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Abstract Using Hodge theory and Banach fixed point theorem, Liu and Zhu developed
a global method to deal with various problems in deformation theory. In this note, the
authors generalize Liu-Zhu’s method to treat two deformation problems for non-Kähler
manifolds. They apply the ∂∂-Hodge theory to construct a deformation formula for (p, q)-
forms of compact complex manifold under deformations, which can be used to study the
Hodge number of complex manifold under deformations. In the second part of this note, by
using the ∂∂-Hodge theory, they provide a simple proof of the unobstructed deformation
theorem for the non-Kähler Calabi-Yau ∂∂-manifolds.
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1 Introduction

Various problems in deformation theory can be reduced to solving certain ∂-equations on

complex manifolds. In the classical deformation theory developed by Kodaira-Spencer [9], in

order to construct a complex analytic family of a compact complex manifold, the starting

point is to solve the Maurer-Cartan equation. Kodaira et al. [3, 9] introduced the method of

formal power series, and showed the convergence of this series through a beautiful majorant

series. Recently, a global method which significantly simplifies the procedure was established

by Liu and Zhu [7–8]. They also provide a simple proof of the unobstructed theorem for

Calabi-Yau manifold originally due to [16–17]. Another interesting question is how to extend

the holomorphic canonical forms of compact Kähler manifold under the deformations. In [6],

Liu-Rao-Yang introduced the extension equation whose solution would provide the desired

holomorphic forms under deformations. Their method was further simplified by [7–8] with

intrinsic use of the Hodge theory on compact Kähler manifold.

In this note, we generalize Liu-Zhu’s method to treat two deformation problems for non-

Kähler manifolds by using the ∂∂-Hodge theory essentially. In the first part, we construct an

extension formula for d-closed (p, q)-forms of compact complex manifold under deformations.

In the second part, we provide a simple proof of the unobstructed deformation theorem for the

non-Kähler Calabi-Yau ∂∂-manifolds.
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1.1 Deformations of (p, q)-forms

In order to study the dimension of certain cohomology group of complex manifold under

the deformation of complex structure, it is natural to consider the deformation of (p, q)-form of

complex manifold.

Let’s explain the main idea and fix some notations. Let X be a compact complex manifold

satisfying the (p, q+1)-type ∂∂-formula (3.9), let {Xt}|t|<ε be a holomorphic family of compact

complex manifolds with X0 := X . We use ϕ(t) to denote the Betrami differential corresponding

to Xt, and we let eiϕ(t) be the linear map given by formula (3.2), which maps a form on X to a

form on Xt. Given a d-closed form σ0 on X , in order to construct a d-closed form eiϕ(t)(σ(t))

on Xt, the form σ(t) on X needs to satisfy certain differential equations, i.e., (3.8).

The key observation is that if we change the differential equation (3.8) into a corresponding

integral equation (3.11), then the solution can be constructed directly. By using Banach fixed

point theorem, one knows this integral equation has a unique solution for small t. By using the

map eiϕ , we get a d-closed form on Xt, whose (p, q)-part is ∂t-closed.

Specifically, we obtain the following theorem.

Theorem 1.1 Let X be a compact complex manifold satisfying the (p, q + 1)-type ∂∂-

formula. Given a d-closed σ0 ∈ Ap,q(X), there is σ(t) ∈ Ap,q(X) satisfying (3.8) and that

Pϕ(t)(e
iϕ(t)(σ(t))) is ∂t-closed in Ap,q(Xt).

1.2 Unobstructed deformation theorem for Calabi-Yau ∂∂-manifolds

A Calabi-Yau manifold is a compact Kähler manifold with trivial canonical bundle. The

celebrated Bogomolov-Tian-Todorov theorem (see [16–17]) said that every Calabi-Yau manifold

has unobstructed deformation. It is easy to see that the proof shown in [16] is still valid if the

Kähler assumption is weakened to the ∂∂-lemma, see [10] for a brief description of the proof for

(non-Kähler) Calabi-Yau ∂∂-manifold, see Definition 4.1. Later on, [5, 15] proved much more

general unobstructedness theorems for non-Kähler Calabi-Yau manifolds than Popovici’s and

their proofs are rather different. In the rest of this note, we will use the global method in [7–8]

to give a simple and complete proof for the obstructedness theorem for Calabi-Yau ∂∂-manifold.

