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1 Introduction

Let M1 and M2 be two compact connected orientable 3-manifolds with boundary, Fi ⊂ ∂Mi

be a compact connected surface, i = 1, 2, and h : F1 → F2 be a homeomorphism. We call the

3-manifold M = M1 ∪F M2, obtained by gluing M1 and M2 together via h, an amalgamated

3-manifold of M1 and M2 along F , where F = F1 = F2 in M .

Clearly, if M1 and M2 are compression bodies and ∂+M1 = F = ∂+M2, then M1∪F M2 is a

Heegaard splitting for M . It is well known that any compact connected orientable 3-manifold

admits a Heegaard splitting, and any closed orientable 3-manifold can be obtained by Dehn

surgery on a link in S3. So Heegaard splittings and Dehn fillings can be viewed as typical ways

to construct 3-manifolds by means of amalgamations. The amalgamation of two 3-manifolds,

as well as the amalgamation of two Heegaard splittings, have been studied extensively in recent

30 years.

One of the interesting questions might be: Under what conditions, the amalgamated 3-

manifolds are ∂-irreducible?

Przytycki’s theorem (see [17]) (1983) on the incompressibility of one relator 3-manifolds can

be regarded as a first approach to the question. Jaco [10] then generalized Przytycki’s result

to the well-known Handle Addition Theorem in 1984. Hence after, several generalizations on

adding 2-handles to 3-manifolds have been made, see, for example, [2, 13, 18], etc.
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If M admits an amalgamation H1∪F H2 along a connected surface F with boundary, where

both H1 and H2 are handlebodies, then H1∪F H2 is called an H ′-splitting for M . It is shown in

[3] that each compact connected orientable 3-manifold with boundary admits an H ′-splitting.

In [14], a necessary and sufficient condition for an amalgamation of two handlebodies to be a

handlebody is given.

The curve complex on a surface was first defined by Harvey [5] in late 1970s, and the concept

of the Heegaard distances of Heegaard splittings was introduced to study 3-manifolds by Hempel

[8] in 2001. Since then, much significant progress on the study on amalgamated 3-manifolds

(as well as on amalgamated Heegaard splittings) via the distance has been made, refer to, for

example, [11, 16, 19], etc.

For an amalgamation M1 ∪F M2 of 3-manifolds M1 and M2 along a common boundary

component F of M1 and M2, Li [15] introduced a kind of distance d(U1,U2) between some two

subsets U1 and U2 of vertices in C(F ), and proved that there is a number K depending on M1

and M2, such that if d(U1,U2) > K, then M is irreducible and ∂-irreducible.

In this paper, we give some sufficient conditions for an amalgamated 3-manifold along a

compact connected surface with boundary to be ∂-irreducible and irreducible in terms of dis-

tances between some kinds of vertex subsets of the curve complex and the arc complex, see

Theorems 3.1–3.2 in Section 3.

The paper is organized as follows. In Section 2, we briefly introduce some definitions and

preliminaries. The statements of the main results and their proofs are given in Section 3.

2 Preliminaries

Throughout this paper, all 3-manifolds and surfaces are compact and orientable. For a sub-

manifold X of Y , we denote the interior of X by int(X), the closure of X by X, the number

of connected components of X by |X |, the closed regular neighborhood of X by η(X). The

concepts and terminologies which are not defined in the paper are all standard, referring to, for

example, [6–9].

Let F be a connected surface with boundary. A simple arc γ properly embedded in F is

inessential in F if γ cuts off a disk from F ; otherwise, γ is essential in F . A simple close curve

(s.c.c. for short) α in F is inessential in F if α bounds a disk in F ; otherwise, α is essential in

F .

Let M be a connected 3-manifold. A disk D properly embedded in M is inessential in M

if D cuts off a 3-ball from M ; otherwise, D is essential in M . A 2-Sphere S embedded in M is

inessential in M if S bounds a 3-ball in M ; otherwise, S is essential in M . M is reducible if M

contains an essential 2-sphere. M is irreducible if M is not reducible.

