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Abstract In this paper, the authors present a method to construct the minimal and

H-minimal Lagrangian submanifolds in complex hyperquadric Qn from submanifolds with

special properties in odd-dimensional spheres. The authors also provide some detailed

examples.
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1 Introduction

Let (N, J, g, ω) be a Kähler manifold with complex dimension n, where J is the complex

structure, g is the Riemann metric and ω is the Kähler form. An immersion f : Σ → N from a

real n-dimensional manifold Σ into N is called Lagrangian if f∗ω = 0. A vector field V along

a Lagrangian immersion f is called Hamiltonian variation (see [19]) if the associated 1-form

αV := (V ⌋ω)Σ is exact on Σ. A smooth family {ft} of immersions from Σ into N is called

Hamiltonian deformation if its derivative is Hamiltonian, and a Lagrangian immersion f is

called Hamiltonian minimal (or H-minimal for short) if it satisfies d
dt

∣∣
t=0

Vol(ft(Σ)) = 0 for all

Hamiltonian deformation. The Euler-Lagrange equation of H-minimal Lagrangian submanifolds

is δαH = 0, where H is the mean curvature vector field of f and δ is the co-differential operator

on Σ with respect to the induced metric. In particular, minimal Lagrangian submanifolds are

trivially H-minimal.

In the past few decades, many geometricians constructed minimal or H-minimal Lagrangian

submanifolds in the complex space forms. Anciaux and Castro [1] constructed examples of

H-minimal Lagrangian immersions in Cn by using curves in two-dimensional space forms and

Legendrian immersions in odd-dimensional spheres. Castro, Li and Urbano [2] used the Leg-

endrian immersions in odd-dimensional spheres and anti-de Sitter spaces to construct minimal
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and H-minimal Lagrangian submanifolds in CP
n and CH

n. Castro and Urbano [3] gave new

examples of minimal Lagrangian tori in CP
2, and in [4] they constructed unstable H-minimal

Lagrangian tori in C2. Chen and Garay [6] classified H-minimal Lagrangian submanifolds with

constant curvature in CP
3 with positive nullity. Helen and Romon [8–9] studied a general con-

struction of H-minimal Lagrangian surfaces in C2 and CP
2 from the point of view of completely

integrable systems. Ma and her cooperators [11–12, 14] studied the Lagrangian tori in CP
2 from

different viewpoints. Mironov [15–18] constructed some examples of H-minimal and minimal

Lagrangian submanifolds in Cn and CP
n for higher dimensional cases. Li, Ma and Wei [10]

constructed a class of compact minimal Lagrangian submanifolds in complex hyperquadrics by

studying Gauss maps of compact rotational hypersurfaces in the unit sphere. Ma and Ohnita

[13] determined completely the Hamiltonian stability of all compact minimal Lagrangian sub-

manifolds embedded in complex hyperquadrics which are obtained as the images of the Gauss

map of homogeneous isoparametric hypersurfaces in the unit spheres, by harmonic analysis

on homogeneous spaces and fibrations on homogeneous isoparametric hypersurfaces. In this

paper, we will construct minimal and H-minimal Lagrangian submanifolds in the complex hy-

perquadric Qn = {[Z] ∈ CP
n+1 | (Z,Z) = 0}, which is a complex submanifold of the complex

projective space CP
n+1.

Let Cn be the complex Euclidean space endowed with the standard Hermitian inner product

(z, w) =
n∑

j=1

zjwj for z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Cn. The real part of ( , )

determines a metric 〈 , 〉 on Cn, i.e., 〈 , 〉 = Re( , ). The Liouville 1-form on Cn is given by

Ω = − i

2 ((dz, z)−(z, dz)), and the Kähler form of Cn is ωCn = dΩ
2 . Let S2n+1(1) be the (2n+1)-

dimensional unit sphere in Cn+1, an immersion φ from n-dimensional Σ into S2n+1(1) ⊂ Cn is

called Legendrian if φ∗Ω = 0. It is easy to check that an isometric immersion f : Σ → S2n+3(1),

p 7→ Z(p) satisfies f∗Ω = 0 and Z · Z = 0 gives a Lagrangian immersion F = π ◦ f from Σ

into Qn, where π : S2n+1(1) → CP
n, Z 7→ [Z] is the Hopf fibration of S2n+1(1) on the complex

projective space CP
n. Basing on these fundamental facts, we can construct minimal and H-

minimal Lagrangian submanifolds in the complex hyperquadric.