Let’s explain the main idea briefly. Suppose X is a Calabi-Yau ∂∂-manifold. In order to

show the unobstructedness, we need to solve the following Maurer-Cartan equation

∂ϕ =
1

2
[ϕ, ϕ], ϕ ∈ A0,1(X,T 1,0X). (1.1)

Choosing a nowhere vanishing holomorphic section Ω of the canonical bundle KX , for any given

class η ∈ H1(X,T 1,0X) and ϕ1 ∈ η, let ϕ(t) be a power series with dϕ(t)
dt |t=0 = ϕ1. We change

the above differential equation (1.1) for ϕ(t) into the following integral equation

(ϕ(t) − ϕ1t)yΩ =
1

2
∂(∂∂)∗G∂∂([ϕ(t), ϕ(t)]yΩ). (1.2)

Then, using Banach fixed point theorem and standard regularity of elliptic operator, we show

that the above integral equation has a unique solution ϕ(t) ∈ A0,1(X,T 1,0X) which is holomor-

phic with respect to t in a neighborhood of 0.

More precisely, we have the following theorem.
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Theorem 1.2 Given any η ∈ H1(X,T 1,0X), we can choose ϕ1 ∈ η, such that d(ϕ1yΩ) = 0.

Furthermore, there is ε > 0, such that for |t| < ε, there is a unique ϕ(t) ∈ A0,1(X,T 1,0X) which

is holomorphic in t and satisfies (ϕ(t)−ϕ1t)yΩ = 1
2∂(∂∂)

∗G∂∂([ϕ(t), ϕ(t)]yΩ), and ϕ(t) satisfies

(1) ∂ϕ(t) = 1
2 [ϕ(t), ϕ(t)];

(2) (ϕ(t) − ϕ1t)yΩ is ∂-exact and ∂(ϕ(t)yΩ) = 0.

2 Preliminaries

2.1 Hodge theory

At first, we recall the classical Hodge theory on compact complex manifold, which can be

found in [9].

Let (X,h) be a compact complex manifold X with a hermitian metric h which induces an

L2 inner product on the space Ap,q(X) of smooth (p, q)-forms on X . Let �∂ = ∂∂
∗
+ ∂

∗
∂, and

Hodge theory implies that there exists a Green operator G and a harmonic projection H , and

the following identities hold:

�∂G = G�∂ = id−H, ∂G = G∂, ∂
∗
G = G∂

∗
,

HG = GH = 0, ∂H = H∂ = 0, ∂
∗
H = H∂

∗
= 0.

Furthermore, the Laplacian �∂ is second-order elliptic differential operator and we have the

following estimate (cf. [9]).

Lemma 2.1 (cf. [9, Page 160]) With respect to the Hölder norm ‖ · ‖k,α, G∂ is a bounded

operator of order −2, i.e.,

‖G∂ϕ‖k,α ≤ C‖ϕ‖k−2,α, ∀ϕ ∈ Ap,q(X),

where k ≥ 2, C = C(k, α) is constant.

Similarly, if we consider the differential operator ∂∂ instead of ∂, for the ∂∂-Laplacian

�∂∂ = ∂∂(∂∂)∗ + (∂∂)∗(∂∂), we also have the ∂∂-Hodge theory as follows.

Proposition 2.1 The following identities hold:

�∂∂G∂∂ = G∂∂�∂∂ = id−H∂∂ , ∂∂G∂∂ = G∂∂∂,

(∂∂)∗G∂∂ = G∂∂(∂∂)
∗, H∂∂G∂∂ = G∂∂H∂∂ = 0,

(∂∂)H∂∂ = H∂∂(∂∂) = 0, (∂∂)∗H∂∂ = H∂∂(∂∂)
∗ = 0.

We refer to [11] for the using of ∂∂-Hodge theory. In addition, since ∂∂-Laplacian �∂∂ is a

fourth order elliptic differential operator, then we have the following estimate similar to Lemma

2.1.

Lemma 2.2 With respect to the Hölder norm ‖ · ‖k,α, G∂∂ is a bounded operator of order

−4, i.e.,

‖G∂∂ϕ‖k,α ≤ C‖ϕ‖k−4,α, ∀ϕ ∈ Ap,q(X),

where k ≥ 4, C = C(k, α) is constant.
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Remark 2.1 Since ∂∂ = −∂∂ on any complex manifold, we have (∂∂)∗ = −(∂∂)∗. Then

�∂∂ = �∂∂ , G∂∂ = G∂∂ and H∂∂ = H∂∂ . In the following, sometimes we will also use the

Hodge theory for ∂∂-Laplacian �∂∂ alternatively.

2.2 Banach fixed-point theorem

The Banach fixed-point theorem which can be found in any standard textbooks of functional

analysis states that, for any contraction mapping f from a closed subset F of a Banach space

E into F , there exists a unique x ∈ F such that x = f(x).

