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Abstract Menasco showed that a closed incompressible surface in the complement of a

non-split prime alternating link in S
3 contains a circle isotopic in the link complement to

a meridian of the links. Based on this result, he was able to argue the hyperbolicity of

non-split prime alternating links in S
3. Adams et al. showed that if F ⊂ S × I \ L is an

essential torus, then F contains a circle which is isotopic in S × I \ L to a meridian of L.

The author generalizes his result as follows: Let S be a closed orientable surface, L be a

fully alternating link in S×I . If F ⊂ S×I \L is a closed essential surface, then F contains

a circle which is isotopic in S × I \ L to a meridian of L.
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1 Introduction

A surface F in the complement of a link L in a 3-manifoldM is called meridionally compress-

ible (cf. [1]), if there is a diskD ⊂ M meeting L such thatD intersects the link once transversely

in the interior of D and D ∩ F = ∂D. Otherwise, F is called meridionally incompressible. One

salient result from [9] is that any closed essential surface in a non-split alternating link ex-

terior will contain a meridional curve of a link component and, thus, studying such essential

surfaces can be reduced to studying essential surfaces with meridional boundary curves that

are meridionally incompressible, or equally in some literature, pairwise incompressible. The

importance of studying meridionally incompressible surfaces has been reflected in the work of

numerous scholars. To name a few, Bonahon and Seibenmann’s work on arborescent knots (cf.

[5]), Oertel’s work on star links (cf. [10]), Adams’ work on generalized augmented alternating

links [2], and toroidally alternating links (cf. [1]), Adams’ et al. work on almost alternating

links (cf. [4]), Fa’s initial cataloging of incompressible meridionally incompressible patterns (cf.

[6]), Lozanoand-Przytycki work on 3-braid links (cf. [8]), and Hayashi’s results on alternating

diagrams on closed surfaces of positive genus (cf. [7]). Menasco, by using his crossing ball tech-

nique (cf. [9]), showed the existence of a meridional curve in a closed incompressible surface in

the complement of a non-split prime alternating link in S3.

The definition of fully alternating links in thickened surfaces is introduced in [3] by Adams

et al (please see §2 for the formal definition). Let S be a closed orientable surface with positive
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genus, L be a fully alternating link in S× I. Adams et al. [3] have shown that if F ⊂ S × I \L

is an essential torus, then F contains a circle which is isotopic in S × I \ L to a meridian of L.

A surface F ⊂ S×I \L is essential if it is incompressible, boundary-incompressible, and not

boundary-parallel. In the present paper, by expanding Menasco’s idea (cf. [9]), we generalize

the result in [3] as above to arbitrary closed essential surfaces embedded in S× I \L in a simple

way. Here is the main result.

Theorem 1.1 Let S be a closed orientable surface, L be a fully alternating link in S × I.

If F ⊂ S × I \ L is a closed essential surface, then F contains a circle which is isotopic in

S × I \ L to a meridian of L.

Thus, the study of closed incompressible surfaces F ⊂ S × I \ L can be understood as

analyzing the meridionally essential surfaces (please see Definition 2.2) in S × I \ L having

all their boundary components meridians of L. Concerning this type of surfaces, we have the

following theorem.

Theorem 1.2 Let S be a closed orientable surface, L be a non-split prime fully alternating

link in S × I, and F ⊂ S × I \ L be a meridionally essential surface having n > 0 boundary

components, all of which are meridians of L. Then

(a) If n = 2, S is an annulus, necessarily peripheral since L is prime.

(b) If n = 4, 6 or 8, F has genus zero.

(c) For a fixed n, there are only finitely many such surfaces F , up to isotopy.

2 Normal Position of Surfaces

In this paper, when we apply the notation alternating, it is in the regular sense, where the

crossings alternate under, over, under, over, as one travels along each component of the link.

We project the link L on a surface S, π : S× I → S, where π(L) is considered as a link diagram

on S with each vertex assigned a positive or a negative state. Then each connected component

of S − π(L) is called a complementary region.

Definition 2.1 (cf. [3]) Let L be a link in a thickened surface S×I, orientable or not, with

the exception of the sphere and the projective plane. A link L in the thickened surface S × I is

fully alternating if it satisfies the following two conditions:

(i) There exists a projection onto an embedded surface S, π : S × I → S, so that π(L) is

alternating on S.