Our main theorems are as follows.

Theorem 1.1 Let f : Σ1 → S
2q+3(1) ⊂ Cq+2, p 7→ Z(p) be an isometric immersion

from q-dimensional manifold Σ1 into S
2q+3(1), which satisfies f∗Ω = 0 and (Z,Z) = 0. Let

φ : Σ2 → S
2m−1(1) ⊂ Cm, p 7→ w(p) be a Legendrian immersion from Σ2 into S

2m−1(r), which

satisfies (w,w) = 0. Define the new map as follows:

F̃ : Σ1×Σ2×T 1 → S
2n+3(1), (p1, p2) 7→

1√
1 + r2

(Z, eitw).

Then F = π ◦ F̃ is a Lagrangian immersion from Σ1×Σ2×T 1 into Qn, where n = q + m.

Moreover, we have
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(1) F is minimal if and only if π ◦ f : Σ1 → Qq is minimal and

ĤC
φ =

1− nr2

r2(1 + r2)
w,

where ĤC
φ is the complex mean curvature vector of φ and w is position vector of Σ2 in Cm;

(2) F is H-minimal if and only if

δα
H̃
+ δα

Ĥ
= 0,

where H̃, Ĥ are the mean complex mean curvatures of π ◦f and ψ : Σ2×T 1 → S
2m−1(r) ⊂ Cm,

(w, eit) 7→ eitw, respectively.

By using Theorem 1.1 and Proposition 4.1, we have the following theorem.

Theorem 1.2 Let f : Σ1 → S
2q+3(1) ⊂ C

q+2, p 7→ Z(p) be an isometric immersion from

q-dimensional manifold Σ1 into S
2q+3(1), which satisfies f∗Ω = 0 and (Z,Z) = 0. Let m be an

even number and q +m = n, and define the map F : Σ1 × S
m−1 × T 1 → Qn by

(p, x, eit) 7→ 1

2
[
√
2Z, eit(x + iJ x)],

where J is defined in Section 4. Then, we have

(1) if q = m−1 and π◦f : Σ1 → Qq is minimal, then F is a minimal Lagrangian immersion;

(2) if π ◦ f : Σ1 → Qq is H-minimal, then F is an H-minimal Lagrangian immersion.

Remark 1.1 It is known that (see [1]) the minimal Lagrangian submanifolds and La-

grangian submanifolds with parallel mean curvature vector are automatically H-minimal. The

explicit examples provided in Section 4 are Lagrangian submanifolds with parallel mean curva-

ture vector.

Throughout this paper we will agree on the following ranges of indices:

0 ≤ A, B, C, · · · ≤ n; 1 ≤ α, β, γ, · · · ≤ n;

1 ≤ j, k, l, · · · ≤ q; q+1 ≤ λ, µ, ν, · · · ≤ n,

and we also agree on conventions of the conjugate like ωAB = ωAB, f
α

i = fα
i , etc.

2 Preliminaries

2.1 Basic formulae of submanifolds in Kähler manifold

Let Σ be a smooth Riemannian manifold with real dimension q. Locally, we choose an

orthonormal frame field {ej} of Σ, with the dual {θj}. Then the first Cartan’s structure

equation is given by

dθj = −θjk ∧ θk, θjk + θkj = 0, (2.1)
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where θjk are the connection 1-forms with respect to θj . Let (N, J, g, ω) be a Kähler manifold

with complex dimension n. Locally, we choose a unitary frame field {εα} of (1,0)-type of N ,

with the dual {ϕα}. Then the structure equation is given by

dϕα = −ϕβα ∧ ϕβ , ϕαβ + ϕβα = 0, (2.2)

where ϕβα are the connection 1-forms with respect to ϕα.

