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Abstract The authors analyze continuity equations with Stratonovich stochasticity,

∂ρ+ divh

[

ρ ◦
(

u(t, x) +

N
∑

i=1

ai(x)Ẇi(t)
)]

= 0

defined on a smooth closed Riemannian manifold M with metric h. The velocity field u is
perturbed by Gaussian noise terms Ẇ1(t), · · · , ẆN (t) driven by smooth spatially dependent
vector fields a1(x), · · · , aN(x) onM . The velocity u belongs to L1

tW
1,2
x with divh u bounded

in L
p
t,x for p > d + 2, where d is the dimension of M (they do not assume divh u ∈ L∞

t,x).
For carefully chosen noise vector fields ai (and the number N of them), they show that the
initial-value problem is well-posed in the class of weak L2 solutions, although the problem
can be ill-posed in the deterministic case because of concentration effects. The proof of this
“regularization by noise” result is based on a L2 estimate, which is obtained by a duality
method, and a weak compactness argument.

Keywords Stochastic continuity equation, Riemannian manifold, Hyperbolic equa-
tion, Non-smooth velocity field, Weak solution, Existence, Uniqueness
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1 Introduction and Main Results

One of the basic equations in fluid dynamics is the continuity equation

∂tρ+ div(uρ) = 0 in [0, T ]× R
d,

where u = u(x, t) is the velocity field describing the flow and ρ is the fluid density. It encodes the

familiar law of conservation of mass. Mathematically speaking, if the velocity field u is Lipschitz

continuous, then the continuity equation (and the related transport equation) can be solved

explicitly by means of the method of characteristics. Unfortunately, in realistic applications, the

velocity is much rougher than Lipschitz, typically u belongs to some spatial Sobolev space and

one must seek well-posedness of the continuity equation in suitable classes of weak solutions.

Well-posedness of weak solutions follows from the theory of renormalized solutions (see [1, 13,
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33–34]), assuming that u ∈ L1
tW

1,1
x (or even L1

tBVx) with div u ∈ L∞
t,x. A key step in this

theory is to show that a weak solution ρ is also a renormalized solution, that is, S(ρ) is a weak

solution for all “reasonable” nonlinear functions S : R → R. It is the validity of this chain rule

property that asks for W 1,1
x (or BVx) regularity of the velocity u. The assumption that div u

is bounded cannot be relaxed (unbounded divergence leads to concentration effects).

Recently there has been significant interest in studying fluid dynamics equations supple-

mented with stochastic terms. This (renewed) interest is partly motivated by the problem of

turbulence. Although the basic (Navier-Stokes) equations are deterministic, some of their solu-

tions exhibit wild random-like behavior, with the basic problem of existence and uniqueness of

smooth solutions being completely open. There is a vague hope that “stochastic perturbation-

s” can render some of the models “well-posed” or “better behaved”, thereby providing some

insight into the onset of turbulence. We refer to [18] for a general discussion of “regularization

by noise” phenomena, which has been a recurring theme in many recent works on stochastic

transport and continuity equations of the form

∂ρ+∇ρ ◦ (u+ aẆ ) = 0, ∂ρ+ div[ρ ◦ (u+ aẆ )] = 0, (1.1)

posed on R
d with a given initial condition ρ|t=0 = ρ0. Here W = W (t) is a Wiener process

with noise coefficient a and the symbol ◦ refers to the Stratonovich stochastic differential. It

is not our purpose here to review the (by now vast) literature on regularization by noise (i.e.,

improvements in regularity, existence, uniqueness, stability, etc., induced by noise). Instead

we emphasize some of the papers that develop an analytical (PDE) approach [3, 6, 23–24, 39],

related to the one taken in the present paper. There is another flexible approach that study

the stochastic flow associated with the SPDE (1.1), relying on regularizing properties of the

corresponding SDE to supply a flow that is more regular than its coefficient u, see e.g. [19] for

the stochastic transport equation and [35–36] for the stochastic continuity equation. A good

part of the recent literature is motivated by the article [19] of Flandoli, Gubinelli, and Priola,

which in turn built upon an earlier work by Davies [11]. One of the main results in [19] is that

if u is x-Hölder continuous, then the initial-value problem for the transport equation in (1.1)

is well-posed under the weak assumption that div u ∈ L2. Most of the works just cited assume

that the noise coefficient a is constant. Well-posedness results for continuity equations with

x-dependent noise coefficients can be found in [39] (see also [40] and [29]). Subtle regularization

by noise results for some nonlinear SPDEs can be found in [23–24]. Let us also recall that first

order stochastic partial differential equations (SPDEs for short) with “Lipschitz coefficients”

have been deeply analyzed in Kunita’s works (see [9, 31]).

In recent years there has been a growing interest in analyzing the basic equations of fluid

dynamics on Riemannian manifolds instead of flat domains, with the nonlinearity (curvature)

of the domains altering the underlying dynamics in nontrivial ways (see e.g. [2, 7, 43]). A

Riemannian manifold provides a more general framework in which to study fluid dynamics

than a “physical surface”, with the relevant quantities becoming independent of coordinates

and a distance function. Partial differential equations (PDEs for short) on manifolds arise in
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many applications, including geophysical flows (atmospheric models of fluids constrained to

flow on the surface of a planet) and general relativity in which the Einstein-Euler equations

are posed on a manifold with the metric being one of the unknowns. Transport equations on

manifolds have been analyzed in [14, 17], where the DiPerna-Lions theory of weak solutions is

extended to (some classes of) Riemannian manifolds.

The mathematical literature on SPDEs on manifolds is at the moment scanty, see [15, 21,

27–28] for equations in which the noise enters the equation as an Itô source term. In [22] we

established the renormalization property for weak solutions of stochastic continuity equations

on manifolds, under the assumption that the irregular velocity field u belongs to L1
tW

1,2
x .

Corollaries of this result included L2 estimates and uniqueness (provided divh u ∈ L∞). The

purpose of the present paper is to establish the existence and uniqueness of weak L2 solutions

without the assumption divh u ∈ L∞.

To be more precise, we are given a d-dimensional (d ≥ 1) smooth, closed and compact

manifold M , endowed with a (smooth) Riemannian metric h. We are interested in the initial-

value problem for the stochastic continuity equation

dρ+ divh(ρ u)dt+
N∑

i=1

divh(ρ ai) ◦ dW i(t) = 0 in [0, T ]×M, (1.2)

where T > 0 denotes a fixed final time, u : [0, T ]×M → TM is a given time-dependent irregular

vector field on M , a1, · · · , aN : M → TM are suitable smooth vector fields on M (to be fixed

later), W 1, · · · ,WN are independent real-valued Brownian motions, and the symbol ◦ means

that the equation is understood in the Stratonovich sense. We recall that for a vector field X

(locally of the form Xj∂j), the divergence of X is given by divhX = ∂jX
j + Γj

ijX
i, where

Γk
ij are the Christoffel symbols associated with the Levi-Civita connection ∇ of the metric h

(Einstein’s summation convention is used throughout the paper).

Roughly speaking, the proof of well-posedness for (1.2) consists of two main steps. In the first

step we construct an appropriate noise term that has the potential to suppress concentration

effects. Indeed, to remove the assumption divh u ∈ L∞
t,x, we are led to consider a specific noise

term linked to the geometry of the underlying curved domain M , implying a structural effect

of noise and nonlinear domains on improving the well-posedness of weak solutions (more on

this below). Related results on Euclidean domains (with x-independent noise coefficients) can

be found in [3, 6] (see also [35–36, 39]). In the second step, with help of the noise term, we

establish a crucial L∞
t L

2
ω,x estimate for weak solutions that do not depend on ‖ divh u‖L∞ . To

this end, we make use of a duality method, inspired by Beck, Flandoli, Gubinelli and Maurelli

[6], Gess and Maurelli [23–24], and Gess and Smith [24] (more on this below).

We use the following concept of weak solution for (1.2) (for unexplained notation and back-

ground material, see Section 2).

Definition 1.1 (weak L2 solution, Stratonovich formulation) Given ρ0 ∈ L2(M), a weak L2

solution of (1.2) with initial datum ρ|t=0 = ρ0 is a function ρ that belongs to L∞([0, T ];L2(Ω×
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M)) such that ∀ψ ∈ C∞(M) the stochastic process (ω, t) 7→
∫
M
ρ(t)ψ dVh has a continuous

modification which is an {Ft}t∈[0,T ]-semimartingale and for any t ∈ [0, T ] the following equation

holds P-a.s.:
∫

M

ρ(t)ψ dVh =

∫

M

ρ0ψ dVh +

∫ t

0

∫

M

ρ(s)u(ψ) dVh ds

+

N∑

i=1

∫ t

0

∫

M

ρ(s) ai(ψ) dVh ◦ dW i(s).

We have an equivalent concept of solution using the Itô stochastic integral and the corre-

sponding SPDE

dρ+ divh(ρ u) dt+

N∑

i=1

divh(ρ ai) dW
i(t)− 1

2

N∑

i=1

Λi(ρ) dt = 0, (1.3)

where Λi is a second order differential operator linked to the vector field ai, defined by Λi(ρ) :=

divh(divh(ρai)ai) for i = 1, · · · , N . Recall that, for a smooth function f : M → R and a

vector field X , we have X(f) = (X, gradh f)h (which locally becomes Xj∂jf). Moreover,

X(X(f)) = (∇2f)(X,X) + (∇XX)(f), where ∇2f is the covariant Hessian of f and ∇XX is

the covariant derivative of X in the direction X . In the Itô SPDE (1.3) the operator Λi(·) is

the formal adjoint of ai(ai(·)).
According to [22], the next definition is equivalent to Definition 1.1.

Definition 1.2 (weak L2 solution, Itô formulation) Given ρ0 ∈ L2(M), a weak L2 solution

of (1.2) with initial datum ρ|t=0 = ρ0 is a function ρ that belongs to L∞([0, T ];L2(Ω ×M))

such that ∀ψ ∈ C∞(M) the process (ω, t) 7→
∫
M
ρ(t)ψ dVh has a continuous modification which

is an {Ft}t∈[0,T ]-adapted process and for any t ∈ [0, T ] the following equation holds P-a.s.:

∫

M

ρ(t)ψ dVh =

∫

M

ρ0ψ dVh +

∫ t

0

∫

M

ρ(s)u(ψ) dVh ds

+

N∑

i=1

∫ t

0

∫

M

ρ(s) ai(ψ) dVh dW
i(s)

+
1

2

N∑

i=1

∫ t

0

∫

M

ρ(s) ai(ai(ψ)) dVh ds. (1.4)

To guarantee that these definitions make sense, we need the vector field u to fulfill some

basic conditions. First, we require spatial Sobolev regularity:

u ∈ L1([0, T ];
−−−−−−→
W 1,2(M)), (1.5)

see Section 2 for unexplained notation. This means that u ∈ L1([0, T ];
−−−−→
L2(M)), which is suffi-

cient to ensure that the mapping t 7→
∫ t

0

∫
M
ρ(s)u(s)(ψ) dVh ds is absolutely continuous, P-a.s.,

for any ρ ∈ L∞
t L

2
ω,x and ψ ∈ C∞(M), and hence it is not contributing to cross-variations

against W i. These cross-variations appear when passing from Stratonovich to Itô integrals in

the SPDE (1.2).
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In addition, we will assume that

u ∈ L∞([0, T ];
−−−−−→
L∞(M)), (1.6)

and, more importantly, that the distributional divergence of u satisfies

divh u ∈ Lp([0, T ]×M) for some p > d+ 2. (1.7)

To derive a priori estimates, we need the following concept of renormalization (see [22] for

details and comments).

Definition 1.3 (renormalization, Itô formulation) Let ρ be a weak L2 solution of (1.2)

with initial datum ρ|t=0 = ρ0 ∈ L2(M). We say that ρ is renormalizable if, for any F ∈
C2(R) with F, F ′, F ′′ bounded on R, and for any ψ ∈ C∞(M), the stochastic process (ω, t) 7→
∫
M
F (ρ(t))ψ dVh has a continuous modification which is an {Ft}t∈[0,T ]-adapted process, and,

setting GF (ξ) := ξF ′(ξ)− F (ξ), for ξ ∈ R, the function F (ρ) satisfy the SPDE

dF (ρ) + divh(F (ρ)u) dt+GF (ρ) divh u dt

+

N∑

i=1

divh(F (ρ)ai) dW
i(t) +

N∑

i=1

GF (ρ) divh ai dW
i(t)

=
1

2

N∑

i=1

Λi(F (ρ)) dt −
1

2

N∑

i=1

Λi(1)GF (ρ) dt

+
1

2

N∑

i=1

F ′′(ρ) (ρ divh ai)
2 dt+

N∑

i=1

divh(GF (ρ)ai) dt, (1.8)

weakly (in x), P-a.s., where the first order differential operator ai is defined by ai := (divh ai)ai

and Λi(1) = divh ai for i = 1, · · · , N ; that is, for all ψ ∈ C∞(M) and for any t ∈ [0, T ], the

following equation holds P-a.s.:
∫

M

F (ρ(t))ψ dVh =

∫

M

F (ρ0)ψ dVh +

∫ t

0

∫

M

F (ρ(s))u(ψ) dVh ds

+
N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ψ) dVh dW
i(s)

+
1

2

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ai(ψ)) dVh ds

−
∫ t

0

∫

M

GF (ρ(s)) divh uψ dVh ds

−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s)) divh ai ψ dVh dW
i(s)

− 1

2

N∑

i=1

∫ t

0

∫

M

Λi(1)GF (ρ(s))ψ dVh ds

+
1

2

N∑

i=1

∫ t

0

∫

M

F ′′(ρ(s))(ρ(s) divh ai)
2 ψ dVh ds
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−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s))ai(ψ) dVh ds. (1.9)

Theorem 1.1 (renormalization property see [22]) Assume (1.5) and consider a weak L2

solution ρ of (1.2) with initial datum ρ0 ∈ L2(M), according to Definition 1.2. Then ρ is

renormalizable in the sense of Definition 1.3.

