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Abstract In this paper, the authors introduce a new definition of ∞-tilting (resp. cotilt-
ing) subcategories with infinite projective dimensions (resp. injective dimensions) in an
extriangulated category. They give a Bazzoni characterization of ∞-tilting (resp. cotilting)
subcategories. Also, they obtain a partial Auslander-Reiten correspondence between ∞-
tilting (resp. cotilting) subcategories and coresolving (resp. resolving) subcategories with
an E-projective generator (resp. E-injective cogenerator) in an extriangulated category.
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1 Introduction

The notion of extriangulated categories was introduced by Nakaoka and Palu in [6] as

a simultaneous generalization of exact categories and triangulated categories, see also [3, 8,

10]. Exact categories and extension closed subcategories of an extriangulated category are

extriangulated categories, while there exist some other examples of extriangulated categories

which are neither exact nor triangulated (see [1, 9–10]).

In [10], Zhu and Zhuang introduced tilting subcategories in an extriangulated category and

studied their properties. This enables us to treat the tilting theory and its generalizations

appeared before in a uniform way. More precisely, they obtained Bazzoni’s characterization of

tilting (resp. cotilting) subcategories and the Auslander-Reiten correspondence between tilting

(resp. cotilting) subcategories and coresolving covariantly (resp. resolving contravariantly)

finite subcatgories in the extriangulated category.

Motivated by this idea, we introduce ∞-tilting (resp. cotilting) subcategories with infinite

projective dimensions (resp. injective dimensions) in an extriangulated category to generalized

some results about tilting (resp. cotilting) subcategory in [10]. More precisely, we also obtain

Bazzoni’s characterization and the Auslander-Reiten correspondence between ∞-tilting (resp.

cotilting) subcategories and coresolving (resp. resolving) subcategories with an E-projective

generator (resp. E-injective cogenerator).
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The paper is constructed as follows. In Section 2, we recall the definition of an extrian-

gulated category and outline some basic properties that will be used later. In Section 3, we

define ∞-tilting (resp. cotilting) subcategories in an extriangulated category, obtain Bazzoni’s

characterization and get an one-to-one correspondence between ∞-tilting (resp. cotilting) sub-

categories and coresolving (resp. resolving) subcatgories with an E-projective generator (resp.

E-injective cognerator) which are closed under direct summands and satisfy some conditions.

This bijection is the Auslander-Reiten correspondence established in [5] when the extriangulated

category is the module category of finite generated left modules over an Artin algebra.

2 Preliminaries

Throughout the article, C denotes an additive category. All subcategories considered are full

additive subcategories closed under isomorphisms. We denote by C (A,B) the set of morphisms

from A to B in C . If f ∈ C (A,B), g ∈ C (B,C), we denote composition of f and g by gf . We

recall the definition and some basic properties of extriangulated categories from [6, 10].

Suppose that C is equipped with a biadditive functor E : C op × C → Ab, where Ab is the

category of abelian groups. For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called

an E-extension. Zero element δ ∈ E(C,A) is called the spilt E-extension.

For any δ ∈ E(C,A) and δ′ ∈ E(C′, A′), since C and E are additive, we can define the

E-extension

δ ⊕ δ′ ∈ E(C ⊕ C′, A⊕A′).

Since E is a bifunctor, for any a ∈ C (A,A′) and c ∈ C (C′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′), E(c, A)(δ) ∈ E(C′, A).

We abbreviate E(C, a)(δ) and E(c, A)(δ) to a∗δ and c∗δ, respectively.

Definition 2.1 (see [6, Definition 2.3]) A morphism from an E-extension δ ∈ E(C,A) to

another E-extension δ′ ∈ E(C′, A′) is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C′)

satisfying a∗δ = c∗δ′.

We simply denote it as (a, c) : δ → δ′.

Let A,C ∈ C be any pair of objects. Two sequences of morphisms A
x

−→ B
y

−→ C and

A
x′

−→ B′
y′

−→ C in C are said to be equivalent if there exists an isomorphism b ∈ C (B,B′)

which makes the following diagram commutative.

A
x

// B
y

//

b∼=
��

C

A
x′

// B′
y′

// C

We denote the equivalence class of A
x

−→ B
y

−→ C by [A
x

−→ B
y

−→ C].

For any A,C ∈ C , we denote as 0 = [A
[10]−→ A⊕ C

[0 1]
−→ C].