Let M be a 3-manifold, F be a surface either in ∂M or properly embedded in M. If one of

the following conditions is satisfied:

(1) F is an inessential 2-sphere in M , or

(2) F is a disk in ∂M , or F is an inessential disk in M , or

(3) there is a disk D ⊂ M such that D ∩ F = ∂D and ∂D is essential in F ,
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we say F is compressible in M . In case (3), the disk D is called a compression disk of F in M . F

is incompressible if it is not compressible in M . We say M is ∂-reducible if ∂M is compressible

in M . Otherwise, M is ∂-irreducible.

Let M be a 3-manifold, and F be a connected surface either lying in ∂M or properly

embedded in M . Suppose that F is neither a disk nor a 2-sphere. It follows from Dehn Lemma

that F is incompressible in M if and only if the homomorphism π1(F ) → π1(M) induced by the

inclusion is injective. A 3-manifold is called a Haken manifold if it is irreducible and contains

a 2-sided incompressible surface.

Let M be a connected 3-manifold with boundary, F be a surface properly embedded in

M . If F cuts off a 3-manifold X which is homeomorphic to F × I, we say that F is boundary

parallel in M . F is essential in M if F is incompressible and not boundary parallel in M .

Lemma 2.1 Let D be an essential disk in M , and ∆ be a disk in M such that ∆∩D = α

is an arc in ∂∆, ∆ ∩ ∂M = β is an arc in ∂∆, and α ∩ β = ∂α = ∂β, α ∪ β = ∂∆. α cuts D

into two sub-disks D′ and D′′. Set D1 = D′ ∪∆ and D2 = D′′ ∪∆. Then at least one of D1

and D2 is essential in M .

The operation in Lemma 2.1, from D to D1 and D2, is called a ∂-compression of D along

∆. Refer to [6] for a proof of Lemma 2.1.

Definition 2.1 Let Mi be a connected 3-manifold with boundary, Si be a boundary com-

ponent of Mi, Fi ⊂ Si be a connected sub-surface of Si, i = 1, 2, and h : F1 → F2 be a

homeomorphism. The 3-manifold M = M1∪hM2 obtained by gluing M1 and M2 via h is called

an amalgamation of M1 and M2. Denote by F the surface F1 = F2 in M , and call F a splitting

surface of M . We usually denote M by M1 ∪F M2, and call M an amalgamated 3-manifold

along F .

In particular, when F is a disk, M1 ∪F M2 is called a boundary connected sum of M1

and M2, and is denoted by M1#∂M2; when both M1 and M2 are compression bodies, and

F = ∂+M1 = ∂+M2, M1∪F M2 is called a Heegaard splitting for M , and F is called a Heegaard

surface in M ; when both M1 and M2 are handlebodies, M1 ∪F M2 is called an H ′-splitting for

M , and F (possibly non-closed) is called an H ′-surface in M .

It is a well-known fact that any compact connected 3-manifold admits a Heegaard splitting,

and it is shown in [3] that any compact connected 3-manifold with boundary admits an H ′-

splitting.

Let V ∪S W be a Heegaard splitting for M . V ∪S W is reducible (weakly reducible, resp.)

if there are essential disks D1 ⊂ V and D2 ⊂ W such that ∂D1 = ∂D2 (∂D1 ∩ ∂D2 = ∅, resp.).

Otherwise, V ∪S W is irreducible (strongly irreducible, resp.).

It is a theorem of Haken (see Haken’s Lemma [4]) that any Heegaard splitting of a reducible

3-manifold is reducible, and a theorem of Casson-Gordon [2] that if V ∪SW is a weakly reducible

Heegaard splitting for M , then either V ∪S W is reducible, or M is Haken.

The following proposition is a well-known fact, refer to [12] for a proof.

Proposition 2.1 Let M = M1∪F M2 be an amalgamation of two 3-manifolds M1 and M2



164 B. Fang, F. C. Lei and L. Liang

along F . Suppose that F is incompressible in both M1 and M2.

(1) Then M is irreducible if and only if both M1 and M2 are irreducible.

(2) F is a closed surface. Then M is ∂-irreducible if and only if both M1 and M2 are

∂-irreducible.

Let M be a connected 3-manifold with boundary, S be a boundary component of M , and

L be a simple closed curve in S. If there exists an essential disk D in M with |L ∩ ∂D| = 1, L

is called a longitude of M , and (L, ∂D) is called a longitude-meridian pair of M .

Proposition 2.2 Let (L, ∂D) be a longitude-meridian pair on a boundary component S of

3-manifold M .