To prove the L2 estimate mentioned earlier, we actually need a version of the weak formu-

lation (1.9) that uses time-dependent test functions. Moreover, we are required to insert into

that weak formulation “non-smooth” test functions. These technical aspects of the theory are

developed in Sections 4–5.

One can only expect the noise term to improve the well-posedness situation for (1.2) if

the resulting second order differential operator
∑
i

ai(ai) appearing in (1.4) is non-degenerate

(uniformly elliptic). The required non-degeneracy is not guaranteed. The reason is a geometric

one that is tied to the nonlinearity of the domain. Indeed, given an arbitrary d-dimensional

smooth manifold M , it is not possible to find a global frame for it, that is, d smooth vector

fields E1, · · · , Ed that constitute a basis for TxM for all x ∈ M . Manifolds that exhibit this

property are called parallelizable. Examples of parallelizable manifolds are Lie groups (e.g. Rd,

T
d) and the sphere S

d with d ∈ {1, 3, 7}. We refer to Section 6 for further details, and a proof

of the following simple but useful fact.

Lemma 1.1 (non-degenerate second order operator) There exist N = N(M) smooth vector

fields a1, · · · , aN on M such that the following identity holds

1

2

N∑

i=1

ai(ai(ψ)) = ∆hψ − 1

2

N∑

i=1

ai(ψ), ∀ψ ∈ C2(M),

where ∆h is the Laplace-Beltrami operator of (M,h) and a1, · · · , aN are first order differential

operators: ai := (divh ai) ai for i = 1, · · · , N .

It is now clear that with the specific vector fields a1, · · · , aN constructed in Lemma 1.1, the

resulting second order operator 1
2

N∑
i=1

ai(ai(·)) in (1.4) becomes uniformly elliptic. The main

result of this paper, which shows how the use of noise can avoid concentration in the density

ρ, is the following theorem.

Theorem 1.2 (well-posedness) Suppose conditions (1.5)–(1.7) hold. Let the vector fields

a1, · · · , aN be given by Lemma 1.1. Then there exists a unique weak solution of (1.2) with

initial datum ρ|t=0 = ρ0 ∈ L2(M).

As far as we know, this theorem provides the first result on regularization by noise on a

manifold (we are not aware of any such result even for ODEs). The proof consists of several

steps. The first one establishes the well-posedness of strong solutions to (1.2) with smooth data

(u, ρ0), which is the topic of Section 3. Here the basic strategy is, with the help of a smooth

partition of unity subordinate to a finite atlas, to solve localized versions of (1.2) “pulled back”
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to R
d, relying on Kunita’s existence and uniqueness theory for SPDEs on Euclidean domains

(see [30–31]). We “glue” the localized solutions together on M , obtaining in this way a global

solution. The gluing procedure is well-defined, because if two coordinate patches intersect, then

their corresponding solutions must agree on the intersection, in view of the uniqueness result

that is available on R
d (with u, ρ0 smooth). In Section 8, we derive an L2 estimate for general

weak solutions ρ (with non-smooth u, ρ0):

E

∫

M

|ρ(t, x)|2 dx ≤ C

∫

M

|ρ0(x)|2 dx, t ∈ [0, T ], (1.10)

where the constant C depends on ‖ divh u‖Lp
t,x
, see (1.7), but not ‖ divh u‖L∞ . The derivation

of this estimate is based on (1.8), and a duality argument in which we construct a specific

(deterministic) test function φ(t, x) that can “absorb” the bad divh u term in (1.8). This

function solves the terminal-value problem

∂tφ(t) + ∆hφ(t)− b(t, x)φ = 0 on [0, t0]×M, φ(t0, x) = 1 on M,

where t0 ∈ [0, T ], ∆h is the Laplace-Beltrami operator, and b = b(t, x) ≤ 0 is an appropriately

chosen irregular function (b ∈ Lp with p > d + 2). Using Fredholm theory and embedding

theorems in anisotropic Sobolev spaces W 1,2,p
t,x (see [8]), we prove that this problem admits a

unique solution φ ∈W 1,2,p
t,x that satisfies

‖(φ,∇φ)‖L∞

t,x
≤ C(p, d, T,M)‖b‖Lp

t,x
, (1.11)

where ∇ denotes the covariant derivative. Using this φ as test function in the time-space weak

formulation of (1.8), along with the estimates (1.11), we arrive at the L2 estimate (1.10) via

Grönwall’s inequality. In the final step (Section 9), we replace the irregular vector field u and

the initial function ρ0 ∈ L2 by appropriate smooth approximations uτ and ρ0,τ , respectively,

where τ > 0 is the approximation parameter, and solve for each τ > 0 the corresponding SPDE

with smooth data (uτ , ρ0,τ ), giving raise to a sequence {ρτ}τ>0 of approximate solutions. In

view of (1.10), we have an L2 bound on ρτ that is independent of τ , which is enough to arrive

at the existence of a weak solution to (1.2) by way of a compactness argument. Uniqueness is

an immediate consequence of (1.10).

Before ending this (long) section, let us briefly discuss the nontrivial matter of regularizing

functions and vector fields on manifolds. In the Euclidean case one uses mollification. Mollifica-

tion possesses many fitting properties (e.g. it commutes with differential operators) that are not

easy to engineer if the function in question is defined on a manifold. Indeed, on a Riemannian

manifold, there are a number of smoothing devices currently being used, including partition of

unity combined with Euclidean convolution in local charts (see e.g. [14, 21–22]), Riemannian

convolution smoothing (see [25]), and the heat semigroup method (see e.g. [17, 21]), where the

last two are better at preserving geometric properties. In this paper, for smoothing of the data

ρ0 (function) and u (vector field), we employ standard mollifcation in time and convolution

with the heat semigroup in the spatial variables, where the heat semigroup approach is applied
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to functions as well as vector fields (the latter via 1-forms and the de Rham-Hodge semigroup),

see Section 10 for details.

2 Background Material

In an attempt to make the paper more self-contained and fix relevant notation, we briefly

review some basic aspects of differential geometry and stochastic analysis. For unexplained

terminology and rudimentary results concerning the target equation (1.2), we refer to [22].

2.1 Geometric framework

We refer to [4, 12, 32] for background material on differential geometry and analysis on

manifolds. Fix a closed, compact, connected and oriented d-dimensional smooth Riemannian

manifold (M,h). The metric h is a smooth positive-definite 2-covariant tensor field, which

determines for every x ∈ M an inner product hx on TxM . Here TxM denotes the tangent

space at x, and by TM =
∐

x∈M

TxM we denote the tangent bundle. For two arbitrary vectors

X1, X2 ∈ TxM , we will henceforth write hx(X1, X2) =: (X1, X2)hx
or even (X1, X2)h if the

context is clear. We set |X |h := (X,X)
1
2

h . Recall that, in local coordinates x = (xi), the partial

derivatives ∂i :=
∂

∂xi form a basis for TxM , while the differential forms dxi determine a basis

for the cotangent space T ∗
xM . Therefore, in local coordinates, h reads

h = hij dx
idxj , hij = (∂i, ∂j)h.

We will denote by (hij) the inverse of the matrix (hij).

We denote by dVh the Riemannian density associated to h, which in local coordinates takes

the form

dVh = |h| 12 dx1 · · ·dxd,

where |h| is the determinant of h. Throughout the paper, we will assume for convenience that

Vol(M,h) :=

∫

M

dVh = 1.

For p ∈ [1,∞], we denote by Lp(M) the usual Lebesgue spaces on (M,h). In local coordinates,

the gradient of a function f :M → R is the vector field given by the following expression

gradh f := hij∂if ∂j .

The symbol ∇ refers to the Levi-Civita connection of h, namely the unique linear connection

on M that is compatible with h and is symmetric. The Christoffel symbols associated to ∇ are

given by

Γk
ij =

1

2
hkl(∂ihjl + ∂jhil − ∂lhij).

In particular, the covariant derivative of a vector field X = Xα∂α is the (1, 1)-tensor field which

in local coordinates reads

(∇X)αj := ∂jX
α + Γα

kjX
k.
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The divergence of a vector field X = Xj∂j is the function defined by

divhX := ∂jX
j + Γj

kjX
k.

For any vector field X and f ∈ C1(M), we have X(f) = (X, gradh f)h, which locally takes

the form Xj∂jf . We recall that for a (smooth) vector field X , the following integration by

parts formula holds:
∫

M

X(f) dVh =

∫

M

(gradh f,X)h dVh = −
∫

M

f divhX dVh,

recalling that M is closed (so all functions are compactly supported).

Given a smooth vector field X on M , we consider the norm

‖X‖p−−−−→
Lp(M)

:=





∫

M

|X |ph dVh, p ∈ [1,∞),

‖|X |h‖L∞(M), p = ∞.

The closure of the space of smooth vector fields on M with respect to the norm ‖ · ‖−−−−→
Lp(M)

is

denoted by
−−−−→
Lp(M). We define the Sobolev space

−−−−−−→
W 1,p(M) in a similar fashion. Indeed, consider

the norm

‖X‖p−−−−−−→
W 1,p(M)

:=





∫

M

(|X |ph + |∇X |ph) dVh, if p ∈ [1,∞),

‖ |X |h + |∇X |h ‖L∞(M), if p = ∞,

where, locally, |∇X |2h = (∇X)ij hikh
jm (∇X)km. The closure of the space of smooth vector fields

with respect to this norm is
−−−−−−→
W 1,p(M). For more operative definitions,

−−−−→
Lp(M) and

−−−−−−→
W 1,p(M)

can be seen as the spaces of vector fields whose components in any arbitrary chart belong to

the corresponding Euclidean space.

We will make essential use of the anisotropic Sobolev space W 1,2,p([0, T ] ×M), with p ∈
[1,∞) and T > 0 finite. This space is defined as the completion of C∞([0, T ]×M) under the

norm

‖w‖W 1,2,p([0,T ]×M) :=
∑

j,k≥0
2j+k≤2

[ ∫∫

[0,T ]×M

|∂jt∇kw|ph dt dVh
] 1

p

, (2.1)

where ∇kw denotes the kth covariant derivative of the function w. We have the following

important embedding result (see Section 10 for a proof).

Proposition 2.1 Suppose p > d+ 2. Then

W 1,2,p([0, T ]×M) ⊂⊂ C0,1− 1+d
p ([0, T ]×M);

the first-order x-derivatives of a function w = w(t, x) ∈W 1,2,p([0, T ]×M) are Hölder continuous

with exponent 1− 1+d
p

, such that

‖w‖C0([0,T ]×M) + ‖∇w‖C0([0,T ]×M) ≤ C‖w‖W 1,2,p([0,T ]×M)

for some constant C = C(p, d,M).
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Finally, we introduce the following second order differential operators associated with the

vector fields a1, · · · , aN :

Λi(ψ) := divh(divh(ψai)ai), ψ ∈ C2(M), i = 1, · · · , N. (2.2)

It is not difficult to see that the adjoint of Λi(·) is ai(ai(·)):
∫

M

Λi(ψ)φdVh =

∫

M

ψ ai(ai(φ)) dVh

=

∫

M

ψ ((∇2φ)(ai, ai) + (∇ai
ai)(ψ)) dVh, ∀ψ, φ ∈ C2(M),

see [22] for further details.

2.2 Stochastic framework

We use the books [38, 42] as general references on the topic of stochastic analysis. From

beginning to end, we fix a complete probability space (Ω,F ,P) and a complete right-continuous

filtration {Ft}t∈[0,T ]. Without loss of generality, we assume that the σ-algebra F is countably

generated. Let W = {Wi}Ni=1 be a finite sequence of independent one-dimensional Brownian

motions adapted to the filtration {Ft}t∈[0,T ]. We refer to (Ω,F , {Ft}t∈[0,T ],P,W ) as a (Brow-

nian) stochastic basis.

Consider two real-valued stochastic processes Y, Ỹ . We call Ỹ a modification of Y if, for

each t ∈ [0, T ], P({ω ∈ Ω : Y (ω, t) = Ỹ (ω, t)}) = 1. It is important to pick good modifications

of stochastic processes. Right (or left) continuous modifications are often used (they are known

to exist for rather general processes), since any two such modifications of the same process

are indistinguishable (with probability one they have the same sample paths). Besides, they

necessarily have left-limits everywhere. Right-continuous processes with left-limits are referred

to as càdlàg.

An {Ft}t∈[0,T ]-adapted, càdlàg process Y is an {Ft}t∈[0,T ]-semimartingale if there exist

processes F,M with F0 =M0 = 0 such that

Yt = Y0 + Ft +Mt,

where F is a finite variation process and M is a local martingale. In this paper we will only

be concerned with continuous semimartingales. The quantifier “local” refers to the existence

of a sequence {τn}n≥1 of stopping times increasing to infinity such that the stopped processes

1{τn>0}Mt∧τn are martingales.

Given two continuous semimartingales Y and Z, we can define the Fisk-Stratonovich integral

of Y with respect to Z by

∫ t

0

Y (s) ◦ dZ(s) =
∫ t

0

Y (s) dZ(s) +
1

2
〈Y, Z〉t ,

where
∫ t

0 Y (s)dZ(s) is the Itô integral of Y with respect to Z and 〈Y, Z〉 denotes the quadratic

cross-variation process of Y and Z. Let us recall Itô’s formula for a continuous semimartingale
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Y . Let F ∈ C2(R). Then F (Y ) is again a continuous semimartingale and the following chain

rule formula holds:

F (Y (t))− F (Y (0)) =

∫ t

0

F ′(Y (s))dY (s) +
1

2

∫ t

0

F ′′(Y (s)) d 〈Y, Y 〉s .