Definition 2.2 (see [6, Definition 2.9]) Let s be a correspondence which associates an

equivalence class s(δ) = [A
x

−→ B
y

−→ C] to any E-extension δ ∈ E(C,A). This s is called a

realization of E if it satisfies the following condition.
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Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any two E-extension with s(δ) = [A
x

−→ B
y

−→ C] and

s(δ′) = [A′ x′

−→ B′
y′

−→ C′]. Then, for any morphism (a, c) : δ → δ′, there exists a morphism

b ∈ C (B,B′) which makes the following diagram commutative.

A
x

//

a

��

B
y

//

b

��

C

c

��

A
x′

// B′
y′

// C′

In this case, we say the sequence A
x

−→ B
y

−→ C realizes δ.

Remark that this condition does not depend on the choices of the representatives of the

equivalence classes. In the above situation, we say the triplet (a, b, c) realizes (a, c).

Definition 2.3 (see [6, Definition 2.10]) Let C , E be as above. A realization of E is said

to be additive, if it satisfies the following conditions.

(1) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0;

(2) for any pair of E-extension δ ∈ E(C,A) and δ′ ∈ E(C′, A′), s(δ ⊕ δ′) = s(δ)⊕ s(δ′).

Definition 2.4 (see [6, Definition 2.12]) We call the triplet (C ,E, s) an externally trian-

gulated category, or for short, extriangulated category if it satisfies the following conditions:

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, realized as s(δ) =

[A
x

−→ B
y

−→ C] and s(δ′) = [A′ x′

−→ B′
y′

−→ C′]. For any commutative square in C ,

A
x

//

a

��

B
y

//

b

��

C

A′ x′

// B′
y′

// C′

there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).

(ET3)op Dual of (ET3).

(ET4) Let (A, δ,D) and (B, δ′, F ) be two E-extensions realized by A
f

−→ B
f ′

−→ D and

B
g

−→ C
g′

−→ F , respectively. Then there exists an object E ∈ C , a commutative diagram

A
f

// B
f ′

//

g

��

D

d

��

A
h

// C
h′

//

g′

��

E

e

��

F F

in C and an E-extension δ′′ ∈ C (E,A) realized by A
h

−→ C
h′

−→ E, which satisfy the following

compatibilities:

(i) D
d

−→ E
e

−→ F realizes E(F, f ′)(δ′),

(ii) E(d,A)(δ′′) = δ,
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(iii) E(E, f)(δ′′) = E(e,B)(δ′).

(ET4)op Dual of (ET4).

For an extriangulated category C , we use the following notation (see [6, 10]).

• A sequence A
a

−→ B
b

−→ C is called conflation if it realizes some E-extension δ ∈ E(C,A),

in which case, the morphism a is called a inflation, the morphism b is called a deflation and we

call A
a

−→ B
b

−→ C
δ

99K a E-triangle and denote it by (C, δ, A).

• Let A
a

−→ B
b

−→ C
δ

99K be an E-triangle, A is called the CoCone of the deflation b:

B → C, and we denote it by CoCone(b); C is called the Cone of the inflation a: A → B, and

we denote it by Cone(a). Note that the CoCone of a deflation and the Cone of an inflation are

well-defined by [6, Remark 3.10].

Remark 2.1 Let C be an extriangulated category.

(1) (see [6, Remark 2.16]) Both inflations and deflations are closed under composition.

(2) A subcategory T of C is called extension-closed if for any E-triangle A
a

−→ B
b

−→ C
δ

99K

with A, C ∈ T , we have B ∈ T .

Definition 2.5 (see [6, Definition 3.23]) Let C be an extriangulated category. An object

I is called injective if for any E-triangle A
x

−→ B
y

−→ C
δ

99K and any morphism c ∈ C (A, I),

there exists a morphism b ∈ C (B, I), satisfying b ◦ x = c.

Projective objects are defined dually. The subcategory consisting of injective (resp. projec-

tive) objects in C is denoted by Inj(C )(resp.Proj(C )).

By [6, Proposition 3.24], an object E is injective if and only if it satisfies E(A,E) = 0 for

any A ∈ C . The dual property holds for projective objects in C .

Definition 2.6 A subcategory X ⊂ C is called coresolving if it contains Inj(C ), closed

under extensions and cones of inflations. Resolving subcategory can be defined dually.

Definition 2.7 (see [6, Definition 3.25]) Let (C ,E, s) be an extriangulated category. If for

any object A ∈ C , there exists an E-triangle A → I → A1
δ

99K, with I ∈ Inj(C ), then we say

the extriangulated category (C ,E, s) has enough injectives. Dually, if for any object C ∈ C ,

there exists an E-triangle C1 → P → C
σ

99K, with P ∈ Proj(C ), then we say the extriangulated

category (C ,E, s) has enough projectives.