(ii) The interior of the closure of every complementary region S − π(L) is an open disk.

Note that, condition (ii) is necessary, as the complementary regions are not necessarily disks.

And the assumption of alternatingness implies that in the case S is orientable, each component

must have at least two crossings. In the case S is non-orientable, there could be a component

with Möbius band neighborhood with one crossing (cf. [3]).

Let S be a closed orientable surface, M = S × I be a 3-manifold as the thickened surface,

and L ⊂ M be a link. We identify S with S ×
{

1

2

}

, then it has a projection π : S × I → S.

Using the model in [9], we place a 3-ball at each crossing of π(L), which we refer to as a bubble

B. See Figure 1(a). At each crossing, both the overstrand and the understrand are in ∂B. We

define S+ to be the surface S where the equatorial disk in each bubble is replaced by the upper
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hemisphere ∂B+ of the bubble, and M+ to be the 3-manifold bounded by S+ and S × {1}, so

that M+ does not intersect with the interior of any bubbles. Similarly, we can define S− and

M− when replacing the equatorial disk in each bubble by a lower hemisphere ∂B−.

∩

∩

∩ ∩

Figure 1

Let F ⊂ M \ L be a closed incompressible surface. F intersects S± transversely in loops,

and we can study each component C of F ∩S±. The following is an important property for the

class of alternating links, or fully alternating links:

(*) If B1 and B2 are two bubbles crossed in succession by a loop C of F ∩ S±, then:

(i) If the two arcs of L ∩ S± in B1 and B2 lie on opposite sides of C, then C crosses L (at

punctures) an even number of times between crossing B1 and B2, see Figure 2(a).

(ii) If the two arcs of L ∩ S± in B1 and B2 lie on the same side of C, then C crosses L an

odd number of times between crossing B1 and B2, see Figure 2(b).

Figure 2

Definition 2.2 Let M be a 3-manifold, F ⊂ M \L be a properly embedded closed surface,

(or a surface with meridional punctured points). We say F is meridionally essential if it is

incompressible, meridionally incompressible and not boundary-parallel.
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It is natural in the study of closed incompressible surfaces F ⊂ M \ L to consider the

operation of meridian surgery, indicated in Figure 3. It is easy to see, such surgeries can always

preserve incompressibility of F . On the contrary, a closed incompressible surface F ⊂ M \L can

be considered as the result of tubing (the “inverse” operation shown in Figure 3) meridionally

essential surfaces.

Figure 3

Let F be a closed essential surface embedded in S × I \L. We consider the following cases:

(1) F is a sphere.

(2) There are no essential spheres in S× I \L, and F is a closed, connected, incompressible

surface.

F can be isotoped to intersect each bubble in a set of saddles. We will work on F ∩S+, but

everything we say also applies to F ∩ S−. We associate an order pair (s, i) to each embedding

of F prior to isotopy, in which s is the number of saddles in F and i = |F ∩ S+| is the number

of intersection curves in F ∩ S+ (or equally, F ∩ S−). For the rest of this paper, we assume

the surface F is chosen to minimize (s, i) in lexicographical ordering. We say F is in normal

position if the above assumptions are satisfied. We notice that, given a diagram of F ∩ S+, we

can obtain its dual diagram of F ∩ S− as shown in Figure 1(b). Given a representative in the

isotopy class of F so that the diagram F ∩ S+ is fixed, F ∩ S+ and F ∩ S− have a one-to-one

correspondence. Therefore, we can either require |F ∩ S+| or |F ∩ S−| to be minimized, and

the intersection curve number in the dual diagram |F ∩ S−| or |F ∩ S+|, respectively, will be

naturally determined.

3 Proof of Main Result

Denote each connected component of F ∩M± as F±

i . Hereafter we refer to S+ and F ∩S+,

but all arguments and constructions applies to both F ∩ S+ and F ∩ S−. Similarly, we refer to

M+ and each connected component F+

i ⊂ F ∩M+, but all arguments and constructions applies

to M− and F−

i ⊂ F ∩M−.

Proposition 3.1 Let F ⊂ M \ L be a closed essential surface in normal position. Then

each connected component F+

i ⊂ F ∩M+ is incompressible, and boundary-parallel to S+ in M+.