(1) If S is a torus, then M = T#M ′, where T is a solid torus with ∂T = S, and (L, ∂D) is

a longitude-meridian pair of T .

(2) If g(S) ≥ 2, there exists a separating disk E properly embedded in M such that E cuts

M into a solid torus T ′ with the longitude-meridian pair (L, ∂D) and a 3-manifold M ′′, and

M = T ′#∂M
′′.

Proof (1) S is a torus. Push L slightly to L′ in int(M) by isotopy such that |L′ ∩D| = 1.

Let N = η(S ∪ D ∪ L′) be a closed regular neighborhood of S ∪D ∪ L′ in M . ∂N = S ∪ S∗,

where S∗ is a 2-sphere which cuts M into N and a 3-manifold M∗. Denote by T (M ′, resp.)

the 3-manifold obtained by filling in a 3-ball to N (M∗, resp.) along the 2-sphere component

S∗. Then T is a solid torus with ∂T = S, (L, ∂D) is a longitude-meridian pair of T , and

M = T#M ′.

(2) g(S) ≥ 2. Let T ′ = η(D ∪ L) be a closed regular neighborhood of D ∪ L in M . Then

T ′ is a solid torus. Denote M − T ′ by M ′′. Then T ′ ∩M ′′ = E is a separating disk properly

embedded in M , (L, ∂D) is a longitude-meridian pair of T ′, and M = T ′#∂M
′′.

For an annulus A = S1 × I, J = S1 × 1

2
is called a core curve of A. In the following, we

collect some facts on an amalgamation of two 3-manifolds along an annulus.

Proposition 2.3 Let M = M1 ∪A T be an amalgamated 3-manifold of M1 and T along

an annulus A, where T is a solid torus, and the core curve of A is a longitude of T . Then

M ∼= M1.

Proof Note that when the core curve of A is a longitude of T , T
h
∼= A×I with h(A) = A×0,

the conclusion follows directly.

Let M1 and M2 be 3-manifolds with boundary. Suppose that M1 has a boundary component

S1 with a longitude-meridian pair (L, ∂D) ⊂ S1, and A1 is a regular neighborhood of L in S1.

Let A2 ⊂ ∂M2 be an annulus, and M = M1 ∪A M2 be an amalgamation of M1 and M2 via

a homeomorphism h : A1 → A2. If S1 is a torus, then by Proposition 2.2(1), M1 = T#M ′
1,

where T is a solid torus with ∂T = S1, and (L, ∂D) is a longitude-meridian pair of T , thus

M = M1 ∪A M2 = (M ′
1#T ) ∪A M2 = M ′

1#(T ∪A M2). By Proposition 2.3, T ∪A M2
∼= M2, so

M ∼= M ′
1#M2. In particular, if both M ′

1 and M2 are ∂-irreducible, it follows from Proposition
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2.1(2) that M is ∂-irreducible. If g(S1) ≥ 2, then by Proposition 2.2(2), M1 = T ′#∂M
′′
1 ,

where T ′ is a solid torus with the longitude-meridian pair (L, ∂D). Thus M = M1 ∪A M2 =

(M ′′
1 #∂T

′) ∪A M2 = M ′′
1 #∂(T

′ ∪A M2) ∼= M ′′
1 #∂M2. In particular, ∂M is compressible.

The following theorem is the well-known Jaco’s Handle Addition Theorem.

Theorem 2.1 (Handle Addition Theorem) Let M be an irreducible and ∂-reducible 3-

manifold, and J be a simple closed curve on ∂M . Suppose that ∂M − J is incompressible in

M . Let MJ be the 3-manifold obtained by attaching a 2-handle to M along J . Then either

(1) MJ is ∂-irreducible, or

(2) MJ is a 3-ball, where M is a solid torus, and J is a longitude for M .

Remark 2.1 Theorem 2.1 in case that M is a handlebody was first proved by Przytycki

[17] in 1983 by an algebraic approach, then it was generalized to the Handle Addition Theorem

by Jaco [10] in 1984. Some generalizations have been made hence later, see, for example, [2,

13, 18].