Liu and Nakaoka (see [4, 5.1–5.2]) defined the higher extension groups in an extriangulated

category having enough projectives and injectives. They showed the following result.

Lemma 2.1 (see [4, Proposition 5.2]) Let A
f

−→ B
g

−→ C
δ

99K be an E-triangle. For any
object X ∈ C , there are long exact sequences

· · · → E
i(X,A)

f∗
−→ E

i(X,B)
g∗
−→ E

i(X,C) → E
i+1(X,A)

f∗
−→ E

i+1(X,B)
g∗
−→ E

i+1(X,C) → · · ·

· · · → E
i(C,X)

f∗

−→ E
i(B,X)

g∗

−→ E
i(A,X) → E

i+1(C,X)
f∗

−→ E
i+1(B,X)

g∗

−→ E
i+1(C,X) → · · ·

In particularly, there exist long exact sequences

C (X,A)
C (X,f)
−→ C (X,B)

C (X,g)
−→ C (X,C)

(δ♯)X
−→ E(X,A)

f∗
−→ E(X,B)

g∗
−→ E(X,C) → · · ·

C (C,X)
C (g,X)
−→ C (B,X)

C (f,X)
−→ C (A,X)

(δ♯)X
−→ E(C,X)

g∗

−→ E(B,X)
f∗

−→ E(A,X) → · · ·

For a subcategory X ⊆ C , we define
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X ⊥ = {Y ∈ C | Ei(X,Y ) = 0, ∀i ≥ 1, X ∈ X }

and
⊥X = {Y ∈ C | Ei(Y,X) = 0, ∀i ≥ 1, X ∈ X }.

Definition 2.8 A subcategory X ⊆ C is called self-orthogonal provided that

X ⊆ X ⊥.

Definition 2.9 Let W be a class of objects in C . An E-triangle A→ B → C
δ

99K is called

to be C (W ,−)-exact (resp. C (−,W)-exact) if for any W ∈ W, the induced sequence of abelian

group C (W,A) → C (W,B) → C (W,C) → 0 (resp. C (C,W ) → C (B,W ) → C (A,W ) → 0) is

exact in Ab.

Definition 2.10 (see [10, lemma 2]) An E-triangle sequence in C is defined as a sequence

· · · → Xn+1
dn+1

−→ Xn
dn−→ Xn−1 → · · ·

such that for any n, there are E-triangles Kn+1
gn
−→ Xn

fn
−→ Kn

δn
99K and the differential

dn = gn−1fn, where gn is an inflation and fn is a deflation.

3 ∞-Tilting (resp. Cotilting) Subcategories

In this section, we begin with the definitions of ∞-tilting (resp. cotilting) subcategories in

an extriangulated category C with enough projectives and injectives. Then we formulated the

Bazzoni characterization for ∞-tilting (resp. cotilting) subcategories.

For a subcategory T of C , denote by Pres∞(T )(resp.Copres∞(T )) the subcategory of all

objects A ∈ C such that there is an infinite E-triangle sequence in C ,

· · · → T2
d2−→ T1

d1−→ T0
d0−→ A (resp. A

d0−→ T0
d1−→ T1

d2−→ T2 → · · · )

with Ti ∈ T for i ≥ 0.

If moreover A ∈ T ⊥ and CoCone(di) ∈ T ⊥ (resp. A ∈ ⊥T and Cone(di) ∈ ⊥T ), the

subcategory of all objects A ∈ C is denoted by T X (resp. XT ).

Let X and Y be two subcategories of C . We call a subcategory X an E-projective generator

(resp. E-injective cogenerator) of Y if X ⊆ Y , E(X,Y ) = 0 for any X ∈ X , Y ∈ Y and for

any object Y ∈ Y , there is an E-triangle

Y1 → X → Y
δ

99K (resp. Y → X → Y1
δ

99K)

in C with X ∈ X and Y ∈ Y .

Definition 3.1 Let T be a subcategory of an extriangulated category C closed under direct

summands. T is called an ∞-tilting subcategory if the following conditions are satisfied:

(1) T is an E-projective generator for T X ;

(2) Inj(C ) ⊆ T X .

Denote addT by the closure of T under finite direct sums and summands. We have that an

object T ∈ C is called an ∞-tilting object if addT is an ∞-tilting subcategory.

