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Abstract A new class of backward particle systems with sequential interaction is proposed

to approximate the mean-field backward stochastic differential equations. It is proven

that the weighted empirical measure of this particle system converges to the law of the

McKean-Vlasov system as the number of particles grows. Based on the Wasserstein met-

ric, quantitative propagation of chaos results are obtained for both linear and quadratic

growth conditions. Finally, numerical experiments are conducted to validate our theoretical

results.
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1 Introduction

The McKean-Vlasov stochastic differential equations (MV-SDEs for short), also known as

mean-field or distribution dependent SDEs, originated from the work of [1] which provided a

probabilistic interpretation for nonlinear Vlasov equations. Since then, MV-SDEs have found

a wide range of applications in various fields such as finance, control theory and statistical

physics (see [2–6] and references therein). The theory of propagation of chaos (PoC for short)

was initially introduced by [7] to investigate particle system approximations of non-local partial

differential equations (PDEs for short) that arise in thermodynamics. PoC for large interacting

particle systems has become a crucial theory in many areas of applied mathematics (see [8–

9]). Recent developments and applications of PoC can be found in works such as [6, 10–11].

Furthermore, the numerical simulation of MV-SDE is an important issue, and the PoC property

is widely applied in computational problems (see [2, 12–13], etc.).

Since the work of [14], backward stochastic differential equations (BSDEs for short) have

been used widely in a variety of areas (see [15–17]). Mean-field backward stochastic differential

equations (MF-BSDEs for short), also called McKean-Vlasov BSDEs (MV-BSDEs for short),

were introduced by [18–19]. Similar to the forward SDE, we also have backward PoC property
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for McKean-Vlasov BSDEs (see [20]). Since most BSDEs cannot be solved analytically, nu-

merical methods must be applied to approximate their solutions. Various numerical methods

have been proposed over the past few decades (see [21–27]). As for numerical methods for MV-

BSDEs, a variety of methods can be found in the literature for mean-field games (see [28–31]).

Since [32–33] proposed the Deep BSDE method, deep learning based methods have also been

used to solve McKean-Vlasov BSDEs (see [34–38]).

Recently, [39] propose a new class of particle systems with sequential interaction to approx-

imate the McKean–Vlasov SDEs. They use a recursive form to compute McKean-Vlasov SDEs

particle-by-particle (or batch-by-batch), resulting in a great reduction of the computational

burden. Specifically, they derive estimates for recursive inequalities, and get a new estimate for

the convergence rate of weighted empirical measures of an i.i.d. sequence in the Wasserstein

distance. The results for classical empirical measures can be founded in [40–42] and references

therein. More significantly, as more and more particles are added (without affecting existing

particles), the approximation accuracy continuously improves until it reaches the desired level.

In other words, there is no need to specify the required number of particles in advance.

In this paper, we adopt the approach of [39] to approximate McKean-Vlasov BSDE by a

recursive form. We model backward particles as solutions of backward stochastic differential

equations with sequential interaction and investigate the asymptotic behavior of the BSDE

system. The major feature of the system is that each particle is influenced solely by the

particles with smaller ordinal numbers. Specifically, the n-th particle process Y n (n ≥ 1) is

recursively determined by



Y n
t = ξn +

∫ T

t

fs(Y
n
s , µ

n−1
s , Zn

s ) ds−

∫ T

t

Zn
s dWn

s , t ∈ [0, T ],

µn
t = µn−1

t + αn(δY n
t
− µn−1

t ),

(1.1)

where µ0
t ≡ δ0. Here, the update rate sequence {αn}n≥1 is decreasing and positive, with α1 = 1.

The multidimensional Brownian motions Wn are independent and the terminal data Y n
T are

i.i.d. Rd-valued random variables independent of {Wn}n≥1. It is evident that µ
n
t is a weighted

empirical measure of Y 1
t , · · · , Y

n
t . If we set αn = 1

n
, µn

t becomes classical empirical measure.

As the interaction is asymmetric and heterogeneous, the model (1.1) stands in sharp contrast

to the corresponding mean-field interacting system {Y n,N : n = 1, · · · , N} given by




Y n,N
t = ξn +

∫ T

t

fs(Y
n,N
s , µN

s , Z
n,n,N
s ) ds−

N∑

k=1

∫ T

t

Zn,k,N
s dW k

s , t ∈ [0, T ],

µN
t =

1

N

N∑

n=1

δ
Y

n,N
t

.

(1.2)

It is known from the theory of backward propagation of chaos (see [20, 43]) that, as N grows,

the empirical measure of the system (1.2) may converge to the law of a McKean–Vlasov BSDE

described by



Y t = ξ +

∫ T

t

fs(Y s, µs, Zs) ds−

∫ T

t

Zs dWs, t ∈ [0, T ],

µt = L(Yt) := Law(Yt).

(1.3)
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This paper establishes a similar property for the system (1.1): As n tends to infinity, both

the weighted empirical measure µn
t and the law of Y n

t converge in a very general setting to µt

defined in (1.3).

The main results of this paper give quantitative PoC estimates for the system (1.1) using

the Wasserstein distance. The proofs rely on synchronous coupling and the biggest challenge

arises from the special interaction mechanism of our model. To overcome this challenge, we

utilize new estimates for recursive inequalities introduced in [39].

Finally, we also consider the sequential propagation of chaos in one-dimensional mean-field

BSDEs with quadratic growth (QBSDEs for short). In 2000, [44] proved the existence and

uniqueness of one-dimensional BSDEs when the generator has a quadratic growth in Z and the

terminal value is bounded. The case of one-dimensional BSDEs with an unbounded terminal

value was obtained by [45–47]. The multi-dimensional case was investigated by [48–50] and the

mean-field case was considered by [43, 51].

The remainder of this paper is organized as follows. Section 2 presents some preliminary

notations and main results. Section 3 is devoted to the proofs of the BSDE and decoupled

FBSDE cases. The proofs of the QBSDE case are postponed to Section 4. Numerical examples

are provided in Section 5. Auxiliary lemmas are proven in Appendix A.

2 Main Results

Let (Ω,F ,F,P) be a complete filtered probability space on which a d-dimensional standard

Brownian motion Wt is defined, where F = {Ft}∞t=0 is the natural filtration of W augmented

by all the P-null sets in F . Denote by | · | and 〈·, ·〉 the Euclidean norm and the inner product,

respectively, in the Euclidean spaces, and by ‖ · ‖ the Frobenius norm of a matrix. Let P(E)

be the space of all Borel probability measures on a normed space (E, ‖ ·‖E). The p-Wasserstein

distance between µ, ν ∈ P(E) is defined as

Wp(µ, ν) := inf{(E[‖ξ − η‖pE ])
1
p : L(ξ) = µ, L(η) = ν}.

Denote by Pp the metric space of all probability measures µ ∈ P := P(Rd) with ‖µ‖p :=

[
∫
|x|pµ(dx)]

1
p <∞, equipped with the p-Wasserstein distance.

Throughout this paper, we fix a decreasing positive sequence {αn}n≥1 with α1 = 1. αn is

the update rate of our weighted empirical measures. We denote

α∞ := lim
n→∞

αn, α := lim inf
n→∞

αn − αn+1

α2
n

, α := lim sup
n→∞

αn − αn+1

α2
n

.

In the following, we will frequently encounter the weighted sum sn recursively given by

sn = sn−1 + αn(xn − sn−1).

This gives

sn =

n∑
i=1

wixi

n∑
i=1

wi

,
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where w1 = 1 and wn = αn

n∏
i=2

(1 − αi)
−1 for n ≥ 2. For simplicity, we denote such a weighted

sum sn by Kn(x), i.e.,

Kn(x) :=

n∑
i=1

wixi

n∑
i=1

wi

.

2.1 BSDE

In this subsection, we investigate the asymptotic behavior of a backward particle system with

sequential interaction. Specifically, we will provide the convergence of the backward particle

systems and their rate of convergence.

Let {ξn;n ≥ 1} denote independent copies of ξ, and {Wn;n ≥ 1} denote independent

d-dimensional Brownian motions. A key feature of this system is that each particle is only

influenced by particles with smaller ordinal numbers. Specifically, the particle process of the

sequential BSDE system {Y n
t , n ∈ Z

+} is recursively determined by




Y n
t = ξn +

∫ T

t

fs(Y
n
s , µ

n−1
s , Zn

s ) ds−

∫ T

t

Zn
s dWn

s , t ∈ [0, T ],

µn
t = µn−1

t + αn(δY n
t
− µn−1

t );

(2.1)

where Y 0
t = 0 and µ0

t = δY 0
t
.

