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1 Introduction

In n-dimensional Euclidean space Rn, a compact convex set with non-empty interior is called

a convex body. Let Kn denote the set of all convex bodies in R
n and Kn

o denote the set of all

convex bodies in R
n containing the origin in their interiors. The set of all origin-symmetric

convex bodies in R
n is denoted by Kn

e . Clearly, Kn
e ⊂ Kn

o ⊂ Kn.

As one of main parts of the Brunn-Minkowski theory, a Minkowski problem characterizes

a geometric measure generated by convex bodies: Given a non-zero finite Borel measure on

unit sphere in R
n, what are the necessary and sufficient conditions such that the given measure

is a geometric measure generated by a convex body? Furthermore, if such a convex body

exists, is it unique? These two problems are called existence and uniqueness of the solution

to Minkowski problem. There is a long history for study of Minkowski problem which greatly

promotes developments of the Brunn-Minkowski theory and fully non-linear partial differential

equations (see [38, 41]). We will review some Minkowski problems shortly.

In 1990s, Lutwak [30] introduced the Lp surface area measure Sp(K, ·) of convex body

K ∈ Kn
o by the variational formula of the n-dimensional volume (Lebesgue measure) Vn for Lp

Minkowski combination as follows.

For p ∈ R \ {0},

lim
t→0+

Vn(K +p t · L)− Vn(K)

t
=

1

p

∫

Sn−1

h
p
L(u)dSp(K,u), (1.1)
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where K +p t · L is the Lp Minkowski combination of K,L ∈ Kn
o (see the details in (2.2)),

and hL is the support function of L (see the details in (2.1)). Note that the case for p = 0

can be defined by similar way. It is called cone-volume measure which has intuitive geometric

significance and is the only one among all Lp surface area measure that is SL(n) invariant.

When p = 1, the L1 surface area measure S1(K, ·) is the well-known classical surface area

measure SK , that is, S1(K, ·) = SK . The Minkowski problem associated with the classical

surface area measure is called the classical Minkowski problem: What are the necessary and

sufficient conditions such that a given non-zero finite Borel measure on unit sphere is the

classical surface area measure of a convex body? Many important works for the existence and

uniqueness of this problem are due to Minkowski [35–36], Alexandrov [1–2], Fenchel-Jessen [15]

and others.

In [30], Lutwak not only introduced the Lp surface area measure but also studied associated

Minkowski problem called Lp Minkowski problem as follows.

Lp Minkowski problem For a fixed p and a given non-zero finite Borel measure µ on

Sn−1, what are necessary and sufficient conditions in order that there exists a convex body K

in R
n such that its Lp surface area measure Sp(K, ·) is equal to µ, that is,

Sp(K, ·) = µ?

The volume normalized form of this problem is called the normalized Lp Minkowski problem.

What are necessary and sufficient conditions in order that there exists a convex body K in

R
n such that

Sp(K, ·)
V (K)

= µ?

Note that, when p 6= n, the Lp Minkowski problem and its normalized version are equivalent.

This is due to positive homogeneity of degree (n− p) of the Lp surface area measure Sp(K, ·).
It is not hard to see that the Lp Minkowski problem is the generalization of the classical

Minkowski problem (p = 1). What’s more, the Lp Minkowski problem has other two special

cases: The centro-affine Minkowski problem (p = −n) and the logarithmic Minkowski problem

(p = 0), see [6, 9, 13, 26, 39–40, 42, 52–53]. So far, there are many results for the existence,

uniqueness, regularity and continuity of the (normalized) Lp Minkowski problem. For more

references, one can see [11, 18, 22, 25, 28, 30–31, 33, 44, 54–56]. As an important application,

the solutions to the Lp Minkowski problem are powerful tools for discovering a kind of new

affine isoperimetric inequalities of which some new (sharp) affine Lp Sobolev inequalities are

important parts, see [12, 19–21, 32, 46, 48]. Besides, the solutions to this problem have close

relation to some important flows, see [3–4, 39–40].

As “dual” case of the Lp Minkowski problem, the dual Minkowski problem was posed by

Huang-Lutwak-Yang-Zhang [23] and is a characterization problem for dual curvature measure

defined by the variational formula of the dual volume (see [29]) for L1 Minkowski combination.