Martingale inequalities are generally important for several reasons. For us they will be

used to bound Itô stochastic integrals in terms of their quadratic variation (which is easy to

compute). One of the most important martingale inequalities is the Burkholder-Davis-Gundy

inequality. Let Y = {Yt}t∈[0,T ] be a continuous local martingale with Y0 = 0. Then, for any

stopping time τ ≤ T ,

E

(
sup

t∈[0,τ ]

|Yt|
)p

≤ Cp E
p

√
〈Y, Y 〉τ , p ∈ (0,∞),

where Cp is a universal constant.

3 Smooth Data and Strong Solutions

3.1 Strong solution

We are going to construct strong solutions to (1.2) when the data ρ0, u are smooth. More

precisely, throughout this section, we will assume ρ0 ∈ C∞(M) and that u : [0,∞)×M → TM

is a vector field on M that is smooth in both variables. The strategy we employ is the following

one: Firstly we solve a local version of (1.2) “pulled back” on R
d, applying the “Euclidean”

existence and uniqueness theory developed in [30]. In a second step we glue these solutions all

together on M , obtaining a global solution. The gluing procedure is well-posed because there

is a uniqueness result on R
d for smooth data (ρ0, u).

Fixing a point p ∈ M , we may find an open neighborhood U(p) ⊂ M of p and coordinates

γp : U(p) → R
d such that γp(U(p)) = R

d. By compactness of M , there is a finite atlas A with

these properties, namely, there exist p1, · · · , pK such that M =
K⋃
l=1

U(pl) and γpl
(U(pl)) = R

d.

Remark 3.1 To construct these coordinates, one is usually led to use that the ball B1(0) ⊂
R

d is diffeomorphic to the whole space, for instance via the map

Φ : Rd → B1(0), z 7→ z√
1 + |z|2

.

If we now have a C1 function f : B1(0) → R with bounded derivatives, then it is straightforward

to check that f ◦ Φ has bounded derivatives as well.

Fix a point pl. In the coordinates given by γpl
, (1.2) looks like

dρl + [ρl divh u+ ∂jρ
luj] dt+

N∑

i=1

[∂jρ
laji + ρl divh ai] ◦ dW i

t = 0 on [0, T ]× R
d,

ρl(0) = ρ0 ◦ γ−1
pl

on R
d.
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Observe that the coefficients satisfy the hypotheses on [30, pages 264 and 267]. In particular,

the z-derivatives are bounded, in view of Remark 3.1. (In Kunita’s notation we have

Q0(t, x, v) = v divh u, Qj(t, x, v) = v divh aj , j = 1, · · · , N,
P r
0 = ur, P r

j = arj , r = 1, · · · , d, j = 1, · · · , N,
Q

(1)
0 = divh u, Q

(0)
0 = 0,

Q
(1)
j = divh aj , Q

(0)
j = 0, j = 1, · · · , N.)

Therefore, we may apply [30, Theorem 4.2] to obtain a unique strong solution which we call ρl

(for the definition of strong solution, see [30, p. 255]). Let us “lift” ρl on M , via γpl
, namely,

for t ∈ [0, T ] define

ρ̂l(t, x) :=

{
ρl(t, γpl

(x)), x ∈ U(pl),
0, x /∈ U(pl).

We repeat this procedure for all pl, thereby obtaining ρ̂l for l ∈ {1, · · · ,K}.
Suppose that U(pl) ∩ U(pl′) 6= ∅ for some l 6= l′. Fix q ∈ U(pl) ∩ U(pl′). Arguing as above,

we may find coordinates ηq : V(q) → R
d such that V(q) is an open neighborhood of q with

V(q) ⊂ U(pl) ∩U(pl′ ) and ηq(V(q)) = R
d. Once again, we can find a unique strong solution ρq,

which we lift on M : For t ∈ [0, T ] define

ρ̂q(t, x) :=

{
ρq(t, ηq(x)), x ∈ V(q),
0, x /∈ V(q).

We now restrict ρ̂l(t, ·) on V(q). Trivially, the restriction satisfies (1.2) on V(q). This is

a geometric equation (and thus coordinate-independent), which implies that the restriction of

ρ̂l(t, ·) to V(q) must satisfy (1.2) when written in the coordinates given by ηq. By uniqueness

in R
d (of strong solutions), we must have ρ̂l(·, η−1

q (·)) = ρq(·, ·) on [0,∞) × R
d, and thus

ρ̂l(t, x) = ρ̂q(t, x) for all t ∈ [0, T ] and x ∈ V(q). By symmetry, we infer

ρ̂l(t, x) = ρ̂l
′

(t, x) for (t, x) ∈ [0, T ]× V(q).

Repeating the whole procedure for all q ∈ U(pl) ∩ U(pl′), we conclude that

ρ̂l(t, x) = ρ̂l
′

(t, x) for (t, x) ∈ [0, T ]× (U(pl) ∩ U(pl′)).

In view of these compatibility conditions, we may unambiguously define

ρ(t, x) := ρ̂l(t, x), (t, x) ∈ [0, T ]×M, (3.1)

where l is an index in {1, · · · ,K} such that x ∈ U(pl).
We have thus arrived at the following lemma.

Lemma 3.1 (strong solution, smooth data) The function ρ given by (3.1) is the unique

strong solution of (1.2) with initial datum ρ0 ∈ C∞(M) and smooth vector field u : [0,∞)×M →
TM . Moreover, ρ is a C∞ semimartingale.
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3.2 Elementary Lp bound

Let ρ be the solution constructed above. We observe that, in view of the results in [30],

locally in the coordinates induced by γpl
on U(pl), we have the following explicit expression for

ρ:

ρ(t, γ−1
pl

(z)) = ρl(t, z)

= exp
( ∫ t

0

divh u(s, ξs(y)) ds+

N∑

i=1

∫ t

0

divh ai(y) ◦ dW i
s

)∣∣∣
y=ξ−1

t (z)

× ρ0(γ
−1
pl

◦ ξ−1
t (z))

= exp
( ∫ t

0

divh u(s, ξs(y))ds
)∣∣∣

y=ξ−1

t (z)
exp

( N∑

i=1

divh ai(ξ
−1
t (z))W i

t

)

× ρ0(γ
−1
pl

◦ ξ−1
t (z)) (3.2)

for (t, z) ∈ [0, T ]× R
d, where ξ is a stochastic flow of diffeomorphisms, satisfying

dξt(z) = −u(t, ξt(z)) dt−
N∑

i=1

ai(ξt(z)) ◦ dW i
t , ξ0(z) = z.

Here the vector fields u, ai are seen as vectors in R
n through our coordinate system.

Let us derive an Lp bound. Fix p ∈ [1,∞) and let (χl)l be a smooth partition of unity

subordinated to our atlas A. We have
∫

M

χl(x)|ρ(t, x)|p dVh(x) =
∫

suppχl

χl(x)|ρ(t, x)|p dVh(x)

=

∫

γpl
(suppχl)

χl(γ
−1
pl

(z))|ρ(t, γ−1
pl

(z))|p|hγpl
(z)| 12 dz,

where |hγpl
| 12 denotes the determinant of the metric h written in the coordinates induced by

γpl
. Using (3.2) and the change of variable z = ξt(w), we obtain

∫

M

χl(x)|ρ(t, x)|p dVh(x)

=

∫

γpl
(suppχl)

χl(γ
−1
pl

(z)) exp
(
p

∫ t

0

divh u(s, ξs(y)) ds
)∣∣∣

y=ξ−1

t (z)

× exp
(
p

N∑

i=1

divh ai(ξ
−1
t (z))W i

t

)
|ρ0(γ−1

pl
◦ ξ−1

t (z))|p|hγpl
(z)| 12 dz

=

∫

ξ−1

t ◦γpl
(suppχl)

χl(γ
−1
pl

◦ ξt(w)) exp
(
p

∫ t

0

divh u(s, ξs(w)) ds
)

× exp
(
p

N∑

i=1

divh ai(w)W
i
t

)
|ρ0(γ−1

pl
(w))|p|∂ξt(w)||hγpl

(ξt(w)|
1
2 dw

=

∫

ξ−1

t ◦γpl
(suppχl)

χl(γ
−1
pl

◦ ξt(w)) exp
(
p

∫ t

0

divh u(s, ξs(w)) ds
)
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× exp
(
p

N∑

i=1

divh ai(w)W
i
t

)
|ρ0(γ−1

pl
(w))|p|hξ−1

t ◦γpl

(w)| 12 dw.

In passing, note that ξ−1
t ◦ γpl

is a bona fide smooth chart. In the following, C denotes a

constant that depends only on T , p, ‖ divh u‖L∞

t,x
, ‖ divh ai‖L∞ and is allowed to vary from line

to line. For convenience, set Ai := ‖ divh ai‖L∞(M). We proceed as follows:

∫

M

χl(x)|ρ(t, x)|p dVh(x)

≤ C

∫

ξ−1

t ◦γpl
(suppχl)

χl(γ
−1
pl

◦ ξt(w))

× exp
(
p

N∑

i=1

Ai|W i
t |
)
|ρ0(γ−1

pl
(w))|p|hξ−1

t ◦γpl

(w)| 12 dw

= C exp
(
p

N∑

i=1

Ai|W i
t |
)∫

ξ−1

t ◦γpl
(suppχl)

χl(γ
−1
pl

◦ ξt(w))

× |ρ0(γ−1
pl

(w))|p|hξ−1

t ◦γpl

(w)| 12 dw

≤ C exp
(
p

N∑

i=1

Ai|W i
t |
)
‖ρ0‖pL∞(M)

×
∫

ξ−1

t ◦γpl
(suppχl)

χl(γ
−1
pl

◦ ξt(w))|hξ−1
t ◦γpl

(w)| 12 dw

= C exp
(
p

N∑

i=1

Ai|W i
t |
)
‖ρ0‖pL∞(M)

∫

suppχl

χl(x) dVh(x).

Taking expectation leads to

E

∫

M

χl(x)|ρ(t, x)|p dVh(x)

≤ C‖ρ0‖pL∞(M)

∫

M

χl(x) dVh(x)E exp
(
p

N∑

i=1

Ai|W i
t |
)

= C‖ρ0‖pL∞(M)

∫

M

χl(x) dVh(x)
N∏

i=1

E exp(pAi|W i
t |)

≤ C‖ρ0‖pL∞(M)

∫

M

χl(x) dVh(x),

where we have used that the Brownian motions are independent and satisfy the standard

estimate (see [20, page 54]),

E exp(α|W i
t |) ≤ β, t ∈ [0, T ], α > 0,

where the constant β depends on α and T . Therefore, summing over l, we obtain

E‖ρ(t)‖pLp(M) ≤ C‖ρ0‖pL∞(M)

∫

M

dVh(x) = C‖ρ0‖pL∞(M),
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where the constant C depends on the L∞ norms of divh u, div a1, · · · , divh aN . Since we

are assuming that ρ0, u ∈ C∞, the right-hand side of the last expression is finite, and thus

ρ ∈ L∞
t L

p
ω,x. Moreover, using [30, Theorem 1.1], we infer that the stochastic process (ω, t) 7→

∫
M
ρ(t)ψ dVh is a continuous Ft-semimartingale for any ψ ∈ C∞(M).

Let us summarize all these results in the following lemma.

Lemma 3.2 (Lp estimates, smooth data) Suppose ρ0, u ∈ C∞. Let ρ be the unique strong

solution of (1.2) given by Lemma 3.1. Then, for any p ∈ [1,∞],

ρ ∈ L∞([0, T ];Lp(Ω×M)), sup
t∈[0,T ]

E‖ρ(t)‖pLp(M) ≤ C‖ρ0‖pL∞(M),

where C = C(p, T, ‖ divh u‖L∞([0,T ]×M),max
i

‖ divh ai‖L∞(M)). Besides, for any ψ ∈ C∞(M),

the process (ω, t) 7→
∫
M
ρ(t)ψ dVh is a continuous Ft-semimartingale.

Let us bring (1.2) into its Itô form, still assuming that ρ0, u ∈ C∞. We are not going to

spell out all the details, referring instead to [30] for the missing pieces. The solution ρ we

have constructed in Lemma 3.1 is a smooth semimartingale, and it satisfies P-a.s. the following

equation:

ρ(t, x) = ρ0(x) −
∫ t

0

divh(ρ(s, x)u) ds−
N∑

i=1

∫ t

0

divh(ρ(s, x) ai) dW
i(s)

− 1

2

N∑

i=1

〈divh(ρ(·, x)ai),W i
· 〉t

= ρ0(x) −
∫ t

0

divh(ρ(s, x)u) ds−
N∑

i=1

∫ t

0

divh(ρ(s, x) ai) dW
i(s)

− 1

2

N∑

i=1

〈ai(ρ(·, x)),W i
· 〉t −

1

2

N∑

i=1

〈ρ(·, x),W i
· 〉t divh ai (3.3)

for all t ∈ [0, T ] and x ∈ M , by definition of the Stratonovich integral. By Theorem 1.1 and

[30, Lemma 1.3], we obtain

ai(ρ(t, x)) = ai(ρ0(x)) −
∫ t

0

ai(divh(ρ(s, x)u)) ds

−
N∑

j=1

∫ t

0

ai(divh(ρ(s, x) aj)) dW
j(s)− 1

2

N∑

j=1

〈ai(divh(ρ(·, x)aj)),W j
· 〉t

and

〈ai(ρ(·, x)),W i
· 〉t = −

N∑

j=1

〈∫ ·

0

ai(divh(ρ(s, x) aj)) dW
j(s),W i

·

〉
t

= −
N∑

j=1

∫ t

0

ai(divh(ρ(s, x) aj)) d〈W j ,W i〉s

= −
∫ t

0

ai(divh(ρ(s, x) ai)) ds, (3.4)



96 L. Galimberti and K. H. Karlsen

because the Brownian motions are independent, and the time-integral involving u is absolutely

continuous and thus not contributing to the quadratic variation.