To apply the synchronous coupling method, we introduce a sequence of i.i.d. McKean–Vlasov

BSDEs defined by

Y
n

t = ξn +

∫ T

t

fs(Y
n

s ,L(Y
n

s ), Z
n

s ) ds−

∫ T

t

Z
n

s dW
n
s , t ∈ [0, T ]. (2.2)

Assumption 2.1 There exist constants L1 ∈ R and L0, L2 ≥ 0 such that for all t ∈ [0, T ],

y, y1, y2 ∈ R
d, z, z1, z2 ∈ R

d×m and µ, ν ∈ P2(R
d), we have

(1) 〈y1 − y2, f(t, y1, µ, z)− f(t, y2, µ, z)〉 ≤ L1|y1 − y2|2,

(2) |f(t, y, µ, z1)− f(t, y, ν, z2)| ≤ L2[W2(µ, ν) + ‖z1 − z2‖],

(3) |f(t, 0, µ)|2 ≤ L0[1 + ‖µ‖22].

Theorem 2.1 Let p ≥ 1, µT = L(ξ) ∈ Pr with r > 2p + (p − 1)d, and γ := 1

2+
(
1− 1

p

)
d
.

Let (Y n, Zn, µn) and (Y
n
, Z

n
) be the solutions of (2.1) and (2.2), respectively. We denote

δY n
t := Y n

t − Y
n

t , δZ
n
t := Zn

t − Z
n

t and µt = L(Y t) is given by McKean–Vlasov BSDE (1.3).

Suppose Assumption 2.1 holds, then

(1) if α < (2− α∞), we have

sup
0≤t≤T

E[W2p
2 (µn

t , µt) +W2p
2 (L(Y n

t ), µt)] ≤ C eCTαγp
n ;

E

[( ∫ T

0

‖δZn
t ‖

2 dt
)p]

≤ C eCTαγp
n .
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(2) If α ≥ 2, for any δ < 1 ∧ γα ∧ 2γ, we have

sup
0≤t≤T

E[W2p
2 (µn

t , µt) +W2p
2 (L(Y n

t ), µt)] ≤ C eCT e
−pδ

n∑
i=1

αi

;

E

[( ∫ T

0

‖δZn
t ‖

2 dt
)p]

≤ C eCT e
−pδ

n∑
i=1

αi

,

where the constant C > 0 depends only on d, p, L0, L1, L2, α(·) and ‖µT ‖r.

Remark 2.1 The case 2 − α∞ ≤ α < 2 never appears because α = 0 as long as α∞ > 0.

So 2− α∞ ≤ α means α∞ = 0 and α ≥ 2. A typical choice of step size is αn ∼ n−r with some

r ∈ (0, 1]. Then we have

E[W2p
2 (µn

t , µt)] . n
− rp

2+(1− 1
p
)d .

Remark 2.2 Combining the two cases, we know that for δ < 1 ∧ γα ∧ 2γ, we have

sup
0≤t≤T

E[W2p
2 (µn

t , µt)] . αγp
n + e

−pδ
n∑

i=1

αi

.

This estimate provides an insightful analysis of the impact of step size on the asymptotic

behavior of the system. The empirical measure µn
t converges to µt as long as α∞ = 0 and∑

αn = ∞. However, if α∞ > 0 or
∑
αn < ∞, the convergence of µn

t may fail. Even so, we

still give an upper bound for the quantities concerned. Intuitively, α∞ > 0 (or
∑
αn < ∞)

means that the particles with large (or small) ordinals get too many weights in µn
t . The

following example may demonstrate this point: Define a sequence of measures µn recursively

as µn = µn−1 +αn(δwn
− µn−1) and µ0 = δ0, where wn ∼ N (0, 1) are i.i.d. The expected limit

of µn is the standard Gaussian measure
(
e.g., taking α = 1

n

)
. However, for ξn =

∫
xµn(dx),

by a simple computation one can see that Eξn = 0 but lim inf
n→0

E|ξn|2 > 0 whenever α∞ > 0 or
∑
αn < ∞. In other words, ξn never converges (in L2) to zero, thus µn does not converge to

the standard Gaussian measure.

[52] proposed a probabilistic representation of parabolic PDEs on the Wasserstein space,

which establishes a connection between decoupled McKean Vlasov FBSDEs and parabolic

PDEs. Next, let’s consider the following PDE:




∂tV (t, x, µ) = −f(x, V (t, x, µ), σT(x, µ)∂xV (t, x, µ), µ, ν)

− b(x, µ)∂xV (t, x, µ) −
1

2
tr(∂xxV (t, x, µ)a(x, µ))

−

∫

Rd

b(y, µ) · ∂µV (t, x, µ)(y) dµ(y)

−
1

2

∫

Rd

tr(∂y∂µV (t, x, µ)(y)a(x, µ)) dµ(y),

V (T, x, µ) =h(x, µ),

(2.3)

where a = σσT, (t, x, µ) ∈ [0, T ]× R
d × P(Rd), and ν is the law of V (t, ξ, µ) with L(ξ) = µ.

Under some appropriate regularity conditions, we can know from [20, 52] that the PDE (2.3)

is well-posed and that its solution V satisfies

V (t,Xt,L(Xt)) = Y t,



16 X. C. Li and K. Du

where (Xt, Y t) solves the decoupled FBSDE





Xt = x0 +

∫ t

0

b(Xs,L(Xs)) ds+

∫ t

0

σ(Xs,L(Xs)) dWs, t ∈ [0, T ],

Y t = h(XT ,L(XT )) +

∫ T

t

f(Xs, Y s, Zs,L(Xs),L(Y s)) ds−

∫ T

t

Zs dWs.

(2.4)

We aim to demonstrate that the solution V to the PDE (2.3), defined on the infinite dimen-

sional space [0, T ]×R
d ×P(Rd) can be approximated by a sequential FBSDE system. In fact,

we consider the particles in the sequential FBSDE system {Y n
t , n ∈ Z

+} which are recursively

determined by





Xn
t = x0 +

∫ t

0

b
(
Xn

s , µ
n
s

)
ds+

∫ t

0

σ
(
Xn

s , µ
n
s

)
dWn

s , t ∈ [0, T ],

Y n
t = h

(
Xn

T , µ
n
T

)
+

∫ T

t

f
(
Xn

s , Y
n
s , Z

n
s , µ

n
s , ν

n
s

)
ds−

∫ T

t

Zn
s dWn

s ,

µn
t = µn−1

t + αn(δXn
t
− µn−1

t ),

νnt = νn−1
t + αn(δY n

t
− νn−1

t ).

(2.5)

Correspondingly, we consider a sequence of i.i.d. McKean–Vlasov FBSDE Y n defined by





X
n

t = x0 +

∫ t

0

b
(
X

n

s ,L(X
n

s )
)
ds+

∫ t

0

σ
(
X

n

s ,L(X
n

s )
)
dWn

s , t ∈ [0, T ],

Y
n

t = h
(
X

n

T ,L(X
n

T )
)
+

∫ T

t

f
(
X

n

s , Y
n

s , Z
n

s ,L(X
n

s ),L(Y
n

s )
)
ds−

∫ T

t

Z
n

s dW
n
s .

(2.6)

Then, we have the following estimate.

Corollary 2.1 Let p ≥ 2, µT ∈ Pr with r > 2p + (p − 1)d, and γ := 1
2+(1− 1

p
)d
. Let

(Xn, Y n, Zn, µn, νn) and (X
n
, Y

n
, Z

n
) be the solutions of (2.5) and (2.6), respectively. µt =

L(Xt) and νt = L(Y t) are given by McKean–Vlasov FBSDE (2.4). Suppose Assumption 2.1

holds and b, σ are Lipschitz continuous, then for any δ < 1 ∧ γpα, we have

sup
0≤t≤T

E[W2p
2 (νnt , νt)] ≤ C eCT

(
αγp
n + e

−δ
n∑

i=1

αi)
;

where the constant C > 0 depends only on d, p, L0, L1, L2, α(·) and ‖µT ‖r.

Remark 2.3 If αn = 1
n
, then α∞ = 0, α = α = 1. According to Corollary 2.1, we have

sup
0≤t≤T

E[W2p
2 (νnt , νt)] . n−δ for some δ < 1. While in Theorem 2.1, we have sup

0≤t≤T

E[W2p
2 (µn

t , µt)] .

n
− p

2+(1− 1
p
)d .

2.2 Quadratic BSDE

In this section, we study the sequential particle systems for the mean-field BSDE (2.1) with

quadratic growth. The convergence of the particle systems and the rate of convergence will be

given.



Sequential Propagation of Chaos for Mean-Field BSDE Systems 17

Let M be a continuous local martingale, denote E(M)t0 = eMt−
1
2 〈M〉t for 0 ≤ t < ∞. In

addition, for any p ≥ 1, t ∈ [0, T ) and Euclidean space H, we introduce the following spaces:

Z2
F
(t, T ;H) =

{
Z ∈ L2

F
(t, T ;H) | ‖Z‖Z2

F
(t,T ) , sup

τ

∥∥∥Eτ

[ ∫ T

τ

|Zs|
2 ds

]∥∥∥
1
2

∞
<∞

}
,

S∞
F
(t, T ;H) =

{
ϕ ∈ Ω× [t, T ] → H | ϕ is F− adapted, continous,

‖ϕ‖S∞
F

(t,T ) , esssup
(ω,s)∈Ω×[t,T ]

|ϕ(ω, s)| <∞
}
.