Note that the dual volume is a generalization of volume. Recently, the dual Minkowski problem

and its generalization have rapid developments for the existence, uniqueness, regularity and

continuity, see [5, 7, 10, 16, 34, 43, 45, 47, 49–51].
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It is well-known that the volume (Lebesgue measure) is an important notion in R
n and has

some beautiful properties such as translation invariance, homogeneity and so on. In Brunn-

Minkowski theory, the Gaussian probability measure γn also has hot attention and is defined

by

γn(E) =
1

(
√
2π)n

∫

E

e−
|x|2

2 dx,

where E is a subset of Rn and |x| is the absolute value of x ∈ E. γn(E) is called the Gaussian

volume of E. It is a nature problem to study the Brunn-Minkowski theory for the Gaussian

volume γn. Since the Gaussian volume γn does not have translation invariance and homogeneity,

there are more difficulties to study the corresponding Brunn-Minkowski theory. The Brunn-

Minkowski inequality and the Minkowski inequality for the Gaussian volume γn are studied in

[8, 14, 17, 37].

Recently, Huang, Xi and Zhao [24] defined the Gaussian surface area measure Sγn,K of

convex body K ∈ Kn
o by the variational formula of the Gaussian volume γn as follows.

For K,L ∈ Kn
o ,

lim
t→0+

γn(K + tL)− γn(K)

t
=

∫

Sn−1

hL(u)dSγn,K(u). (1.2)

What’s more, they posed the corresponding Minkowski problem called Gaussian Minkowski

problem.

The Gaussian Minkowski problem Given a finite Borel measure µ on the unit sphere

Sn−1, what are the necessary and sufficient conditions on µ so that there exists a convex body

K such that

Sγn,K = µ?

If K exists, is it unique?

The Gaussian volume normalized form of this problem is called the normalized Gaussian

Minkowski problem. When µ is even, this problem is called the even Gaussian Minkowski

problem. In [24], Huang, Xi and Zhao studied the even (normalized) Gaussian Minkowski

problem and obtained some results for the existence and uniqueness of this problem.

By the variational formula of the Gaussian volume γn for Lp Minkowski combination, Liu

[27] defined the Lp Gaussian surface area measure Sp,γn
(K, ·) of convex body K ∈ Kn

o .

For K,L ∈ Kn
o and p 6= 0,

lim
t→0

γn(K +p t · L)− γn(K)

t
=

1

p

∫

Sn−1

h
p
L(u)dSp,γn

(K,u). (1.3)

In particular, when p = 1, it is the Gaussian surface area measure, that is, S1,γn
(K, ·) = Sγn,K .

The corresponding Minkowski problem is called the Lp Gaussian Minkowski problem as follows.

The Lp Gaussian Minkowski problem For fixed p and a given non-zero finite Borel

measure µ on Sn−1, what are the necessary and sufficient conditions on µ in order that there

exists a convex body K ∈ Kn
o such that

Sp,γn
(K, ·) = µ?
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If f is the density of the given measure µ, then the corresponding Monge-Ampère type

equation on Sn−1 is as follows.

For u ∈ Sn−1,

1

(
√
2π)n

e−
|∇h(u)|2+h2(u)

2 h1−p(u)det(∇2h(u) + h(u)I) = f(u),

where h : Sn−1 → (0,+∞) is the function to be found, ∇h,∇2h are the gradient vector and

the Hessian matrix of h with respect to an orthonormal frame on Sn−1, and I is the identity

matrix. When µ or f is even, this problem is called the even Lp Gaussian Minkowski problem.

The existence of the solution to the normalized Lp Guassian Minkowski problem is obtained

by Liu [27] as follows.

Theorem A (see [27]) For p > 0, let µ be a non-zero finite Borel measure on Sn−1 and be

not concentrated in any closed hemisphere. Then there exist a K ∈ Kn
o and a positive constant

λ such that

λ

p
Sp,γn

(K, ·) = µ.

Due to the lack of homogeneity of Lp Gaussian surface area measure Sp,γn
(K, ·), it is dif-

ficult that the coefficient λ
p
is eliminated. Next, the even Lp Gaussian Minkowski problem is

considered as follows.

The even Lp Gaussian Minkowski problem For fixed p and a given non-zero even

finite Borel measure µ on Sn−1, what are the necessary and sufficient conditions on µ in order

that there exists a convex body K ∈ Kn
e such that

Sp,γn
(K, ·) = µ?

For even case, Liu [27] eliminated the coefficient λ
p
and obtained the following result.