Moreover, it is clear that

〈ρ(·, x),W i
· 〉t = −

N∑

j=1

〈∫ ·

0

divh(ρ(s, x) aj) dW
j(s),W i

·

〉
t

= −
N∑

j=1

∫ t

0

divh(ρ(s, x) aj) d〈W j ,W i〉s

= −
∫ t

0

divh(ρ(s, x) ai) ds. (3.5)

Re-starting from (3.3), using (3.4) and (3.5), we finally arrive at

ρ(t, x) = ρ0(x) −
∫ t

0

divh(ρ(s, x)u) ds−
N∑

i=1

∫ t

0

divh(ρ(s, x) ai) dW
i(s)

+
1

2

N∑

i=1

∫ t

0

ai(divh(ρ(s, x) ai)) ds

+
1

2

N∑

i=1

∫ t

0

divh ai divh(ρ(s, x) ai) ds

= ρ0(x) −
∫ t

0

divh(ρ(s, x)u) ds−
N∑

i=1

∫ t

0

divh(ρ(s, x) ai) dW
i(s)

+
1

2

N∑

i=1

∫ t

0

Λi(ρ(s, x)) ds,

where the second order differential equation Λi is defined in (2.2). This is the strong Itô form

of (1.2), derived under the assumption that ρ0, u ∈ C∞. If we now integrate this against

ψ ∈ C∞(M) (say), since the Itô integral admits a Fubini-type theorem, we arrive at the weak

form given in Definition 1.2.

In view of this, combining Lemmas 3.1 and 3.2, we eventually arrive at the following propo-

sition.

Proposition 3.1 (weak solution, smooth data) Let ρ given by (3.1) be the unique strong

solution of (1.2) with initial datum ρ0 ∈ C∞(M) and smooth vector field u : [0,∞)×M → TM .

Then ρ is a weak L2 solution of (1.2) in the sense of Definition 1.1.

4 Time-Dependent Test Functions

During an upcoming proof (of the L2 estimate), we will need a version of the weak for-

mulation (1.9) that makes use of time-dependent test functions. The next result supplies that

formulation.

Lemma 4.1 (space-time weak formulation) Let ρ be a weak L2 solution of (1.2) with initial

datum ρ|t=0 = ρ0. Suppose ρ is renormalizable in the sense of Definition 1.3. Fix F ∈ C2(R)
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with F, F ′, F ′′ ∈ L∞(R). For any ψ ∈ C∞([0, T ]×M), the following equation holds P-a.s., for

any t ∈ [0, T ],

∫

M

F (ρ(t))ψ(t) dVh −
∫

M

F (ρ0)ψ(0) dVh

=

∫ t

0

∫

M

F (ρ(s))∂tψ dVh ds+

∫ t

0

∫

M

F (ρ(s))u(ψ) dVh ds

+

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ψ) dVh dW
i(s) +

1

2

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ai(ψ)) dVh ds

−
∫ t

0

∫

M

GF (ρ(s)) divh uψ dVh ds−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s)) divh ai ψ dVh dW
i(s)

− 1

2

N∑

i=1

∫ t

0

∫

M

Λi(1)GF (ρ(s))ψ dVh ds

+
1

2

N∑

i=1

∫ t

0

∫

M

F ′′(ρ(s))(ρ(s) divh ai)
2 ψ dVh ds

−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s))ai(ψ) dVh ds. (4.1)

Proof It is sufficient to consider test functions of the form ψ(t, x) = θ(t)φ(x), where

θ ∈ C1
c ((−1, T +1)) and φ ∈ C∞(M), because the general result will then follow from a density

argument for the tensor product. We start off from the following space-weak formulation, see

(1.9):

∫

M

F (ρ(t))φdVh

=

∫

M

F (ρ0)φdVh +

∫ t

0

∫

M

F (ρ(s))u(φ) dVh ds

+
N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(φ) dVh dW
i(s) +

1

2

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ai(φ)) dVh ds

−
∫ t

0

∫

M

GF (ρ(s)) divh uφdVh ds−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s)) divh ai φdVh dW
i(s)

− 1

2

N∑

i=1

∫ t

0

∫

M

Λi(1)GF (ρ(s))φdVh ds

+
1

2

N∑

i=1

∫ t

0

∫

M

F ′′(ρ(s))(ρ(s) divh ai)
2 φdVh ds

−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s))ai(φ) dVh ds, P-a.s., for any t ∈ [0, T ].

We multiply this equation by θ̇(t) and integrate the result over t ∈ [0, t]. All the time-integrals
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are absolutely continuous by definition, and thus we can integrate them by parts. For example,

∫ t

0

θ̇(t)

∫ t

0

∫

M

F (ρ(s))u(φ) dVh ds dt

= θ(t)

∫ t

0

∫

M

F (ρ(s))u(φ) dVh ds−
∫ t

0

θ(t)

∫

M

F (ρ(t))u(φ) dVh dt

and so forth. We can also integrate by parts the stochastic integrals. For example,

∫ t

0

θ̇(t)

∫ t

0

∫

M

F (ρ(s)) ai(φ) dVh dW
i(s) dt

= θ(t̄)

∫ t̄

0

∫

M

F (ρ(s)) ai(φ) dVh dW
i(s)−

∫ t̄

0

θ(t)

∫

M

F (ρ(s)) ai(φ) dVh dW
i(t)

and so forth. Finally,

∫ t

0

θ̇(t)
( ∫

M

F (ρ(t))φdVh −
∫

M

F (ρ0)φdVh

)
dt

=

∫ t

0

∫

M

F (ρ(t))θ̇(t)φdVh dt+

∫

M

F (ρ0)θ(0)φdVh −
∫

M

F (ρ0)θ(t)φdVh,

where the last term is aggregated together with the other “θ(t̄)
∫ t̄

0 (· · · )” terms that appear, even-

tually leading to
∫
M
F (ρ(t))θ(t)φdVh. Therefore, after many straightforward rearrangements

of terms, we arrive at (now replacing t by t)

∫

M

F (ρ(t))θ(t)φdVh −
∫

M

F (ρ0)θ(0)φdVh

=

∫ t

0

∫

M

F (ρ(s))θ̇(s)φdVh ds

+

∫ t

0

∫

M

F (ρ(s))u(θ(s)φ) dVh ds+

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(θ(s)φ) dVh dW i(s)

+
1

2

N∑

i=1

∫ t

0

∫

M

F (ρ(s)) ai(ai(θ(s)φ)) dVh ds−
∫ t

0

∫

M

GF (ρ(s)) divh u θ(s)φdVh ds

−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s)) divh ai θ(s)φdVh dW
i(s)

− 1

2

N∑

i=1

∫ t

0

∫

M

Λi(1)GF (ρ(s)) θ(s)φdVh ds

+
1

2

N∑

i=1

∫ t

0

∫

M

F ′′(ρ(s))(ρ(s) divh ai)
2 θ(s)φdVh ds

−
N∑

i=1

∫ t

0

∫

M

GF (ρ(s))ai(θ(s)φ) dVh ds.

By density of tensor products (see [12]), this equation continues to hold for any test function

ψ ∈ C∞
c ((−1, T + 1)×M) and thus for any ψ ∈ C∞([0, T ]×M).
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5 Irregular Test Functions

We need to insert into the weak formulation (4.1) test functions ψ(t, x) that are non-smooth.

Clearly, in view of our assumptions, the stochastic integrals in (4.1) are zero-mean martingales.

Hence, after taking the expectation in (4.1), we obtain

E

∫

M

F (ρ(t))ψ(t) dVh − E

∫

M

F (ρ0)ψ(0) dVh

= E

∫ t

0

∫

M

F (ρ(s))∂tψ dVh ds+ E

∫ t

0

∫

M

F (ρ(s))u(ψ) dVh ds

+
1

2

N∑

i=1

E

∫ t

0

∫

M

F (ρ(s)) ai(ai(ψ)) dVh ds

− E

∫ t

0

∫

M

GF (ρ(s)) divh uψ dVh ds

− 1

2

N∑

i=1

E

∫ t

0

∫

M

Λi(1)GF (ρ(s))ψ dVh ds

+
1

2

N∑

i=1

E

∫ t

0

∫

M

F ′′(ρ(s))(ρ(s) divh ai)
2 ψ dVh ds

−
N∑

i=1

E

∫ t

0

∫

M

GF (ρ(s))ai(ψ) dVh ds, (5.1)

which holds for any test function ψ ∈ C∞([0, T ]×M).

The main result of this section is in the following.

Lemma 5.1 (non-smooth test functions) Let ρ be a weak L2 solution of (1.2) with initial

datum ρ|t=0 = ρ0 and assume that ρ is renormalizable. Fix F ∈ C2(R) with F, F ′, F ′′ ∈ L∞(R).

Fix a time t0 ∈ (0, T ] and consider (5.1) evaluated at t = t0. Then (5.1) continues to hold for

any ψ ∈W 1,2,p([0, t0]×M) with p > d+ 2.

Proof By Proposition 2.1,W 1,2,p([0, t0]×M) compactly embeds into C0([0, t0]×M) (since

p > d+2). Moreover, the first order x-derivatives of aW 1,2,p function belong to C0([0, t0]×M).

Therefore, given a function

ψ ∈W 1,2,p([0, t0]×M),

the very definition of W 1,2,p implies the existence of a sequence {ψj}j≥1 ⊂ C∞([0, t0] ×M)

such that ψj → ψ in W 1,2,p([0, t0]×M). Besides, we have

ψj → ψ, ∇ψj → ∇ψ uniformly on [0, t0]×M.

We extend the functions ψj to C∞([0, T ]×M) by means of Proposition 10.1. These extensions

are also denoted by ψj . Consequently, we can insert ψj into (5.1).

Equipped with the above convergences and the assumptions ρ ∈ L∞
t L

2
ω,x and u ∈ L1

t

−−−→
W 1,2

x ,

it is straightforward (repeated applications of Hölder’s inequality) to verify that (5.1) holds for

test functions ψ that belong to W 1,2,p([0, t0]×M).



100 L. Galimberti and K. H. Karlsen

6 On the Ellipticity of
∑
i

ai(ai), Proof of Lemma 1.1

In this section we will prove Lemma 1.1. Before doing that, however, let us explain why the

second order differential operator
∑
i

ai(ai(·)), in general, fails to be non-degenerate (elliptic).

To this end, we introduce the following (smooth) sections of the endomorphisms over TM :

Ai(x)X := (X, ai(x))h ai(x), x ∈M, X ∈ TxM, i = 1, · · · , N. (6.1)

It is clear that these sections are symmetric with respect to h, namely

(Ai(x)X,Y )h = (X,Ai(x)Y )h, x ∈M, X, Y ∈ TxM.

Set

A := A1 + · · ·+AN , (6.2)

which is still a smooth section of the symmetric endomorphisms over TM . Given the sec-

tions A1, · · · ,AN and A, we define the following second order linear differential operators in

divergence form:

C2(M) ∋ ψ 7→ divh(Ai∇hψ), i = 1, · · · , N,

C2(M) ∋ ψ 7→ divh(A∇hψ) =
N∑

i=1

divh(Ai∇hψ).

Observe that the following identity holds trivially:

ai(ai(ψ)) = divh(Ai∇hψ)− ai(ψ),

thus

N∑

i=1

ai(ai(ψ)) = divh(A∇hψ)−
N∑

i=1

ai(ψ), (6.3)

where ai is short-hand for the first order differential operator (divh ai) ai. Thus
N∑
i=1

ai(ai(·)) is
non-degenerate (elliptic) if and only if divh(A∇h·) is so.

In view of (6.3), let us see why the induced differential operator
N∑
i=1

ai(ai(·)) may degenerate.

From the very definition of A, we have

(A(x)X,X)h =

N∑

i=1

(Ai(x)X,X)h =

N∑

i=1

(X, ai(x))
2
h, x ∈M, X ∈ TxM,

and the last expression may be zero unless we can find vector fields ai1(x), · · · , aid(x) that

constitute a basis for TxM . Note that this can also happen in the “ideal” case N = d, that

is, one can always find suitable x ∈ M and X ∈ TxM such that (A(x)X,X)h = 0. The

explanation for this fact is geometric in nature. In general, given an arbitrary d-dimensional
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smooth manifold M , it is not possible to construct a global frame, i.e., smooth vector fields

E1, · · · , Ed forming a basis for TxM for all x ∈ M . If this happens, the manifold is called

parallelizable. Examples of parallelizable manifolds are Lie groups (like R
d, Td) and S

d with

d ∈ {1, 3, 7}.
Nevertheless, by compactness of M , one can always find vector fields a1, · · · , aN with

N ≥ d, depending on the geometry of M , such that the resulting operator divh(A∇h·) be-

comes the Laplace-Beltrami operator (and hence elliptic). In other words, to implement our

strategy of using noise to avoid density concentrations, we will add to the original SPDE

(1.2) as many independent Wiener processes and first order differential operators a1, · · · , aN
as deemed necessary by the geometry of the manifold itself. Note that in the Euclidean case

(see [3, 6, 19]) one can always resort to the canonical differential operators ai = ∂i and thus
N∑
i=1

ai(ai(·)) = divh(A∇h·) = ∆· (with N = d). This simple approach does not work for us

because of the Riemannian structure of the underlying domain M .

Having said all of that, let us now return to the proof of Lemma 1.1, which will be a trivial

consequence of the following crucial result.

Lemma 6.1 There exist N = N(M) smooth vector fields a1, · · · , aN on M such that the

corresponding section A, see (6.1) and (6.2), satisfies

(A(x)X,Y )h = 2(X,Y )h, ∀x ∈M, ∀X,Y ∈ TxM.

Consequently, A(x) = 2 ITxM for all x ∈M .

