. (2.4)
Define the covariant derivative of F7* by
DF = dFf — FROY + ppaFy = Fi0". (2.5)

Then, we have Ffj = F; by using (2.4). The tensor field %: Ff 07 ®0F ®eq is a smooth
jikor

section of the bundle 7*¥ @ T*Y @ TN, which is called the complex second fundamental
form of F. For the relations between the real second fundamental form and complex second

fundamental form, one can refer to [7] for details. By taking the trace, we call HC = F eq
J,«

the complex mean curvature vector field of F'. It is known that F' is minimal if and only if
H® =0.

Let H be the real mean curvature vector field of F'. Through direct calculations, we obtain
. i _ _
an = (H)w)s = Hy 09, H; = S(FLFf — FREY). (2.6)
Therefore, the co-differential of ag is given by

5O‘H:_ZHM’ (27)
J

where H;0% := dH; — Hy0Y} is the covariant derivative of Hj.

2.2 Lagrangian submanifolds in complex hyperquadric @,

P" ! is the set of all 1-dimensional complex line through

The complex projective space C
the origin in C™?2, or equivalently, CP"*' = U(n 4 2)/U(1) x U(n + 1). We always view

Q. ={[Z] € CP"" | Z- Z = 0} as a complex submanifold in CP" ",

Let Zo, Z1,+ , Zn, Zny1 be a moving frame of C™2. We set
n+2
dZs =Y wyp Zs, (2.8)

C=1
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where w5 = (dZ4, Zp) are the Maurer-Cartan forms of U(n+2). They are skew-Hermitian,

i.e.,
wyg+twgy =0. (2.9)

Taking the exterior derivative of (2.8), we obtain the Maurer-Cartan equation of U(n+2):

n+2

deE = ZwAa/\wcg, (210)
C=1

which plays an important role in our later calculations. The quadratic form
n+1
ds%s = Z WoaWge,
a=1
defines a Kéhlerian metric on CP" !, so-called the Fubini-Study metric, and the Kihler form
of ds%.g is

in—i—l
wF5=§ E wWom N\ Wy, -

a=1
To study the geometry of the complex hyperquadric @,,, locally, we choose a moving frame
Zo, -y Zny Zni1 = Zg associated to Q,,. Noticing that Zy - Zg = 0, we have

Worm = (dZo, Zo) = 0. (2.11)

So, the metric induced from the Fubini-Study metric on @,, is given by

and the Kahler form is
i n
wQ, = 5 o; Woa N\ Wy -

Set 0o = wog, @ = 1,--- ,n. Then {p,} is a unitary frame field on @, of (1,0)-type. Therefore,
by the Maurer-Cartan equation (2.10) and (2.11), we obtain the structure equation

dpo =~ @paNps, ¥pm=wsm—wodas, Poa+Pas =0, (2.12)
p=1
where gz are the connection 1-forms with respect to ¢q.
Let ¥ be a smooth manifold with real dimension n, and let F' be an immersion from ¥ into
Qn- Let U C ¥ be an open set. We say Z : U — U(n+2), p (Zo, Z1,  Zny Zns1 = Z0)(p)
is a moving frame along F' if F(p) = [Zy(p)] for all p € U. For the moving frame along a

Lagrangian immersion, we have the following proposition.
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Proposition 2.1 Let (,ds%) be an n-dimensional Riemannian manifold with the metric

ds%, = Z(GZ) Let F be a Lagrangian isometric immersion from 3 into Q.. Then, for every
1=

point p € E there is a small neighborhood around p and a moving frame Z along F' such that

Wog = Worrt =0, wy =0, 1<i<n, (2.13)

where w 455 are the pull-back of the Maurer-Cartan forms of U(n+2) via Z*.

Proof It is similar to the proof of [7, Proposition 2.2] by the fact that the complex structure
of Q,, inherits from CP"™!. This completes the proof.

Let F': ¥ — @, be a Lagrangian isometric immersion, and 8¢ be an orthonormal frame
field on ¥. By Proposition 2.1, there exists a moving frame Zo, Z1,- -+ , Zp, Zni1 = Zg along F
such that

o = wog = 0°. (2.14)
For later use, we set
wog =N3, 07, wog=Agg, 07 (2.15)
and
05 =T5507, (2.16)

the connection 1-forms with respect to 6.
Notice that F§ = 05. By using (2.14), we obtain the complex second fundamental form F, Sy
of F', that is

F‘,élV = _F% + Aﬁa,'y — 60‘5A06W (217)

by (2.5), (2.12) and (2.15)—(2.16). So, by using (2.6), we obtain
aH_;Hﬂe : 25 ~ FP). (2.18)

2.3 Spherical Lagrangian submanifolds in C™

It is known that the spherical Lagrangian submanifolds are closely related to Legendrian
submanifolds. We want to study the relationship of complex second fundamental form and
complex mean curvature between the spherical Lagrangian submanifolds and Legendrian sub-
manifolds.