Let F : Σ → N be an isometric immersion. Set

F ∗ϕα = Fα
j θj . (2.3)

Taking the exterior derivative on both side of (2.3), using (2.1)–(2.3), we obtain

(dFα
j − Fα

k θ
k
j + ϕβαF

β
j ) ∧ θj = 0. (2.4)

Define the covariant derivative of Fα
j by

DFα
j := dFα

j − Fα
k θ

k
j + ϕβαF

β
j = Fα

jkθ
k. (2.5)

Then, we have Fα
jk = Fα

kj by using (2.4). The tensor field
∑
j,k,α

Fα
jk θj ⊗ θk ⊗ εα is a smooth

section of the bundle T ∗Σ ⊗ T ∗Σ ⊗ T (1,0)N , which is called the complex second fundamental

form of F . For the relations between the real second fundamental form and complex second

fundamental form, one can refer to [7] for details. By taking the trace, we call HC =
∑
j,α

Fα
jj εα

the complex mean curvature vector field of F . It is known that F is minimal if and only if

HC = 0.

Let H be the real mean curvature vector field of F . Through direct calculations, we obtain

αH := (H⌋ω)Σ = Hj θ
j , Hj =

i

2
(Fα

kkF
α
j − Fα

kkF
α
j ). (2.6)

Therefore, the co-differential of αH is given by

δαH = −
∑

j

Hjj , (2.7)

where Hjkθ
k := dHj −Hkθ

k
j is the covariant derivative of Hj .

2.2 Lagrangian submanifolds in complex hyperquadric Qn

The complex projective space CP
n+1 is the set of all 1-dimensional complex line through

the origin in Cn+2, or equivalently, CP
n+1 ∼= U(n + 2)/U(1) × U(n + 1). We always view

Qn = {[Z] ∈ CP
n+1 | Z · Z = 0} as a complex submanifold in CP

n+1.

Let Z0, Z1, · · · , Zn, Zn+1 be a moving frame of Cn+2. We set

dZA =

n+2∑

C=1

ωAB ZB, (2.8)



Construction of Lagrangian Submanifolds in Complex Hyperquadric 469

where ωAB = (dZA, ZB) are the Maurer-Cartan forms of U(n+2). They are skew-Hermitian,

i.e.,

ωAB + ωBA = 0. (2.9)

Taking the exterior derivative of (2.8), we obtain the Maurer-Cartan equation of U(n+2):

dωAB =

n+2∑

C=1

ωAC ∧ ωCB, (2.10)

which plays an important role in our later calculations. The quadratic form

ds2FS =

n+1∑

α=1

ω0αω0α

defines a Kählerian metric on CP
n+1, so-called the Fubini-Study metric, and the Kähler form

of ds2FS is

ωFS =
i

2

n+1∑

α=1

ω0α ∧ ω0α.

To study the geometry of the complex hyperquadric Qn, locally, we choose a moving frame

Z0, · · · , Zn, Zn+1 = Z0 associated to Qn. Noticing that Z0 · Z0 = 0, we have

ω0n+1 = (dZ0, Z0) = 0. (2.11)

So, the metric induced from the Fubini-Study metric on Qn is given by

ds2Qn

=
n∑

α=1

ω0αω0α,

and the Kähler form is

ωQn
=

i

2

n∑

α=1

ω0α ∧ ω0α.

Set ϕα := ω0α, α = 1, · · · , n. Then {ϕα} is a unitary frame field on Qn of (1, 0)-type. Therefore,

by the Maurer-Cartan equation (2.10) and (2.11), we obtain the structure equation

dϕα = −
n∑

β=1

ϕβα ∧ ϕβ , ϕβα = ωβα − ω00δαβ , ϕβα + ϕαβ = 0, (2.12)

where ϕβα are the connection 1-forms with respect to ϕα.