Proof Let p ∈M . Then, by means of the Gram-Schmidt algorithm, we can easily construct

a local orthonormal frame near p, that is, a local frame Ep,1, · · · , Ep,d defined in an open

neighborhood Up of p that forms an orthonormal basis for the tangent space at each point of

the neighborhood (see [32, p.24] for details). Since {Up}p∈M forms an open covering of M ,

the compactness of M ensures the existence of p1, · · · , pL ∈ M such that
L⋃

j=1

Upj
= M and

a collection of locally smooth vector fields {Epj ,i} i=1,··· ,d

j=1,··· ,L
with the aforementioned property.

Let us now consider a smooth partition of unity subordinate to {Upj
}Lj=1, which we may write

as {α2
j}Lj=1, where αj ∈ C∞(M) and

L∑
j=1

α2
j = 1. Set Ẽpj ,i := αjEpj ,i for i = 1, · · · , d and

j = 1, · · · , L. Extending these vector fields by zero outside their supports, we obtain global

smooth vector fields on M .

Observe that if αj(x) 6= 0, then x ∈ (suppαj)
◦ = (suppα2

j )
◦ ⊂ Upj

. As a result,

Epj ,1(x), · · · , Epj ,d(x) constitute an orthonormal basis for TxM . For convenience, we rename

the vector fields {Ẽpj ,i} i = 1, · · · , d

j = 1, · · · , L

as β1, · · · , βN , where N := d · L.
As before, we define sections Bi of the endomorphisms over TM by setting

Bi(x)X := (X, βi(x))h βi(x), x ∈M, X ∈ TxM

for i = 1, · · · , N , and B := B1 + · · ·+ BN .
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For an arbitrary x ∈M and X ∈ TxM , we compute

(B(x)X,X)h =

N∑

k=1

(X, βk(x))
2
h =

L∑

j=1

d∑

i=1

(X, Ẽpj ,i(x))
2
h

=
∑

j:αj(x) 6=0

d∑

i=1

(X,Epj ,i(x))
2
hα

2
j(x)

=
∑

j:αj(x) 6=0

α2
j (x)

d∑

i=1

(X,Epj ,i(x))
2
h

=
∑

j:αj(x) 6=0

α2
j (x)|X |2h = |X |2h.

By the polarization identity for inner products and the symmetry of B, this last equality implies

that

(B(x)X,Y )h = (X,Y )h, ∀x ∈M, ∀X,Y ∈ TxM,

and thus B(x) = ITxM .

Setting ai :=
√
2βi, i = 1, · · · , N , concludes the proof of the lemma.

Proof of Lemma 1.1 Fix ψ ∈ C2(M). In view of Lemma 6.1, the identity (6.3) becomes

N∑

i=1

ai(ai(ψ)) = 2 divh(∇hψ)−
N∑

i=1

ai(ψ) = 2∆hψ −
N∑

i=1

ai(ψ),

where ai = (divh ai) ai.

From now on, we will be using the vector fields a1, · · · , aN constructed in Lemma 6.1, in

which case the Itô SPDE (1.3) becomes

dρ+ divh

(
ρ
[
u− 1

2

N∑

i=1

ai

])
dt+

N∑

i=1

divh(ρ ai) dW
i(t)−∆hρ dt = 0. (6.4)

The space-weak formulation of this SPDE is

∫

M

ρ(t)ψ dVh =

∫

M

ρ0ψ dVh +

∫ t

0

∫

M

ρ(s)
[
u(ψ)− 1

2

N∑

i=1

ai(ψ)
]
dVh ds

+

N∑

i=1

∫ t

0

∫

M

ρ(s) ai(ψ) dVh dW
i(s) +

∫ t

0

∫

M

ρ(s)∆hψ dVh ds,

see Definition 1.2 and (1.4).

7 Test Function for Duality Method

In this section we first construct a solution to the following parabolic Cauchy problem on

the manifold M : Given 0 < t0 ≤ T , solve
{
∂tv −∆hv + b(t, x)v = f(x, t) on [0, t0]×M,

v(0, x) = 0 on M,
(7.1)
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where b and f are given irregular functions in Lp([0, t0] ×M) (with p ≥ 1 to be fixed later).

We follow the strategy outlined in [4, p.131] (for smooth b, f), making use of Fredholm theory

and anisotropic Sobolev spaces. Toward the end of this section, we utilize the solution of (7.1)

to construct a test function that will form the core of a duality argument given in an upcoming

section.

Consider the space W 1,2,p
0 ([0, t0]×M), which is the subspace of functions in the anisotropic

Sobolev space W 1,2,p([0, t0]×M) vanishing at t = 0. Let L designate the heat operator on M ,

namely L = ∂t −∆h. According to [4, Thm.4.45], L is an isomorphism of W 1,2,p
0 ([0, t0] ×M)

onto Lp([0, t0]×M) for 1 ≤ p <∞. Consider the multiplication operator

Kb :W
1,2,p
0 ([0, t0]×M) → Lp([0, t0]×M), v

Kb7→ bv.

To guarantee that this operator is well-defined, we must assume p > d+2. In this way, in view

of Proposition 2.1,W 1,2,p
0 ([0, t0]×M) compactly embeds into C0([0, t0]×M) and the first order

space-derivatives of v ∈W 1,2,p
0 ([0, t0]×M) are continuous on [0, t0]×M . It then follows that

∫ t0

0

∫

M

|bv|p dVh dt ≤ ‖v‖pC0

∫ t0

0

∫

M

|b|p dVh dt,

guaranteeing that Kb is well-defined.

Claim Kb is compact.

First of all, Kb is continuous:

‖Kbv‖Lp ≤ ‖v‖C0‖b‖Lp ≤ C‖v‖W 1,2,p
0

‖b‖Lp,

where C > 0 is a constant coming from the anisotropic Sobolev embedding, consult Proposition

2.1. Clearly,W 1,2,p
0 ([0, t0]×M) is reflexive, being a closed subspace ofW 1,2,p([0, t0]×M). Hence,

to arrive at the claim, it is enough to prove that Kb is completely continuous. Recall that a

bounded linear operator T : X → Y between Banach spaces is called completely continuous

if weakly convergent sequences in X are mapped to strongly converging sequences in Y . Let

{vn}n≥1 be a sequence in W 1,2,p
0 ([0, t0] ×M) such that vn ⇀ v ∈ W 1,2,p

0 . By the compact

embedding W 1,2,p
0 ⊂⊂ C0, vn → v in C0. Hence,

‖Kbvn −Kbv‖Lp ≤ ‖vn − v‖C0‖b‖Lp → 0,

and so Kb is completely continuous. This concludes the proof of the claim.

Next, being an isomorphism, L is a Fredholm operator from W 1,2,p
0 to Lp. This implies that

L +Kb is a Fredholm operator, with index Ind(L +Kb) = Ind(L), where trivially Ind(L) = 0

(L is invertible). Thus our goal is to verify the following claim.

Claim Either ker(L +Kb) is trivial or codim(R(L+Kb)) = 0.

If this claim holds, then we will be able to conclude that (7.1) is solvable for any f ∈
Lp([0, t0]×M). The proof of the claim is divided into three main steps.
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Step 1 b ∈ C∞([0, t0]×M).

Our aim is to show that ker(L+Kb) is trivial. Let v ∈W 1,2,p
0 ([0, t0]×M) solve (L+Kb)v = 0.

Since p > d + 2 and b is smooth, it follows from parabolic regularity theory that v is (at

least) in C1,2([0, t0] ×M). Indeed, by the anisotropic Sobolev embedding (Proposition 2.1),

v ∈ C0,γ([0, t0]×M) with γ = 1− 1+d
p

. Therefore,

Lv = −bv ∈ C0,γ([0, t0]×M),

and v(0, ·) = 0 on M . Parabolic regularity theory (see e.g. [4, p. 130]) implies that ∂tv and the

second derivatives of v with respect to x are Hölder continuous.

By the chain rule, the function ψ := v2

2 satisfies

Lψ = −|∇hv|2h − 2bψ ≤ −2bψ.

Since b is bounded and ψ(0, x) = 0, the maximum principle (see [10, Prop.4.3]) implies that

ψ ≤ 0 everywhere. On the other hand, ψ ≥ 0 by definition. It follows that ψ ≡ 0, and so v ≡ 0.

Hence, given any b ∈ C∞([0, t0] ×M), the Cauchy problem (7.1) admits a unique solution

for any f ∈ Lp([0, t0]×M).

Step 2 A priori estimates (smooth data).

Let us consider the more general problem

{
∂tv −∆hv + b(t, x)v = g(x, t) on [0, t0]×M,

v(0, x) = c(x) on M,
(7.2)

where b, g ∈ C∞([0, t0] ×M) and c ∈ C∞(M). This problem admits a unique solution v ∈
C1,2([0, t0]×M), given by v = ṽ+c, where ṽ solves (7.1) with right-hand side f = g−cb+∆hc ∈
Lp([0, t0]×M).

From known a priori estimates for the heat equation on manifolds (see [4, Thm.4.45]), there

is a constant C0 = C0(p,M) such that (ṽ = v − c),

‖v‖W 1,2,p = ‖ṽ + c‖W 1,2,p ≤ ‖ṽ‖W 1,2,p + T ‖c‖W 2,p(M)

≤ C0‖g − bc+∆hc‖Lp + T ‖c‖W 2,p(M)

≤ C0[‖g‖Lp + ‖b‖Lp‖c‖C0(M) + T ‖∆hc‖Lp(M)] + T ‖c‖W 2,p(M),

where W 2,p(M) denotes the standard Sobolev space on (M,h), which embeds into C0(M)

(recall p > 2 + d). Therefore, for a constant C = C(p,M, T ), we infer

‖v‖W 1,2,p ≤ C[‖g‖Lp + ‖c‖W 2,p(M)(‖b‖Lp + 1)]. (7.3)

Summarizing, the general Cauchy problem (7.2) with b, g ∈ C∞([0, t0] ×M) and c ∈ C∞(M)

admits a unique solution v ∈ C1,2([0, t0]×M) satisfying (7.3).

Step 3 Well-posedness of (7.2), non-smooth b, g.
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The aim is to prove the well-posedness of (7.2)—and thus (7.1)—for irregular b and g in

Lp([0, t0]×M). Since C∞([0, t0]×M) is dense in Lp([0, t0]×M) (see[4, Thm.2.9]), there exist

sequences {bn}n≥1 and {gn}n≥1 of smooth functions such that

bn
Lp

−−→ b, gn
Lp

−−→ g.

From the previous step, there exists a unique solution vn ∈W 1,2,p([0, t0]×M) of

{
∂tvn −∆hvn + bn(t, x)vn = gn(x, t) on [0, t0]×M,

vn(0, x) = c(x) on M.

In view of (7.3), {vn}n≥1 is bounded in W 1,2,p([0, t0] ×M). Therefore, up to a subsequence,

we may assume that {
vn ⇀ v ∈ W 1,2,p([0, t0]×M),

vn → v ∈ C0([0, t0]×M).

Given these convergences, it is easy to conclude that v solves the Cauchy problem (7.2) with

b, g ∈ Lp([0, t0]×M) and c ∈ C∞(M).

We summarize our findings so far in the following proposition.

Proposition 7.1 (well-posedness of parabolic Cauchy problem, non-smooth data) Suppose

b and g belong to Lp([0, t0] ×M). Then there exists a unique solution v ∈ W 1,2,p([0, t0]×M)

to the Cauchy problem (7.2) with initial data c ∈ C∞(M). Furthermore, the a priori estimate

(7.3) holds.

Proof The only assertion that remains to be verified is the one about uniqueness, but

uniqueness of the solution is an immediate consequence of (7.3).

Remark 7.1 The “non-smooth” quantifier in Proposition 7.1 refers to the functions b and

g in (7.2). In upcoming applications it is essential that b, g are allowed to be irregular (but a

smooth initial function c is fine, like c ≡ 1).

Let us now consider the special Cauchy problem
{
∂tv −∆hv + b(t, x)v = −b(x, t) on [0, t0]×M,

v(0, x) = 0 on M
(7.4)

with b ∈ C∞([0, t0] ×M) and b ≤ 0. This problem corresponds to (7.2) with a nonnegative

smooth source g (namely, g = −b ≥ 0).

By the previous discussion, there exists a unique solution v ∈ C1,2([0, t0] ×M) to (7.4).

Clearly, we have

∂tv −∆hv ≥ −b(t, x)v,

where b ≥ −C for some positive constant C (since b is smooth). Thanks to the maximum

principle (see [10, Prop. 4.3]), this implies that v ≥ 0 on [0, t0]×M .

Next, suppose that b is irregular with b ∈ Lp([0, t0] ×M) (p > d + 2) and b ≤ 0 almost

everywhere. Let v ∈ W 1,2,p
0 ([0, t0] ×M) be the unique solution of the Cauchy problem (7.4),
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as supplied by Proposition 7.1. We would like to conclude that v is nonnegative. To this end,

approximate b in Lp([0, t0] ×M) by {bn}n≥1 ⊂ C∞([0, t0] ×M) with bn ≤ 0 for all n, and let

vn be the corresponding (unique) solution in C1,2([0, t0]×M) of
{
∂tvn −∆hvn + bn(t, x)vn = −bn(x, t) on [0, t0]×M,

vn(0, x) = 0 on M.

Then vn ≥ 0. By the a priori estimate (7.3), which now reads

‖vn‖W 1,2,p ≤ C‖bn‖Lp ,

and the previous discussion, we infer that vn
C0

−→ w (up to a subsequence), for some limit

function 0 ≤ w ∈W 1,2,p
0 ([0, t0]×M) that solves (7.4) with b ∈ Lp([0, t0]×M). By uniqueness,

we conclude that v = w ≥ 0.