For a compact connected orientable surface S, we use g = g(S), b = b(S) to denote the

genus of S, the number of boundary components of S, respectively, and denote S by Sg,b. We

call S0,b a planar surface when b > 0, Sg,0 a closed surface of genus g, and simply denote it by

Sg. For a compact connected sub-surface F of Sk with b(F ) > 0, if each boundary component

of F is essential in S, then it is not hard to see that g(F ) ≤ k − 1 and b(F ) ≤ 2(k − g(F )).

Thus, an annulus is the only sub-surface on a torus.

The following two propositions are a direct consequence of Proposition 2.2 and Theorem 2.1

(see [12]).

Proposition 2.4 Let M1 and M2 be irreducible 3-manifolds, M = M1 ∪A M2 be an

amalgamation of M1 and M2 along an annulus A. Suppose ∂Mi − A is incompressible in Mi,

i = 1, 2. Then M is ∂-irreducible if and only if either the core curve J is not a longitude of Mi

for i = 1, 2, or J is a longitude for Mi and Mj has incompressible boundary for {i, j} = {1, 2}.

Proposition 2.5 Let M = M1 ∪A M2 be an amalgamation of irreducible 3-manifolds M1

and M2 along an annulus A. Then M is reducible if and only if the core curve J bounds a

disk in Mi and there exists an essential planar surface P in Mj whose boundary curves are all

parallel to J on ∂Mi for {i, j} = {1, 2}.

From now on, we only consider the amalgamated 3-manifold M = M1∪F M2 along F , where

F is a compact connected sub-surface of a boundary component Si of Mi, g(Si) ≥ 2, i = 1, 2,

and χ(F ) < 0 (i.e., F is neither a disk nor an annulus).

For an essential simple closed curve or arc γ on S = Sg,b, the isotopic class of γ is denoted

by γ̂. If γ is parallel to a component of ∂S, we say that γ is peripheral in S. Otherwise, γ is

non-peripheral in S.

Definition 2.2 (1) Let S = Sg,b. The curve complex of S, denoted by C(S), is the complex
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whose vertices are the isotopy classes of essential non-peripheral simple closed curves in S, and

k+1 pairwise distinct vertices determine a k-simplex if they are represented by pairwise disjoint

curves on S. For any two vertices α and β in C(S), an edge path (from α to β) is a sequence

α = α0, α1, · · · , αn = β of vertices in C(S), such that αi−1 and αi span a 1-simplex in C(S)

for 1 ≤ i ≤ n. n is called the length of the edge path. The distance of α and β is the smallest

integer n ≥ 0 such that there is an edge path from α to β of length n, and is denoted by d(α, β).

(2) For S = Sg,b with b ≥ 1, the arc complex A(S) is defined in a similar way : Vertices are

the isotopy classes of essential arcs in S. A collection of k+1 pairwise distinct vertices span a

k-simplex if they are represented by pairwise disjoint arcs on S. The distance in A(S) between

two vertices is the minimal possible number of edges in an edge path between them.

(3) For two vertex subsets V1, V2 ⊂ C(S) or V1, V2 ⊂ A(S), the distance of V1 and V2 is

defined to be

d(V1, V2) = min{d(α, β) | α ∈ V1, β ∈ V2}.

Remark 2.2 (1) Let W1 ∪S W2 be a Heegaard splitting, set

Vi = {α̂ ∈ C(S) | α bounds an essential disk in Wi}, i = 1, 2.

The D(S) = d(V1, V2) is called the distance of the Heegaard splitting W1 ∪S W2.

The curve complex C(S) of a closed surface S was first defined by Harvey [5] in late 1970s,

and the Heegaard distance D(S) was introduced by Hempel [8] in 2001. It is clear that V ∪S W

is reducible if and only if D(S) = 0, V ∪S W is weakly reducible if and only if D(S) ≤ 1.

(2) If F is an annulus or a pair of pants, C(F ) = ∅. If F is a torus, or a once-punctured torus,

or a fourth-punctured 2-sphere, C(F ) consists only vertices (there is no 1-simplex in C(F )).

Let M be a compact connected 3-manifold, S be a boundary component ofM with g(S) ≥ 2,

F is a compact connected sub-surface of S with ∂F 6= ∅ and χ(F ) < 0, and each component

of ∂F is essential in S. For an essential s.c.c J on S, we assume that J is in a position that J

intersects ∂F transversely and J ∩ ∂F is minimal among the curves in Ĵ .