For the convenience of our application, we write down the Banach fixed-point theorem in

the following form (cf. [8]).

Theorem 2.1 Let (E, ‖·‖) be a Banach space and suppose F is a closed subset of E. Given

y ∈ F , let K be a contraction mapping defined on F , i.e., for any x1, x2 ∈ F , we have

‖K(x1)−K(x2)‖ ≤ γ‖x1 − x2‖, where γ ∈ (0, 1). (2.1)

Moreover, K satisfies

y +K(x) ∈ F for any x ∈ F . (2.2)

Then, the following equation

x = y +K(x) (2.3)

has a unique solution x ∈ F .

3 Deformation of (p, q)-Forms and Applications

3.1 Extension equation

Suppose X is a compact complex manifold of dimension n. Let ϕ ∈ A0,1(X,T 1,0X) be an

integrable Beltrami differential, and Xϕ be the complex manifold with the complex structure

determined by ϕ. We introduce the filtration

F p,q(X) = Ap,q(X)⊕Ap+1,q−1(X)⊕ · · · ⊕Ap+q,0(X).

For any σ ∈ Ap,q(X), in local coordinate (U, z), we write

σ =
∑

I,J

σI,Jdz
i1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq , (3.1)

then we define a linear map eiϕ : Ap,q(X) → F p,q(Xϕ) as follows

eiϕ(σ) =
∑

I,J

σI,Je
iϕ(dzi1 ∧ · · · ∧ dzip) ∧ dzj1 ∧ · · · ∧ dzjq

=
∑

I,J

σI,J (dz
i1 + ϕdzi1) ∧ · · · ∧ (dzip + ϕdzip) ∧ dzj1 ∧ · · · ∧ dzjq . (3.2)
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Since the space T 0,1(Xϕ) of anti-holomorphic tangent vector fields is spanned by the basis

{
Xi =

∂

∂zi
− ϕ

j

i

∂

∂zj

}n

i=1
. (3.3)

Denote its dual basis by {Y i}ni=1 which spans the space A0,1(Xϕ) = (T 0,1(Xϕ))
∗. Then {Y i}ni=1

spans the space A1,0(Xϕ) = (T 1,0(Xϕ))
∗.

Since A0,1(Xϕ) ⊂ A1(Xϕ) and A
1(Xϕ) = A1(X), we let

Pϕ : A1(X) → A0,1(Xϕ)

be the natural projection map. For dzi ∈ A0,1(X) ⊂ A1(X), there are coefficients aij , b
i
k such

that dzi = aijY
j + bikY

k. It is obvious that

aij = dzi(Xj) = δij and bik = dzi(Xk) = −ϕi
j
. (3.4)

Therefore, Pϕ(dz
i) = Y j , and we have

Pϕ(e
iϕ(σ)) =

∑

I,J

σI,J (dz
i1 + ϕdzi1) ∧ · · · ∧ (dzip + ϕdzip)

∧ Y j1 ∧ · · · ∧ Y jq ∈ Ap,q(Xϕ). (3.5)

Recall the following extension formula (cf. [6])

e−iϕ ◦ d ◦ eiϕ = d− L1,0
ϕ = d + ∂iϕ − iϕ∂. (3.6)

Therefore, eiϕ(σ) is d-closed on X (or Xϕ) if and only if

(d + ∂iϕ − iϕ∂)σ = 0. (3.7)

By comparing the type, one obtains that the above equation is equivalent to
{
∂σ = 0,

∂σ = −∂(ϕyσ).
(3.8)

3.2 Deformation of (p, q)-form

In the following, we consider compact complex manifolds with mild conditions.

Definition 3.1 A compact complex manifold is said to satisfy the (p, q)-type ∂∂-formula,

if the following formula

Ker(∂) ∩ Im(∂) = Im(∂∂) (3.9)

holds for any (p, q)-forms lying in Ap,q(X).

Let {Xt}|t|≤ε be a holomorphic family of deformations of X satisfying the (p, q)-type ∂∂-

formula. There exists a family of Betrami differentials {ϕ(t)}|t|≤ε which depends on t holomor-

phically, such that Xt = Xϕ(t). Hence, ϕ(t) ∈ A0,1(X,T 1,0X) and satisfies the Maurer-Cartan

equation

∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)]. (3.10)
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Given any d-closed (p, q)-form σ0 ∈ Ap,q(X), we consider the following integral equation

σ = σ0 − ∂(∂∂)∗G∂∂∂(ϕ(t)yσ). (3.11)

Then we will show that, when ε is small enough, the integral equation (3.11) has a unique

solution σ(t) ∈ Ap,q(Xt) for |t| < ε.