Theorem B (see [27]) For p ≥ 1, let µ be a non-zero even finite Borel measure on Sn−1

and be not concentrated in any closed hemisphere with |µ| <
√

2
π
r−pae−

a2

2 , the r and a are

chosen such that γn(rB) = γn(P ) = 1
2 , symmetry strip P = {x ∈ R

n : |x1| ≤ a}. Then there

exists a unique K ∈ Kn
e with γn(K) > 1

2 such that

Sp,γn
(K, ·) = µ.

In this paper, when p > n, we find that the existence of the solution to the even Lp Guassian

Minkowski problem can do not need the condition |µ| <
√

2
π
r−pae−

a2

2 in Theorem B, and we

obtain the following result.

Theorem 1.1 Let p > n and µ be a non-zero even finite Borel measure not concentrated

in any closed hemisphere of Sn−1. Then, there exists K0 ∈ Kn
e such that

Sp,γn
(K0, ·) = µ.
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2 Preliminaries

In this section, we list some notations and recall some basic facts about convex bodies.

For vectors x, y ∈ R
n, x · y denotes the standard inner product in R

n. The boundary of the

Euclidean unit ball Bn = {x ∈ R
n :

√
x · x ≤ 1} is denoted by Sn−1 called unit sphere. The

n-dimensional volume (Lebesgue measure) of Bn is denoted by ωn. We write ∂K and int K for

the boundary and the set of all interiors of convex body K in R
n, respectively. Let ∂′K denote

the subset of ∂K with unique outer unit normal. According to the context of this paper, | · |
can denote different meanings: The absolute value, the standard Euclidean norm on R

n and

the total mass of a finite measure. Let C(Sn−1) denote the set of continuous functions defined

on Sn−1, and let C+(Sn−1) denote the set of strictly positive functions in C(Sn−1).

A convex body K ∈ Kn
o is uniquely determined by its support function hK : Rn → R defined

by

hK(x) = max{x · y : y ∈ K}, x ∈ R
n. (2.1)

It is not hard to see that support functions are positively homogeneous of degree one and

subadditive. For K ∈ Kn
o , its support function hK is continuous and strictly positive on the

unit sphere Sn−1. The support hyperplane HK of K ∈ Kn
o with respect to outer unit normal

v ∈ Sn−1 is defined by

HK(v) = {x ∈ R
n : x · v = hK(v)}.

Clearly, HK(v) ∩K ⊆ ∂K for all v ∈ Sn−1.

The radial function ρK : Rn\{0} → R of convex body K ∈ Kn
o is another important function

for K ∈ Kn
o , and it is given by

ρK(x) = max{λ > 0 : λx ∈ K}, x ∈ R
n \ {0}.

Note that the radial function ρK of K ∈ Kn
o is positively homogeneous of degree −1, and it is

continuous and strictly positive on the unit sphere Sn−1. For each u ∈ Sn−1, ρK(u)u ∈ ∂K.

The set Kn
o can be endowed with Hausdorff metric and radial metric which mean the distance

between two convex bodies. The Hausdorff metric of K,L ∈ Kn
o is defined by

||hK − hL|| = max
u∈Sn−1

|hK(u)− hL(u)|.

The radial metric of K,L ∈ Kn
o is defined by

||ρK − ρL|| = max
u∈Sn−1

|ρK(u)− ρL(u)|.

It is an important fact that the two metrics are mutually equivalent, then, for K,Ki ∈ Kn
o ,

hKi
→ hK uniformly if and only if ρKi

→ ρK uniformly.

If ||hKi
− hK || → 0 or ||ρKi

− ρK || → 0 as i → +∞, we call the sequence {Ki} converges to K.

The polar body K∗ of K ∈ Kn
o is given by

K∗ = {x ∈ R
n : x · y ≤ 1 for all y ∈ K}.
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It is clear that K∗ ∈ Kn
o and K = (K∗)∗. There exists an important fact on R

n \ {0} between

K and its polar body K∗:

hK =
1

ρK∗

and ρK =
1

hK∗

.

Then, for K,Ki ∈ Kn
o , we can obtain the following result:

Ki → K if and only if K∗

i → K∗.

For f ∈ C+(Sn−1), the Wullf shape [f ] of f is defined by

[f ] = {x ∈ R
n : x · u ≤ f(u) for all u ∈ Sn−1}.

It is not hard to see that [f ] is a convex body in R
n and h[f ] ≤ f . In addition, [hK ] = K for

all K ∈ Kn
o .

By the concept of Wullf shape, the Lp Minkowski combination can be defined for all p ∈ R.