Definition 2.3 Denote the following vertex subset of A(F ),

{γ̂ ∈ A(F ) | γ is a component of F ∩ ∂D, where D is an essential disk in M}

by AD(F ;M), and following vertex subset of C(F ),

{Ĵ ∈ C(F ) | ∃ an essential planar surface P ⊂ M,∂P ∩ ∂F = ∅,

and J is a component of (∂P ) ∩ F}

by CP (F ;M).

Note that for a Ĵ ∈ CP (F ;M), J is a boundary component of an essential planar surface P

in M with ∂P ∩ ∂F = ∅ and J ⊂ F , P may have some other boundary components lying in

∂M − F ; CD(F ;M) denotes the collection of vertices Ĵ in C(F ) with J ⊂ F and J bounding

an essential disk in M .
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3 Main Results

The following theorem gives a sufficient condition for an amalgamated 3-manifold along a

surface F with non-empty boundary to be ∂-irreducible.

Theorem 3.1 Let M = M1 ∪F M2 be an amalgamation of 3-manifolds M1 and M2 along

F , where F is lying in a component Si of ∂Mi with g(Si) ≥ 2, i = 1, 2, and F is neither an ith-

punctured 2-sphere (i ≤ 4), nor a once-punctured torus. Suppose that the following conditions

are satisfied :

(i) ∂Mi − F is incompressible in Mi, i = 1, 2;

(ii) d(AD(F ;M1),AD(F ;M2)) > 0;

(iii) d(CD(F ;Mi), CP (F ;Mj)) > 1 for {i, j} = {1, 2}.

Then M is ∂-irreducible.

Proof Assume that M is ∂-reducible. Let D be a compression disk of ∂M in M , such that

D is in general position with F . If D ∩ F = ∅, then D is a properly embedded disk in Mi with

∂D ∈ ∂Mi − F , i = 1 or 2, then D is a compression disk of ∂Mi − F in Mi, contradicting to

the assumption (i). Therefore, D ∩ F 6= ∅. D can be viewed as a 2n-polygon whose edges lie

in ∂M1 − F and ∂M2 − F alternatively. Set c(D) = (2n, |D ∩ F |), call c(D) the complexity of

D. We compare the complexities in lexicographical order which is (a, b) < (c, d) if and only if

a < c or a = c and b < d. Choose a compression disk of ∂M , still denoted by D, such that D is

in general position with F , and D has the least complexity among all such compression disks

of ∂M up to isotopy.

Claim 1 Each arc component of D ∩ F is essential on F .

Otherwise, there exists an arc component α of D∩F , so α cuts out of a disk E from F and

int(E) contains no arc component ofD∩F . If int(E) contains circle components ofD∩F , choose

a circle component σ of D∩F such that σ is innermost in E, i.e., σ bounds a disk E′ in int(E)

with int(E′)∩D = ∅. σ bounds a disk D0 in int(D). Push the disk (D −D0)∪E′ slightly in M

by isotopy, we get a disk D∗ with ∂D∗ = ∂D, and |D∗∩F | < |D∩F | (therefore c(D∗) < c(D)),

see Figure 1 below, contradicting to the minimality of c(D). Thus int(E) ∩D = ∅.

Figure 1 D to D
∗

α cuts D into two sub-disks D1 and D2. Set D′ = D1 ∪ E, D′′ = D2 ∪ E. Then by

Lemma 2.1, at least one of D′ and D′′ is an essential disk of M , and after an isotopy around E,

max{|D′ ∩ F |, |D′′ ∩ F |} ≤ |D ∩ F | − 1, again contradicting to the minimality of c(D). Hence,

Claim 1 holds.

Claim 2 Each component of D∩ (∂Mi − F ) = ∂D∩ (∂Mi − F ) is essential on (∂Mi − F ),

i = 1, 2.
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Otherwise, there is an edge β of ∂D, which is a component of ∂D∩ (∂Mi − F ), such that ∂β

bounds an arc s in ∂F and s ∪ β bounds a disk E ⊂ (∂Mi − F ) on ∂M with int(E) ∩ ∂D = ∅.