Chen [5] proved that a spherical Lagrangian submanifold in C™ must take the form

YT xTH = C™, (p,e*') — z = e*w(p),
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where
Oy — Szm_l(r), p = w(p)

is a Legendrian immersion.
Noticing that ¢ is Legendrian, locally, one can choose an orthonormal frame field ey, -+ ,ep—1, €, =
% such that

n—1 n—1
dw = Z 0 e, ds3, = Z (0M)2.
A=q+1 A=q+1

By using Legendrian condition, one can check that ey is also a unitary frame field, i.e., (ex, e,) =
6>\N' Set

dex = wxg ey, wig = (dex,ep).
The fact (ex,e,) = d», implies
wxg + wax = 0. (2.19)
Obviously, we have
(dw,ey) = 0>, wam = —wi = —(%dw,e,\) = —%9)‘. (2.20)
Denote by Hf; the connection 1-forms with respect to #*. Set
Op =T2,0", ¢"wiz = Az, 0.
The complex second fundamental form of ¢ is given by

fw = _Fr))u + Aﬂ, forp+1< A< mn, (2.21)

v

1
A = —;% forp+1<A<n (2.22)

by (2.5), (2.20) and the fact that ¢f; =0 forp+1<pu<n.

For the Lagrangian immersion v, we have

n—1
dz = E el ey + irettdte,,
A=p+1
which gives

n

st = (077,

A=q+1

where 0* = 0* and 0" = rdt. The connection 1-forms 53 w.r.t. 0 are given by

0 =0, 0y =0 (2.23)
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forp+1<X<n. Set

o IO
0y =T2,0", Y'wap=Raps 0.

The complex second fundamental form of ¢ is given by

21/ = _eit(rr))u o A,uX.,y) forp+1 <A p,v<n, (2.24)
ietf
o= = =0, U, =0 forp+l<Ap<n, (2.25)
it
. e
Vi = _T(SMM (2.26)

by (2.5), (2.20) and the fact that ¢, = e*éy, for p+1 < X <n, ¥ = ie'd,,.
In summary, the complex second fundamental forms of ¢, ¥ are given by
Z a0 ©0” @ ey, Z 1/)2,,5“@5”@@,
p+1<p,v<n, A A v
respectively.

Proposition 2.2 Notations as above, the complex second fundamental forms of ¢, ¢ have
the relation
A it A
Qv v
forp+1<pv<n p+1<A<n.
Proof It follows from (2.21)-(2.24), (2.26) and the fact 6* = 0* for p+1 < A < n. This

completes the proof.

Remark 2.1 We will use the unitary frame field ettey, iette, instead of ey, e, in Section

3 Proof of Main Theorem

Let ¥ be a g-dimensional smooth Riemannian manifold, and let f : ¥; — 8%%3(1) ¢ C"+2,
p — Zo(p) be an isometric immersion with f*Q =0 and (Zy, Zo) =0. Then f =mo f : 5y —
Q, C CPI* pis [Zo] is a Lagrangian immersion. Since f*Q = 0, it is easy to check that

S5 = (dZo, Zo) = 0. (3.1)
By Proposition 2.1, we can choose pairwise Hermitian orthogonal local frame field Zl, e ,Zq
s.t. Zo, Zl, e ,Zq, Zq-i—l =Zyisa moving frame along ]7, satisfying

Bo; = (dZo, Zj) = 07 (3.2)

are real 1-forms. As before, set
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and denote by gfc = f{k 0" the connection 1-forms with respect to 6i. By using (2.17) and (3.1),

we obtain the complex second fundamental form of fv, that is
fli=-T+ Az (3.4)

Let ¢ : Yo xT' — S*™ (1) € C™, p — z(p) be a Lagrangian isometric immersion with
(2,Z) = 0. Define a new map by

1
(p1,p2) — ﬁ(207z)7

where ¢ +m = n. In the following, we will study the map

F S xSyxTh — §23(1),

~ 1
F=noF: 31 x%xT" = Q, c CP"", ,p2) = ————[Z, 2.
1 X B Q (P1,p2) \/1+—r?[0 ]

Choose the mo\/ing frame ZO, Z g 7Zn, Zn_l'_ along ’ as fOHOWS:
Z ) — (2 ) )
= s z s
A/ 712

