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1 Introduction

Let Ω be an open subset of Rn, n ≥ 2. We consider the elliptic equations in divergence form

Lu :=
∑

ij

∂i(aij(x)∂ju(x)) = div F (x) =
∑

i

∂ifi, (1.1)

where the matrix of coefficients A(x) = (aij(x))n×n satisfies aij(x) = aji(x), that each aij is

measurable, and uniform ellipticity on Ω:

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 (1.2)

for some 0 < λ ≤ Λ < +∞. We say that u ∈ W
1,2
loc (Ω) is a weak solution to (1.1) if

−
ˆ

Ω

∑

ij

aij(x)∂ju(x)∂iϕ(x)dx =

ˆ

Ω

F (x) · ∇ϕ(x)dx (1.3)

for all ϕ ∈ Lip0(Ω), the space of Lipschitz functions on Ω with compact support.
In [9], a point-wise Lipschitz estimate has been given. In this note, we are concerned with

the Lp-estimate for the gradient of weak solutions to (1.1) in the form

ˆ

Br(x)

|∇u|pdx ≤ C

ˆ

B2r(x)

(|u|p + |F |p)dx for all B2r ⊂⊂ Ω. (1.4)

This estimate (1.4) with constant coefficients was first proved by Calderón-Zygmund. It was

extended to the case where the coefficients are continuous by De Giorgi and Companatto, the
case where the coefficients are in VMO space (hence, may be discontinuous) (see [4]), and the
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case where the coefficients have small BMO semi-norms (see [5]). Let us recall the concept of
BMO semi-norms of matrix A,

‖A‖BMO(Ω) := sup
x∈Ω

sup
0<r<R

 

Br(x)

|A − Ar|2dx, (1.5)

where

Ar =

 

Br(x)

A(x)dx.

Theorem 1.1 (see [5, Theorem 1.5]) Let Ω be an open subset of Rn, n ≥ 2 and 2 ≤ p < ∞.

There exists a number δ = δ(p, λ, Λ, n) > 0 such that for all A which is uniformly elliptic

on Ω with elliptic constants λ, Λ (see (1.2)) and if u is a weak solution to (1.1) such that

‖A‖BMO(Ω) ≤ δ and F ∈ Lp(Ω,Rn), then u ∈ W
1,p
loc (Ω) and (1.4) holds on any ball Br(x) with

B2r(x) ⊂ Ω, where the constant C is independent of u and F .

Before stating our main result, we recall the notation of semi-convex functions.

Definition 1.1 Let Ω be an open subset of R
n and a ∈ R, we say that a function f is

a-convex on Ω if f(x) − a
2 ‖x‖2 is convex on Ω.

Remark 1.1 (1) If f is a-convex for some a ∈ R, then f ∈ Liploc(Ω).

(2) If f ∈ C2, then f is a-convex if and only if Hess f ≥ a · I, where I is the identity matrix.

The main result of the note is the following.

Theorem 1.2 Let Ω be an open subset of R
n, a ∈ R and 2 ≤ p < ∞. There exists a

number δ = δ(p, n, λ, Λ, a, M) > 0 such that for all A which is uniformly elliptic on Ω with

elliptic constants λ, Λ and F ∈ Lp(Ω,Rn), the following property holds:

If u ∈ W 1,2(Ω) is a weak solution to (1.1) and if there exists an a-convex function Φ on Ω

with |∇Φ| + |∇|∇Φ|| ≤ M on Ω such that

‖A − A0‖L∞(Ω) ≤ δ, (1.6)

then u ∈ W
1,p
loc (Ω) and the estimate (1.4) holds for all ball Br(x) with B2r(x) ⊂ Ω, where

A0(x) = (a0
ij(x))n×n, is defined by

a0
ij(x) = (1 + |∇Φ(x)|2)

1

2

(
δij − ∂iΦ(x)∂jΦ(x)

1 + |∇Φ(x)|2
)

a.e. x ∈ Ω. (1.7)

We will extend this result to parabolic equations in Section 5.

To compare with Byun-Wang’s result in [5], we consider the following example, the matrix

of coefficients A0 in Theorem 1.2 has no a small BMO semi-norm.

Example 1.1 Let a1, · · · , an ∈ (0, +∞) and Ω = B1(0) and Φ(x) =
( ∑

i

aix
2
i

) 1

2 on B1(0).