Definition 3.2 Let W be a subcategory of an extriangulated category C closed under direct

summands. T is called an ∞-cotilting subcategory if the following conditions are satisfied:

(1) W is an E-injective cogenerator for XW ;

(2) Proj(C ) ⊆ XW .

An object W ∈ C is called an ∞-tilting object if addW is an ∞-cotilting subcategory.
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Example 3.1 Let R be an Artin algebra, let modR be the category of finitely generated

left R-modules, and let T ∈ mod R be a Wakamatsu tilting (resp. Wakamatsu cotilting) module

(see [5]). Then addT is an ∞-tilting (resp. ∞-cotilting) subcategory in our sense. Actually, by

[5, Proposition 2.1], we can show that a finitely generated R-module T is a Wakamatsu tilting

module if and only if T is an ∞-tilting object in our sense.

Lemma 3.1 Let T be a class of objects in C .

(1) Consider the following commutative diagram of E-triangles.

A
x

//

a
��

B
y

//

b
��

C
δ

//___

A
′ x

′

// B
′ y

′

// C
a∗δ

//___

If the first row is C (T ,−)-exact (resp. C (−,T )-exact), then so is the second row.

(2) Consider the following commutative diagram of E-triangles.

A
x

// B
y

//

b

��

C

c

��

c∗δ
//___

A
x′

// B′
y′

// C′ δ
//___

If the second row is C (T ,−)-exact (resp. C (−,T )-exact), then so is the first row.

Proof We only prove (1), the proof of (2) is dually. Let T ∈ T . We have the following

commutative diagram in Ab.

C (T,B)
C (T,y)

//

C (T,b)

��

C (T,C) // 0

C (T,B′)
C (T,y′)

// C (T,C)

Hence C (T, y′) is epic and the E-triangle a∗δ is C (T ,−)-exact.

When the E-triangle δ is C (−,T )-exact, the E-triangle a∗δ is C (−,T )-exact following from

[1, Lemma 3.1].

The following proposition indicates the subcategory Pres∞(C ) is closed under extensions

and cones of inflations in an E-triangle.

A subcategory T (resp. W ) is said to be ∞-quasi-projective (resp. ∞-quasi-injective) if

any infinite E-triangle sequence · · · → T2 → T1 → T0 → M (resp. A→ T 0 → T 1 → T 2 → · · · )

with Ti ∈ T (resp. T i ∈ W ) for i ≥ 0 is C (T ,−)-exact (resp. C (−,W )-exact).

Proposition 3.1 Assume that T is a self-orthogonal and ∞-quasi-projective subcategory of

an extriangulated category C . Let A→ B → C
δ

99K be an E-triangle with A ∈ Pres∞(T ). Then

the E-triangle (C, δ, A) is C (T ,−)-exact and C ∈ Pres∞(T ) if and only if B ∈ Pres∞(T ).

Proof (⇒) By the assumption, there exist two E-triangles KA → TA
f

−→ A
δA
99K with

KA ∈ Pres∞(T ), TA ∈ T , and KC → TC → C
δC
99K with KC ∈ Pres∞(T ), TC ∈ T . Since
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T is an ∞-quasi-projective subcategory, both E-triangles are C (T ,−)-exact. By [6, Corollary

3.12], for any object T ∈ T , we have the following exact sequence in Ab,

C (T, TA)
C (T,f)
−→ C(T,A)

(δA)♯
−→ E(T,KA) → E(T, TA).

Hence E(T,KA) = 0. By [2, Lemma 3.4], we have the following commutative diagram,

KA
//

��

KB
//

��

KC

��

δ′
//___

TA
(10)

//

f

��

TA ⊕ TC
(0 1)

//

��

TC

��

0
//___

A //

��
�

�

�

B //

��
�

�

�

C

��
�

�

�

δ
//___

where all rows and columns are E-triangles. So we get an E-triangle KB → TA ⊕ TB → B 99K

with TA ⊕ TB ∈ T . Since E(T,KA) = 0, the E-triangle (KC , δ
′,KA) in the first row is

C (T ,−)-exact. Repeating the same method to the E-triangle (KC , δ
′,KA), and go on, we get

B ∈ Pres∞(T ).