When p 6= 0, for K,L ∈ Kn
o and s, t ∈ R satisfying that shp

K + th
p
L is strictly positive on Sn−1,

the Lp Minkowski combination s ·K +p t · L is defined by

s ·K +p t · L = [(shp
K + th

p
L)

1
p ]. (2.2)

When p = 0, the Lp Minkowski combination s ·K +0 t · L is defined by

s ·K +0 t · L = [hs
Kht

L].

By the variational formula (1.3) of the Gaussian volume γn for Lp Minkowski combination,

the integral expression of Lp Gaussian surface area measure is obtained in [27].

Suppose p ∈ R and K ∈ Kn
o . For each Borel set η ⊆ Sn−1, Lp Gaussian surface area

Sp,γn
(K, ·) of K is defined by

Sp,γn
(K, η) =

1

(
√
2π)n

∫

ν
−1
K

(η)

(x · νK(x))1−pe−
|x|2

2 dHn−1(x). (2.3)

Here νK : ∂′K → Sn−1 is the Gauss map of K and Hn−1 is the (n− 1)-dimensional Hausdorff

measure.

By the definition (1.2) of Gaussian surface area measure Sγn,K , Lp Gaussian surface area

measure Sp,γn
(K, ·) can be rewritten as follows:

Sp,γn
(K, η) =

∫

η

h
1−p
K (u)dSγn,K(u). (2.4)

When p = 1, we have Sγn,K = S1,γn
(K, ·).

By the definition of Lp Gaussian surface area measure (2.3), the following result is obtained.

For K ∈ Kn
o and p ∈ R, Sp,γn

(K, ·) is absolutely continuous with respect to the classical

surface area measure SK , and

dSp,γn
(K,u) =

1

(
√
2π)n

e−
|∇hK (u)|2+h2

K
(u)

2 h
1−p
K (u)dSK(u), u ∈ Sn−1.
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Besides, if K is C2
+, then

dSp,γn
(K,u) =

1

(
√
2π)n

e−
|∇hK (u)|2+h2

K
(u)

2 h
1−p
K (u)det(∇2hK(u) + hK(u)I)du, u ∈ Sn−1.

Hence, Lp Gaussian surface area measure is also absolutely continuous with respect to the

spherical Lebesgue measure.

3 Existence

In this section, the existence of the solution to the even Lp Gaussian Minkowski problem

is studied. By variational method, the first step for solving the existence of even Lp Gaussian

Minkowski problem is properly to convert this problem to an optimization problem as follows.

Optimization problem For p 6= 0 and a given non-zero even finite Borel measure µ on

Sn−1, does there exist a convex body in Kn
e that attains the supremum,

sup{Γp(K) : K ∈ Kn
e }? (3.1)

Here the functional Γp : Kn
e → R is given by

Γp(K) = −1

p

∫

Sn−1

h
p
Kdµ+ γn(K), K ∈ Kn

e .

Since the set of support functions of convex bodies in Kn
e is a subset of C+

e (Sn−1), the

functional Γp can be extended to a functional on C+
e (Sn−1), Γp : C+

e (Sn−1) → R, defined by

Γp(h) = −1

p

∫

Sn−1

hpdµ+ γn([h]), h ∈ C+
e (Sn−1).

Then, Γp(hK) = Γp(K) for all K ∈ Kn
e . Together with the definition of Wullf shape, we obtain

the following interesting lemma.

Lemma 3.1 Let p 6= 0.

(1) If K0 ∈ Kn
e satisfies

Γp(K0) = sup{Γp(K) : K ∈ Kn
e },

then

Γp(hK0) = sup{Γp(h) : h ∈ C+
e (Sn−1)}.

(2) If h0 ∈ C+
e (Sn−1) satisfies

Γp(h0) = sup{Γp(h) : h ∈ C+
e (Sn−1)},

then

Γp([h0]) = sup{Γp(K) : K ∈ Kn
e }.
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Proof By h[h] ≤ h for all h ∈ C+
e (Sn−1), we have

Γp(h[h]) ≥ Γp(h).

If

Γp(K0) = sup{Γp(K) : K ∈ Kn
e },

then, for each h ∈ C+
e (Sn−1),

Γp(hK0) = Γp(K0) ≥ Γp([h]) = Γp(h[h]) ≥ Γp(h).

Together with hK0 ∈ C+
e (Sn−1), we obtain

Γp(hK0) = sup{Γp(h) : h ∈ C+
e (Sn−1)}.