Then

∂iΦ =
aixi

Φ
a.e. in B1(0) (1.8)

and

a0
ij(x) =

(
1 +

∑
i

a2
i x2

i

∑
i

aix
2
i

) 1

2

(
δij − aiajxixj

(
1 +

∑
i

a2

i
x2

i

∑
i

aix2

i

)
· ∑

i

aix
2
i

)
. (1.9)



A Note on Gradient Estimates for Elliptic Equations with Discontinuous Coefficients 3

In particular, when we take a1 = · · · = an = c > 0, then

a0
ij(x) =

√
1 + c

(
δij − c

1 + c

xi

|x|
xj

|x|
)

. (1.10)

It is clear that a0
ij is not continuous at x = 0. Now we check that its BMO semi-norm is not

small.

For each i = 1, · · · , n, we have

a0
ii(x) =

√
1 + c

(
1 − c

1 + c

x2
i

|x|2
)
,

then

 

Br(0)

a0
ii(x)dx =

√
1 + c

 

Br(0)

1 − c

1 + c

x2
i

|x|2 dx =
√

1 + c ·
(

1 − c

1 + c

1

n

)
,

it implies

∣∣∣a0
ii(x) −

 

Br(0)

a0
ii(x)dx

∣∣∣ =
√

1 + c
c

1 + c

∣∣∣ x2
i

|x|2 − 1

n

∣∣∣.

Therefore,

 

Br(0)

∣∣∣a0
ii(x) −

 

Br(0)

a0
ii(x)

∣∣∣dx

=
√

1 + c
c

1 + c

 

Br(0)

∣∣∣ x2
i

|x|2 − 1

n

∣∣∣dx

≥
√

1 + c
c

1 + c

1

|Br(0)|

ˆ

{
|xi|< |x|√

2n

}
∩Br(0)

∣∣∣ x2
i

|x|2 − 1

n

∣∣∣dx

≥
√

1 + c
c

1 + c

1

2n

∣∣{|xi| <
|x|√
2n

}
∩ Br(0)|

|Br(0)| ,

where we denote by |A| the Lebegue’s measure of A ⊂ R
n. If we take the spherical coordinate

xi = ρ sin θ with ρ < r and θ ∈
[

− π
2 , π

2

]
. Then the BMO semi-norm of A0 has a lower bound

√
1 + c

c

1 + c

1

2n

∣∣{ sin2 θ < 1
2n

}
∩ B1(0)

∣∣
|B1(0)| > 0,

which goes to +∞ as c → +∞.

2 Preliminaries on Alexandrov Spaces

Let (X, d) be a locally compact complete metric space. A curve γ : [a, b] → X is rectifiable
if

L(γ) := sup
a=a0≤a1≤···≤an=b

n−1∑

i=0

d(γ(ai), γ(ai+1)) < +∞,

where a = a0 ≤ a1 ≤ · · · ≤ an = b is a partition of [a, b].
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Definition 2.1 Let k ∈ R. The metric space (X, d) is called to be an Alexandrov space with

curvature ≥ k if it satisfies the following conditions:

(1) For any two points p, q ∈ X, there exists a curve γ joining p and q with L(γ) = d(p, q),

such a curve is called a geodesic;

(2) for any p ∈ X, there exists a neighborhood U of p such that if x, y, z ∈ U\{p}, then

∡kxpy + ∡kypz + ∡kzpx ≤ 2π,

where, if k > 0,

∡kxpy = arccos
(cos(d(x, y)

√
k) − cos(d(x, p)

√
k) cos(d(p, y)

√
k)

sin(d(x, p)
√

k) sin(d(p, y)
√

k)

)

(with appropriate modification if k ≤ 0). This makes sense if k[d(p, x)+d(x, y)+d(y, p)]2 ≤ (2π)2.

Otherwise, we put ∡kxpy = −∞.

It is well-known (see [2, Theorem 10.8.2, 3]) that the Hausdorff dimension of an Alexandrov

space (X, d) is a nonnegative integer or +∞. If the Hausdorff dimension dimH(X) = n < ∞,

we say that X is a n-dimensional Alexandrov space. And we denote its n-dimensional Hausdorff

measure by µ = Hn. We refer the readers to [2–3] for the basic theory of Alexandrov geometry.