We denote by E
P the expectation operator with respect to the probability measure P. Moreover,

let M = (Mt,Ft) be a uniformly integrable martingale with M0 = 0, and we set

‖M‖BMOp(P) , sup
τ

∥∥Eτ

[
〈M〉∞ − 〈M〉

p
2
τ

] 1
p
∥∥
∞
.

The class {M : ‖M‖BMOp(P) <∞} is denoted by BMOp(P). Note that BMOp(P) is a Banach

space under the norm ‖ · ‖BMOp(P) and

‖Z ·W‖BMO2(P) ≡ ‖Z‖Z2
F
(0,T ).

For the QBSDE case, we consider the following assumption instead of Assumption 2.1.

Assumption 2.2 For all n ≥ 1, t ∈ [0, T ], y, y1, y2 ∈ R, z, z1, z2 ∈ R
d and µ, ν ∈ P2(R),

the terminal value ξn : Ω → R and the generator f : [0, T ]× R × P(R) × R
d → R satisfy the

following conditions:

(1) There exists a constant K such that

max
n≥1

‖ξn‖∞ ≤ K.

(2) There exist constants L0, γ such that

f(t, y, µ, z) ≤ L0(1 + |y|+ ‖µ‖2) +
γ

2
|z|2.

(3) There exists a constant L1 and a non-decreasing continuous function φ : [0,∞) → [0,∞)

such that

f(t, y1, µ1, z1)− f(t, y2, µ2, z2) ≤ L1(|y1 − y2|+W(µ1, µ2))

+ φ(|y1| ∨ |y2| ∨ ‖µ1‖2 ∨ ‖µ2‖2)(1 + |z1|+ |z2|)|z1 − z2|.

Theorem 2.2 Let Assumption 2.2 holds and we use the same notation as in Theorem 2.1.

Then for p ≥ 1, there exists a positive constant q > 1 and a positive constant C depending on

T,K,L0, L1, p such that

(1) if α < (2− α∞), we have

sup
0≤t≤T

E[W2p
2 (µn

t , µt) +W2p
2 (L(Y n

t ), µt)] ≤ C eCTαγqp
n ;

(2) if α ≥ 2, we have, for any δ < 1 ∧ αγq ∧ 2γq,

sup
0≤t≤T

E[W2p
2 (µn

t , µt) +W2p
2 (L(Y n

t ), µt)] ≤ C eCT e
−pδ

n∑
i=1

αi

,

where γq := 1
2+(1− 1

pq
)d
.
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Remark 2.4 Comparing the convergence rate of Theorems 2.1–2.2, we find that there is

an additional q > 1 in QBSDE case. This is because we use the reverse Hölder inequality (see

Proposition 4.1) when estimating BMO martingale.

Remark 2.5 If αn = 1
n
, then α∞ = 0, α = α = 1. According to Theorem 2.2, we have

sup
0≤t≤T

E[W2p
2 (µn

t , µt)] . αγp
n . n

− p

3− 1
pq .

3 Proofs for BSDEs and FBSDEs

Proposition 3.1 Let (Y n, Zn, µn) and (Y
n
, Z

n
) be the solutions of (2.1) and (2.2), re-

spectively. We denote δY n
t := Y n

t − Y
n

t , δZ
n
t := Zn

t −Z
n

t and µt = L(Y t) is given by McKean–

Vlasov BSDE (1.3). Suppose p ≥ 1 and Assumption 2.1 holds. Let ε such that 0 < ε < 1 and

2λ ≥ L2
2

ε
+ 2L1. Then there exists a constant C(p, ε) which depends only on p, ε, L2 such that

E

[
sup

t∈[0,T ]

e2λpt|δY n
t |2p +

(∫ T

0

e2λt‖δZn
t ‖

2 dt
)p]

≤ Cp,εE

[
e2λpT |δY n

T |2p +
(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
. (3.1)

Moreover, if Cλ := 2λ−
L2

2

ε
− 2L1 > 0, we have

E

[( ∫ T

0

e2λt|δY n
t |2 dt

)p]
≤
Cp,ε

Cp
λ

E

[
e2λpT |δY n

T |2p +
(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
. (3.2)

3.1 Proof of Proposition 3.1

Proof of Proposition 3.1 We use Itô’s formula to get

e2λt|δY n
t |2 +

∫ T

t

e2λs‖δZn
s ‖

2 ds = e2λT |δY n
T |2 − 2λ

∫ T

t

e2λs|δY n
s |2 ds

+ 2

∫ T

t

e2λsδY n
s · (fs(Y

n
s , µ

n−1
s , Zn

s )− fs(Y
n

s , µs, Z
n

s )) ds

− 2

∫ T

t

e2λsδY n
s · δZn

s dWn
s .

By Assumption 2.1, we know that

2δY n
s ·

(
fs(Y

n
s , µ

n−1
s , Zn

s )− fs(Y
n

s , µs, Z
n

s ))

≤ 2L1|δY
n
s |2 + 2L2|δY

n
s |

[
W2(µ

n−1
s , µs) + ‖δZn

s ‖
]

≤
(
2L1 +

L2
2

ε

)
|δY n

s |2 + ε‖δZn
s ‖+ 2L2|δY

n
s |W2(µ

n−1
s , µs).

Thus

e2λt|δY n
t |2 + (1− ε)

∫ T

t

e2λs‖δZn
s ‖

2 ds+
(
2λ− 2L1 −

L2
2

ε

)∫ T

t

e2λs|δY n
s |2 ds

≤ e2λT |δY n
T |2 − 2

∫ T

t

e2λsδY n
s · δZn

s dWn
s + 2L2

∫ T

t

e2λs|δY n
s |W2(µ

n−1
s , µs) ds. (3.3)
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We take the condition expectation with respect to Ft to obtain

e2λt|δY n
t |2 ≤ E

[
e2λT |δY n

T |2 + 2L2

∫ T

t

e2λs|δY n
s |W2(µ

n−1
s , µs) ds | Ft

]
.

After taking the p-th power, we know from Doob’s inequality that

E

[
sup

t∈[0,T ]

e2λpt|δY n
t |2p

]
≤ Cp,L2E

[
e2λpT |δY n

T |2p +
(∫ T

0

e2λs|δY n
s |W2(µ

n−1
s , µs) ds

)p]

≤ Cp,L2E

[
e2λpT |δY n

T |2p +
(∫ T

0

eλsW2(µ
n−1
s , µs) ds

)2p]

+
1

2
E

[
sup

t∈[0,T ]

e2λpt|δY n
t |2p

]
.

So far, we have proved the first part of (3.1). Then we consider the ‖δZn
s ‖ term. We again use

the estimation (3.3) to obtain

(1− ε)

∫ T

t

e2λs‖δZn
s ‖

2 ds ≤ e2λT |δY n
T |2 + 2L2

∫ T

t

e2λs|δY n
s |W2(µ

n−1
s , µs) ds

− 2

∫ T

t

e2λsδY n
s · δZn

s dWn
s .

By BDG’s inequality, we have

E

[( ∫ T

t

e2λs‖δZn
s ‖

2 ds
)p]

≤ Cp,L2,εE

[
e2λpT |δY n

T |2p +
( ∫ T

0

e2λs|δY n
s |W2(µ

n−1
s , µs) ds

)p

+
( ∫ T

0

e4λs|δY n
s |2‖δZn

s ‖
2 ds

) p
2
]

≤ Cp,L2,εE

[
e2λpT |δY n

T |2p + sup
t∈[0,T ]

e2λpt|δY n
t |2p

+
( ∫ T

0

eλsW2(µ
n−1
s , µs) ds

)2p

+
1

2

(∫ T

0

e2λs‖δZn
s ‖

2 ds
)p]

.

Combining the estimates of E
[

sup
t∈[0,T ]

e2λpt|δY n
t |2p

]
, we have

E

[( ∫ T

t

e2λs‖δZn
s ‖

2 ds
)p]

≤ Cp,L2,εE

[
e2λpT |δY n

T |2p +
(∫ T

0

eλsW2(µ
n−1
s , µs) ds

)p]
.

Finally, we use once again the estimate from (3.3) to obtain

(
2λ− 2L1 −

L2
2

ε

)
E

∫ T

t

e2λs|δY n
s |2 ds ≤ E

[
e2λT |δY n

T |2 + 2L2

∫ T

t

e2λs|δY n
s |W2(µ

n−1
s , µs) ds

]
.

This completes the proof of the estimate in (3.2) and thus the proof of the theorem.