Since E ⊂ ∂M , D ∩ E has no circle component. Thus int(E) ∩ D = ∅. Push D ∪ E slightly

by isotopy in M to get a properly embedded disk D′ in M , then D′ is isotopic to D in M , but

D′ is a (2n − 2)-polygon, again contradicting to the minimality of c(D). In fact, if ∂β is the

boundary components of an arc component γ of D ∩ F , then D′ ∩ F = (D ∩ F − {γ}) ∪ {γ′},

where γ′ is a circle component, see Figure 2(1) below; if the two arc components γ1 and γ2 of

D∩F are incident to the two points of ∂β, then γ1 and γ2 will merge to a single component γ′

of D′ ∩ F , D′ ∩ F = (D ∩ F − {γ1, γ2}) ∪ {γ′}, see Figure 2(2) below.

Figure 2 D to D
′

Claims 1 and 2 imply that ∂D intersects ∂F essentially. In the following, we divide it into

two cases to discuss.

Case 1 D ∩ F consists of arc components.

Set A = D ∩ F = {β1, · · · , βm}. Then A cuts D into m+ 1 disks ∆0,∆1, · · · ,∆m, each ∆i

is a polygon with even number of edges which is properly embedded in M1 or M2, 0 ≤ i ≤ m.

By Claims 1 and 2, ∂∆i ∩ ∂F has the smallest possible intersection number, 0 ≤ i ≤ m.

Claim 3 For each i, say ∆i ∈ Mj (j = 1 or 2), ∆i is an essential disk in Mj , 0 ≤ i ≤ m.

Otherwise, ∂∆i bounds a disk E in ∂Mj. A similar argument to the proof of Claim 1 implies

this can not happen.

Now let β be an arc component of D ∩ F which is outermost on D, i.e., β cuts out of a

sub-disk, say, ∆1 ⊂ M1, from D with int(∆1) ∩ F = ∅. Without loss of generality, we assume

that ∆2 is the polygon such that ∆1 and ∆2 have the edge β in common. Clearly, ∆2 ⊂ M2.

By Claim 3, both ∆1 and ∆2 are essential disks in M1 and M2, respectively. By a slight isotopy

of ∆1 to ∆′
1 in M1, ∂∆

′
1 ∩ ∂∆2 = ∅. This contradicts to the assumption (ii). So Case 1 can not

happen.

Case 2 D ∩F = C ∪A, where C (6= ∅) consists of all the circle components of D ∩F , and

A consists of all the arc components of D ∩ F (possibly, A = ∅).

Set P1 = D ∩M1, P2 = D ∩M2.

Claim 4 Pi is incompressible in Mi, i = 1, 2. In particular, each disk in Pi is essential in

Mi, i = 1, 2.
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Assume that it is not the case, say, P1 is inessential in M1. If some disk component Σ of

P1 is boundary parallel in M1, then ∂Σ bounds a disk E in ∂M1, and Σ ∪ E bounds a 3-ball

X in M1. We may push Σ to E crossing X and push further slightly in a neighborhood of X

by isotopy to get a new compression disk D∗ of ∂M in M with ∂D∗ = ∂D, but c(D∗) < c(D),

contradicting to the minimality of c(D). Thus, each disk component of P1 is essential in M1.

If P1 is compressible in M1, then there exists a compression disk Ω of P1 in M1. Ω is lying in

a non-disk component of P1. ∂Ω bounds a disk ∆∗ in D. Set D∗∗ = (D −∆∗) ∪ Ω. Then D∗∗

is a compression disk of ∂M in M with ∂D∗∗ = ∂D, and it is clear that c(D∗∗) < c(D), again

contradicting to the minimality of c(D). Thus P1 is incompressible in M1. This finishes the

proof of Claim 4.

A circle component γ in C is called nested if the interior of the disk bounded by γ in D

contains a non-empty subset of C; otherwise, it is the innermost.

Subcase 2.1 D ∩ F has at least a nested component.

Let γ ∈ C be a nested component such that the interior of the disk bounded by γ in D

contains no nested circle in C. Denote the disk bounded by γ in D by ∆, and the subset of

circles in C which lie in ∆ by C′. C′ 6= ∅, say C′ = {c1, · · · , ck}, each ci bounds a disk σi in D

with int(σi) ∩ F = ∅, 1 ≤ i ≤ k. Set Pγ = ∆−
k⋃

i=1

σi, say Pγ ⊂ M1, thus σi ⊂ M2, 1 ≤ i ≤ k.