Let (X, d) be a n-dimensional Alexandrov space with curvature bounded below by k, and

n ≥ 2. There exists a decomposition (see [3, 11]):

X = X∗ ∪ Σ, X∗ ∩ Σ = ∅,

where X∗ is a convex open subset which is a Lipschitz manifold, and µ(Σ) = 0. Moreover, there
exists a L∞(X∗)-Riemannian metric g = (gij)n×n on X∗ such that the distance dg induced by

g coincides with the original metric d, and µ is equal to the Riemannian volume, that is,

µ =
√

Gdx1 · · · dxn, G := det(gij) (2.1)

under a local coordinate system.

The Sobolev spaces W 1,2(X, d, µ) for the metric measure spaces (X, d, µ) were given in [1, 7].

Let Ω ⊂ X be a bounded domain, we say that a function f ∈ W
1,2
loc (Ω, d, µ) if f ∈ W 1,2(Ω′, d, µ)

for any open subset Ω′ ⊂⊂ Ω. It is well-known that, for any f, h ∈ W 1,2(Ω, d, µ),

〈∇gf, ∇gh〉 = gij∂if · ∂jh µ − a.e. x ∈ Ω, (2.2)

where the matrix (gij)n×n is the inverse matrix of (gij)n×n and ∂if is the weak derivative with

respect to a local coordinate system {x1, · · · , xn}.

Definition 2.2 (Measure-valued Laplacian) Let (X, d) be a n-dimensional Alexandrov space

with curvature bounded below, and let Ω ⊂ X be a bounded open subset. Let u ∈ W
1,2
loc (Ω, d, µ).

If there exists a Radon measure ν on Ω such that

ˆ

Ω

ϕdν = −
ˆ

Ω

〈∇gu, ∇gϕ〉dµ, ∀ϕ ∈ Lip0(Ω), (2.3)

then ν is unique, such a measure ν is called the measured Laplacian of f and is denoted by

ν = ∆u.

The following Bochner formula is proved in [13, Theorem 1.2] and [14, Theorem 3.5].
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Proposition 2.1 (Bochner formula) Let (X, d) be a n-dimensional Alexandrov space with

curvature bounded below by k ∈ R, and let Ω ⊂ X be a bounded open subset. If u ∈ W
1,2
loc (Ω, d, µ)

and ∆u = f · µ with f ∈ W 1,2(Ω, d, µ). Then

|∇gu|2 ∈ L∞
loc(Ω, d, µ) ∩ W

1,2
loc (Ω, d, µ)

and

−
ˆ

Ω

〈∇g|∇gu|2, ∇gϕ〉dµ ≥ 2

ˆ

Ω

(f2

n
+ 〈∇gu, ∇gf〉 + K|∇gu|2

)
ϕdµ (2.4)

for all ϕ ∈ Lip0(Ω), ϕ ≥ 0.

3 The Model Elliptic Operator

Let n ≥ 2, a ∈ R, Ω := B2(0) ⊂ R
n, and let Φ : B2(0) → R be an a-convex function on

B2(0). Define its graph by

X := {(x, xn+1) ∈ R
n+1 : x ∈ Ω, xn+1 = Φ(x)}. (3.1)

We define the natural coordinate by Ψ : Ω → X by

Ψ : (x1, · · · , xn) 7→
n∑

i=1

xiAi + Φ(x1, · · · , xn)An+1, (3.2)

where Ai = (0, · · · , 0, 1, 0, · · · , 0) ∈ R
n+1 (1 in the i-th place). The induced Riemannian metric

g = (gij)n×n on Ω is given by

gij = g(ei, ej) = ĝ(Ai + ∂iΦAn+1, Aj + ∂jΦAn+1) = δij + ∂iΦ∂jΦ, (3.3)

where

ei = Φ∗(Ai + ∂iΦA)

and ĝ is the induced Riemannian metric on graph X . Then the inverse matrix of g, denoted by

(gij)n×n, is given by

gij = δij − ∂iΦ∂jΦ

1 + |∇Φ|2 . (3.4)

The normal vector is

η =

n∑

i=1

−∂iΦAi + An+1,

then the second fundamental form is

hij =
Φij

1 + |∇Φ|2 .

Lemma 3.1 The metric space (Ω, dg) is a n-dimensional Alexandrov space with curvature

bounded below by −C(n, a) for some constant C(n, a) ≥ 0.