Let Σ be a smooth manifold with real dimension n, and let F be an immersion from Σ into

Qn. Let U ⊂ Σ be an open set. We say Z : U → U(n+2), p 7→ (Z0, Z1, · · · , Zn, Zn+1 = Z0)(p)

is a moving frame along F if F (p) = [Z0(p)] for all p ∈ U . For the moving frame along a

Lagrangian immersion, we have the following proposition.
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Proposition 2.1 Let (Σ, ds2Σ) be an n-dimensional Riemannian manifold with the metric

ds2Σ =
n∑

i=1

(θi)2. Let F be a Lagrangian isometric immersion from Σ into Qn. Then, for every

point p ∈ Σ, there is a small neighborhood around p and a moving frame Z along F such that

ω00 = ω0n+1 = 0, ω0i = θi, 1 ≤ i ≤ n, (2.13)

where ωAB are the pull-back of the Maurer-Cartan forms of U(n+2) via Z∗.

Proof It is similar to the proof of [7, Proposition 2.2] by the fact that the complex structure

of Qn inherits from CP
n+1. This completes the proof.

Let F : Σ → Qn be a Lagrangian isometric immersion, and θα be an orthonormal frame

field on Σ. By Proposition 2.1, there exists a moving frame Z0, Z1, · · · , Zn, Zn+1 = Z0 along F

such that

ϕα = ω0α = θα. (2.14)

For later use, we set

ωαβ = Λαβ,γ θ
γ , ω00 = Λ00,γ θ

γ (2.15)

and

θαβ = Γα
γβ θ

γ , (2.16)

the connection 1-forms with respect to θα.

Notice that Fα
β = δαβ . By using (2.14), we obtain the complex second fundamental form Fα

βγ

of F , that is

Fα
βγ = −Γα

γβ + Λβα,γ − δαβΛ00,γ (2.17)

by (2.5), (2.12) and (2.15)–(2.16). So, by using (2.6), we obtain

αH =

n∑

β=1

Hβ θ
β , Hβ =

n∑

γ=1

i

2
(F β

γγ − F β
γγ). (2.18)

2.3 Spherical Lagrangian submanifolds in Cm

It is known that the spherical Lagrangian submanifolds are closely related to Legendrian

submanifolds. We want to study the relationship of complex second fundamental form and

complex mean curvature between the spherical Lagrangian submanifolds and Legendrian sub-

manifolds.

Chen [5] proved that a spherical Lagrangian submanifold in Cm must take the form

ψ : Σ2×T 1 → C
m, (p, eit) 7→ z = eitw(p),
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where

φ : Σ2 → S2m−1(r), p 7→ w(p)

is a Legendrian immersion.

Noticing that φ is Legendrian, locally, one can choose an orthonormal frame field eq+1, · · · , en−1, en =
w
r
such that

dw =

n−1∑

λ=q+1

θλ eλ, ds2Σ2
=

n−1∑

λ=q+1

(θλ)2.

By using Legendrian condition, one can check that eλ is also a unitary frame field, i.e., (eλ, eµ) =

δλµ. Set

deλ = ωλµ eµ, ωλµ = (deλ, eµ).

The fact (eλ, eµ) = δλµ implies

ωλµ + ωµλ = 0. (2.19)

Obviously, we have

(dw, eλ) = θλ, ωλn = −ωnλ = −
(1
r
dw, eλ

)
= −1

r
θλ. (2.20)

Denote by θλµ the connection 1-forms with respect to θλ. Set

θλµ = Γλ
νµ θ

ν , φ∗ωλµ = Λλµ,ν θ
ν .

The complex second fundamental form of φ is given by

φλµν = −Γλ
νµ + Λµλ,ν for p+ 1 ≤ λ < n, (2.21)

φnλµ = −1

r
δλµ for p+ 1 ≤ λ < n (2.22)

by (2.5), (2.20) and the fact that φλµ = δλµ for p+ 1 ≤ µ < n.