To summarize, we have proved that for 0 ≥ b ∈ Lp([0, t0]×M) (with p > d+2), there exists

a unique solution 0 ≤ v ∈ W 1,2,p
0 ([0, t0]×M) of (7.4), satisfying

‖v‖W 1,2,p ≤ C‖b‖Lp .

We are now in a position to prove the main result of this section.

Proposition 7.2 (test function for duality method) Suppose b ∈ Lp([0, t0]×M) with p >

d+ 2 and b ≤ 0. Then the terminal value problem
{
∂tφ+∆hφ− b(t, x)φ = 0 on [0, t0]×M,

φ(t0, x) = 1 on M
(7.5)

admits a unique solution φ ∈ W 1,2,p([0, t0] ×M) ∩ C0([0, t0] ×M) with continuous first order

spatial derivatives. Moreover, φ ≥ 1 everywhere and the following a priori estimates hold:

‖φ‖W 1,2,p([0,t0]×M) ≤ T + C(p,M, T )‖b‖Lp([0,t0]×M) (7.6)

and (consequently)

‖φ‖C0([0,t0]×M) + ‖∇φ‖C0([0,t0]×M) .d,M,p,T 1 + ‖b‖Lp([0,t0]×M). (7.7)

Proof The solution φ of (7.5) is obtained by setting φ(t, x) := 1 + v(t0 − t, x), where

v ∈W 1,2,p
0 ([0, t0]×M) is the unique solution of the Cauchy problem

{
∂tv −∆hv + b̃(t, x)v = −b̃(x, t) on [0, t0]×M,

v(0, x) = 0 on M,

where b̃(t, x) := b(t0 − t, x). Proposition 2.1 therefore supplies the existence and uniqueness of

φ, estimate (7.6), and also the lower bound φ ≥ 1. The final estimate (7.7) follows from the

anisotropic Sobolev inequality (Proposition 2.1) and (7.6).

Remark 7.2 Observe that the right-hand side of (7.6) is non-decreasing in ‖b‖Lp , a fact

that will be exploited in Section 9.



Stochastic Continuity Equations 107

8 L2 Estimate and Uniqueness for Weak Solutions

The main outcome of this section is an a priori estimate that is valid for arbitrary weak L2

solutions of the SPDE (1.2), with a rough velocity field u satisfying in particular divh u ∈ Lp
t,x for

some p > d+2. The proof relies fundamentally on the special noise vector fields ai constructed

in Lemma 1.1, the renormalization result provided by Theorem 1.1, and a duality method that

makes use of the test function constructed in Proposition 7.2.

Theorem 8.1 (L2 estimate and uniqueness) Let ρ be an arbitrary weak L2 solution of

the stochastic continuity equation (1.2), with initial datum ρ0 ∈ L2(M), velocity vector field u

satisfying (1.5), (1.6) and (1.7), and noise vector fields a1, · · · , aN given by Lemma 1.1. Then

sup
0≤t≤T

‖ρ(t)‖2L2(Ω×M) ≤ C‖ρ0‖2L2(M), (8.1)

where C = C(d,M, p, T, ai, ‖ divh u‖Lp([0,T ]×M), ‖u‖∞) is a constant that is non-decreasing in

‖ divh u‖Lp([0,T ]×M) and ‖u‖∞; here, for convenience, we have set ‖u‖∞ := ‖u‖
L∞([0,T ];

−−−−−→
L∞(M))

.

Furthermore, weak L2 solutions are uniquely determined by their initial data.

Proof Since u ∈ L1([0, T ];
−−−−−−→
W 1,2(M)), the weak solution ρ is renormalizable, in view of

Theorem 1.1. However, Theorem 1.1 asks for bounded nonlinearities F . To handle F (ξ) = ξ2,

we must employ an approximation (truncation) procedure.

We pick any increasing function χ ∈ C∞([0,∞)) such that χ(ξ) = ξ for ξ ∈ [0, 1], χ(ξ) = 2

for ξ ≥ 2, χ(ξ) ∈ [1, 2] for ξ ∈ (1, 2), and A0 := sup
ξ≥0

χ′(ξ) > 1. Set A1 := sup
ξ≥0

|χ′′(ξ)|. We define

the rescaled function χµ(ξ) = µχ
(
ξ
µ

)
for µ > 0. The relevant approximation of F (ξ) = ξ2 is

Fµ(ξ) := χµ(ξ
2) for ξ ∈ R, µ > 0.

Some tedious computations will reveal that

Fµ ∈ C∞(R), lim
µ→∞

Fµ(ξ) = ξ2, sup
ξ∈R

Fµ(ξ) ≤ 2µ, sup
µ>0

Fµ(ξ) ≤ 2ξ2,

sup
ξ∈R

|F ′
µ(ξ)| ≤ 2

√
2A0

√
µ, sup

µ>0
|F ′

µ(ξ)| ≤ 2
√
2A0|ξ|, lim

µ→∞
F ′
µ(ξ) = 2ξ, (8.2)

lim
µ→∞

F ′′
µ (ξ) = 2, |F ′′

µ (ξ)| ≤ 8A1 + 2A0.

Furthermore, the function GFµ
(ξ) = ξF ′

µ(ξ)− Fµ(ξ) satisfies

sup
ξ∈R

|GFµ
(ξ)| ≤ (4A0 + 2)µ, sup

µ>0
|GFµ

(ξ)| ≤ 2(
√
2A0 + 1)ξ2,

and lim
µ→∞

GFµ
(ξ) = ξ2,

and the following estimate:

|GFµ
(ξ)| ≤ CχFµ(ξ), |ξ2F ′′

µ (ξ)| ≤ Cχ





Fµ(ξ) for |ξ| ≤ √
µ,

ξ2 for |ξ| ∈ [
√
µ,

√
2µ]

O(µ) for |ξ| > √
2µ

(8.3)
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for some constant Cχ > 0 independent of µ.

Fix t0 ∈ (0, T ] and consider (5.1) evaluated at t = t0 and with F = Fµ. Then, in view

of the choice of noise vector fields ai (see Lemma 1.1), the following equation holds for any

ψ ∈W 1,2,p([0, t0]×M) (as long as p > d+ 2):

E

∫

M

Fµ(ρ(t0))ψ(t0) dVh − E

∫

M

Fµ(ρ0)ψ(0) dVh

= E

∫ t0

0

∫

M

Fµ(ρ(s))∂tψ dVh ds+ E

∫ t0

0

∫

M

Fµ(ρ(s))u(ψ) dVh ds

+ E

∫ t0

0

∫

M

Fµ(ρ(s))∆hψ dVh ds−
1

2

N∑

i=1

E

∫ t0

0

∫

M

Fµ(ρ(s)) ai(ψ) dVh ds

− E

∫ t0

0

∫

M

GFµ
(ρ(s)) divh uψ dVh ds

− 1

2

N∑

i=1

E

∫ t0

0

∫

M

Λi(1)GFµ
(ρ(s))ψ dVh ds

+
1

2

N∑

i=1

E

∫ t0

0

∫

M

F ′′
µ (ρ(s))(ρ(s) divh ai)

2 ψ dVh ds

−
N∑

i=1

E

∫ t0

0

∫

M

GFµ
(ρ(s))ai(ψ) dVh ds, (8.4)

where we have applied Theorem 1.1 to (6.4) and the time-space weak formulation with non-

smooth test functions ψ(t, x), see Proposition 5.1. Let φ be the unique solution of (7.5) with

b = −Cχ| divh u|, where Cχ > 0 is the constant appearing in (8.3). The existence of φ is

guaranteed by Proposition 7.2. Moreover, φ belongs to W 1,2,p([0, t0] ×M) ∩ C0([0, t0] ×M),

the estimates (7.6)–(7.7) hold, and φ is lower bounded by 1 everywhere in [0, t0]×M . Thanks

to Proposition 5.1, we can use φ as test function in (8.4).

Making use of (8.3), we obtain

−E

∫ t0

0

∫

M

GFµ
(ρ(s)) divh uφdVh ds ≤ E

∫ t0

0

∫

M

|GFµ
(ρ(s))|| divh u|φdVh ds

≤ E

∫ t0

0

∫

M

CχFµ(ρ(s))| divh u|φdVh ds

= −E

∫ t0

0

∫

M

Fµ(ρ(s)) b φdVh ds.

Now, recalling that the test function φ is the unique solution of the PDE problem (7.5), (8.4)

(with ψ = φ) simplifies to

E

∫

M

Fµ(ρ(t0))φ(t0) dVh ≤ E

∫

M

Fµ(ρ0)φ(0) dVh

+ E

∫ t0

0

∫

M

Fµ(ρ(s))u(φ) dVh ds

− 1

2

N∑

i=1

E

∫ t0

0

∫

M

Fµ(ρ(s)) ai(φ) dVh ds
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− 1

2

N∑

i=1

E

∫ t0

0

∫

M

Λi(1)GFµ
(ρ(s))φdVh ds

+
1

2

N∑

i=1

E

∫ t0

0

∫

M

F ′′
µ (ρ(s))(ρ(s) divh ai)

2 φdVh ds

−
N∑

i=1

E

∫ t0

0

∫

M

GFµ
(ρ(s))ai(φ) dVh ds. (8.5)

Using the fourth property in (8.2) and the estimate (7.7) satisfied by the solution φ of (7.5)

with b = −Cχ| divh u|, we obtain

− 1

2

N∑

i=1

E

∫ t0

0

∫

M

Fµ(ρ(s)) ai(φ) dVh ds

≤ C(ai)‖∇φ‖C0([0,t0]×M)E

∫ t0

0

∫

M

ρ2(s) dVh ds

≤ C(ai, ‖ divh u‖Lp([0,T ]×M))E

∫ t0

0

∫

M

ρ2(s) dVh ds

≤ C(ai, ‖ divh u‖Lp([0,T ]×M))E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds,

where we have also exploited that φ ≥ 1. Observe that the constant C is non-decreasing in

‖ divh u‖Lp([0,T ]×M), see Remark 7.2, and we do not write its dependency on the d,M, p, T .

Similarly, using also (8.3), we have

−
N∑

i=1

E

∫ t0

0

∫

M

GFµ
(ρ(s))ai(φ) dVh ds ≤ C E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds

for a possibly different constant C = C(ai, ‖ divh u‖Lp([0,T ]×M)), still non-decreasing in

‖ divh u‖Lp([0,T ]×M).

Similar bounds can be derived for the terms on the third and fourth lines of (8.5):

1

2

N∑

i=1

E

∫ t0

0

∫

M

F ′′
µ (ρ(s))(ρ(s) divh ai)

2 φ(s) dVh ds ≤ C E

∫ t0

0

∫

M

ρ2(s)φdVh ds,

− 1

2

N∑

i=1

E

∫ t0

0

∫

M

Λi(1)GFµ
(ρ(s))φdVh ds ≤ C E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds.

Therefore (8.5) becomes

E

∫

M

Fµ(ρ(t0))φ(t0) dVh ≤ E

∫

M

Fµ(ρ0)φ(0) dVh + E

∫ t0

0

∫

M

Fµ(ρ(s))u(φ) dVh ds

+ C(ai, ‖ divh u‖Lp([0,T ]×M))E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds.

Arguing as above, since u ∈ L∞([0, T ];
−−−−−→
L∞(M)),

E

∫ t0

0

∫

M

Fµ(ρ(s))u(φ) dVh ds ≤ C(ai, ‖ divh u‖Lp([0,T ]×M), ‖u‖∞)E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds,
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where the constant C is non-decreasing in ‖u‖∞ as well.

In conclusion, we have obtained

E

∫

M

Fµ(ρ(t0))φ(t0) dVh ≤ E

∫

M

Fµ(ρ0)φ(0) dVh + C E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds, (8.6)

where C depends in particular on a1, · · · , aN , ‖u‖∞ and ‖ divh u‖Lp([0,T ]×M) but not on µ; C

is non-decreasing in ‖u‖∞ and ‖ divh u‖Lp([0,T ]×M).

By the dominated convergence theorem (φ is continuous, ρ0 ∈ L2(M)), we obtain

E

∫

M

Fµ(ρ0)φ(0) dVh →
∫

M

ρ20 φ(0) dVh

as µ → ∞. On the other hand, by Fatou’s lemma, we can send µ → ∞ in the term on the

left-hand side of (8.6), arriving at

E

∫

M

ρ2(t0)φ(t0) dVh ≤
∫

M

ρ20 φ(0) dVh + C E

∫ t0

0

∫

M

ρ2(s)φ(s) dVh ds. (8.7)

Since φ is lower bounded by 1, we can replace the term on the left-hand side by E
∫
M
ρ2(t0) dVh.

On the other hand, in view of (7.7), we can bound (remove) the φ part from the terms on the

right-hand side of (8.7) by ‖φ‖C0([0,t0]×M) . 1+‖ divh u‖Lp([0,T ]×M), where . does not depend

on t0. As a result, (8.7) becomes

E

∫

M

ρ2(t0) dVh ≤ K

∫

M

ρ20 dVh +K E

∫ t0

0

∫

M

ρ2(s) dVh ds,

whereK depends in particular on a1, · · · , aN , ‖u‖∞ and ‖ divh u‖Lp([0,T ]×M), still non-decreasing

in ‖u‖∞ and ‖ divh u‖Lp([0,T ]×M).

Setting Φ(t0) := E
∫
M
ρ2(t0) dVh ∈ [0,∞) and Φ(0) := C

∫
M
ρ20 dVh ∈ [0,∞), the last

inequality reads as

Φ(t0) ≤ Φ(0) +K

∫ t0

0

Φ(s) ds, 0 < t0 ≤ T.

The integrability properties of weak solutions implies Φ ∈ L1([0, t0]) for any t0 ≤ T . Hence, by

Grönwall’s inequality,

Φ(t) ≤ Φ(0)eKt, t ∈ [0, T ].

This concludes the proof of (8.1), which also implies the uniqueness assertion.