Claim 5 Pγ is essential in M1.

Otherwise, by Claim 4, Pγ is incompressible in M1. So Pγ is boundary parallel in M1. Thus

Pγ is separating in M1 which cuts M1 into two pieces M ′
1 and M ′′

1 , say, M
′
1 = Pγ × I, and

Pγ = Pγ × 0, P ′
γ = ∂M ′

1
− Pγ . If P

′
γ ⊂ F , then we may push Pγ to P ′

γ by isotopy in M1, then

a little bit further in M2, to get a new compression disk D′ of ∂M in M with ∂D′ = ∂D, but

|D′ ∩ F | < |D ∩ F | (hence c(D′) < c(D)), contradicting to the minimality of c(D). Otherwise,

P ′
γ contains some components of ∂F . Note that P ′

γ is a planar surface homeomorphic to Pγ .

Let δ be a component of ∂F lying in P ′
γ , then δ is separating in P ′

γ and P ′
γ − δ has two planar

surface components Q and Q′. Let Q be the planar surface such that int(Q) contains no

boundary component of F and γ be not a boundary component of Q. Clearly, all the boundary

components of Q other than δ bound disks E1, · · · , El in M2. Set D′′ = Q
l⋃

j=1

Ej . It is clear

that δ is essential on ∂M . We perform an isotopy on D′′ by pushing int(D′′) to int(M), then

the disk Dδ after this isotopy is a compression disk of ∂M with |Dδ ∩ F | < |D ∩ F | (hence

c(Dδ) < c(D)), again contradicting to the minimality of c(D).

Thus, Pγ is essential in M1. By assumption (i), no component of Pγ is parallel to a compo-

nent of F on F . But the disks in M2 bounded by ∂Pγ can be moved in M2 to be disjoint from

∂Pγ by isotopy, contradicting to the assumption (iii).

Subcase 2.2 D∩F has no nested component. In the case, each c in C is the innermost in

D.

First consider the case of A = ∅. Say ∂D ⊂ ∂M1 − F . Then P = D ∩M1 is a connected

planar surface in M1 with one boundary component (= ∂D) lying in ∂M1−F and all the others

lying in F , and D ∩M2 is a non-empty set which consists of pairwise disjoint essential disks in

M2. If no boundary component of P is parallel to a boundary component of F on F , then P is
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essential in M1. This contradicts to the assumption (iii) and the conclusion holds in this case.

Now assume P is not essential in M1. By Claim 4, P is incompressible in M1. So P is

boundary parallel in M1. Denote P ∩ (∂M1−F ) by δ and P ∩F by δ1, δ2, · · · , δk. Then each δi

bounds an essential disk in M2. δi is not parallel to a component of F on F , for i = 1, 2, · · · , k.

Otherwise ∂M2 − F2 is compressible in M2. This contradicts to the assumption (i). Suppose

P is parallel to a subsurface P ′ of ∂M1 and ∂P ′ = {δ, δ1, δ2, · · · , δk}. Since {δ1, δ2, · · · , δk} lie

in F and δ lies in ∂M1 −F , there is at least one component of ∂F , say δ′, lying in P ′. Then δ′

cuts a planar surface from P ′ which contains δi1 , δi2 , · · · , δim . This implies that δ′ bounds an

essential disk in M2 and ∂M2 − F2 is compressible in M2. This contradicts to the assumption

(i). So P is essential in M1 and the conclusion holds in this case.

If A 6= ∅, for an outermost arc β ∈ A, β cuts out of a disk ∆′ from D without any

other component in A− {β} lying in ∆′. If ∆′ contains a component of C, all the components

δ1, · · · , δk of C lying in ∆′ are non-nested. So each δi bounds a disk σ′
i in D with int(σ′

i)∩F = ∅,

1 ≤ i ≤ k. Set P ′ = ∆′ −
k⋃

i=1

σ′
i. As before, each δi is essential in F , so we get a contradiction

to the assumption (iii). Thus ∆′ contains no component of C.

Let ∆′′ be the component of the surface obtained from cutting D open along A with ∆′ ∩

∆′′ = β. If ∆′′ contains a component of C, we can similarly have a contradiction to the

assumption (iii). Thus ∆′′ contains no component of C. Say, ∆′ ⊂ M1 and ∆′′ ⊂ M2. As in

Case 1, this will derive to a contradiction to the assumption (ii).