For the Lagrangian immersion ψ, we have

dz =

n−1∑

λ=p+1

eitθλ eλ + ireitdt en,

which gives

ds2Σ2×T 1 =

n∑

λ=q+1

(θ̂λ)2,

where θ̂λ = θλ and θ̂n = rdt. The connection 1-forms θ̂λµ w.r.t. θ̂λ are given by

θ̂λµ = θλµ, θ̂nλ = 0 (2.23)
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for p+ 1 ≤ λ < n. Set

θ̂λµ = Γ̂λ
νµ θ̂

ν , ψ∗ωλµ = Λ̂λµ,ν θ̂
ν .

The complex second fundamental form of φ is given by

ψλ
µν = −eit(Γ̂λ

νµ − Λ̂µλ,ν) for p+ 1 ≤ λ, µ, ν < n, (2.24)

ψλ
nµ = ψλ

µn =
ieit

r
δλµ, ψλ

nn = 0 for p+ 1 ≤ λ, µ < n, (2.25)

ψn
λµ = −eit

r
δλµ, (2.26)

by (2.5), (2.20) and the fact that ψλ
µ = eitδλµ for p+ 1 ≤ λ < n, ψn

µ = ieitδnµ.

In summary, the complex second fundamental forms of φ, ψ are given by

∑

p+1≤µ,ν<n, λ

φλµνθ
µ ⊗ θν ⊗ eλ,

∑

λ,µ,ν

ψλ
µν θ̂

µ ⊗ θ̂ν ⊗ eλ,

respectively.

Proposition 2.2 Notations as above, the complex second fundamental forms of φ, ψ have

the relation

ψλ
µν = eit φλµν

for p+ 1 ≤ µ, ν < n, p+ 1 ≤ λ ≤ n.

Proof It follows from (2.21)–(2.24), (2.26) and the fact θ̃λ = θλ for p + 1 ≤ λ ≤ n. This

completes the proof.

Remark 2.1 We will use the unitary frame field eiteλ, ie
iten instead of eλ, en in Section

3.

3 Proof of Main Theorem

Let Σ1 be a q-dimensional smooth Riemannian manifold, and let f : Σ1 → S2q+3(1) ⊂ Cn+2,

p 7→ Z̃0(p) be an isometric immersion with f∗Ω = 0 and (Z̃0, Z̃0) = 0. Then f̃ = π ◦ f : Σ1 →
Qq ⊂ CP

q+1, p 7→ [Z̃0] is a Lagrangian immersion. Since f∗Ω = 0, it is easy to check that

ω̃00 = (dZ̃0, Z̃0) = 0. (3.1)

By Proposition 2.1, we can choose pairwise Hermitian orthogonal local frame field Z̃1, · · · , Z̃q

s.t. Z̃0, Z̃1, · · · , Z̃q, Z̃q+1 = Z̃0 is a moving frame along f̃ , satisfying

ω̃0j = (dZ̃0, Z̃j) = θ̃j (3.2)

are real 1-forms. As before, set

ω̃jk = (dZ̃j , Z̃k) = Λ̃jk,l θ̃
l, (3.3)
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and denote by θ̃jk = Γ̃j
lk θ̃

l the connection 1-forms with respect to θ̃j . By using (2.17) and (3.1),

we obtain the complex second fundamental form of f̃ , that is

f̃ j
kl = −Γ̃j

lk + Λ̃kj,l. (3.4)

Let ψ : Σ2×T 1 → S2m−1(r) ⊂ Cm, p 7→ z(p) be a Lagrangian isometric immersion with

(z, z) = 0. Define a new map by

F̃ : Σ1×Σ2×T 1 → S2n+3(1), (p1, p2) 7→
1√

1 + r2
(Z̃0, z),

where q +m = n. In the following, we will study the map

F = π ◦ F̃ : Σ1×Σ2×T 1 → Qn ⊂ CP
n+1, (p1, p2) 7→

1√
1 + r2

[Z̃0, z].