(⇐) Since B ∈ Pres∞(T ), there exists an E-triangle KB → TB → B
δB
99K with TB ∈ T and

KB ∈ Pres∞(T ). Since T is an ∞-quasi-projective subcategory, the E-triangle (B, δB ,KB) is

C (T ,−)-exact. Using (ET4), we have the following commutative diagram,

KB

��

KB

��

D //

m

��

TB //

n

��

C
δ′

//___

A
x

//

x∗δB

��
�

�

�

B
y

//

δB

��
�

�

�

C
δ

//___

where all rows and columns are E-triangles. By Lemma 3.1, the E-triangle (A, x∗δB,KB) is

C (T ,−)-exact. So D ∈ Pres∞(T ) by the argument in (⇒). Hence C ∈ Pres∞(T ). Since

T is an ∞-quasi-projective subcategory, the E-triangle (C, δ′, D) is C (T ,−)-exact. Hence the

E-triangle (C, δ, A) is C (T ,−)-exact also by Lemma 3.1.

Dually, we have following proposition.

Proposition 3.2 Let W be an ∞-cotilting subcategory and A → B → C
δ

99K be an E-

triangle with A ∈ Copres∞(W ). Then δ is C (−,W )-exact and C ∈ Copres∞(W ) if and only if

B ∈ Copres∞(W ).

Now, we prove the Bazzoni characterization of ∞-tilting (cotilting) categories in an extri-

angulated category.
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Theorem 3.1 Let T be a subcategory of C closed under direct summands and T ⊥ ⊆

Pres∞(T ). Then T is an ∞-tilting subcategory which is ∞-quasi-projective if and only if

Pres∞(T ) = T ⊥.

Proof (⇐) Let (†) · · · → T2
d2−→ T1

d1−→ T0
d0−→ M be any infinite E-triangle sequence

with Ti ∈ T , i ≥ 0. Then there exist E-triangles

Mi+1 → Ti →Mi 99K

with Mi+1 = CoCone(di) for i ≥ 0 and M0 = M by Definition 2.10. So Mi ∈ Pres∞(T ) for

any i ≥ 0. Since Pres∞(T ) = T ⊥ , E(T,Mi) = 0 for any T ∈ T and i ≥ 0. Hence the

infinite E-triangle sequence (†) is C (T ,−)-exact and T is an ∞-quasi-projective subcategory.

Since Inj(C ) ⊆ T ⊥ = Pres∞(T ), Inj(C ) ⊆ T X . Moreover T ⊥ = Pres∞(T ) implies T is

self-orthogonal. So T is an E-projective generator of T X . Hence T is an∞-tilting subcategory

by Definition 3.1.

(⇒) Let M ∈ Pres∞(T ), then there exists an E-triangle M → E → M1
δM
99K with E an

injective object. Since T is an∞-tilting subcategory, E ∈ T X by Definition 3.1. So there exists

an E-triangleKE → TE → E
δE
99K with TE ∈ T and KE ∈ T ⊥, which is clearly C (T ,−)-exact.

Using (ET4), we have the following commutative diagram,

KE

��

KE

��

D //

m

��

TE //

n

��

M1
δD

//___

M
x

//

x∗δB

��
�

�

�

E
y

//

δE

��
�

�

�

M1
δM

//___

where all rows and columns are E-triangles and δM = m∗δD. By the assumption that T ⊥ ⊆

Pres∞(T ), we get KE ∈ Pres∞(T ). So D ∈ Pres∞(T ) by Proposition 3.1. Thus M1 ∈

Pres∞(T ). Since T is ∞-quasi-projective, the E-triangle (M1, δM , D) is C (T ,−)-exact. By

Lemma 3.1, the E-triangle (M1, δM ,M) is also C (T ,−)-exact. By [4, Proposition 5.2], there

exists the following exact sequence in Ab:

C (T,E) → C (T,M1)
(δM )♯
−→ E(T,M) → E(T,E) for any T ∈ T .

So E(T,M) = 0. Repeating the same process to M1, we get E(T,M1) = 0. Since Ei+1(T,M) ∼=

E
i(T,M1) for any i ≥ 1, we get M ∈ T ⊥. Therefore Pres∞(T ) ⊆ T ⊥ and Pres∞(T ) = T ⊥.

Dually, we have the following theorem.

Theorem 3.2 Let W be a subcategory of C closed under direct summands and ⊥W ⊆

Copres∞(W ). Then W is an ∞-cotilting subcategory which is ∞-quasi-injective if and only if

Copres∞(W ) = ⊥W .