Proof We first show that each connected component F+

i ⊂ F ∩M+ is incompressible in

M+. Suppose F+

i compresses in M+. Then there exists a properly embedded compressing disk

D ⊂ M+ of F+

i , with ∂D ⊂ F+

i . Since F ⊂ M is either a sphere or an incompressible surface,
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∂D must bound a disk D′ in F , with ∂D′ = ∂D. By the assumption that, in addition, there

exist no essential spheres in S × I \ L, we can isotope D′ in S × I \ L to D while fixing its

boundary. Suppose D′ ∩ S+ = ∅, then we could isotope D to D′ in M+ with ∂D fixed in F+

i .

This would imply D′ ⊂ F+

i , contradicting the assumption that D is a compressing disk of F+

i .

Therefore, D′ must intersect S+ in a non-empty set of loop(s). Through a standard innermost

loop argument, we can isotope F to eliminate the loop(s) of D′ ∩ S+. This means, we can

reduce i = |F ∩ S+| by at least one, contradicting the assumption F is in normal position.

Now we have M+ is a compression body, ∂M+ = S+ ∪ S × {1}, (F+

i , ∂F+

i ) ⊂ (M+, ∂M+),

F+

i is incompressible, and ∂F+

i ∩ S × {1} = ∅. Therefore, by [11, Proposition 3.1], F+

i is

boundary-parallel to S+ in M+.

We call each F±

i a dome. As a result of the above proposition, it is reasonable to define F+

i

(or F−

i ) as a lowest dome if there are no component(s) of F ∩M+ (resp., F ∩M−) embedded

in between the cobordism bounded by F+

i and S+ (resp., F−

i and S−). To compare this

generalization with the original technique in [9], we notice if we take the thickened surface S×I

as S2 × I, and each simple closed curve of F ∩ S2
± bounds a dome of disk.

The following lemma guarantees the existence of nontrivial intersections F ∩ S+.

Lemma 3.1 Let F ⊂ M \L be a closed essential surface in normal position. There exists an

isotopy of F such that the set of intersection curves F ∩S+ is nonempty, and every intersection

curve in F ∩ S+ intersects at least one bubble.

Proof This is true because the proof of [3, Lemma 5(i)–(ii)] applies.

Let Fi denote a lowest dome of F ∩ M+, M
+

i denote the cobordism bounded by F+

i and

S+, and ∂B+ denote the upper hemisphere of a bubble B. Notice that as F passes through

a bubble B, the saddle corresponds to two intersection curves on S+ that run parallel to the

overstrand of B. ∂B+ is divided by an overstrand of L into two sides. We proof the following

technical lemma.

Lemma 3.2 Let F ⊂ M \ L be a closed essential surface in normal position. Suppose B

is a bubble that intersects with a lowest dome F+

i , then M+

i ∩ ∂B+ does not consists of any

rectangle, whose boundary consists of two arcs of F+

i ∩ ∂B+, and two arcs on the boundary of

∂B+.

Proof If M+

i ∩ ∂B+ consists of a rectangle R shown in the below Figure 4(a), which we

call a sided rectangle, as R does not contain the link strand on ∂B+. Then we can pull a

neighborhood of an arc on F+

i to the bubble to form a band connecting the pair of saddles

intersecting R. And since F+

i is a lowest dome, there is no arc intersection of F ∩ S+ in the

interior of R. So we can pull the two saddles and the band through the bubble and out the other

side of ∂B+, as shown in Figure 5. This would decrease the number of saddles, contradicting

F is in normal position.

IfM+

i ∩∂B+ consists of a rectangle R shown in Figure 4(b), which we call a middle rectangle,

as it contains the link strand on ∂B. This would contradict the assumption F being meridionally

incompressible. Because F+

i is a lowest dome, there is no arc intersection of F∩S+ in the interior

of R. And we can find an arc µ on F+

i so that ∂µ is contained in a saddle σ in B, which means

σ ∪ µ contains a meridional curve of F .
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Figure 4

Figure 5

Proof of Theorem 1.1 Assume by contradiction that the projection π(L) of L on S is

fully alternating, and F is a closed meridionally essential surface embedded in S × I \ L. We

put F in normal position. According to Lemma 3.1, F ∩M+ is nonempty. And, by Proposition

3.1, each connected component of F ∩ M+ is incompressible and boundary-parallel to S+ in

M+. Hence, we can consider a lowest dome F+

i and the cobordism M+

i bounded by F+

i with

S+. By Lemma 3.1, every intersection curve in F ∩ S+ intersects at least one bubble. So we

can assume that there is a simple closed curve C ⊂ F+

i ∩ S+ that intersects with a bubble B.