Remark 3.1 (1) The condition (iii) in Theorem 3.1 implies that there exists an edge path

of length at least 2 in C(F ) which rule out the possibilities that F is an ith-punctured 2-sphere

(i ≤ 4), or a once-punctured torus.

(2) The condition (iii) in Theorem 3.1 can be replaced by the following stronger condition:

(iii)′ d(CP (F ;M1), CP (F ;M2)) > 1.

(3) In the main theorem (Theorem 1.2) in [15] (as well as in [1]), as one of the conditions, the

condition of d(U1,U2) > K is required to guarantee the incompressibility of the boundary of the

amalgamated 3-manifolds along closed boundary components, where K is a constant depending

only on the factor manifolds and the genus of the amalgamating surfaces. The condition (iii)

in Theorem 3.1 (d(CD(F ;Mi), CP (F ;Mj)) > 1) is unified to guarantee the incompressibility of

the boundary of the amalgamated 3-manifold along subsurfaces with boundary.

The followings are a direct consequence of Theorem 3.1.

Corollary 3.1 Let M = H1 ∪F H2 be an H ′-splitting of 3-manifold M with boundary,

where g(∂Hi) ≥ 2, i = 1, 2, and χ(F ) < 0. Suppose that the following conditions are satisfied :

(i) ∂Hi − ∂F is incompressible in Hi, i = 1, 2;

(ii) d(AD(F ;H1),AD(F ;H2)) > 0.

Then M is ∂-irreducible.

Proof As in the proof of Theorem 3.1, if M is ∂-reducible, let D be a compression disk of

∂M in M with minimal complexity. Then D ∩ F consists of only arc components. Claims 1–3
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in the proof of Theorem 3.1 will derive contradictions in all possibilities.

Remark 3.2 Let M be a 3-manifold with boundary, and S be a component of ∂M . Let J

be a collection of pairwise disjoint simple closed curves on S. J is called disk-busting if
⋃

J∈J

J

intersects each simple closed curve which bounds a disk in M nontrivially. In particular, if J

contains a single simple closed curve J , such a J is called a disk-busting curve. It is clear that

the condition (i) in Corollary 3.1 is equivalent to that ∂F is disk-busting in both handlebodies

H1 and H2, and can be replaced by a stronger condition: One component of ∂F is disk-busting

in H1 and one component of ∂F is disk-busting in H2.

In the next theorem, we give a sufficient condition for an amalgamated 3-manifold along a

surface F with boundary to be irreducible.

Theorem 3.2 Let M = M1∪F M2 be an amalgamation of irreducible 3-manifolds M1 and

M2 along F , where F is lying in a component Si of ∂Mi with g(Si) ≥ 2, i = 1, 2, and F is

neither an ith-punctured 2-sphere (i ≤ 4), nor a once-punctured torus. Suppose the following

conditions are satisfied :

(i) Each boundary component of F does not bound a disk in M1 or M2;

(ii) d(CD(F ;Mi), CP (F ;Mj)) > 1 for {i, j} = {1, 2}.

Then M is irreducible.

Proof Otherwise, M is reducible. Let S be an essential 2-sphere in M which is in general

position with F . Since both M1 and M2 are irreducible, so S ∩ F 6= ∅, and S ∩ F consists of

finitely many circles. Choose an essential 2-sphere in M , still denoted by S, such that S ∩ F is

the minimal components among all such essential 2-spheres in M . For a component α of S ∩F

which is innermost on S, by the assumption (i), α is not boundary parallel in F , then as in the

proof of Theorem 3.1, Claims 4–5 will derive a contradiction to the assumption condition (ii).

This finishes the proof.

Corollary 3.2 Let M = M1 ∪F M2 be an amalgamation of irreducible 3-manifolds M1 and

M2 along F , where F is lying in a component Si of ∂Mi with g(Si) ≥ 2, i = 1, 2, and χ(F ) < 0.

Suppose F is incompressible in both M1 and M2. Then M is irreducible.

Proof Otherwise, let S be an essential 2-sphere in M so that S intersects F minimally. An

innermost component of S∩F will bound a compression disk of F in M1 or M2, a contradiction

to the assumption condition.
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