Proposition 3.1 There exists ε > 0, such that if |t| < ε, for any d-closed (p, q)-form σ0

on X, (3.11) has a unique solution σ(t) which is Ck-continuous and holomorphically depends

on t.

Proof Consider the norm space (Ap,q(X), ‖ · ‖k+α), and denote its completion by E. For

brevity, we introduce the operator Kϕ(t) which acts on σ by

Kϕ(t)(σ) = −∂(∂∂)∗G∂∂∂(ϕ(t)yσ). (3.12)

By the standard estimates for Green’s operator G∂∂ , there is a constant C independent of

σ such that

‖Kϕ(t)(σ)‖k+α ≤ C‖ϕ(t)‖k+α · ‖σ‖k+α. (3.13)

We can choose ε small enough, such that if |t| < ε, then ‖ϕ(t)‖k+α <
1
2C .

Now the integral equation (3.11) becomes

σ = σ0 +Kϕ(t)(σ). (3.14)

Let F = E in Banach fixed-point Theorem 2.1. Therefore the condition (2.2) is obviously. For

condition (2.1), let σ, σ′ ∈ E, then by formula (3.13), we have

‖Kϕ(t)(σ) −Kϕ(t)(σ
′)‖k+α = ‖Kϕ(t)(σ − σ′)‖k+α

≤
1

2
‖σ − σ′‖k+α (3.15)

for any |t| < ε.

Therefore, the Banach fixed-point Theorem 2.1 implies that there is a unique solution σ(t)

of the integral equation (3.11) in E for any |t| ≤ ε.

Then we will show that σ(t) depends holomorphically on t. From the Banachi-fixed point

Theorem 2.1, we know that the solution σ(t) is constructed as the limit of the following sequence:

σ1(t) = σ0 +Kϕ(t)(σ0),

σn(t) = σ0 +Kϕ(t)(σn−1) for n ≥ 1.

Then, for any |t| ≤ ε, the solution σ(t) is given by

σ(t) = lim
n→∞

σn(t) = σ0 +
∞∑

k=1

Kk
ϕ(t)(σ0). (3.16)

Since ϕ(t) is the Betrami differential from the holomorphic family of complex manifold X , it

follows that ϕ(t) is holomorphic depends on t. Then ϕ(t) can be written as a convergent power

series in t. From the above expression (3.16) for σ(t), we obtain that σ(t) is also a power series
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in t for |t| < ε. Finally, it is easy to see that the ‖ · ‖k,α-norm of the σ(t) is finite which implies

that σ(t) is convergent for |t| < ε. Therefore, σ(t) is holomorphic in t for |t| < ε.

According to Proposition 3.1, σ(t) is just Ck-continuous. Similar to [9], by using the stan-

dard regularity theory for elliptic differential operator, we obtain that the solution σ(t) obtained

in above Proposition 3.1 is a smooth form for small t.

Theorem 3.1 Suppose X is a compact complex manifold which satisfies the (p, q + 1)-type

∂∂-formula (3.9), and let σ0 be a d-closed (p, q)-form on X, then the solution σ(t) obtained in

Proposition 3.1 satisfies

∂σ(t) + ∂(ϕ(t)yσ(t)) = 0. (3.17)

Proof Since both ϕ(t) and σ(t) are holomorphic in t, we consider the Taylor expansions

ϕ(t) =
∑
i≥1

ϕit
i and σ(t) =

∑
j≥0

σjt
j . Then (3.10) implies ∂ϕ1 = 0 and

∂ϕk =
∑

i+j=k
i,j≥1

1

2
[ϕi, ϕj ] (3.18)

for k ≥ 2.

From (3.11), we obtain

σk = −∂(∂∂)∗G∂∂∂
( ∑

i+j=k
i≥1,j≥0

ϕiyσj

)
(3.19)

for k ≥ 1. Then we only need to show that

∂σk = −∂
∑

i+j=k
i≥1,j≥0

ϕiyσj . (3.20)

For k = 1, we have

∂σ1 = −∂∂(∂∂)∗G∂∂∂(ϕ1yσ0)

= −(�∂∂G∂∂ − (∂∂)∗∂∂G∂∂)∂(ϕ1yσ0)

= −∂(ϕ1yσ0)−H∂∂∂(ϕ1yσ0)

= −∂(ϕ1yσ0). (3.21)

Indeed, since ∂∂(ϕ1yσ0) = −∂∂(ϕ1yσ0) = −∂(∂ϕ1yσ0+ϕ1y∂σ0) = 0, with the help of (p, q+1)-

type ∂∂-lemma, we have ∂(ϕ1yΩ0) ∈ Im(∂∂) which implies H∂∂∂(ϕ1yσ0) = 0.