Proof Step 1 If Φ is C3, then we can obtain the result by using the Gauss equation

R(ei ∧ ej, ei ∧ ej) = hijhji − hiihjj .
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Step 2 If Φ is a general a-convex function, then Φ ∈ Liploc(Ω). It is well-known that (see
[12]) there is a sequence of a-convex functions Φj ∈ C3(Ω) such that Φj converges uniformly

to Φ on each Ω′ ⊂⊂ Ω (see [12]). Therefore, for any Ω′ ⊂⊂ Ω, the graph of Φj with metric d
ĝj

Hausdorff converges to (X, d
ĝ
) on Ω′. By [2, Proposition 10.7.1], the limit space (X, d

ĝ
) is also

a n-dimensional Alexandrov space with curvature bounded below by −C(n, a).

Now let us consider the model operators. We set A0(x) = (a0
ij(x))n×n as

a0
ij(x) := (1 + |∇Φ(x)|2)

1

2

(
δij − ∂iΦ(x)∂jΦ(x)

1 + |∇Φ(x)|2
)

a.e. x ∈ B2(0). (3.5)

By a direct calculation, the set of its all eigenvalues is

(1 + |∇Φ(x)|2)
1

2

{
1, 1, · · · , 1,

1

1 + |∇Φ|2
}

. (3.6)

Therefore, it is clear that the model elliptic operator

L0u :=
∑

ij

∂i(a
0
ij∂ju) (3.7)

is uniformly elliptic on each Ω′ ⊂⊂ Ω. In fact, since Φ ∈ Liploc(Ω), there is M > 0 such that

sup
Ω′

|∇Φ| ≤ M . This yields that all eigenvalues of A0(x) lie in [(1 + M2)− 1

2 , (1 + M2)
1

2 ] for all

x ∈ Ω′.
The relation between the operator L0 and ∆ on the Alexandrov space (Ω, dg) is given in the

following property.

Lemma 3.2 A function u ∈ W
1,2
loc (Ω) (with respect to the Euclidean distance and Lebegue’s

measure Ln) if and only if u ∈ W
1,2
loc (Ω, dg, µ). Moreover, if u ∈ W

1,2
loc (Ω) then ∆u = L0u · Ln.

Proof Since Φ ∈ Liploc(Ω), for each Ω′ ⊂⊂ Ω, we have |∇Φ| ≤ M for all x ∈ Ω′. This

implies the coordinate map Ψ in (3.2) is bi-Lipschitz with

1 ≤ dg(Ψ(x), Ψ(y))

|x − y| ≤ (1 + M2)
1

2 , ∀ x, y ∈ Ω.

Therefore, we conclude that u ∈ W 1,2(Ω′) if and only if u ∈ W 1,2(Ω′, dg, µ). Moreover, for any

u ∈∈ W 1,2(Ω′)

1 ≤ |∇gu|
|∇u| ≤ (1 + M2)

1

2 , ∀ x ∈ Ω. (3.8)

For any ϕ ∈ Lip0(Ω), by Definition 2.2 and (2.1), we get

∆u(ϕ) = −
ˆ

Ω

〈∇gu, ∇gϕ〉dµ = −
ˆ

Ω

gij · ∂iu · ∂jϕ ·
√

Gdx

=

ˆ

Ω

∂j(gij
√

G∂iu)ϕdx =

ˆ

Ω

L0uϕdx.

The proof is finished.

From this lemma, one can obtain a Bochner-type formula for the operator L0.

Lemma 3.3 Let Ω′ ⊂⊂ Ω. Suppose that |∇Φ| ≤ M1 and |∇|∇Φ|| ≤ M2 on Ω′ for some

M1, M2 > 0. If u ∈ W 1,2(Ω′) with L0u ∈ W 1,2(Ω′), then we have |∇u|2 ∈ W
1,2
loc (Ω′) and

1

2
L0(|∇gu|2) ≥ 〈∇gu, ∇g(L0u)〉 − C|∇gu|2 (3.9)
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in the sense of distributions on Ω′, where the constant C = Cn,a,M1,M2
depends only on n, a, M1

and M2.

Proof By applying Lemma 3.2 to u and (2.1), we have

∆u = L0u · Ln =
L0u√

G
· µ on Ω′.

From the assumption that
|∇Φ| ∈ Lip(Ω′)

and √
G = (1 + |∇Φ|2)

1

2 ∈ [1, 1 + M ],

we get 1√
G

∈ Lip(Ω′). Since L0u ∈ W 1,2(Ω′), then we have L0u√
G

∈ W 1,2(Ω′). By using

Proposition 2.1, we conclude that

|∇gu|2 ∈ W
1,2
loc (Ω′, dg, µ)

and that

1

2
∆(|∇gu|2) ≥

((
L0u√

G

)2

n
+

〈
∇gu, ∇g

(L0u√
G

)〉
− C(n, a)|∇gu|2

)
· µ

in the sense of distribution.