If

Γp(h0) = sup{Γp(h) : h ∈ C+
e (Sn−1)},

then, for each K ∈ Kn
e ,

Γp([h0]) = Γp(h[h0]) ≥ Γp(h0) ≥ Γp(hK) = Γp(K).

Thus, by [h0] ∈ Kn
e , we have

Γp([h0]) = sup{Γp(K) : K ∈ Kn
e }.

To obtain the existence of Lp Gaussian Minkowski problem, the following variational formula

for Gaussian volume γn is needed.

Lemma 3.2 (see [27]) Let K ∈ Kn
e , p 6= 0 and f ∈ Ce(S

n−1). Suppose δ > 0 is a

sufficiently small constant such that, for all u ∈ Sn−1 and t ∈ (−δ, δ),

h
p
t (u) = h

p
K(u) + tf(u) > 0.

Then,

lim
t→0

γn([ht])− γn(K)

t
=

1

p

∫

Sn−1

f(u)dSp,γn
(K,u). (3.2)

The following result shows that a solution to optimization problem (3.1) leads to a solution

to the even Lp Guassian Minkowski problem.

Lemma 3.1 Let p 6= 0 and µ be a finite even Borel measure not concentrated in any closed

hemisphere of Sn−1. If there exists K0 ∈ Kn
e such that

Γp(K0) = sup{Γp(K) : K ∈ Kn
e },

then

µ = Sp,γn
(K0, ·).
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Proof Since

Γp(K0) = sup{Γp(K) : K ∈ Kn
e },

then, by Lemma 3.1, we have

Γp(hK0) = sup{Γp(h) : h ∈ C+
e (Sn−1)}. (3.3)

For each f ∈ Ce(S
n−1), define ht ∈ C+

e (Sn−1) by

h
p
t (u) = h

p
K0

(u) + tf(u), t ∈ (−δ, δ)

for all u ∈ Sn−1, where δ > 0 is a sufficiently small constant. Thus, from (3.3),

Γp(h0) = Γp(hK0) ≥ Γp(ht), t ∈ (−δ, δ).

Together with Lemma 3.2, we have

0 =
d

dt
Γp(ht)

∣

∣

t=0

=
d

dt

(

− 1

p

∫

Sn−1

h
p
t (u)dµ(u) + γn([ht])

)∣

∣

∣

t=0

= −1

p

∫

Sn−1

f(u)dµ(u) +
1

p

∫

Sn−1

f(u)dSp,γn
(K0, u).

Since this holds for any f ∈ Ce(S
n−1), it follows that

µ = Sp,γn
(K0, ·).

To obtain a solution to optimization problem (3.1), we need the following lemmas.

Lemma 3.4 Let p > n. Then Γp(rBn) > 0 for sufficiently small r > 0.

Proof Combining the definitions of Γp and γn with polar coordinates, we obtain

Γp(rBn) = −1

p

∫

Sn−1

rpdµ+ γn(rBn)

= −|µ|
p
rp +

1

(
√
2π)n

∫

rBn

e−
|x|2

2 dx

≥ −|µ|
p
rp +

e−
r2

2

(
√
2π)n

Vn(rBn)

= −|µ|
p
rp +

ωn

(
√
2π)n

e−
r2

2 rn

= rp
( ωn

(
√
2π)n

e−
r2

2 rn−p − |µ|
p

)

.

Since, by p > n,

lim
r→0+

e−
r2

2 = 1 and lim
r→0+

rn−p = +∞,
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then

lim
r→0+

e−
r2

2 rn−p = +∞.

Therefore, for sufficiently small r > 0, we have Γp(rBn) > 0.

Lemma 3.5 Suppose K is a compact convex set in R
n. If γn(K) > 0, then K is a convex

body in R
n, that is, K ∈ Kn.

Proof By the definition of the Gaussian volume γn, we have

γn(K) =
1

(
√
2π)n

∫

K

e−
|x|2

2 dx ≤ 1

(
√
2π)n

∫

K

dx =
1

(
√
2π)n

Vn(K).

Together with γn(K) > 0,

Vn(K) ≥ (
√
2π)nγn(K) > 0.

Therefore, compact convex set K has nonempty interior in R
n, that is, K is a convex body in

R
n.

The following lemma shows that there exists a solution to optimization problem (3.1).

Lemma 3.6 Let p > n and µ be a finite even Borel measure not concentrated in any closed

hemisphere of Sn−1. Then, there exists K0 ∈ Kn
e such that

Γp(K0) = sup{Γp(K) : K ∈ Kn
e }.