Choose the moving frame Z0, Z1, · · · , Zn, Zn+1 along f as follows:

Z0 =
1√

1 + r2
(Z̃0, z),

Zj = (Z̃j , 0), 1 ≤ j ≤ q,

Zλ = (0, eλ), q + 1 ≤ λ < n,

Zn =
1√

1 + r2
(−irZ̃0, en),

Zn+1 = Z0,

where Z̃0, Z̃j and eλ, en (here eλ is the one in Subsection 2.3 multiply by eit, en is the one in

Subsection 2.3 multiply by ieit) are as they were in the context of f and ψ, respectively. Notice

that ωAB = (dZA, ZB). By using (2.20) and (3.1), through direct calculations, we obtain

ω0j =
1√

1 + r2
ω̃0j =

1√
1 + r2

θ̃j =: θj , (3.5)

ω0λ =
1√

1 + r2
θ̂λ =: θλ, q + 1 ≤ λ < n, (3.6)

ω0n =
1

1 + r2
(dz, en) =

1

1 + r2
θ̂n := θn. (3.7)

Similarly, we also have

ω00 = irθn, ωjk = ω̃jk, ωjλ = 0, ωjn = −irθj , ωλµ = ω̂λµ, (3.8)

ωjn = −irθj , ωλµ = ω̂λµ, ωλn =
i

r
θλ, ωnn =

i

r
θn, (3.9)

where q + 1 ≤ λ, µ < n.

Notice that θj , θλ, θn are real and linearly independent on Σ1×Σ2×T 1. Therefore F is an

immersion and the induced metric on Σ1×Σ2×T 1 is given by

ds2 = F ∗ds2Qn

=
∑

α

(θα)2, (3.10)
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where

θj =
1√

1 + r2
θ̃j , θλ =

1√
1 + r2

θ̂λ, θn =
1

1 + r2
θ̂n.

Choose the orthonormal frame field θα on Σ1×Σ2×T 1, then

Fα
β = δαβ . (3.11)

Then the pull back of the Kähler form is given by

F ∗ωQn
=

i

2

n∑

α=1

θα ∧ θα = 0,

which implies that F is a Lagrangian immersion.

Lemma 3.1 (see [7]) Let

ds̃2 =

n∑

α=1

(θ̃α)2, ds2 =

n∑

α=1

(θα)2 =

n∑

α=1

(aαθ̃
α)2

be two Riemannian metrics, where aα are positive constants. Set

θ̃αβ = Γ̃α
γβ θ̃

γ , θαβ = Γα
γβ θ

γ .

Then

(1) if a1 = · · · = an = a, we have

Γα
βγ =

1

a
Γ̃α
βγ ; (3.12)

(2) if a1 = · · · = an−1 = a, an = a2, we have

Γλ
µµ =

1

a
Γ̃λ
µµ, Γλ

nn =
1

a
Γ̃λ
nn, Γn

µµ =
1

a2
Γ̃n
µµ, Γn

nn =
1

a2
Γ̃n
nn, (3.13)

where 1 ≤ λ, µ ≤ n− 1.

Notice that ds2 is a product metric. By using (3.12)–(3.13), we obtain

Γj
kl =

√
1+r2 Γ̃j

kl, Γλ
αj = Γj

αλ = 0, Γλ
µµ =

√
1+r2 Γ̂λ

µµ, (3.14)

Γλ
nn =

√
1+r2 Γ̂λ

nn, Γn
µµ = (1+r2)Γ̂n

µµ, Γn
nn = (1+r2)Γ̂n

nn, (3.15)

where q + 1 ≤ λ, µ < n. On the other hand, by using (3.8)–(3.9), we also have

Λ00,α = irδnα, Λjk,l =
√
1+r2 Λ̃jk,l, Λλj,α = Λjλ,α = 0, Λjn,j = −ir, (3.16)