By hypothesis induction, we assume (3.20) holds for k ≤ l − 1. Now for k = l, by using

Hodge theory for �∂∂ , we obtain

∂σl = −∂∂(∂∂)∗G∂∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj

= −∂
∑

i+j=l
i≥1,j≥0

ϕiyσj −H∂∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj . (3.22)
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Then we need to show H∂∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj = 0. By straightforward computations, we have

∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj = −∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj

= −∂
∑

i+j=l
i≥1,j≥0

(∂ϕiyσj + ϕiy∂σj)

= −∂
∑

i+j=l
i≥1,j≥0

(1
2

∑

a+b=i

[ϕa, ϕb]yσj −
∑

a+b=j

ϕiyϕayσb

)

= −∂
∑

a+b+c=l

(−∂(ϕayϕbyσc)) = 0. (3.23)

By using the (p, q)-type ∂∂-formula (3.9), we obtain that ∂
∑

i+j=l
i≥1,j≥0

ϕiyσj is ∂∂-exact, hence

H∂∂∂
∑

i+j=l
i≥1,j≥0

ϕiyσj = 0.

From the previous analysis, eiϕ(t)(σ(t)) is d-closed in F p,q(Xt). We write

eiϕ(t)(σ(t)) = αp,q + αp+1,q−1 + · · ·+ αp+q,0

∈ Ap,q(Xt)⊕Ap+1,q−1(Xt)⊕ · · · ⊕Ap+q,0(Xt), (3.24)

where αp,q = Pϕ(t)(e
iϕ(t)σ(t)). Since d(eiϕ(t)σ(t)) = 0 and d = ∂t + ∂t, by comparing types, we

obtain ∂t(α
p,q) = 0.

Hence we have the following theorem.

Theorem 3.2 Given a d-closed σ0 ∈ Ap,q(X), there is σ(t) ∈ Ap,q(X) satisfying (3.8), and

Pϕ(t)(e
iϕ(t)(σ(t)))

is ∂t-closed in Ap,q(Xt).

In [14], Rao and Zhao introduced a natural method to deform the (p, q)-form on a given

compact complex manifold. Based on their computations, they found an extension equation for

∂t-closed (p, q)-form under the deformed complex manifold Xt. In our approach, we observe

that the original extension equation (cf. [2, 6]) is still workable in this case. It provides a

simple method to construct the (p, q)-forms under deformation. Theorem 3.2 was directly used

to prove the invariance of Hodge numbers over complex manifolds (cf. [14]). See also the recent

work in [13] for more applications.

Another potential application of Theorem 3.2 is to construct the explicit Kähler forms

ωt under the deformations. Although the deformation stability of Kähler manifold was proved

firstly in [4, 9] with highly nontrivial arguments from the theory of elliptic differential equations,

it is still interesting to find an elementary proof of the Kähler stability by constructing the

Kähler forms ωt explicitly under the deformations. Such elementary proof was first given in
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[12]. Our method could provide a much simpler approach. By Theorem 3.2, we first get a

∂t-closed (1, 1)-form ω̃t on Xt. Since Xt also satisfies ∂∂-lemma according to [1], ω̃t can be

represented by a d-closed form on Xt, still denoted by ω̃t. Then we set ωt :=
1
2 (ω̃t + ω̃t) to get

a real d-closed (1, 1)-form on Xt. However, in order to show the positivity of ωt, up to now, we

still need a highly nontrivial argument from [9] which shows ωt is differentially depends on t.

A challenge question is how to prove this statement without using this argument in [9].

4 Unobstructed Deformation Theorem for Calabi-Yau ∂∂-Manifolds

A Calabi-Yau manifold is a compact Kähler manifold with trivial canonical bundle. It is

well-known that deformations of Calabi-Yau manifolds are always unobstructed. This fact was

referred to as the Bogomolov-Tian-Todorov unobstructedness theorem (cf. [16–17]), see also

[7–8] for a simple approach. In fact, the Kähler condition here can be weakened to the validity

of ∂∂-lemma. In the rest of this note, we will apply the global method developed in [7–8] to

give a simple proof of the obstructedness theorem for (non-Kähler) Calabi-Yau ∂∂-manifold.

Definition 4.1 A compact complex manifold X is said to be a Calabi-Yau ∂∂-manifold if

(i) the ∂∂-lemma holds on X ; (ii) the canonical bundle KX is trivial.

Theorem 4.1 The deformation of Calabi-Yau ∂∂-manifold is unobstructed.