Zj = (Zjvo)a 1 S.] qu
ZA:(OveA)a Q+1S)\<n7

Zy = —e (—irZy, en),
\/1+r2( 0€n)
Zns1 = Zo,

where Zg, Zj and ey, e, (here ey is the one in Subsection 2.3 multiply by e'! e, is the one in
Subsection 2.3 multiply by iel?) are as they were in the context of f and ), respectively. Notice
that w5 = (dZ4, Zp). By using (2.20) and (3.1), through direct calculations, we obtain

1 1
= W3 0) =: 07, 3.5
R i Y )

L5 A

1 1 -
n — d sy En "= 971 3.7
wo 1+T2(ze) 1472 (37)

Similarly, we also have

wog = 1ird", wp=wg, wx=0, wm= —irt?,  wyg = O, (3.8)
Wjﬁ = —i7‘6‘j, W)\p = @)\p, Wrn = %9)\, Wnp = %6‘”, (39)

where g+ 1 <\, pu <n.
Notice that 67, #*, 6" are real and linearly independent on 31 x X xT''. Therefore F' is an
immersion and the induced metric on ¥ x Yo x T is given by

s’ = Frdsh, =Y (077, (3.10)

[e3
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where
io_ L G oL p oL
Vitr? ' Vitr? 1+ 172

Choose the orthonormal frame field % on ¥1 x X9 x T, then
Fg = dap. (3.11)
Then the pull back of the Kahler form is given by
Frwg, = Z 0% N O™ =

which implies that F'is a Lagrangian immersion.

Lemma 3.1 (see [7]) Let

ds* = i(@o‘)z, ds* = i i N
a=1 a=1 a=1

be two Riemannian metrics, where a, are positive constants. Set

9 =To, 07, 05 =150

Then
(1) if ay = -+ = an = a, we have
« 1~o¢
By = gl B (3.12)
(2) ifa; = =an_1 = a, a, = a?, we have
1~
A TP A PP n o __ n n o __ n
]_—‘HH —l—‘lm, s, = an, ]_—‘HH QFWH I, = 22 b (3.13)

where 1 < A\, p <n—1.

Notice that ds? is a product metric. By using (3.12)—(3.13), we obtain

I‘{d =V1+r2 fil, =T/, =0, I, =V1+2T},, (3.14)
=V1+r2 T, Th, =+, Th, =1+, (3.15)

where ¢ + 1 < A, u < n. On the other hand, by using (3.8)—(3.9), we also have
Agoa = im0, Az, =V1+r2 Az, Ag,=Ax,=0, Ay, =—in (3.16)

A)\ﬁﬂ/ =V 1+T2 K)\H,Va A)\ﬁ)\ = K)\ﬁ)\ = i’ Aan = 07 Anﬁn = Knﬁn = £7 (317)
T ’ r

where ¢+ 1 < A <n.
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Proof of Theorem 1.1 According to the identities (2.17) and (3.4), together with (3.14)
and (3.16), we obtain

Flgk = _F{m + Ak},k = \/m(_fik + Kk;,k) - \/1+—7"2f~;ik (3.18)

Similarly, we obtain
Fi,=F, =F\=0, F)\=V1+r2¢),, F) =V1+r2y),, (3.19)
Fli = —ir, F{\ =1+ 0% —ir,  Fp, = (14, — 2ir, (3.20)

where ¢ + 1 < A, i < n. Therefore, f is minimal if and only if

q n n .

ry A n 1(” + 1)7.

Zflgk: Z Ypun =0, Z Vi = 1472 7
k=1 p=q+1 p=q+1

where 1 < j < gand ¢+ 1 < A < n. Thus, the first statement in theorem follows from

Proposition 2.2.

Denote the associated 1-forms a g, ap, ay of the Lagrangian immersions ]7, 1, I respec-

tively by
apg = Xq:ﬁj 07, ag = Zn: H\ 0, ay= ZH[; 0°.
j=1
By using (2.18) and (3.18)—(3.20), we obtain
H;=\/1+r2H;, Hy=+\1+r>H\, H,=1+7%) H,+ (n+1)r, (3.21)
where ¢ +1 < A < n. Recall the definition of the covariant derivative DHpg of Hp, i.e.,
DHg := Hp,0" = dHg — H,0;.