3.2 Proof of Theorem 2.1

Proof of Theorem 2.1 Since (3.2) and triangle inequality in W2 space, we can conclude

that

E

[( ∫ T

0

e2λt|δY n
t |2 dt

)p]
≤
Cp,ε

Cp
λ

E

[(∫ T

0

eλt[W2(µ
n−1
t , µ̂n−1

t ) +W2(µ̂
n−1
t , µt)] dt

)2p]
, (3.4)
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where µ̂n
t := µ̂n−1

t + αn(δY n

t
− µ̂n−1

t ). We can use the inequality (x + y)2p ≤ 22p−1(x2p + y2p)

and the Hölder inequality to obtain

E

[( ∫ T

0

eλt
[
W2(µ

n−1
t , µ̂n−1

t ) +W2(µ̂
n−1
t , µt)

]
dt
)2p]

≤ 22p−1
(
E

[(∫ T

0

eλtW2(µ
n−1
t , µ̂n−1

t ) dt
)2p]

+ E

[( ∫ T

0

eλtW2(µ̂
n−1
t , µt) dt

)2p])

≤ 22p−1
(
T p

E

[( ∫ T

0

e2λtW2
2 (µ

n−1
t , µ̂n−1

t ) dt
)p]

+ T 2p−1
E

[ ∫ T

0

e2pλtW2p
2 (µ̂n−1

t , µt) dt
])
. (3.5)

We choose λ to be large enough such that (1 − ε)pCp
λ = 22p−1T pCp,ε. Recall Lemma A.3 that

for i.i.d. random variables ξn and mn :=

n∑
i=1

wiδξi

n∑
i=1

wi

, we have

EWrp
r (mn,m) ≤ Cθγr,p

n

with

θn =

n∑
i=1

w2
i

( n∑
i=1

wi

)2 , γr,p =
rp

2r + 2
(
1− 1

p

)
d
.

So it follows from Lemma A.3 that E[W2(µ̂
n
t , µt)

2p] . θγpn where γ = 1
2+(1− 1

p
)d
. Now, going

back to (3.4), we have

E

[( ∫ T

0

e2λt|δY n
t |2 dt

)p]
≤ (1− ε)pE

[(∫ T

0

e2λtW2
2 (µ

n−1
t , µ̂n−1

t ) dt
)p]

+ Cθγpn , (3.6)

where we use the notation C to represent a constant that depends only on p, T, ε, and whose

value may change from line to line. It follows from the property of the Wasserstein distance

that

W2
2 (µ

n−1
t , µ̂n−1

t ) ≤ Kn−1(|δYt|
2) :=

n∑
i=1

wi|δY i
t |

2

n∑
i=1

wi

.

Thus

E

[( ∫ T

0

e2λtW2
2 (µ

n−1
t , µ̂n−1

t ) dt
)p]

≤ E

[(∫ T

0

e2λtKn−1(|δYt|
2) dt

)p]

= E

[(
Kn−1

(∫ T

0

e2λt|δYt|
2 dt

))p]

≤
(
Kn−1

[(
E

( ∫ T

0

e2λt|δYt|
2 dt

)p) 1
p
])p

,

where the third equality is due to Minkovski’s inequality.



Sequential Propagation of Chaos for Mean-Field BSDE Systems 21

If we denote yn :=
[
E
( ∫ T

0 e2λt|δYt|2 dt
)p] 1

p and sn := Kn(y), then we have

ypn = E

[(∫ T

0

e2λt|δY n
t |2 dt

)p]
≤ (1− ε)p

(
Kn−1

[(
E

( ∫ T

0

e2λt|δYt|
2 dt

)p) 1
p
])p

+ Cθγpn

= (1− ε)pspn−1 + Cθγpn .

Thus

yn ≤ ((1− ε)pspn−1 + Cθγpn )
1
p

≤ (1− ε)sn−1 + Cθγn.

According to the definition of sn, we can write out the recursive formula

sn := sn−1 + αn(yn − sn−1).

Combining the above inequality, we obtain

sn ≤ sn−1 + αn[(1 − ε)sn−1 + Cθγn]− αnsn−1

≤ (1− εαn)sn−1 + αnCθ
γ
n.

Since θn =

n∑
i=1

w2
i

( n∑
i=1

wi

)2 and Remark A.3, for all δ1 < α ∧ 2, one has

θγn ≤ C




e
−δ1γ

n∑
i=1

αi

if α ≥ 2,

αγ
n if 2− α∞ > α.

In the case of α ≥ 2, we have

lim
n→∞

[
−

e
−δ1γ

n+1∑
i=1

αi

− e
−δ1γ

n∑
i=1

αi

αn e
−δ1γ

n∑
i=1

αi

]
= δ1γ.

By Corollary A.1, we have

(1) if ε < δ1γ, we have

sn ≤ C e
−ε

n∑
i=1

αi

.

(2) If ε = δ1γ, we have, for any δ < δ1γ,

sn ≤ C e
−δ

n∑
i=1

αi

.

(3) If ε > δ1γ, we have

sn ≤ C e
−δ1γ

n∑
i=1

αi

.

Recall that δ1 < α ∧ 2, we simplify the above inequality to

sn ≤ C e
−δ

n∑
i=1

αi

, ∀δ < 1 ∧ αγ ∧ 2γ.
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In the case of 2− α∞ > α, we have

lim sup
n→∞

[
−
αγ
n+1 − αγ

n

αnα
γ
n

]
= γα, lim inf

n→∞

[
−
αγ
n+1 − αγ

n

αnα
γ
n

]
= γα.

By Corollary A.1,

(1) if ε < γα, we have

sn ≤ C e
−ε

n∑
i=1

αi

.

(2) If γα ≤ ε ≤ γα, we have, for any δ < γα,

sn ≤ C e
−δ

n∑
i=1

αi

.

(3) If ε > γα, we have

sn ≤ Cαγ
n.

Combining the first two cases, we have

sn ≤ C




e
−δ

n∑
i=1

αi

, ∀δ < 1 ∧ γα, if γα ≥ 1,

αγ
n, if γα < 1.

Summarizing the above discussion, we know that

sn ≤ C





e
−δ

n∑
i=1

αi

, ∀δ < 1 ∧ γα ∧ 2γ, if α ≥ 2,

e
−δ

n∑
i=1

αi

, ∀δ < 1 ∧ γα, if γ−1 ≤ α < 2− α∞,

αγ
n, if α < γ−1 ∧ (2− α∞).

Since γ = 1
2+(1− 1

p
)d

≤ 1
2 , we can deduce that the case 2 − α∞ > α ≥ γ−1 ≥ 2 cannot happen.

Therefore, we can simplify the above equation to

sn ≤ C




e
−δ

n∑
i=1

αi

, ∀δ < 1 ∧ γα ∧ 2γ, if α ≥ 2,

αγ
n, if α < (2− α∞).

Together with (3.6), this implies that

E

[(∫ T

0

e2λt|δY n
t |2 dt

)p]
≤ Cspn

and

E

[(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
≤ Cspn.

By plugging the above estimates into (3.1), we can conclude the proof of Theorem 2.1.

Remark 3.1 In SDE case (see [39]), they denote xn :=
∫ T

0
E|∆n

t |
2p dt and use the estima-

tion

∫ T

0

E|∆n
t |

2p dt ≤ (1− ε)

∫ T

0

E[Kn−1(|∆t|
2p)] + Cpθ

γp
n .
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Then they obtain

xn ≤ (1− ε)sxn−1 + Cpθ
γp
n .

While in BSDE case, we denote yn :=
[
E
( ∫ T

0
|∆n

t |
2 dt

)p] 1
p and use the estimation

[
E

( ∫ T

0

|∆n
t |

2 dt
)p] 1

p

≤ (1− ε)Kn−1

[(
E

(∫ T

0

|∆t|
2 dt

)p) 1
p
]
+ Cθγn.

And we have

yn ≤ (1− ε)syn−1 + Cpθ
γ
n.

3.3 Proof of Theorem 2.1

Proof of Theorem 2.1 We denote θnt := |Xn
t − X

n

t | and πn
t := W2

(
µn
t , µt

)
. Then by

Proposition 3.1, we have

E

[
sup

t∈[0,T ]

e2λpt|δY n
t |2p +

( ∫ T

0

e2λt‖δZn
t ‖

2 dt
)p]

(3.7)

≤ Cp,εE

[
e2λpT (|θnt |

2p + |πn
t |

2p) +
(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p

+
(∫ T

0

eλt(|θnt |+ |πn
t |) dt

)2p]
. (3.8)

Therefore, there is a constant C depending only on p, ε and T such that

E

[
sup

t∈[0,T ]

e2λpt|δY n
t |2p

]

≤ CE
[
e2λpT

(
sup

t∈[0,T ]

|θnt |
2p + sup

t∈[0,T ]

|πn
t |

2p
)
+
( ∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
.