In the following, we will provide a simple and complete proof for this theorem. Let us begin

with some basic results.

Lemma 4.1 Let X be a compact complex manifold of dimension n with trivial canonical

bundle KX . Let Ω be a non-vanishing holomorphic section of KX . Then, for q = 0, · · · , n, we

have an isomorphism

TΩ : A0,q(X,T 1,0X) → An−1,q(X) (4.1)

given by TΩ(α) = αyΩ for any α ∈ A0,q(X,T 1,0X).

Proof Suppose z1, · · · , zn are the local holomorphic coordinates on some open subset

U ⊂ X , we write Ω = fdz1 ∧ · · · ∧ dzn, where f is a holomorphic function on U without zeros.

It is obvious that TΩ is injective. On the other hand, given any σ ∈ An−1,q(X), we write σ =∑
j

σjdz1∧· · ·∧d̂zj∧dzn, where σj ∈ A0,q(X). If we let ϕ =
∑
j

(−1)j−1 σj

f
∂

∂zj ∈ A0,q(X,T 1,0X),

then

ϕyΩ =
∑

j

σjdz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn = σ. (4.2)

Hence TΩ is surjective.

Lemma 4.2 (cf. [10, Lemma 3.3]) Let X be a compact complex manifold such that KX is

trivial. Then, for q = 1, the above isomorphism TΩ satisfies

TΩ(Ker ∂) = Ker ∂ and TΩ(Im ∂) = Im ∂. (4.3)

Hence TΩ induces an isomorphism in cohomology

T[Ω] : H
0,1(X,T 1,0X) → Hn−1,1(X) (4.4)
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defined by T[Ω]([ϕ]) = [ϕyΩ] for all [ϕ] ∈ H0,1(X,T 1,0X).

Proof By a straightforward computation, we have

∂(ϕyΩ) = ∂ϕyΩ (4.5)

for any ϕ ∈ A0,q(X,T 1,0X), then (4.3) follows by the isomorphism of TΩ.

We take the identity TΩ(Im ∂) = Im ∂ for example. Given any ∂θ ∈ Im(∂), where θ ∈

A0(X,T 1,0X), then we have (∂θ)yΩ = ∂(θyΩ) which implies TΩ(Im ∂) ⊆ Im ∂. On the other

hand, given any ∂τ ∈ Im ∂ for some τ ∈ An−1,0(X), there is ϕτ ∈ A0(X,T 1,0X) such that

ϕτyΩ = τ . Hence ∂ϕτ ∈ Im ∂ satisfies (∂ϕτ )yΩ = ∂(ϕτyΩ) = ∂τ , it follows that Im ∂ ⊆

TΩ(Im ∂).

Lemma 4.3 (Tian-Todorov Lemma, [6, Lemma 3.3]) Let X be any complex manifold of

dimension n. Given Ω ∈ An,0(X) and ϕ, ϕ′ ∈ A0,1(X,T 1,0X), then we have

[ϕ, ϕ′]yΩ = −∂(ϕy(ϕ′
yΩ)) + ϕy∂(ϕ′

yΩ) + ϕ′
y∂(ϕyΩ). (4.6)

In particular, if ∂(ϕ′
yΩ) = 0 and ∂(ϕyΩ) = 0, then [ϕ, ϕ′]yΩ ∈ Im ∂, where the Lie bracket

[ϕ, ϕ′] ∈ A0,k+k′

(X,T 1,0X) is defined by

[ϕ, ϕ′] =
n∑

i,j=1

(ϕi ∧ ∂iϕ
′j − (−1)kk

′

ϕ′i ∧ ∂iϕ
j)⊗ ∂j

for ϕ =
∑
i

ϕi∂i ∈ A0,k(X,T 1,0X) and ϕ′ =
∑
i

ϕ′i∂i ∈ A0,k′

(X,T 1,0X).

4.1 Proof of Theorem 4.1

In the following, we assume X to be a Calabi-Yau ∂∂-manifold. Let Ω be a non-vanishing

holomorphic section of KX . Our goal is to solve the following Maurer-Cartan equation on X :

∂ϕ =
1

2
[ϕ, ϕ], ϕ ∈ A0,1(X,T 1,0X). (4.7)

We begin with a simple observation.

Proposition 4.1 Given any [η] ∈ H1(X,T 1,0X), there is ϕ1 ∈ [η], such that ϕ1yΩ is

d-closed.