Remark 8.1 Regarding the uniqueness assertion in Proposition 8.1, we mention that it is

possible to prove uniqueness without an additional assumption on divh u. This follows from

the renormalized formulation (1.8) with F (·) = | · |, modulo an approximation argument. Since

the existence of weak solutions (which asks that divh u ∈ Lp) holds in the L2 setting, we have

chosen not to focus on L1 uniqueness.
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9 Proof of Main Result, Theorem 1.2

We divide the proof of Theorem 1.2 into four parts (subsections), starting with the procedure

for smoothing the irregular velocity vector field u, yielding uτ ∈ C∞ such that uτ ≈ u for

τ > 0 small. In the second subsection we rely on the L2 estimate in Proposition 8.1 to ensure

weak compactness of a sequence {ρτ}τ>0 of approximate solutions, obtained by solving the

SPDE (1.2) with smooth initial datum ρ0 and smooth velocity field uτ . The limit of a weakly

converging subsequence is easily shown to be a solution of the SPDE. In the third subsection

we remove the assumption that ρ0 is smooth. Finally, we prove a technical lemma utilized in

the second subsection.

9.1 Smoothing of velocity vector field u

We extend the vector field u outside of [0, T ] by setting u(t, ·) ≡ 0 for t < 0 and t > T ,

yielding u ∈ L∞(R;
−−−−−→
L∞(M)).

Let {Eτ}τ≥0 denote the de Rham-Hodge semigroup on 1-forms, associated to the de Rham-

Hodge Laplacian on (M,h). We refer to Section 10 for a collection of properties of the heat

kernel on forms.

For a.e. t ∈ R and all τ > 0, Eτu(t) is a smooth vector field on M and

‖Eτu(t)‖−−−−−→L∞(M)
≤ eε

2τ‖u(t)‖−−−−−→
L∞(M)

,

where ε is a constant such that RicM ≥ −ε2h. By assumption, we clearly have u(t) ∈ −−−−→
Lr(M)

for a.e. t and thus

Eτu(t) τ↓0−→ u(t) in
−−−−→
Lr(M), r ∈ [1,∞),

where the null-set is r-independent.

Let η be a standard mollifier on R, and set

ητ (t) := τ−1η
( t
τ

)
, t ∈ R.

We now define the following vector field:

uτ (t, x) :=

∫

R

Eτu(t′, x)ητ (t− t′) dt′ ∈ TxM,

which is well-defined because

|uτ (t, x)|h ≤
∫

R

|Eτu(t′, x)|hητ (t− t′) dt′

≤
∫

R

‖Eτu(t)‖−−−−−→L∞(M)
ητ (t− t′) dt′

≤ eε
2τ

∫

R

‖u(t′)‖−−−−−→
L∞(M)

ητ (t− t′) dt′ <∞

for any t ∈ R and x ∈M . Clearly, uτ : R×M → TM is smooth in both variables,

‖uτ‖L∞(R;
−−−−−→
L∞(M))

≤ eε
2τ‖u‖

L∞(R;
−−−−−→
L∞(M))

(9.1)
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and suppuτ ⊂ [−1, T + 1]×M for all τ ≪ 1.

For a.e. t ∈ R,

divh(Eτu(t, x)) = Pτ divh u(t, x), x ∈M, (9.2)

where Pτ is the heat kernel on functions. Indeed, fixing φ ∈ C1(M), we compute (see [17, eq.

4.3])

∫

M

divh(Eτu(t, x))φdVh = −
∫

M

(Eτu(t, x),∇φ)h dVh

= −
∫

M

(u(t, x), Eτ∇φ)h dVh = −
∫

M

(u(t, x),∇Pτφ)h dVh

=

∫

M

divh u(t, x)PτφdVh =

∫

M

Pτ divh u(t, x)φdVh,

where we have used the relation [17],

Eτ∇φ = ∇Pτφ, φ ∈ C1(M),

and so the identity (9.2) follows.

The next lemma expresses divh uτ in terms of divh u.

Lemma 9.1 (formula for divh uτ ) For any t ∈ R and x ∈M ,

divh uτ (t, x) :=

∫

R

divh(Eτu(t′, x))ητ (t− t′) dt′,

where divh(Eτu(t′, x)) can be computed in terms of divh u and the heat kernel on functions, see

(9.2).

Proof Locally expressing Eτu(t, x) as

Eτu(t, x) =
( ∫

M

e(τ, x, y)iju
j(t, y) dVh(y)

)
hik(x) ∂k

for a.e. t ∈ R, see Section 10, we obtain (temporarily dropping Einstein’s summation convention

for k)

∂k(Eτu(t, x))k =

∫

M

∂ke(τ, x, y)iju
j(t, y) dVh(y)h

ik(x)

+

∫

M

e(τ, x, y)iju
j(t, y) dVh(y) ∂kh

ik(x)

and thus

|∂k(Eτu(t, x))k| ≤ C(M, τ)‖u‖−−−−−→
L∞(M)

.

Therefore we are allowed to interchange
∫
R
and ∂k to obtain

∂k(uτ (t, x))
k =

∫

R

∂k(Eτu(t′, x))kητ (t− t′) dt′.
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From here, recalling the local expression for divh (see Section 2), it is now immediate to conclude

that locally

divh uτ (t, x) =

∫

R

divh(Eτu(t′, x))ητ (t− t′) dt′.

Fix x ∈M . In view of Lemma 9.1 and basic convolution estimates onR, ‖ divh uτ (·, x)‖Lp(R) ≤
‖ divh Eτu(·, x)‖Lp(R) for any τ > 0, and thus

‖ divh uτ‖Lp(R×M) ≤ ‖ divh Eτu‖Lp(R×M).

As a result, via (9.2), we obtain

‖ divh uτ‖Lp(R×M) ≤ ‖Pτ divh u‖Lp(R×M)

≤ ‖ divh u‖Lp(R×M) = ‖ divh u‖Lp([0,T ]×M). (9.3)

9.2 Weak compactness of approximate solutions

Let ρτ be the unique weak L2 solution of the SPDE (1.2) with initial datum ρ0 ∈ C∞(M),

noise vector fields ai given by Lemma 1.1, and irregular velocity field u (satisfying the assump-

tions of Theorem 1.2) replaced by the smooth vector field uτ .

We refer to Propositions 3.1 and 8.1 for the existence, uniqueness, and properties of the

solution, which satisfies the Itô SPDE

dρτ + divh(ρ
τuτ ) dt+

N∑

i=1

divh(ρ
τai) dW

i(t)−∆hρ
τ dt− 1

2

N∑

i=1

divh(ρ
τai) dt = 0

weakly in x, P-a.s.,

that is, for any ψ ∈ C∞(M), the following equation holds P-a.s.:

∫

M

ρτ (t)ψ dVh =

∫

M

ρ0ψ dVh +

∫ t

0

∫

M

ρτ (s)uτ (ψ) dVh ds

+

N∑

i=1

∫ t

0

∫

M

ρτ (s) ai(ψ) dVh dW
i(s) +

∫ t

0

∫

M

ρτ (s)∆hψ dVh ds

− 1

2

N∑

i=1

∫ t

0

∫

M

ρτ (s) ai(ψ) dVh ds, t ∈ [0, T ]. (9.4)

In view of (9.1), (9.3) and (8.1), recalling the “monotonicity properties” of the constant C,

we obtain the τ -independent L2 estimate

sup
0≤t≤T

‖ρτ (t)‖L2(Ω×M) ≤ C(T, ai, ‖ divh u‖Lp([0,T ]×M), ‖u‖∞)‖ρ0‖L2(M).

In other words, {ρτ}τ∈(0,1) is bounded in L∞([0, T ];L2(Ω×M)).

Since (L2(Ω × M))⋆ is separable and ([0, T ], dt) is a finite measure space, we know that

L∞([0, T ];L2(Ω ×M)) is the dual of L1([0, T ];L2(Ω ×M)). Therefore, there exist {τn}n≥1 ⊂
(0, 1) with τn ↓ 0 and ρ ∈ L∞([0, T ];L2(Ω×M)) such that

ρτn
⋆
⇀ ρ in L∞([0, T ];L2(Ω×M))
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as n→ ∞, which means that

∫ T

0

∫

Ω

∫

M

(ρτn − ρ) θ P⊗ dVh ⊗ dt
n↑∞−→ 0, ∀θ ∈ L1([0, T ];L2(Ω×M)).

We follow the arguments in [37]. Fix φ ∈ C∞(M). The process
∫
M
ρτn(t)φdVh is adapted

by definition and converges weakly in L2(ΩT ) to the process
∫
M
ρ(t)φdVh. Since the space

of adapted processes is a closed subspace of L2(ΩT ), it is weakly closed, and hence the limit

process is adapted.

For the same reason, the processes
∫
M
ρτn(t)ai(φ) dVh, i = 1, · · · , N are adapted and their

Itô integrals are well defined. Since the Itô integral is linear and continuous from the space of

adapted L2(ΩT ) processes to L
2(ΩT ), it is also weakly continuous. As a result,

∫ ·

0

∫

M

ρτn(s)ai(φ) dVh dW
i
s

n↑∞
⇀

∫ ·

0

∫

M

ρ(s)ai(φ) dVh dW
i
s in L2(ΩT ).

Exploiting the weak continuity of the time-integrals,

∫ ·

0

∫

M

ρτn(s)∆hφdVh ds
n↑∞
⇀

∫ ·

0

∫

M

ρ(s)∆hφdVh ds in L2(ΩT )

and, for i = 1, · · · , N ,

∫ ·

0

∫

M

ρτn(s)ai(φ) dVh ds
n↑∞
⇀

∫ ·

0

∫

M

ρ(s)ai(φ) dVh ds in L2(ΩT ).

It remains to pass to the limit in the term involving the velocity field uτ in (9.4). The proof

of the next lemma is postponed to the end of this section.

Lemma 9.2 For any r ∈ [1,∞), uτ → u in Lr(R;
−−−−→
Lr(M)) as τ ↓ 0.

Lemma 9.2 immediately implies

uτn(φ)
n↑∞−→ u(φ) in Lr(R×M), r ∈ [1,∞).

Using this, the goal is to verify that
∫

M

ρτnuτn(φ) dVh
n↑∞
⇀

∫

M

ρu(φ) dVh in L2(ΩT ). (9.5)

Fix an arbitrary ψ ∈ L2(ΩT ). Then

I(n) :=

∫

ΩT

(∫

M

ρτnuτn(φ) dVh

)
ψ P⊗ ds−

∫

ΩT

( ∫

M

ρu(φ) dVh

)
ψ P⊗ ds

=

∫

ΩT

(∫

M

ρτn(uτn(φ)− u(φ)) dVh

)
ψ P⊗ ds

+

∫

ΩT

(∫

M

(ρτn − ρ)u(φ) dVh

)
ψ P⊗ ds =: I1(n) + I2(n).

By repeated applications of the Cauchy-Schwarz inequality,

|I1(n)| ≤
∫

ΩT

|ψ|‖ρτn(s)‖L2(M)‖(uτn − u)(φ)‖L2(M) P⊗ ds
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≤
∫ T

0

‖ψ(s)‖L2(Ω)‖ρτn(s)‖L2(Ω×M)‖(uτn − u)(φ)‖L2(M) ds

≤ ‖ρτn‖L∞([0,T ];L2(Ω×M))

∫ T

0

‖ψ(s)‖L2(Ω)‖(uτn − u)(φ)‖L2(M) ds

≤ C‖ψ‖L2(ΩT )‖(uτn − u)(φ)‖L2([0,T ]×M)
n↑∞−→ 0.

For the I2 term it is enough to check that u(φ)ψ ∈ L1([0, T ];L2(Ω ×M)), because in that

case we would get I2(n) → 0 directly from the definition of the weak convergence ρτ
n↑∞
⇀ ρ.

In point of fact, we have

∫ T

0

( ∫

Ω×M

|u(φ)ψ|2 dVh dP
) 1

2

ds

=

∫ T

0

‖ψ(s)‖L2(Ω)

(∫

M

|u(φ)|2 dVh
) 1

2

ds

≤
∫ T

0

‖ψ(s)‖L2(Ω)‖φ‖C1(M)‖u(s)‖−−−−−→L∞(M)
ds

≤ ‖φ‖C1(M)‖u‖L∞([0,T ];
−−−−−→
L∞(M))

∫ T

0

‖ψ(s)‖L2(Ω) ds

≤ ‖φ‖C1(M)‖u‖L∞([0,T ];
−−−−−→
L∞(M))

√
T‖ψ‖L2(ΩT ) ds <∞.

Therefore I2(n)
n↑∞−→ 0, and thus I(n)

n↑∞−→ 0. This concludes the proof of (9.5).

We may now pass to the limit in the SPDE (9.4) with τ = τn, to conclude that ρ satisfies (1.4)

for a.e. (ω, t) ∈ ΩT . Since the right-hand-side of (1.4) clearly defines a continuous stochastic

process, the process
∫
M
ρ(·, x)φ(x) dVh(x) has a continuous modification. In other words, we

have constructed a weak L2 solution to (1.2) under the assumption that ρ0 ∈ C∞(M).

9.3 General initial datum, ρ0 ∈ L2(M)

To finish off the proof, we must remove the smoothness assumption on the initial datum ρ0.

We follow the same strategy as above, but this time it is simpler since we have to regularize

functions (not vector fields) defined on the manifold M .

Given ρ0 ∈ L2(M), we employ the heat semigroup {Pτ}τ>0 on functions to regularize ρ0,

see Section 10 for details. The following properties are known:

Pτρ0 ∈ C∞(M), ‖Pτρ0‖L2(M) ≤ ‖ρ0‖L2(M),

and Pτρ0
L2(M)−→ ρ0 as τ ↓ 0.