Then, by using Lemma 3.1 and (3.21), through direct calculations, we have

Hjj = +r)Hj;, Hup=1+12)Hpn +1r2(1+12) Hyin, (3.22)
Hyy = (1+ 7% Hyx — (14 ) [r2Hy + (n + D)r]T%, (3.23)
where H,, = —Im((HC, e,,)) is a smooth function on ZoxT" and ﬁnm = (grad H, e,,). Therefore,

the co-differential of ay is
Sar = (1+77°)(Sagg 4+ dag)+(1+ ) [(r?Hy, + (n+ 1)r)T3, — 7‘21{\[”;”], (3.24)

where da g, dagp are the co-differential of o, ap with respect to metrics induced by f', 1 on

Y1, Yo x T, respectively. Then, (3.24) gives that F' is H-minimal if and only if
(b +dag) = r* Hun, (3.25)

by the fact 0™ = 17::1:2 and hence 60} = fz)ﬂ” = 0. On the other hand, from Proposition 2.2

and (2.22), we know ﬁn = —% which is independent of ¢, i.e., fAInm = 0. This completes the

proof of Theorem 1.1.
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4 Examples

Let m = 2k be an even number, and let R™ be the m-dimensional Euclidean space. Define

a linear transformation J by

J:R™ 5 R™  Jx= (- ... g™ gt 1),
where x = (z1,--- 2% 25Tt ... 2™) € R™. It has the properties J2 = —id and
(T, Ty) = (z.y) (4.1)
for z,y € R™. Consider the unit sphere 8™ (1) = {x € R™ | |z|> = 1} in R™. Locally, we
choose an orthonormal frame field €1,--- ,€,_1,€, = x, so that the structure equations are
given by
m—1 N N N N
dv =Y 0*ex, dbp*=-0) AO", (4.2)
A=1

where the 1-forms 0*, 52 are real and 0)) satisfies (?3 + 6% = 0. Further, we have
m—1 N
dey =Y 08e, 1<Ap<m. (4.3)
p=1

Define an immersion 1 from $™ (1) x T into C™ by

. 2 .
(z,e") = 2 = gelt(x +iJx). (4.4)
Choosing the moving frame along 1 to be
2
e\ = gelt(eA +iJey), 1<A<m, e,=1iz. (4.5)

Notice that the differential operator d is commute with 7, by using (4.1) and (4.2), we have
0 :=(dz,ex) =0, 1<A<m, 0":=(dzen)=dt (4.6)

It is easy to check that 1 is Lagrangian by the fact that 6* and ™ are real. Set wiu = (dex, ey).

Through direct calculations, we have
Wyx = Wi = 1™, wim = i, 1< A<m, wag =0y, 1<A<p<m. (4.7)
Denote the connection 1-forms with respect to 6* by 9;}, we have
T=0, 0)=0) 1<Au<m (4.8)
From (2.21) and (4.7)—(4.8), we obtain

eh, =0, Y =i, 1<p<m. (4.9)
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Proposition 4.1 The map 1 : 8™ (1) xT* — C™ given by (z,e't) — 2z = @eit(x—l—ijx)

is an H-minimal Lagrangian immersion in C™, and its complex mean curvature HC satisfies
HC = —m 2.

Proof From (2.6), we have Hy=0for1<\<mand Hy, = —m. By using (2.7) and
(4.8), we obtain dag = 0. So, ¢ is H-minimal. This completes the proof.

Let x : ¥ — S7M(1) < R9*2, p +— x(p) be a hypersurface in S77*(1), and let n be the
unit normal vector field of ¥; in 89! (1). Define a map f: ¥; — S?773(1) by

p ?(X—F in).

By [20, Proposition 3.1], we know that Gauss map wo f : £1 — @ is a Lagrangian immersion,
where 7 : 8277%(1) — CPY"! is the Hopf fibration. Furthermore, 7 o f is minimal (see [20]) if
X is an isoparametric immersion. Thus, by Theorem 1.2, the map

F:xS™ M) xT = Qn, (x,1,et) — %[(X +in, et (z + iJ7))]

is H-minimal. Particularly, let x : S (r1) x S (ry) — ST (1), g1 + q2 = ¢, 2 + 73 = 1 be
the Clifford hypersurface in 87 (1). It is known that Clifford hypersurfaces are isoparametric

hypersurface. Then, the map

1

FrS0(r1) x 8702 = @y (p1p) = 2 [(01.0) + 1~ i, Do)
T1 T2

is a minimal Lagrangian immersion. Therefore, by Theorem 1.2, the map F' : S7 (r1) x S (r3) x
S™ (1) x T* — Q,, given by

((p1,p2), x,€'") = % [((plap2) + i( - :_?pla :—lpz)) et (z + ijx)}

is H-minimal, and it is minimal if g1 + g2 = m — 1. Here, ¢1 + ¢ + m = n.
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