Moreover, by the theory of (forward) sequential propagation of chaos, see e.g. [39], for any

δ < 1 ∧ αγp ∧ 2γp, it holds that

E

[
sup

t∈[0,T ]

|θnt |
2p + sup

t∈[0,T ]

|πn
t |

2p
]
≤ C eCT (αγp

n + e
−δ

n∑
i=1

αi

).

Similar to the proof of Theorem 2.1, we can get the conclusion.

4 Proofs for Quadratic BSDEs

First, we recall two propositions of BMO martingales in [53].

Define ψ(s) :=
[
1 + 1

x2 log
2x−1
2(x−1)

] 1
2 − 1 for x > 1. It is clearly continuous and decreasing,

satisfying ψ(1+) = +∞ and ψ(+∞) = 0.

Proposition 4.1 Let p ∈ (1,∞) andM be a one-dimensional continuous BMO martingale.

If ‖M‖BMO(P) < ψ(p), then E(M) satisfies the reverse Hölder inequality:

Eτ [E (M)∞τ ]p ≤ cp

for any stopping time τ , with a positive constant cp depending only on p.
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Proposition 4.2 For K > 0, there are constants c1 > 0 and c2 > 0 depending on K

such that for any BMO martingale M and any one-dimensional BMO martingale N such that

‖N‖BMO(P) ≤ K, we have

c1‖M‖BMO(P) ≤ ‖M̃‖
BMO(P̃) ≤ c2‖M‖BMO(P),

where M̃ ,M − 〈M,N〉 and dP̃ , E (N)∞0 dP.

Proposition 4.3 Under Assumption 2.2, there exists a positive constant C depending on

T,K,L0, L1, such that the solution (Y n, Zn) of BSDE (2.1) admits the following estimate:

‖Y n‖S∞
F

(0,T ) ≤ C, ‖Zn‖Z2
F
(0,T ) ≤ C.

Proof Since Assumption 2.2 holds, we can estimate BSDE (2.1) as follows:

Y n
t = ξn +

∫ T

t

fs(Y
n
s , µ

n−1
s , Zn

s ) ds−

∫ T

t

Zn
s dWn

s

= ξn +

∫ T

t

[fs(Y
n
s , µ

n−1
s , Zn

s )− fs(0, δ0, Z
n
s ) + fs(0, δ0, Z

n
s )] ds−

∫ T

t

Zn
s dWn

s

= ξn +

∫ T

t

[fs(Y
n
s , µ

n−1
s , Zn

s )− fs(0, δ0, Z
n
s )] ds−

∫ T

t

Zn
s dW̃n

s ,

where W̃n
t :=Wn

t −
∫ t

0
Γs ds is a Brownian motion under Pn with

dPn

dP
= E (Γ ·Wn)T0 ,

and fs(0, δ0, Z
n
s ) = ΓsZ

n
s with Γs ≤ φ(0)(1 + |Zn

s |). Then we apply Itô’s formula to e2λt|Y n
t |2

to get

e2λt|Y n
t |2 + E

P
n

t

[ ∫ T

t

e2λs|Zn
s |

2 ds
]

= E
P
n

t [e2λt|ξn|2] + E
P
n

t

[ ∫ T

t

2e2λsY n
s [fs(Y

n
s , µ

n−1
s , Zn

s )− fs(0, δ0, Z
n
s )] ds

]

− 2λ

∫ T

t

e2λs|δY n
s |2 ds.

Using Assumption 2.2 again, we can get

e2λt|Y n
t |2 ≤ E

P
n

t [e2λt|ξn|2] + E
P
n

t

[ ∫ T

t

2L1e
2λsY n

s (|Y n
s |+ ‖µn−1

s ‖2) ds

− 2λ

∫ T

t

e2λs|δY n
s |2 ds

]

≤ e2λtK2 + E
P
n

t

[ ∫ T

t

(
−
(
2λ− 2L1 −

L2
1

ε

)
e2λs|Y n

s |2 +
ε

n− 1

n−1∑

k=1

e2λs|Y k
s |

2
)
ds

]
.

We denote yn := sup
t∈[0,T ]

e2λt|Y n
t |2. By definition, it is not difficult to know y0 = 0, y1 ≤ e2λTK2.

To use mathematical induction, we assume yn ≤ 2e2λtK2. We choose ε such that εT < 1
2 and
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choose λ such that 2λ− 2L1 −
L2

1

ε
> 0. Thus

e2λt|Y n
t |2 ≤ e2λtK2 +

ε

n− 1

n−1∑

k=1

E
P
n

t

[ ∫ T

t

e2λs|Y k
s |2 ds

]

≤ e2λtK2 +
ε

n− 1

n−1∑

k=1

yk(T − t)

≤ e2λtK2 +
1

2
· 2e2λTK2 ≤ 2e2λTK2.

Hence, there exists a positive constant C depending on T,K,L1, such that

‖Y n‖S∞
F

(0,T ) ≤ C.

To prove Zn ·Wn is a BMO martingale, we denote

Φ(x) =
1

γ2
(eγ|x|−γ|x| − 1).

We apply Itô’s formula to Φ(Y n
t ) to get

Φ(Y n
t ) = Φ(Y n

T ) +

∫ T

t

Φ′(Y n
s )fs(Y

n
s , µ

n−1
s , Zn

s ) ds

−

∫ T

t

Φ′(Y n
s )Zn

s dWn
s −

1

2

∫ T

t

Φ′′(Y n
s )|Zn

s |
2 ds

≤ Φ(ξn) +

∫ T

t

L1|Φ
′(Y n

s )|(|Y n
s |+ ‖µn−1

s ‖) ds

−

∫ T

t

Φ′(Y n
s )Zn

s dWn
s +

1

2

∫ T

t

(γ|Φ′(Y n
s )| − Φ′′(Y n

s ))|Zn
s |

2 ds.

Taking conditional expectation, we get

Φ(Y n
t ) +

1

2
Et

∫ T

t

|Zn
s |

2 ds ≤ Φ(K) + Et

∫ T

t

L1|Φ
′(Y n

s )|(|Y n
s |+ ‖µn−1

s ‖) ds

≤ Φ(K) + L1|Φ
′(C)|Et

∫ T

t

(|Y n
s |+ ‖µn−1

s ‖) ds

≤ Φ(K) + 2CTL1|Φ
′(C)|.

Thus we know that Zn ·Wn is a BMO martingale.

Finally, we give the proof to Theorem 2.2.

Proof of Theorem 2.2 We use notations similar to Section 2.1 that δY n
t := Y n

t − Y
n

t ,

δZn
t := Zn

t − Z
n

t . From BSDE (1.1) and (2.2), we have
{

− δY n
t = [ft(Y

n
t , µ

n−1
t , Zn

t )− ft(Y
n

t , µt, Z
n

t )] dt− δZn
t dWn

t ,

δY n
T = 0.

(4.1)

Similar to Proposition 4.3, we use Girsonov transform to deal with the quadratic term of Zn
t .

To be specific, we write

ft(Y
n
t , µ

n−1
t , Zn

t )− ft(Y
n

t , µt, Z
n

t )

= ft(Y
n
t , µ

n−1
t , Zn

t )− ft(Y
n

t , µt, Z
n
t )

+ ft(Y
n

t , µt, Z
n
t )− ft(Y

n

t , µt, Z
n

t ).



26 X. C. Li and K. Du

For the first two term, we know by Assumption 2.2 that there exists a process Γn
t such that

ft(Y
n
t , µ

n−1
t , Zn

t )− ft(Y
n
t , µ

n−1
t , Z

n

t ) = Γn
t δZ

n
t ,

where

|Γn
t | ≤ φ(|Y

n

t | ∨ ‖Y
n

t ‖L2)(1 + ‖Zn
t ‖+ ‖Z

n

t ‖).

Thanks to [48, Theorem 2.3], ‖Z
n
‖ belongs to Z2[0, T ]. Hence, we know by Proposition 4.3

that |Γn
t | belongs to Z2[0, T ]. We define W̃n

t := Wn
t −

∫ t

0
Γs ds and W̃n

t is a Brownian motion

under Pn with
dPn

dP
= E (Γn ·Wn)T0 .

Thus, we have

Y n
t =

∫ T

t

[fs(Y
n
s , µ

n−1
s , Zn

s )− fs(Y
n

s , µs, Z
n
s )] ds−

∫ T

t

Zn
s dW̃n

s

By Proposition 3.1, there exists a constant C(p, ε) which depends only on p, ε, L1 such that

E
P
n
[

sup
t∈[0,T ]

e2λpt|δY n
t |2p +

(∫ T

0

e2λt‖δZn
t ‖

2 dt
)p]

≤ Cp,εE
P
n
[(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
.

Moreover, if Cλ := 2λ− L2
1

ε
− 2L1 > 0, we have

E
P
n
[(∫ T

0

e2λt|δY n
t |2 dt

)p]
≤
Cp,ε

Cp
λ

E
P
n
[(∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2p]
. (4.2)

Since (4.2) has the same form as (3.4), we can use the same method to get similar estimates.