Λλµ,ν =
√
1+r2 Λ̂λµ,ν , Λλn,λ = Λ̂λn,λ =

i

r
, Λnλ,n = 0, Λnn,n = Λ̂nn,n =

i

r
, (3.17)

where q + 1 ≤ λ < n.
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Proof of Theorem 1.1 According to the identities (2.17) and (3.4), together with (3.14)

and (3.16), we obtain

F j
kk = −Γj

kk + Λkj,k =
√
1+r2 (−Γ̃j

kk + Λ̃kj,k) =
√
1+r2 f̃ j

kk. (3.18)

Similarly, we obtain

F j
λλ = F j

nn = Fλ
jj = 0, Fλ

µµ =
√
1+r2 ψλ

µµ, Fλ
nn =

√
1+r2 ψλ

nn, (3.19)

Fn
jj = −ir, Fn

λλ = (1+ r2)ψn
λλ − ir, Fn

nn = (1+ r2)ψn
nn − 2ir, (3.20)

where q + 1 ≤ λ, µ < n. Therefore, f is minimal if and only if

q∑

k=1

f̃ j
kk =

n∑

µ=q+1

ψλ
µµ = 0,

n∑

µ=q+1

ψn
µµ =

i(n+ 1)r

1 + r2
,

where 1 ≤ j ≤ q and q + 1 ≤ λ < n. Thus, the first statement in theorem follows from

Proposition 2.2.

Denote the associated 1-forms α
H̃
, α

Ĥ
, αH of the Lagrangian immersions f̃ , ψ, F respec-

tively by

α
H̃

=

q∑

j=1

H̃j θ̃
j , α

Ĥ
=

n∑

λ=q+1

Ĥλ θ̂
λ, αH =

n∑

β=1

Hβ θ
β .

By using (2.18) and (3.18)–(3.20), we obtain

Hj =
√
1 + r2 H̃j , Hλ =

√
1 + r2 Ĥλ, Hn = (1 + r2) Ĥn + (n+ 1)r, (3.21)

where q + 1 ≤ λ < n. Recall the definition of the covariant derivative DHβ of Hβ, i.e.,

DHβ := Hβγθ
γ = dHβ −Hγθ

γ
β .

Then, by using Lemma 3.1 and (3.21), through direct calculations, we have

Hjj = (1 + r2)H̃jj , Hnn = (1 + r2)Ĥnn + r2(1 + r2)Ĥn;n, (3.22)

Hλλ = (1 + r2)Ĥλλ − (1 + r2)[r2Ĥn + (n+ 1)r]Γ̂n
λλ, (3.23)

where Ĥn = −Im((ĤC , en)) is a smooth function on Σ2×T 1 and Ĥn;n = 〈grad Ĥ, en〉. Therefore,
the co-differential of αH is

δαH = (1 + r2)(δα
H̃
+ δα

Ĥ
)+(1 + r2)[(r2Ĥn + (n+ 1)r)Γ̂n

λλ − r2Ĥn;n], (3.24)

where δα
H̃
, δα

Ĥ
are the co-differential of α

H̃
, α

Ĥ
with respect to metrics induced by f̃ , ψ on

Σ1, Σ2×T 1, respectively. Then, (3.24) gives that F is H-minimal if and only if

(δα
H̃
+ δα

Ĥ
) = r2Ĥn;n, (3.25)

by the fact θn = rdt
1+r2

and hence θnλ = Γ̂n
µλθ

µ = 0. On the other hand, from Proposition 2.2

and (2.22), we know Ĥn = − 1
r
which is independent of t, i.e., Ĥn;n = 0. This completes the

proof of Theorem 1.1.
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4 Examples

Let m = 2κ be an even number, and let Rm be the m-dimensional Euclidean space. Define

a linear transformation J by

J : Rm → R
m, J x = (−xκ+1, · · · ,−xm, x1, · · · , xκ),

where x = (x1, · · · , xκ, xκ+1, · · · , xm) ∈ Rm. It has the properties J 2 = −id and