Proof Let {Ki} ⊆ Kn
e be a maximizing sequence for Γp, that is,

lim
i→+∞

Γp(Ki) = sup{Γp(K) : K ∈ Kn
e }.

By Lemma 3.4, we deduce that lim
i→+∞

Γp(Ki) > 0.

Since Ki ∈ Kn
e , ρKi

is continuous on Sn−1. By the fact that Sn−1 is compact, we could

choose a constant Ri > 0 and a unit vector ui ∈ Sn−1 such that

Ri = ρKi
(ui) = max{ρKi

(u) : u ∈ Sn−1}.

Then, Riui ∈ Ki and Ki ⊆ RiBn. By the definition of support function,

hKi
(v) ≥ Ri|ui · v|

for all v ∈ Sn−1. Since µ is not concentrated in any closed hemisphere of Sn−1, there exists a

constant c0 > 0 such that
∫

Sn−1

|u · v|pdµ(v) ≥ c0

for all u ∈ Sn−1. Together with Ki ⊆ RiBn, we have

Γp(Ki) = −1

p

∫

Sn−1

h
p
Ki

(v)dµ(v) + γn(Ki)

≤ −R
p
i

p

∫

Sn−1

|ui · v|pdµ(v) + γn(RiBn)

≤ −c0

p
R

p
i + γn(RiBn).
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Suppose that {Ri} is not a bounded sequence. Without loss of generality, we may assume

that lim
i→+∞

Ri = +∞. By polar coordinates,

γn(RiBn) =
1

(
√
2π)n

∫

RiBn

e−
|x|2

2 dx =
nωn

(
√
2π)n

∫ Ri

0

e−
t2

2 tn−1dt.

Since the integral
∫ +∞

0
e−

t2

2 tn−1dt is convergent, the sequence {γn(RiBn)} is also convergent

as i → +∞. Together with lim
i→+∞

Ri = +∞, we have

Γp(Ki) ≤ −c0

p
R

p
i + γn(RiBn) → −∞

as i → +∞. This is a contradiction to {Ki} being a maximizing sequence. Therefore, {Ri} is

bounded, that is, the sequence {Ki} is bounded.

By Blaschke selection theorem, without loss of generality, we may assume that {Ki} con-

verges to an origin-symmetric compact convex setK0 in R
n. From the continuity of the Gaussian

volume with respect to the Hausdorff metric and the definition of Γp, we have

γn(K0) = lim
i→+∞

γn(Ki) ≥ lim
i→+∞

Γp(Ki) > 0.

Together with Lemma 3.5, we obtain K0 ∈ Kn
e . Since {Ki} converges to K0 ∈ Kn

e in the

Hausdorff metric, then

Γp(K0) = lim
i→+∞

Γp(Ki) = sup{Γp(K) : K ∈ Kn
e }.

By Lemmas 3.3 and 3.6, we obtain the existence of the solution to the even Lp Guassian

Minkowski problem for p > n. Theorem 1.1 is rewritten as Theorem 3.1 as follows.

Theorem 3.1 Let p > n and µ be a non-zero even finite Borel measure on Sn−1 not

concentrated in any closed hemisphere of Sn−1. Then, there exists K0 ∈ Kn
e such that

µ = Sp,γn
(K0, ·).

Remark 3.1 In Theorem 3.1, we eliminate the condition |µ| <
√

2
π
r−pae

−a2

2 in Theorem

B. But, the following problem deserves to be considered.

Is the condition |µ| <
√

2
π
r−pae

−a2

2 necessary for p > n? In other words, when p > n, does

any K ∈ Kn
e satisfy the following inequality:

|Sp,γn
(K, ·)| <

√

2

π
r−pae

−a2

2 ?

If the answer is negative, then Theorem B does not cover Theorem 3.1 for p > n.

The following isoperimetric type inequality can be derived from Ehrhard inequality by Liu

[27] and gives a negative answer of the problem in Remark 3.1.

Lemma 3.7 (see [27]) For p ≥ 1, let K ∈ Kn
e and symmetry strip P = {x ∈ R

n : |x1| ≤ a}
with γn(K) = γn(P ) = 1

2 . Then,

|Sp,γn
(K, ·)| ≥

√

2

π
r−pae

−a2

2 ,
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where r is chosen such that γn(rB) = 1
2 .

By Lemma 3.7, it is meaningful to eliminate the condition |µ| <
√

2
π
r−pae

−a2

2 in this paper.

Hence, when p > n, Theorem B does not cover Theorem 3.1.
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