The only difference is that when we estimate (4.2) in a similar way, we need to estimate

E
Pn [W2(µ̂

n
t , µt)

2p] instead of E[W2(µ̂
n
t , µt)

2p] . θγpn (see (3.5)).

Notice that ‖Γn ·Wn‖BMO and ‖Γn ·Wn‖BMOq
are equivalent for q > 2. So there exists a

constant q1 > 1 such that

E[(E (Γn ·Wn)T0 )
q1 ] ≤ Cq1 .

So we have

E
P
n
[(∫ T

0

eλtW2(µ̂
n−1
t , µt) dt

)2p]

≤ E

[
E (Γn ·Wn)T0 ·

( ∫ T

0

eλtW2(µ̂
n−1
t , µt) dt

)2p]

≤ [E(E (Γn ·Wn)T0 )
q1 ]

1
q1

[
E

( ∫ T

0

eλtW2(µ̂
n−1
t , µt) dt

)2pp1
] 1

p1
, (4.3)

where 1
p1

+ 1
q1

= 1. If we denote γ1 = 1
2+(1− 1

pp1
)d
, then

(1) if α < (2− α∞), we have

sup
0≤t≤T

E
P
n

[W2(µ
n
t , µt)

2p +W2(L(Y
n
t ), µt)

2p] ≤ C eCTαγ1p
n ;
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(2) if α ≥ 2, we have, for any δ < 1 ∧ γ1α ∧ 2γ1,

sup
0≤t≤T

E
P
n

[W2(µ
n
t , µt)

2p +W2(L(Y
n
t ), µt)

2p] ≤ C eCT e
−pδ

n∑
i=1

αi

.

On the other side, since dP
dPn = E (−Γn ·Wn)T0 , we can know that there exists q2 > 1 such that

E
P
n

[(E (−Γn ·Wn)T0 )
q2 ] ≤ Cq2 .

Similarly, we have

E[W2p
2 (µn

t , µt)] ≤ Cq2 [E
P
n

(W2p
2 (µn

t , µt))
p2 ]

1
p2 . (4.4)

Combining (4.3) and (4.4), we have

E

[( ∫ T

0

e2λt|δY n
t |2 dt

)p]
≤
Cp,ε

Cp
λ

[
E

( ∫ T

0

eλtW2(µ
n−1
t , µt) dt

)2pp1p2
] 1

p1p2
.

We denote γ2 = 1
2+(1− 1

pp1p2
)d
, then

(1) if α < (2− α∞), we have

sup
0≤t≤T

E[W2(µ
n
t , µt)

2p +W2(L(Y
n
t ), µt)

2p] ≤ C eCTαγ2p
n ;

(2) if α ≥ 2, we have, for any δ < 1 ∧ γ2α ∧ 2γ2,

sup
0≤t≤T

E[W2(µ
n
t , µt)

2p +W2(L(Y
n
t ), µt)

2p] ≤ C eCT e
−pδ

n∑
i=1

αi

.

5 Numerical Experiments

In this section, we provide numerical examples to show the behavior of our SPoC algorithm.

For simplicity, we uniformly divide the time interval [0, T ] intoM parts with time step ∆t = T
M
.

We define a sequential update scheme Υ which takes the (n− 1)-th SPoC iterate and produces

the n-th SPoC result, i.e.,

Υ : µn−1 → µn.

The update scheme is defined as follows:

(1) Given the n− 1 iterate distribution µn−1
t , we solve the following SDE to obtain Y n and

Zn,
{
dY n

t = −f(t, Y n
t , Z

n
t , µ

n−1
t ) dt+ Zn

t dWn
t , t ∈ [0, T ],

Y n
T = ξn.

(5.1)

(2) We then update the distribution term by

µn
t = µn−1

t + αn(δY n
t
− µn−1

t ),

which gives us µn
t .

By iterating this update scheme, we obtain a sequence of iterates {µn
t }

N
n=1 that converges

to the true solution µt as N → ∞. The behavior of the algorithm depends on the choice of the

step size αn, which we will demonstrate with numerical examples in the following.
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Algorithm 1 Framework of SPoC algorithm of McKean-Vlasov BSDE systems

Require: The terminal condition ξ, the update rate {αn};
1: Initialize n = 1, µ1

tm
= δ0, Y

1
T = ξ1 and Z1

T = 0;
2: repeat

3: n = n+ 1;
4: Y n

T = ξn and Zn
T = 0;

5: µn
T = µn−1

T + αn(δY n
T
− µn−1

T );
6: Use backward Euler schemes to generate a path of Y n by
7: for m =M − 1 to 1 do

8: Y n
tm

= E[Y n
tm+1

|Fn
tm

] + f(t, Y n
tm+1

, Zn
tm+1

, µn−1
tm+1

)∆t;

9: Zn
tm

= E[(∆Wn
tm+1

)−1(Y n
tm+1

+ f(t, Y n
tm+1

, Zn
tm+1

, µn−1
tm+1

)∆t− Y n
tm

)|Fn
tm

];
10: Update the empirical measure by
11: µn

tm
= µn−1

tm
+ αn(δY n

tm
− µn−1

tm
);

12: m = m− 1;
13: end for

14: until the end condition.

Remark 5.1 In the first step of the SPoC algorithm, since µn−1 is fixed, the numerical

solution of (5.1) can be obtained by classical methods, for example, tree algorithm (see [28]),

Least-Squares Monte Carlo method (see [54–55]), θ method, multi-step schemes (see [24, 56–

57]) or Deep BSDE method (see [32–33]). We give the pseudo-code in Algorithm 1. Since

there are different methods for solving BSDEs numerically, we chose the simplest tree method

(Algorithm 2) to clearly demonstrate the effectiveness of SPoC algorithm. It’s worth noting

that more complex and accurate numerical methods can be used in practice to solve the BSDE

in the first step.

Remark 5.2 Since mean-field BSDE has PoC properties, we can also approximate it di-

rectly by solving a high-dimensional BSDE, i.e.,





dY i,N
t = −f(t, Y i,N

t , Zi,i,N
t , µN

t ) dt+

N∑

j=1

Zi,j,N
t dW j,N , t ∈ [0, T ],

Y i,N
T = ξi,N ,

µN
t =

1

N

N∑

j=1

δ
Y

j,N
t

.

(5.2)

This is a system of equations for N coupled d-dimensional BSDE, which can be seen as a BSDE

in (Rd)N . While the SPoC method only needs to solve a d-dimensional BSDE (5.1) at a time.

To achieve the same accuracy as the PoC method (5.2), the SPoC method requires about N

updates. In summary, solving mean field BSDE based on the PoC method requires solving

BSDE in (Rd)N once, while the SPoC method requires solving a d-dimensional BSDE N times.

Moreover, the SPoC method provides a sustainable iterative way to continuously approach the

mean-field limit, whereas the PoC method needs to determines the total number of particles

before calculation. As more and more particles are added (without affecting existing particles),

the approximation accuracy is continuously improved until a desired level is reached. That is

to say, the required number of particles no longer needs to be specified in advance.
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Algorithm 2 A tree-based approach of SPoC algorithm

Require: The terminal condition ξ, the update rate {αn};
1: Initialize n = 1, µ1

tm
= δ0, Y

1
T = ξ1 and Z1

T = 0;
2: repeat

3: n = n+ 1;
4: Use tree-based approach to solve classical BSDE
5: dY n

t = −f(t, Y n
t , Z

n
t , µ

n−1
t ) dt+ Zn

t dWt,
6: for m =M − 1 to 1 do

7: Update the empirical measure by
8: µn

tm
= µn−1

tm
+ αn(δY n

tm
− µn−1

tm
);

9: end for

10: until the end condition.

In the following we show the performance of the SPoC algorithm with some examples.

Example 5.1 Consider the mean-field BSDE





dYt = −
(1
2
Yt − Zt + EYt − e−

1
2 tsin t

)
dt+ Zt dWt, t ∈ [0, T ],

YT = sin(WT + T ),
(5.3)

which has an analytical solution of (Yt, Zt) = (sin(Wt + t), cos(Wt + t)).

Figure 1 Comparison of convergence rates in Example 5.1.

In our numerical experiments, we set T = 2π and divide the interval [0, T ] into M = 100

uniform parts. For a fixed empirical distribution, we use the tree method to solve a standard

BSDE and update the empirical distribution with the results of the solution. In this example,

the empirical distribution interacts in the form of EY , so we can solve (5.3) by replacing EYt

with sn−1
t , and then update snt = sn−1

t +αn(Y
n
t − sn−1

t ). We iterate 105 times and generate 10

particle orbits each time. We record the sample mean of the empirical measures.