By applying Lemma 3.2 again to |∇u|2, we have |∇gu|2 ∈ W
1,2
loc (Ω′) and for almost all

x ∈ Ω′,

1

2
L0(|∇gu|2) ≥

((L0u)2

n · G
+

〈
∇gu, ∇g

(L0u√
G

)〉
− C(n, a)|∇gu|2

)√
G.

Therefore, it holds for almost all x ∈ Ω′ that

1

2
L0(|∇gu|2) ≥ (L0u)2

n ·
√

G
+ 〈∇gu, ∇g(L0u)〉 +

〈
∇gu, ∇g

( 1√
G

)〉
L0u − C(n, a)|∇gu|2

√
G.

Notice that for almost all x ∈ Ω,

−
〈

∇gu, ∇g

( 1√
G

)〉
L0u ≤ |∇gu| · |L0u| · |∇gG|G− 3

2 ≤ 2M1M2|∇gu| · |L0u|

≤ (L0u)2

n
√

G
+ n(M1M2)2|∇gu|2

√
G.

Instituting into the above inequality, one get

1

2
L0(|∇gu|2) ≥ 〈∇gu, ∇g(L0u)〉 − (C(n, a) + n(M1M2)2)|∇gu|2

√
G.

The proof is complete.

4 The Elliptic Case

Let Ω := B2(0) be a domain in R
n, n ≥ 2. We consider the elliptic equations in divergence

form

Lu :=
∑

ij

∂i(aij(x)∂ju(x)) = div F (x) =
∑

i

∂ifi, (4.1)

where the matrix of coefficients A(x) = (aij(x))n×n satisfies aij(x) = aji(x), that each aij is
measurable, and uniform ellipticity on Ω with elliptic constants λ, Λ, and F ∈ Lp(Ω,Rn).
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Lemma 4.1 Let u ∈ W 1,p(B2(0)) be a weak solution to the equation L0u = 0 where L0u

defined in (3.7) by some a-convex function Φ on B2(0) with |∇Φ| + |∇|∇Φ|| ≤ M for some

M > 0 on B2(0), then

‖∇u‖2
L∞(B1(0)) ≤ Cn,a,M

 

B2(0)

|∇u|2dx. (4.2)

Proof Since L0u = 0, by Lemma 3.3, we have

L0(|∇gu|2) ≥ −C|∇gu|2 (4.3)

in the sense of distribution; therefore, by the De Giorgi-Nash-Moser theory for elliptic equations

(see [8, Theorem 4.1]), we have

‖∇gu‖2
L∞(B1(0)) ≤ C

 

B2(0)

|∇gu|2dx. (4.4)

It follows the desired estimate by applying (3.8).

Proof of Theorem 1.2 By [6, Theorem A], comparing L with L0, there exists a number
δ = δ(p, n, λ, Λ, a, M) such that if

‖aij − a0
ij‖L∞(B1(0)) ≤ δ, (4.5)

then u ∈ W
1,p
loc (B2(0)). The proof of Therem 1.2 is finished.

5 The Parabolic Case

Let Ω = B2(0) be a bounded domain in R
n. In this section, we consider the interior W 1,p

estimates for weak solution to parabolic equations in divergence form

ut = div(a(x, t, ∇u)) + div F, x ∈ Ω, t > 0, (5.1)

where a : Ω × (0, ∞) × R
n → R

n, F ∈ Lp(Ω × (0, ∞),Rn). We assume that a(x, t, ξ) is a

Caratheodory function (in the sense that is measurable in (x, t) and continuous with respect to

ξ for each x) and satisfies the following conditions:

(1) a(x, t, 0) = 0;
(2) 〈a(x, t, ξ) − a(x, t, η), (ξ − η)〉 ≥ γ|ξ − η|2;

(3) |a(x, t, ξ)| ≤ Γ|ξ|;
(4) a is linear about ξ;

where γ and Γ are positive constants. If F is a constant, as in [10], the condition (4) can be

removed.
Denote the following parabolic rectangles in R

n+1:

(1) R = {(x, t) ∈ R
n+1 : |xi| <

√
2, i = 1, 2, · · · , n, t0 − 2 < t < t0} ⊂ B2(0) × (0, ∞),

(2) R′ = {(x, t) ∈ R
n+1 : |xi| <

√
2

2 , i = 1, 2, · · · , n, t0 − 1
2 < t < t0} ⊂ B1(0) × (0, ∞).