We now claim that M+

i ∩∂B+ does not contain the overstrand on ∂B+. Because we suppose

that the overstrand of ∂B+ is contained in M+

i ∩ ∂B+, by the assumption that F+

i is a lowest

dome, F+

i would have to meet both sides of ∂B+. Thus M
+

i ∩ ∂B+ would consist of a middle

rectangle, which would contradict Lemma 3.2. But by alternating property (*), it follows that

there must exist an arc α ⊂ C passing through one side of ∂B+ such that the overstrand is on the

right (similarly left), and then passing through the same side of ∂B+ such that the overstrand

is on the left (similarly right), with M+

i ∩ ∂B+ consisting of a sided rectangle between the two

passes. By Lemma 3.2, this would contradict the assumption that F is in normal position. We

note that the above proof also implies that there does not exist any essential sphere in S×I \L.

In addition, the authors of [3] give a definition for prime links in thickened surfaces in

comparison with the prime links in S3. A link L is prime in S × I if there does not exist an

essential twice punctured sphere in S × I \ L such that both punctures are created by L.

It was also mentioned in [9], that each component C of F∩S± can be associated a cyclic word

ω±(C) in the letter P (=puncture) and Sd (=saddle), which records, in order, the intersections

of C with L and with bubbles, respectively. (Strictly, ω±(C) depends on an orientation for C.)
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ω±(C) must have even length, and the number of boundary components of F equals the total

number of P ’s in all the ω+(C)’s (or in all the ω−(C)’s). The following lemma is essentially [9,

Lemmas 2–3].

Lemma 3.3 Let F ⊂ S× I \L be a meridionally essential surface in normal position, and

C be a component of F ∩ S+. If no word ω+(C) associated to a loop C of F ∩ S+ is empty,

no loop of F ∩ S+ crosses the same bubble more than once, and F has n meridian boundary

components. Then we have

(1) each word ω+(C) has at most n− 2 Sd’s,

(2) each word ω±(C) contains at least two P ’s, and

(3) no word has the form P iS
j
d with j > 0.

Proof of Theorem 1.2 Claim 1 By Lemma 3.3(2), each word ω+(C) contains at least

two P ’s. Therefore F ∩S+ consists of only one loop C. By primeness of the link, we know that

C is a trivial loop that is the intersection between S+ and a peripheral annulus.

Figure 6

Claim 2 Similarly, by Lemma 3.3(2), when n = 4, there are at most two loops in F ∩ S+.

If F ∩ S+ has only one loop C, its word ω(C) must be PPPP = P 4. Because if C crosses any

bubbles, then a saddle which C intersects would also intersect another loop C′ of F ∩ S+. If

F ∩S+ has two loops C1 and C2, then ω(C1) and ω(C2) contain at least two P ’s. If ω(C1) and

ω(C1) are both P 2, then F is either a disjoint union of two annuli, or F is a two punctured

torus. Otherwise we have ω(C1) = ω(C2) = PSdPSd. Since by Lemma 3.3(3), ω(C1) and ω(C2)

contain at least two Sd’s. This implies F ∩ S− must have two loops C′
1 and C′

2, so that we

also have ω(C′
1) = ω(C′

2) = PSdPSd. We can compute the Euler characteristic of the surface F

obtained by capping with disks the boundaries of F . And we have χ(F ) = χ(F ) = 2, therefore

F has genus zero. See Figure 6(a) for this pattern. Similarly, we can analyze the case n = 6

and n = 8. We give the three patterns when n = 8 and F has genus one in Figure 6(b), (c) and

(d). Notice that in Figure 6(d), the two red loops cobound an annulus in M+. The other cases

we have examined only consist of loops that bound disks as the domes in M+.

Claim 3 Each word ω+(C) contains at least two P ’s by Lemma 3.3(2), so the number of
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loops in F ∩S+ is at most n
2
. The number of possible words ω+(C) is bounded, since by Lemma

3.3(1), each word ω+(C) has at most n − 2 Sd’s. Each word ω+(C) can be realized by only

finitely many loops in S+. Therefore, we can only have finitely many possibilities for F ∩ S+

(or F up to isotopy) for a fixed n.
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