In Figure 1, we compare the convergence rates of different update steps αn (left) as well as

the sample mean snt (right) with the analytical solution EYt = E sin(Wt + t) = e−
1
2 tsin t. In

the left figure, we let the loss function be Loss = 1
T

∫
|snt − EYt| dt. With steps size αn = n−1

or αn = n−0.8, the empirical distribution gradually converges to the true distribution. When

the step size αn = n−1.5, the error between the empirical distribution and the true distribution
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converges to a fixed constant because
∑
n−1.5 < ∞. When the update step is a constant, i.e.,

αn = 0.1 or αn = 0.01, then the Loss function oscillates at a fixed error. In the right figure, we

draw the image of snt to see the process of the SPoC system approaching the mean-field system

intuitively. At the beginning, s0t initializes to 0. At the 50th iteration, the difference between

s50t and the true value is large. By the 500th iteration, s500t is close to e−
1
2 tsin t. To sum up, as

the number of particles increases, snt gradually converges to EYt.

In Figure 2, we take T = π and sample 5 Brownian motions and show the corresponding

paths of Yt and Zt. From the two graphs below, we observe that both Yt and Zt are contained

in [−1, 1]. In the upper right figure, we further calculate the value of Y 2
t + Z2

t in each path,

which is consistent with the analytical solution sin2(Wt + t) + cos2(Wt + t) = 1.

Figure 2 Path sampling for SPoC system.

Example 5.2 Consider the mean-field BSDE,




dYt = −
(
Yt − Zt −

√
EY 2

t +

√
1

2
e2t − cos(4t)

)
dt+ Zt dWt, t ∈ [0, T ],

YT = eWT sinWT ,

(5.4)

which has an analytical solution of (Yt, Zt) = (eWtsinWt, e
Wt(sinWt + cosWt)).

In this numerical experiment, we take T = π, with all other settings the same as before. It

is worth noting that for a normal distribution ξ ∼ N (µ, σ2), we have

E(eaξcos(bξ)) = cos(b(µ+ aσ2)) eaµ+
σ2

2 (a2−b2).
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In particular, for Brownian motion Wt we have E(eaWtcos(bWt)) = cos(abt) e
a2−b2

2 t.

In Figure 3, we compare the convergence rates of different update steps αn (left) as well as

the sample mean snt (right) compared with the analytical solution EYt = E eWtsinWt = sin t.

As in Example 5.1, the comparison of convergence rates is displayed in the left figure. In the

right figure, we plot the image of snt to show that as the number of particles increases, snt
gradually converges to EYt.

Figure 3 Comparison of convergence rates in Example 5.2.

Example 5.3 Consider the mean-field BSDE




dYt =
[(1

2
− Yt

)
Zt + EYt −

1

2

]
dt+ Zt dWt, t ∈ [0, T ],

YT =
1

1 + e−WT
,

(5.5)

which has the analytical solution (Yt, Zt) =
(

1
1+e−Wt

, e−Wt

(1+e−Wt )2

)
.

In this numerical experiment, we take T = 1, with all other settings the same as before.

Noting that f(x) := 1
1+e−x is symmetric with respect to

(
0, 12

)
, i.e.,

f(x) + f(−x) = 1.

In particular, for Brownian motion Wt we have Ef(Wt) = 1
2 . In Figure 4, we compare the

convergence rates of different update steps αn (left) as well as the sample mean snt (right)

compared with the analytical solution EYt =
1
2 .

Figure 4 Comparison of convergence rates in Example 5.3.
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A Auxiliary Lemma

In this section we apply the ODE method to prove several estimates for sequences that

satisfy certain recursive relations.

Lemma A.1 Let α(·), β(·) : C1([1,∞) → (0,∞)) be decreasing, and

c := lim inf
t→∞

−β′(t)

α(t)β(t)
, c := lim sup

t→∞

−β′(t)

α(t)β(t)
. (A.1)

Let ε > 0. Then, the function y(·) : [1,∞) → (0,∞) satisfying

y′(t) = −εα(t)y(t) + α(t)β(t)

enjoys the estimate

(1) if ε < c, we have

y(t) ≤ C e−ε
∫

t

1
α(s) ds, ∀t > 1.

(2) If c ≤ ε ≤ c, we have, for any δ < c,

y(t) ≤ C e−δ
∫

t

1
α(s) ds, ∀t > 1.

(3) If ε > c we have

y(t) ≤ Cβ(t), ∀t > 1.

Comprehensively, we can combine the above three estimates as

y(t) ≤ C[e−δ
∫

t

1
α(s) ds+β(t)], ∀t > 1, (A.2)

as long as δ ≤ ε and δ /∈ [c, c], where C = C(α, β, δ). Moreover, if y(1) ≥ ε−1β(1), then

y(t) ≥ ε−1β(t), ∀ t ≥ 1,

and consequently, y(·) is decreasing on [1,∞).

Remark A.1 The number δ cannot always be taken to equal ε. For example, if ε = 1

and α(t) = β(t) = t−1, then one can derive that y(t) = Ct−1 + t−1 ln t ∼ O(t−1 ln t), which is

greater than O(t−1).

If δ < c, without loss of generality, we may assume that δ < −β′(t)
α(t)β(t) , ∀ t ≥ 1. Then

we have −δα(t) > [lnβ(t)]′ and β(t) . e−δ
∫

t

1
α(s) ds. On the other hand, if δ > c, we have

e−δ
∫

t

1
α(s) ds. β(t).

Proof Let us prove the second part first. We take y(1) ≥ ε−1β(1). Suppose t0 = inf{t >

1 : y(t) < ε−1β(t)} < ∞. Then y(t0) = ε−1β(t0) and there is a number η > 0 such that

y(t)−ε−1β(t) < 0 for all t ∈ (t0, t0+η]. From the mean value theorem, there is a t1 ∈ (t0, t0+η)

such that

(y − ε−1β)′(t1) =
1

η
[(y − ε−1β)(t0 + η)− (y − ε−1β)(t0)] < 0,
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so y′(t1) < ε−1β′(t1) ≤ 0; meanwhile, the equation tells

y′(t1) = −εα(t1)(y(t1)− ε−1β(t1)) > 0,

which leads to a contradiction.

Now let w(t) = e
∫

t

1
α(s) ds. Since δ ≤ ε, it follows from comparison (a similar argument as

above) that y(t) ≤ z(t) for all t ≥ 1, where z(·) satisfies

z′(t) = −δα(t)z(t) + α(t)β(t), z(1) = y(1),

which has the explicit solution

z(t) = y(1)w(t)−δ + w(t)−δ

∫ t

1

α(s)w(s)δβ(s) ds, t ≥ 1. (A.3)

We compute

∫ t

1

α(s)w(s)δβ(s) ds =

∫ t

1

w(s)δ−1β(s) dw(s)

=
1

δ
w(t)δβ(t) −

1

δ
β(1)−

∫ t

0

1

δ
w(s)δβ′(s) ds. (A.4)

In the case ε1 := c− δ > 0, there is t1 > 1 such that for all s > t1,

−
1

δ
β′(s) ≥

1

δ

(
c−

ε1
2

)
α(s)β(s) =

( c

2δ
−

1

2

)
α(s)β(s) + α(s)β(s),

which along with (A.4) implies

( c

2δ
−

1

2

)∫ t

1

α(s)w(s)δβ(s) ds ≤
1

δ
β(1)−

1

δ
w(t)δβ(t) ≤

1

δ
β(1),

and from (A.3) we have

z(t) ≤
[
y(t1) +

2

c− δ
β(t1)

]
w(t)−δ , t > t1.

In the case ε2 := δ − c > 0, there is t2 > 1 such that for all s > t2,

−
1

δ
β′(s) ≤

1

δ

(
c+

ε2
2

)
α(s)β(s) = −

(1
2
−

c

2δ

)
α(s)β(s) + α(s)β(s).

Then one can similarly obtain

(1
2
−

c

2δ

) ∫ t

1

α(s)w(s)δβ(s) ds ≤
1

δ
w(t)δβ(t),

which yields the estimate

z(t) ≤ y(t2)w(t)
−δ +

2

δ − c
β(t), t > t2.

So the estimate (A.2) is proved. The proof is complete.
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Corollary A.1 Under the setting of Lemma A.1, we define αn = α(n) and βn = β(n), and

assume that

Kα,β := sup
n>1

αnβn
αn+1βn+1

<∞.

Then, if xn, sn > 0 (set s0 = 0) satisfy

xn ≤ (1− ε)sn−1 + βn,

sn = sn−1 + αn(xn − sn−1), n ≥ 1,

one has that

(1) if ε < c, we have

sn ≤ C e
−ε

n∑
i=1

αi

.

(2) If c ≤ ε ≤ c, we have, for any δ < c,

sn ≤ C e
−δ

n∑
i=1

αi

.

(3) If ε > c, we have

sn ≤ Cβn.

In short, we have

sn ≤ C
[
e
−δ

n∑
i=1

αi

+βn
]
,

as long as δ ≤ ε and δ /∈ [c, c].