Proof Since T[Ω]([η]) = [ηyΩ] ∈ Hn−1,1(X), by ∂∂-lemma, there is τ ∈ [ηyΩ] such that

dτ = 0. By the isomorphism of TΩ : A0,1(X,T 1,0X) → An−1,1(X), there is ϕ1 ∈ A0,1(X,T 1,0X)

such that ϕ1yΩ = τ , and ∂ϕ1 = 0 since ∂τ = 0. Moreover, [ϕ1yΩ] = [τ ] = [ηyΩ] which implies

[ϕ1] = [η] by the isomorphism of T[Ω]. Therefore, ϕ1 ∈ [η] and d(ϕ1yΩ) = dτ = 0.

Given any [η] ∈ H1(X,T 1,0X), in order to solve (4.7) we consider the associated integral

equation:

(ϕ(t) − ϕ1t)yΩ =
1

2
∂(∂∂)∗G∂∂([ϕ(t), ϕ(t)]yΩ). (4.8)

Here ϕ1 is chosen to be in [η] with ϕ1yΩ d-closed, as guaranteed by Proposition 4.1.

Proposition 4.2 There exists ε > 0, such that for |t| < ε, (4.8) has a unique solution ϕ(t)

which is Ck-continuous and depends holomorphically on t.
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Proof Let Ω∗ be the dual of Ω such that ΩyΩ∗ = 1. The equation (4.8) is equivalent to

ϕ(t) − ϕ1t =
1

2
∂(∂∂)∗G∂∂([ϕ(t), ϕ(t)]yΩ)yΩ

∗. (4.9)

Under the Hölder norm ‖ · ‖k+α as in [9], we have the estimates

‖∂(∂∂)∗G∂∂ϕ‖k+α ≤ C1‖G∂∂ϕ‖k+3+α ≤ C1C2‖ϕ‖k−1+α (4.10)

since here the ∂∂-Lapalacian �∂∂ is a differential operator of order four. Then

∥∥∥1
2
∂(∂∂)∗G∂∂([ϕ, ψ]yΩ)yΩ

∗
∥∥∥
k+α

≤
∥∥∥1
2
∂(∂∂)∗G∂∂([ϕ, ψ]yΩ)

∥∥∥
k+α

· ‖Ω∗‖k+α

≤
1

2
C1C2‖[ϕ, ψ]yΩ‖k−1+α · ‖Ω∗‖k+α

≤
1

2
C1C2C3‖ϕ‖k+α‖ψ‖k+α‖Ω‖k−1+α‖Ω

∗‖k+α. (4.11)

In the following, we denote C = C1C2C3‖Ω‖k−1+α‖Ω
∗‖k+α. Also note that C is a constant

independent of ϕ, ψ.

Next we use Banach fixed-point theorem to get a solution of (4.9). The completion of the

normed space (A0,1(X,T 1,0X), ‖·‖k+α) is denoted by E which is a Banach space. Take δ = 1
2C ,

we define a closed subset F of E:

F = {ϕ ∈ E | ‖ϕ‖k+α ≤ δ}.

For any ϕ ∈ E, we introduce the operator K(ϕ) = 1
2∂(∂∂)

∗G∂∂([ϕ, ϕ]yΩ)yΩ
∗, then (4.9)

becomes

ϕ = ϕ1t+K(ϕ).

For ϕ, ψ ∈ F , by the estimate (4.11), we have

‖K(ϕ)−K(ψ)‖k+α =
∥∥∥1
2
∂(∂∂)∗G∂∂([ϕ, ϕ] − [ψ, ψ]yΩ)yΩ∗

∥∥∥
k+α

=
∥∥∥1
2
∂(∂∂)∗G∂∂([ϕ+ ψ, ϕ− ψ]yΩ)yΩ∗

∥∥∥
k+α

≤
1

2
C‖ϕ+ ψ‖k+α · ‖ϕ− ψ‖k+α

≤
1

2
‖ϕ− ψ‖k+α.

Moreover, if ‖ϕ1t‖k+α ≤ δ
2 , then for any ϕ ∈ F , we have

‖ϕ1t+K(ϕ)‖k+α ≤ ‖ϕ1t‖k+α + ‖K(ϕ)‖k+α

≤
δ

2
+

1

2
Cδ2 ≤ δ,

thus ϕ1t+K(ϕ) ∈ F .

Therefore the two conditions of Banach fixed-point Theorem 2.1 are satisfied provided

‖ϕ1t‖k+α ≤ δ
2 . Choose ε small enough such that ‖ϕ1t‖k+α ≤ δ

2 for ‖t‖ < ε, then as a

consequence of Banach fixed-point Theorem 2.1 we get a solution ϕ(t) of (4.9) which lies in
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F and therefore Ck continuous. By the standard regularity of elliptic operators we obtain the

smoothness of the solution ϕ(t).