According to the previous subsection, there exists a unique weak L2 solution ρτ of (1.2) with

initial datum Pτρ0 ∈ C∞(M), irregular velocity field u satisfying the assumptions listed in

Theorem 1.2, and noise vector fields ai given by Lemma 1.1. As before, Proposition 8.1 sup-

plies the estimate ‖ρτ(t)‖L2(Ω×M) ≤ CT ‖ρ0‖L2(M) for all t ∈ [0, T ], where the constant CT

is independent of τ . This implies that uτ is weakly compact, i.e., there exists a subsequence

{τn}n≥1 ⊂ (0, 1) with τn
n↑∞−→ 0 and a limit ρ ∈ L∞([0, T ];L2(Ω×M)) such that

ρτn
⋆
⇀ ρ in L∞([0, T ];L2(Ω×M)).
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For any φ ∈ C∞(M), we have trivially that
∫

M

Pτnρ0 φdVh
n↑∞
⇀

∫

M

ρ0 φdVh in L2(ΩT ).

The limit of the remaining terms in (9.4) can be computed as before, which in the end leads to

the conclusion that ρ is a weak L2 solution of (1.2).

9.4 Proof of Lemma 9.2

To conclude the proof of Theorem 1.2, we need to verify the validity of Lemma 9.2. Define

for convenience

Jτ (t, x) :=

∫

R

u(t′, x)ητ (t− t′) dt′, t ∈ R, x ∈M.

We have

|uτ (t, x) − Jτ (t, x)|h ≤
∫

R

|Eτu(t′, x)− u(t′, x)|hητ (t− t′) dt′.

By basic convolution estimates on R, for any r ∈ [1,∞),

‖ |uτ(·, x)− Jτ (·, x)|h ‖Lr(R) ≤ ‖ |Eτu(·, x)− u(·, x)|h ‖Lr(R), x ∈M,

where ‖ | · |h ‖rLr(R) =
∫
R
| · |rh dt . Thus,

‖uτ − Jτ‖Lr(R;
−−−−→
Lr(M))

≤ ‖Eτu− u‖
Lr(R;

−−−−→
Lr(M))

=
( ∫

R

‖Eτu(t, ·)− u(t, ·)‖r−−−−→
Lr(M)

dt
) 1

r

.

Observe that the integrand in the dt-integral converges to zero as τ ↓ 0 for a.e. t ∈ R.

Furthermore, see Section 10,

‖Eτu(t, ·)− u(t, ·)‖−−−−→
Lr(M)

≤
(
exp

(
ε2
∣∣∣1− 2

r

∣∣∣τ
)
+ 1

)
‖u(t, ·)‖−−−−→

Lr(M)
,

which is integrable on R by assumption on u (here −ε is a lower bound of the Ricci tensor on

M). Therefore, by means of the dominated convergence theorem, we conclude that uτ−Jτ → 0

in Lr(R;
−−−−→
Lr(M)) as τ ↓ 0.

Hence, with an error term o(1) → 0 as τ ↓ 0,

uτ − u = Jτ − u+ o(1),

so it remains to verify that Jτ−u converges to zero in Lr
t

−→
Lr
x. Locally we have |Jτ (t, x)−u(t, x)|h

≤ C(M,h)|Jτ (t, x) − u(t, x)|eucl. Since the right-hand side converges to zero in Lr(R) for all

x ∈M , it follows that the same holds for the left-hand side. We have
∫

R

∫

M

|Jτ (t, x)− u(t, x)|rhdVh(x) dt =
∫

M

∫

R

|Jτ (t, x)− u(t, x)|rh dt dVh(x)

=
∑

κ

∫

M

ακ(z)
(∫

R

|Jτ (t, z)− u(t, z)|rh dt
)
|hκ(z)|

1
2 dz,

where (ακ)κ is an arbitrary smooth partition of unity. Arguing as we did above,

‖ |Jτ (·, x)− u(·, x)|h ‖rLr(R) ≤ 2r‖ |u(·, x)|h ‖rLr(R)

for any x ∈ M , and hence, by means of the dominated convergence theorem, Jτ − u → 0 in

Lr(R;
−−−−→
Lr(M)). This concludes the proof of Lemma 9.1.



Stochastic Continuity Equations 117

10 Appendix

10.1 Heat kernel on functions

We collect here some relevant properties of the heat kernel H on (M,h), that is, the funda-

mental solution of the heat operator

L = ∂t −∆h.

(1) The mapping (x, y, t) 7→ H(x, y, t) belongs to C∞(M ×M × (0,∞)), is symmetric in x

and y for any t > 0 and is positive.

(2) For any function w ∈ Lr(M), r ∈ [1,∞], setting

Ptw(x) :=

∫

M

H(x, y, t)w(y) dVh(y), x ∈M, t > 0, (10.1)

we have Ptw ∈ C∞(M). Moreover,

‖Ptw‖Lr(M) ≤ ‖w‖Lr(M), t > 0,

and, for any finite r ≥ 1,

Ptw
Lr(M)−→ w as t → 0+.

For proofs of these basic results, see [26].

10.2 Heat kernel on forms

During the proof of Theorem 1.2, we also make use of the heat kernel on forms. We recall

here its most salient properties without proofs, referring to [5, 12, 16, 21] for details. Firstly,

we define the space L2(M,h) as the closure of the space of smooth 1-forms on M with respect

to the norm (∫

M

|ζ|2h dVh
) 1

2

, where |ζ|2h = habζaζb locally.

Denote by {Eτ}τ≥0 the de Rham-Hodge semigroup on 1-forms, associated to the de Rham-

Hodge Laplacian, which by elliptic regularity has a kernel e(τ, ·, ·). More precisely, for any

τ > 0, e(τ, ·, ·) is a double form on M ×M , such that for any 1-form ζ ∈ L2(M,h) and any

P ∈M ,

(Eτζ)(P ) =
∫

M

e(τ, P,Q) ∧ ⋆Q ζ(Q),

where ⋆ is the Hodge star operator, Q is a point in M , and ∧ is the wedge product between

forms. Concretely, in a coordinate patch (U, (xi)) around P and in a coordinate patch (U ′, (yj))

around Q, if we write the double form e(τ, ·, ·) as

e(τ, x, y) = (e(τ, x, y)ij dx
i) dyj

and ζ as ζ(y) = ζk(y) dy
k, then the above integral becomes

(Eτ ζ)(x) =
( ∫

M

e(τ, x, y)ij h
jk(y) ζk(y) dVh(y)

)
dxi.
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For a vector field V , we denote by V ♭ the 1-form obtained by lowering an index via the metric

h; analogously, for a 1-form ζ, we denote by ζ♯ the vector field obtained by raising an index via

the metric.

We define for a vector field V the following quantity

EτV := ((EτV ♭))♯.

Let ε ≥ 0 be a constant such that RicM ≥ −ε2h, where RicM denotes the Ricci tensor of

(M,h) (the constant ε clearly exists because M is compact). We have the following remarkable

properties: For any V ∈ −−−−→
Lp(M), p ∈ [1,∞],

• EτV is a smooth vector field for any τ > 0,

• EτV → V in
−−−−→
Lp(M) as τ ↓ 0 for any finite p,

• ‖EτV ‖−−−−→
Lp(M)

≤ eε
2|1− 2

p
|τ ‖V ‖−−−−→

Lp(M)
for any τ ≥ 0 (see [5]).

Furthermore, in analogy with (10.1), the following local expression holds:

(EτV )(x) =
(∫

M

e(τ, x, y)ij V
j(y) dVh(y)

)
hik(x) ∂k.

Finally, one can show that (see [21] for details)

div EτV (x) =

∫

M

∂ke(τ, x, y)ij V
j(y) dVh(y)h

ik(x)

+

∫

M

e(τ, x, y)ij V
j(y) dVh(y) ∂kh

ik(x)

+ Γρ
ρk(x)

∫

M

e(τ, x, y)ij V
j(y) dVh(y)h

ik(x)

in local coordinates x (differentiation is carried out in x).

10.3 Proof of Proposition 2.1

Let {Gi}Ri=1 be a finite covering of M and {(Gi, φi)}Ri=1 be the corresponding charts. With-

out loss of generality, we may assume that φi(Gi) = B for all i, where B is the unit ball in

R
d. Let {αi}Ri=1 be a smooth partition of unity subordinate to {Gi}Ri=1. On suppαi the metric

tensor h and its derivatives of all orders are bounded in the system of coordinates corresponding

to the chart (Gi, φi). Define, for i = 1, · · · , R,

ψi : [0, T ]×Gi → [0, T ]×B, (t, P ) 7→ (t, φi(P )),

which is a finite smooth atlas for [0, T ] × M . Observe that [0, T ] × Gi is diffeomorphic to

[0, T ]× B. Moreover, α̃i : [0, T ]×M → [0, 1], α̃i(t, P ) := αi(P ) is a smooth partition of unity

subordinate to {[0, T ]×Gi}Ri=1.

Let w ∈W 1,2,p([0, T ]×M). Then clearly, in view of the discussion above,

w ∈W 1,2,p([0, T ]×M) ⇐⇒ α̃iw ∈ W 1,2,p([0, T ]×M), ∀i
⇐⇒ (α̃iw) ◦ ψ−1

i ∈ W 1,2,p([0, T ]×B), ∀i,

where W 1,2,p([0, T ] × B) denotes the more familiar Euclidean anisotropic Sobolev space (see

[8]), which can be defined similarly via (2.1) with dVh = dx and ∇k = ∇k
eucl.
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For this space we have the compact embedding

W 1,2,p([0, T ]×B) ⊂⊂ C0,1− 1+d
p ([0, T ]× B)

and

∂xj
(α̃iw) ◦ ψ−1

i ∈ C0,1− 1+d
p ([0, T ]×B), j = 1, · · · , d,

provided p > d+ 2, see [41] for example. In particular, for all i,

‖(α̃iw) ◦ ψ−1
i ‖C0([0,T ]×B) + ‖∇eucl(α̃iw) ◦ ψ−1

i ‖C0([0,T ]×B)

≤ C(p, d, B)‖(α̃iw) ◦ ψ−1
i ‖W 1,2,p([0,T ]×B).

Exploiting the boundedness of the metric tensor, we get

‖α̃iw‖C0([0,T ]×M) + ‖∇(α̃iw)‖C0([0,T ]×M)

= ‖α̃iw‖C0([0,T ]×Gi) + ‖∇(α̃iw)‖C0([0,T ]×Gi)

≤ ‖(α̃iw) ◦ ψ−1
i ‖C0([0,T ]×B) + Ci‖∇eucl(α̃iw) ◦ ψ−1

i ‖C0([0,T ]×B)

≤ C(p, d, B, i)‖(α̃iw) ◦ ψ−1
i ‖W 1,2,p([0,T ]×B)

≤ C′(p, d, B, i)‖α̃iw‖W 1,2,p([0,T ]×M).

Therefore, by the triangle inequality and summing over i,

‖w‖C0([0,T ]×M) + ‖∇w‖C0([0,T ]×M)

≤ C(p, d,M)

R∑

i=1

‖α̃iw‖W 1,2,p([0,T ]×M) ≤ C′(p, d,M)‖w‖W 1,2,p([0,T ]×M),

where in the last passage we have used the fact that the derivatives of α̃i are bounded. The

compactness of the embedding is now evident.

10.4 An auxiliary result

We now prove a useful result about the extension of smooth functions, which is used during

the proof of Proposition 5.1.

Proposition 10.1 (extension ofC∞ functions) Let 0 < S < T and consider w ∈ C∞([0, S]×
M). Then we can extend w to a function v ∈ C∞([0, T ]×M).

Proof Let {Gi}Ri=1 be a finite covering ofM and {(Gi, φi)}Ri=1 be the corresponding charts.

Without loss of generality, we may assume that φi(Gi) = B for all i, where B is the unit ball

in R
d. Let {αi}Ri=1 be a squared smooth partition of unity subordinate to {Gi}Ri=1, such that

R∑
i=1

α2
i = 1. Define, for i = 1, · · · , R,

ψi : [0, T ]×Gi → [0, T ]×B, (t, P ) 7→ (t, φi(P )),

which is a finite smooth atlas for [0, T ] × M . Observe that [0, T ] × Gi is diffeomorphic to

[0, T ]×B. Besides, α̃i : [0, T ]×M → [0, 1], α̃i(t, P ) := αi(P ) is a squared smooth partition of

unity subordinate to {[0, T ]×Gi}Ri=1.
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Given w ∈ C∞([0, S]×M), we define w̃i ∈ C∞([0, S]× R
d), i = 1, · · · , R by

w̃i(t, x) :=

{
(α̃iw) ◦ ψ−1

i for (t, x) ∈ [0, S]×B,

0, otherwise.

Observe that for any t ∈ [0, S], supp w̃i(t, ·) ⊂ suppαi ◦ φ−1
i . Seeley’s extension theorem (see

[44]) supplies an extension operator

E : C∞([0, S]× R
d) → C∞(R× R

d).

Thanks to this, we can build an extension Ew̃i of w̃i in C
∞(R× R

d). Set

wi := (αi ◦ φ−1
i )Ew̃i ∈ C∞(R× R

d),

and notice that for any t ∈ R, suppwi(t, ·) ⊂ suppαi ◦ φ−1
i .

We may lift this function to M by setting

wi(t, P ) :=

{
wi(t, φ(P )) for (t, P ) ∈ R× suppαi,

0, otherwise.

Clearly, wi ∈ C∞(R×M) and for t ∈ [0, S] we have

wi(t, P ) =

{
α2
i (P )w(t, P ) for P ∈ suppαi

0, otherwise.

Setting v :=
R∑
i=1

wi ∈ C∞(R×M) ⊂ C∞([0, T ]×M) we have

v(t, P ) =
∑

i:P∈suppαi

α2
i (P )w(t, P ) = w(t, P ), (t, P ) ∈ [0, S]×M,

and thus the desired extension is established.
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