Proof From the recursive relation one has that

sn ≤ (1 − εαn)sn−1 + αnβn, n ≥ 1.

Let y(·) be the function satisfying y(1) = max{s1, ε−1β(1)} and

y′(t) = −εα(t+ 1)y(t) +Kα,βα(t+ 1)β(t+ 1).

By assuming sn ≤ y(n) for an n ≥ 1, one computes

sn+1 ≤ (1− εαn+1)sn + αn+1βn+1

≤ (1− εαn+1)y(n) + αn+1βn+1

= y(n)− εα(n+ 1)y(n) + α(n+ 1)β(n+ 1)

≤ y(n)− εα(n+ 1)y(n) +Kα,βα(n+ 2)β(n+ 2)

≤ y(n) +

∫ n+1

n

[−εα(t+ 1)y(t) +Kα,βα(t+ 1)β(t+ 1)] dt

= y(n+ 1).
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By induction and Lemma A.1, one has

sn ≤ y(n) ≤ C e−ε
∫

n

1
α(s+1) ds+Cβ(n+ 1)

≤ C e
−ε

n+1∑
i=3

αi

+Cβn.

The proof is complete.

Corollary A.2 Let αn be the sequence defined at the beginning of Section 2. Define

w1 = 1; wn =
αn

1− αn

n−1∑

i=1

wi, n ≥ 2. (A.5)

Then it holds that

(1) if α ≥ 2, we have, for any δ < α ∧ 2,

n∑
i=1

w2
i

( n∑
i=1

wi

)2 ≤ C e
−δ

n∑
i=1

αi

.

(2) If 2− α∞ > α, we have
n∑

i=1

w2
i

( n∑
i=1

wi

)2 ≤ Cαn.

Remark A.2 For the first case, we should have considered the case 2− α∞ ≤ α, and then

taken δ < α ∧ (2− α∞). But the case 2− α∞ ≤ α < 2 never appears because α = 0 as long as

α∞ > 0. So 2− α∞ ≤ α means α∞ = 0 and α ≥ 2.

Proof Notice that wn = αn

n∑
i=1

wi. Letting

sn :=

n∑
i=1

w2
i

( n∑
i=1

wi

)2 ,

one has that

sn =

(
n−1∑
i=1

wi)
2

(
n∑

i=1

wi)2
·

n−1∑
i=1

w2
i

(
n−1∑
i=1

wi)2
+

w2
n

(
n∑

i=1

wi)2

=
(
1−

wn

n∑
i=1

wi

)2

sn−1 + α2
n = (1 − 2αn + α2

n)sn−1 + α2
n

= [1− (2− αn)αn]sn−1 + α2
n.
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Then from Corollary A.1, it follows that for δ < 2− α∞,

sn ≤ C
[
e
−δ

n∑
i=1

αi

+αn

]

as long as δ /∈ [α, α].

The convergence of (unweighted) empirical measures in the Wasserstein distance has been

extensively investigated in the literature (see [40–42] and references therein). Here we prove an

estimate for weighted empirical measures, based on the following density coupling lemma that

can be proved analogously as [40, Lemma 2.2].

Lemma A.2 Let f and g be probability density functions on R
d such that

∫

Rd

|x|r[f(x) + g(x)] dx <∞, r ≥ 1,

and define µ(dx) = f(x) dx and ν(dx) = g(x) dx. Then one has

Wr
r (µ, ν) ≤ Cr

∫

Rd

|x|r |f(x)− g(x)| dx.

Then we have the following convergence result.

Lemma A.3 Let r ∈ [1,∞) and p ∈ [2,∞) and ξn be i.i.d. R
d-valued random variables

and m := L(ξ1) ∈ Pq with q > rp+ (p− 1)d, and let

mn :=

n∑
i=1

wiδξi

n∑
i=1

wi

with wn > 0, n = 1, 2, · · · .

Then there is a constant C depending only on r, p, d and ‖ξ1‖Lq , such that

EWrp
r (mn,m) ≤ Cθγr,p

n

with

θn =

n∑
i=1

w2
i

( n∑
i=1

wi

)2 , γr,p =
rp

2r + 2
(
1− 1

p

)
d
.

Remark A.3 If αn is the sequence defined at the beginning of Section 2 and wn is defined

by (A.5), then the estimate in Lemma A.3 further implies that

(1) if α ≥ 2, we have, for any δ < α ∧ 2,

EWrp
r (mn,m) ≤ C e

−δγr,p

n∑
i=1

αi

.

(2) If 2− α∞ > α, we have

EWrp
r (mn,m) ≤ Cαγr,p

n .

This form will be used often in what follows.
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Proof Let φσ be the p.d.f. of the normal distribution Φσ = N(0, σ2Id), and define

mσ
n := Φσ ∗mn, mσ := Φσ ∗m.

Denote πσ(·) the p.d.f of mσ. The p.d.f. πσ
n(·) of m

σ
n is given by

πσ
n(x) =

n∑
i=1

wiφσ(x− ξi)

n∑
i=1

wi

=: Kn(φσ(x− ξi)).

From Lemma A.2 and Hölder’s inequality, it follows that

Wrp
r (mσ

n,m
σ) ≤

(
Cr

∫
|x|r |πσ

n(x)− πσ(x)| dx
)p

≤ Cr,p,q,d

∫
(1 + |x|)q |πσ

n(x)− πσ(x)|p dx.

Define ηi = ξi−Eξi. Since η
i is i.i.d with zero mean, we apply the discrete-time BDG inequality

and Jenen’s inequality to compute

E|Kn(ηi)|
p =

1

(
∑
wi)p

E

∣∣∣
∑

wiηi

∣∣∣
p

≤
Cp

(
∑
wi)p

E

∣∣∣
∑

w2
i |ηi|

2
∣∣∣
p
2

≤ Cp

(
∑
w2

i )
p
2

(
∑
wi)p

E

∣∣∣ 1∑
w2

i

∑
w2

i |ηi|
2
∣∣∣
p
2

≤ Cp

(
∑
w2

i )
p
2

(
∑
wi)p

E

[ 1∑
w2

i

∑
w2

i |ηi|
p
]

= Cpθ
p
2
nE|η1|

p.

So we have

E|πσ
n(x)− πσ(x)|p = E|Kn(φσ(x− ξi))− Eφσ(x − ξ))|p

≤ Cpθ
p
2
nEφ

p
σ(x− ξ).

We observe that φpσ(x) = (2π)−
pd
2 σ−pde−

px2

2σ2 = p−
d
2 (2π)

d
2 (1−p)σd(1−p)φ σ√

p
(x). Thus

Eφpσ(x− ξ) =

∫
φpσ(x− y)m(dy)

= p−
d
2 (2π)

d
2 (1−p)σd(1−p)

∫
φ σ√

p
(x− y)m(dy)

= Cp,dσ
d(1−p)

∫
φ σ√

p
(x− y)m(dy).

To sum up, one has that

EWrp
r (mσ

n,m
σ) ≤ Cr,p,q,d

∫
(1 + |x|)qE|πσ

n(x) − πσ
t (x)|

p dx

≤ Cr,p,q,dσ
d(1−p)θ

p
2
n

∫∫
(1 + |x|)qφ σ√

p
(x − y)m(dy) dx

≤ Cr,p,q,dσ
d(1−p)θ

p
2
nE(1 + |ξ1|)

q.
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On the other hand, it is easily seen that

Wrp
r (mσ

n,mn) +Wrp
r (mσ,m) ≤ Cσrp

The lemma is then proved by taking σ = θ
− 1

[2r+2(1−p−1)d]
n .

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

[1] McKean, H. P., Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential

Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), 1967, 41–57.

[2] Bossy, M. and Talay, D., A stochastic particle method for the McKean–Vlasov and the Burgers equation,
Mathematics of Computation, 66(217), 1997, 157–192.

[3] Bossy, M. and Talay, D., Convergence rate for the approximation of the limit law of weakly interacting
particles: Application to the burgers equation, Annals of Applied Probability, 6(3), 1996, 818-861.

[4] Malrieu, F., Convergence to equilibrium for granular media equations and their Euler schemes, Annals of

Applied Probability, 13, 2003, 540–560.

[5] Carmona, R. and Delarue, F., Probabilistic Theory of Mean Field Games with Applications I–II Probab.
Theory Stoch. Model., 83-84, Springer-Verlag, Cham, 2018.

[6] Chaintron, L.-P. and Diez, A., Propagation of chaos: A review of models, methods and applications, 2021,
arXiv:2106.14812.

[7] Kac, M., Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical

Statistics and Probability, 3, 1956, 171–197.

[8] Lacker, D., On a strong form of propagation of chaos for McKean-Vlasov equations, Electronic Commu-

nications in Probability, 23, 2018, 1–11.

[9] Sznitman, A.-S., Topics in propagation of chaos, Ecole d’été de probabilités de Saint-Flour XIX-1989,
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