It only remains to prove that the solution ϕ(t) depends holomorphically on t. Note that

ϕ(t) is the limit of ϕn(t) with respect to ‖ · ‖k+α, where ϕn(t) is obtained by iteration:

ϕ1(t) := ϕ1t, ϕn(t) := ϕ1t+K(ϕn−1(t)).

It’s clear that ϕn(t) are holomorphic in t for |t| < ε by induction. On the other hand, the

convergence ϕn(t) → ϕ(t) is uniform in t for |t| < ε, since the following estimate

‖ϕn+1(t)− ϕn(t)‖k+α = ‖K(ϕn(t))−K(ϕn−1(t))‖k+α

≤
1

2
‖ϕn(t)− ϕn−1(t)‖k+α

holds for all |t| < ε, from which one can easily deduce that the convergence

‖ϕn(t)− ϕm(t)‖k+α → 0 as n,m→ ∞

is uniform in t. Thus the limit ϕ(t) is holomorphic in t.

Next we prove that the above solution ϕ(t) is indeed a solution of Maurer-Cartan equation.

Proposition 4.3 Given any ϕ1 ∈ A0,1(X,T 1,0X) with d(ϕ1yΩ) = 0. Suppose

ϕ(t) =
∑

i≥1

ϕit
i where ϕi ∈ A0,1(X,T 1,0X) (4.12)

is the holomorphic solution to the integral equation (4.8) guaranteed by Proposition 4.2, then

ϕ(t) satisfies the Maurer-Cartan equation

∂ϕ =
1

2
[ϕ, ϕ]. (4.13)

Proof We only need to check that the solution ϕ(t) =
∑
k≥1

ϕkt
k to (4.8) satisfies ∂ϕ1 = 0

and

∂ϕk =
∑

i+j=k
i,j≥1

1

2
[ϕi, ϕj ] (4.14)

for k ≥ 2.

First, note that ∂ϕ1 = 0 follows directly from ∂(ϕ1yΩ) = 0 and Lemma 4.2. Now, we

assume (4.14) holds for k ≤ l − 1. In order to complete the induction, we need to show that

(4.14) holds for k = l.

Since ϕ(t) =
∑
k≥1

ϕkt
k satisfies (4.8), we have ϕkyΩ is ∂-exact for k ≥ 2, and

ϕlyΩ = ∂(∂∂)∗G∂∂

( ∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ

)
. (4.15)

Then the Tian-Todorov Lemma 4.3 shows
∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ ∈ Im(∂). (4.16)
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Moreover, we have

∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ ∈ Ker(∂). (4.17)

Indeed, by inductive hypothesis

∂
( ∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ

)
=

( ∑

i+j=l
i,j≥1

1

2
∂[ϕi, ϕj ]

)
yΩ

=
( ∑

i+j=l
i,j≥1

[∂ϕi, ϕj ]
)
yΩ

=
1

2

∑

i+j+k=l
i,j,k≥1

[[ϕi, ϕj ], ϕk]yΩ = 0, (4.18)

where the last “ = ” is given by Jacobi identity for the bracket [·, ·].

Therefore, by ∂∂-lemma,

∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ ∈ Im(∂∂). (4.19)

Then, applying the operator ∂ to both sides of (4.15), and by using Hodge theory for the

Lapalacian operator �∂∂ = (∂∂)(∂∂)∗ + (∂∂)∗(∂∂), we obtain

∂(ϕlyΩ) = (∂∂)(∂∂)∗G∂∂

( ∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ

)

= �∂∂G∂∂

( ∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ

)

=
∑

i+j=l
i,j≥1

1

2
[ϕi, ϕj ]yΩ, (4.20)

where the last equality follows from �∂∂G∂∂ = id−H∂∂ and H∂∂∂∂ = 0. The proof is complete.

In conclusion, we have proved the following theorem.

Theorem 4.2 Given any η ∈ H1(X,T 1,0X), we can choose ϕ1 ∈ η, such that d(ϕ1yΩ) = 0.

Furthermore, there is ε > 0, such that for |t| < ε, there is a unique ϕ(t) ∈ A0,1(X,T 1,0X) which

is holomorphic in t and satisfies (ϕ(t)−ϕ1t)yΩ = 1
2∂(∂∂)

∗G∂∂([ϕ(t), ϕ(t)]yΩ) and the following

(1) ∂ϕ(t) = 1
2 [ϕ(t), ϕ(t)];

(2) (ϕ(t) − ϕ1t)yΩ is ∂-exact and ∂(ϕ(t)yΩ) = 0.

Clearly, Theorem 4.2 implies the unobstructedness Theorem 4.1.
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