The symbol X̂n (resp. X̌n) denotes the subcategory of objects A ∈ C such that there exists

an E-triangle sequence

Xn → Xn−1 → · · · → X0 → A (resp. A→ X0 → X1 → · · · → Xn)

with each Xi (resp. X
i) is contained in X .
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In [10, Theorem 2], the authors obtained the Auslander-Reiten correspondence for tilting

subcategories in an extriangulated category. In that setting, X is a coresolving subcategory

with an E-projective generator such that C = X̌n and the latter condition is actually essential

to prove the Auslander-Reiten correspondence. In the tilting case, the equality C = Ťn follows

from the fact that T has finite projective dimension, which fails in general for the case of the

projective dimension is infinite, see [7, Example 3.1] in modR, where R is an artin algebra.

Conscious of this central difference between the two contexts, we can only prove a partial

Auslander-Reiten correspondence for ∞-tilting subcategories in an extriangulated category.

The following lemma ensures that there exists an injective map between the class of∞-tilting

subcategories and coresolving subcategories with an E-projective generator.

Lemma 3.2 Let T1 and T2 be two subcategories of C , which are both closed under direct

summands. If both of them are E-projective generators of a subcategory X , then T1 = T2.

Proof Since each Ti is an E-projective generator of X Ti ∈ X for i = 1, 2. So there

exist two E-triangles X1 → T2 → T1
δ1
99K and X2 → T1 → T2

δ2
99K with Ti ∈ Ti and Xi ∈ X

for i = 1, 2. Clearly E(Ti, Xi) = 0. As X is closed under direct summands, T1 ⊆ T2 and

T2 ⊆ T1. Hence T1 = T2.

Proposition 3.3 Assume that T is a subcategory of C closed under direct summands. Then

φ : T → T X is an injective map between the class of ∞-tilting subcategories and coresolving

subcategories with an E-projective generator.

Proof Assume that T is an ∞-tilting subcategory. Then Inj(C ) ⊆ T X and T is an

E-projective generator of T X by Definition 3.1. Moreover, by Proposition 3.1, T X is closed

under extensions and Cones of inflations. Hence T X is a coresolving subcategory. By Lemma

3.2, φ is an injective map.

Proposition 3.4 Let C be an extriangulated category with enough projectives and enough

injectives. Then ψ: X → ⊥X ∩ X is a surjective map between the class of coresolving

subcategories X with an E-projective generator and the class of ∞-tilting subcategories.

Proof Let T be an E-projective generator of X . Then T ⊆ ⊥X ∩ X . Assume that

A ∈ ⊥X ∩ X . Then there exists an E-triangle B → T0 → A
δ

99K with T0 ∈ T and B ∈ X .

Since A ∈ ⊥X , E(A,B) = 0. So A ∈ T . Hence T = ⊥X ∩ X .

Since X is a coresolving subcategory, Inj(C ) ⊆ T X . Clearly E
i(T ,T ) = 0 for any i ≥ 1.

So T ⊆ T ⊥ is an E-projective generator of T X and thus T is an ∞-tilting subcategory. By

Proposition 3.3, ψ is a surjective map.

Since T is an E-projective generator of X , X ⊆ T ⊥. Thus X ⊆ T X . By Proposition 3.3,

we get X ⊆ (φ ◦ ψ)(X ).

We can collect the results in Propositions 3.3–3.4 and obtain the following partial Auslander-

Reiten correspondence for ∞-tilting subcategories in an extriangulated category.

Theorem 3.3 Let C be an extriangulated category with enough projectives and enough

injectives. Then

(1) there is an inverse bijection between classes of ∞-tilting subcategories T and core-

solving subcategories X with an E-projective generator, maximal among those with the same
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E-projective generator, and the assignments are φ: T 7→ T X and ψ: X 7→ ⊥X ∩ X .

(2) There is an inverse bijection between classes of ∞-cotilting subcategories W and resolving

subcategories Y with an E-injective cogenerator, maximal among those with the same E-injective

generator, and the assignments are φ: W 7→ XW and ψ: Y 7→ Y ⊥ ∩ Y .

Proof We only prove (1) and the proof of (2) is dually.

Let X be any coresolving subcategory with an E-projective generator T , then X ⊆ (φ ◦

ψ)(X ) = T X by Proposition 3.4. Thus, for any ∞-tilting subcategories T , φ(T ) is maximal

among those coresolving subcategories with the same E-projective generator T .

Conversely, if X is a subcategory maximal among those with the previous properties, then

T = ⊥X ∩ X is an E-projective generator of X and ψ(X ) = T is an ∞-tilting subcategory

by Proposition 3.3. So T is an E-projective generator of T X . Hence T X ⊆ X and X =

(φ ◦ ψ)(X ).
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