〈J x,J y〉 = 〈x, y〉 (4.1)

for x, y ∈ Rm. Consider the unit sphere Sm−1(1) = {x ∈ Rm | |x|2 = 1} in Rm. Locally, we

choose an orthonormal frame field ê1, · · · , êm−1, êm = x, so that the structure equations are

given by

dx =

m−1∑

λ=1

θ̂λ êλ, dθ̂λ = −θ̂λµ ∧ θ̂µ, (4.2)

where the 1-forms θ̂λ, θ̂λµ are real and θ̂λµ satisfies θ̂λµ + θ̂µλ = 0. Further, we have

dêλ =

m−1∑

µ=1

θ̂µλ êµ, 1 ≤ λ, µ < m. (4.3)

Define an immersion ψ from Sm−1(1)× T 1 into Cm by

(x, eit) 7→ z =

√
2

2
eit(x + iJ x). (4.4)

Choosing the moving frame along ψ to be

eλ =

√
2

2
eit(eλ + iJ eλ), 1 ≤ λ < m, em = iz. (4.5)

Notice that the differential operator d is commute with J , by using (4.1) and (4.2), we have

θλ := (dz, eλ) = θ̂λ, 1 ≤ λ < m, θm := (dz, em) = dt. (4.6)

It is easy to check that ψ is Lagrangian by the fact that θλ and θm are real. Set ωλµ = (deλ, eµ).

Through direct calculations, we have

ωλλ = ωmm = iθm, ωλm = iθλ, 1 ≤ λ < m, ωλµ = θµλ, 1 ≤ λ < µ < m. (4.7)

Denote the connection 1-forms with respect to θλ by θλµ, we have

θmλ = 0, θλµ = θ̂λµ, 1 ≤ λ, µ < m. (4.8)

From (2.21) and (4.7)–(4.8), we obtain

ψλ
µµ = 0, ψm

µµ = i, 1 ≤ µ ≤ m. (4.9)
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Proposition 4.1 The map ψ : Sm−1(1)×T 1 → Cm given by (x, eit) 7→ z =
√
2
2 eit(x+iJ x)

is an H-minimal Lagrangian immersion in Cm, and its complex mean curvature ĤC satisfies

ĤC = −m z.

Proof From (2.6), we have Ĥλ = 0 for 1 ≤ λ < m and Ĥm = −m. By using (2.7) and

(4.8), we obtain δα
Ĥ

= 0. So, ψ is H-minimal. This completes the proof.

Let x : Σ1 → Sq+1(1) →֒ Rq+2, p 7→ x(p) be a hypersurface in Sq+1(1), and let n be the

unit normal vector field of Σ1 in Sq+1(1). Define a map f : Σ1 → S2q+3(1) by

p 7→
√
2

2
(x+ in).

By [20, Proposition 3.1], we know that Gauss map π ◦ f : Σ1 → Qq is a Lagrangian immersion,

where π : S2q+3(1) → CP
q+1 is the Hopf fibration. Furthermore, π ◦ f is minimal (see [20]) if

x is an isoparametric immersion. Thus, by Theorem 1.2, the map

F : Σ1 × Sm−1(1)× T 1 → Qn, (x, x, eit) 7→ 1

2
[(x+ in, eit(x + iJ x))]

is H-minimal. Particularly, let x : Sq1(r1) × Sq2(r2) → Sq+1(1), q1 + q2 = q, r21 + r22 = 1 be

the Clifford hypersurface in Sq+1(1). It is known that Clifford hypersurfaces are isoparametric

hypersurface. Then, the map

f̃ : Sq1(r1)× Sq2(r2) → Qq, (p1, p2) 7→
√
2

2

[
(p1, p2) + i

(
− r2
r1
p1,

r1
r2
p2

)]

is a minimal Lagrangian immersion. Therefore, by Theorem 1.2, the map F : Sq1(r1)×Sq2(r2)×
Sm−1(1)× T 1 → Qn given by

((p1, p2), x, e
it) 7→ 1

2

[(
(p1, p2) + i

(
− r2
r1
p1,

r1
r2
p2

))
, eit(x+ iJ x)

]

is H-minimal, and it is minimal if q1 + q2 = m− 1. Here, q1 + q2 +m = n.
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