We define the parabolic boundary of R as

∂pR := {(x, t) : |xi| ≤
√

2, t = t0 − 2} ∪ {(x, t) : |xi| =
√

2, t0 − 2 < t < t0}. (5.2)

Definition 5.1 We say that u ∈ L2(R), with ut, ∇u ∈ L2(R), is a weak solution to (5.1) if
ˆ

R

uϕtdxdt =

ˆ

R

〈a(x, t, ∇u), ∇ϕ〉dxdt −
ˆ

R

〈F, ∇ϕ〉dxdt (5.3)

for all ϕ ∈ W1,2
0 (R), the compeletion of C∞

0 (R) with respect to the L2-norm of the function and

its gradient.
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The reference equation is

ut = div(a0(x, t, ∇u)) = div(A0(∇u)), x ∈ Ω, 0 < t < ∞, (5.4)

where A0(x, t) = (a0
ij(x, t))n×n, and a0

ij(x, t) is defined as in (3.5) for each fixed t > 0.

Lemma 5.1 If w is a weak solution to (5.4), then we have

‖∇w‖2
L∞(R′) ≤ C

ˆ

R

|∇w|2dxdt, (5.5)

where C is a constant depending only on n, a and M .

Proof By Lemma 3.3, we have

1

2
L0(|∇gw|2) · Ln ≥ (〈∇gw, ∇g(L0w)〉 − C|∇gw|2) · Ln (5.6)

in the sense of distribution.

Since w satisfies the reference equation (5.4), we have

(
L0 − ∂

∂t

)
|∇gw|2 · Ln ≥ −C|∇gw|2 · Ln (5.7)

in the sense of distribution. From this and the equivalence between the induced distance dg

and the standard Euclidean distance, we obtain the desired estimates.

Theorem 5.1 Given n ≥ 2, p > 2, Ω = B2(0).There exists a constant δ = δ(n, p, λ, Λ, a, M)

such that if F ∈ Lp(R;Rn) and if u is a weak solution to (5.1) with

|a(x, t, ξ) − A0(ξ)| ≤ δ|ξ| (5.8)

uniformly in x and t. Then |∇u| ∈ L
q
loc(Ω) for all 2 < q < p.

Proof If F is a constant, by [10, Theorem 1.1], the proof is completed. Otherwise, we

only need to modify [10, Lemma 3.3]. Let w be a weak solution to the reference equation (5.4)

and satisfy w|∂pR = u, we have

γ

 

R

|∇(u − w)|2dxdt

≤
 

R

〈A0(∇u) − A0(∇w), ∇u − ∇w〉dxdt

≤ 1

2

 

R

|u(x, T ) − w(x, T )|2dx +

 

R

〈A0(∇u) − A0(∇w), ∇u − ∇w〉dxdt

≤
 

R

[(u − w)t − (div A0(∇u) − div A0(∇w))](u − w)dxdt

=

 

R

(ut − div A0(∇u))(u − w)dxdt −
 

R

(wt − div A0(∇w))(u − w)dxdt

=

 

R

[ut − div(a(x, t, ∇u))](u − w)dxdt

+

 

R

[div(a(x, t, ∇u)) − div A0(∇u)](u − w)dxdt

=

 

R

[ut − div(a(x, t, ∇u))](u − w)dxdt
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−
 

R

〈a(x, t, ∇u) − A0(∇u), ∇(u − w)〉dxdt

=

 

R

〈F, ∇(u − w)〉dxdt −
 

R

〈a(x, t, ∇u) − A0(∇u), ∇(u − w)〉dxdt

≤
(  

R

|F |2dxdt
) 1

2

( 

R

|∇(u − w)|2dxdt
) 1

2

+ δ
( 

R

|∇u|2dxdt
) 1

2

( 

R

|∇(u − w)|2dxdt
) 1

2

, (5.9)

where we have used the condition (5.8) and Cauchy-Schwarz inequality for the last inequality.
So we obtain

 

R

|∇(u − w)|2dxdt ≤ C
(

δ2

 

R

|∇u|2dxdt +

 

R

|F |2dxdt
)

. (5.10)

Since a is linear about ∇u, we can multiply (5.1) by a small constant such that ‖F‖Lp(R) is

small enough. We complete our proof.
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