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1 Introduction

The coarse Novikov conjecture (cf. [4, 6, 15]) is one of the most important problems in non-

commutative geometry. It implies the Gromov-Lawson-Rosenberg conjecture for non-existence

of positive scalar curvature on aspherical manifolds, and the Gromov’s zero-in-the-spectrum

conjecture on noncompact complete Riemannian manifolds. Let X be a discrete metric space,

e.g. a discrete net of a Riemannian manifold or a finitely generated group with the word length

metric. The space X is said to have bounded geometry if for any r > 0 there is N > 0 such

that any ball of radius r in X contains at most N elements. The coarse Novikov conjecture for

X states that the higher index map

µ : lim
d→∞

K∗(Pd(X)) → K∗(C
∗(X))

is injective, where on the left hand side, K∗(Pd(X)) is the K-homology group of the Rips

complex Pd(X) of X at scale d > 0, while on the right hand side, K∗(C
∗(X)) is the K-theory

group of the Roe C∗-algebra C∗(X) of X .

In [17], Yu introduced a localization C∗-algebra C∗
L(Pd(X)) to establish the following com-
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mutative diagram

lim
d→∞

K∗(C
∗
L(Pd(X)))

e∗

��
lim
d→∞

K∗(Pd(X))

µL

∼=

55
l
l
l
l
l
l
l
l
l
l
l
l
l

µ
// K∗(C

∗(X)).

He showed that the local index maps µL is an isomorphism. It follows that the coarse Novikov

conjecture for X is equivalent to the statement that the evaluation map at the K-theory level:

e∗ : lim
d→∞

K∗(C
∗
L(Pd(X))) → lim

d→∞
K∗(C

∗(Pd(X))) ∼= K∗(C
∗(X))

is injective.

In recent years, operator algebras on Lp-spaces have been studied quite extensively (cf. [2–3,

8–10]). One might naturally tend to formulate and study an Lp-version of the coarse Baum-

Connes conjecture or an Lp-coarse Novikov conjecture. In fact, this direction of generalization

has a very strong motivation, namely, the powerful Dirac-dual Dirac method in Kasparov’s

KK-theory for the Baum-Connes conjecture (cf. [5]) or the Strong Novikov conjecture breaks

down in the case of discrete groups with Kazhdan’s Property (T). As opposite of amenability,

groups with Kazhdan’s Property (T) do not admit a proper affine isometric action on a Hilbert

spaces. And it is well known that most of Gromov hyperbolic groups have Kazhdan’s Property

(T). However, Yu [19] proved that any hyperbolic group admits a proper affine isometric action

on an ℓp-space for some large p > 2. This remarkable discovery suggests that one might

go beyond Hilbert spaces to consider higher index problems on general Lp-spaces. However,

difficulty on Lp-spaces is much more tremendous than one might expect. For example, so

far, there are no reasonable generalization of the Roe algebra on Lp-spaces. Only the Roe

algebra on ℓp for 1 ≤ p < ∞ is defined (cf. [2]), so that the ℓp-version of the coarse Baum-

Connes conjecture and the coarse ℓp-Novikov conjecture have been properly formulated. In [3],

Chung and Nowak showed that expanders are counterexamples to the coarse ℓp-Baum-Connes

conjectures. In [14], Shan and Wang proved the coarse geometric ℓp-Novikov conjecture for

metric spaces with bounded geometry which admit a coarse embedding into a simply connected

complete Riemannian manifold of nonpositive sectional curvature. In [20], Zhang and Zhou

proved that K-theory for ℓp-Roe algebra are independent of 1 < p < ∞ for spaces with finite

asymptotic dimension.

Let X and Y be two metric spaces. Recall that a map f : X → Y is said to be a coarse

embedding if there exist non-decreasing functions ρ1 and ρ2 from R+ = [0,∞) to R+ such that:

(1) ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y));

(2) lim
r→∞

ρi(r) = ∞ for i = 1, 2.

Kasparov and Yu [7] introduced a geometric condition to Banach spaces, called Property

(H), and proved the strong Novikov conjecture for groups coarsely embeddable into a Banach

space with Property (H).
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Definition 1.1 (cf. [7]) A real Banach space V is said to have Property (H) if there exists

an increasing sequence of finite dimensional subspaces {Vn}n∈N of V , and an increasing sequence

of finite dimensional subspaces {Wn}n∈N of a real Hilbert space such that

(i)
⋃

n∈N

Vn is dense in V ,

(ii) there exists a uniformly continuous map ψ : S
( ⋃
n∈N

Vn
)
→ S

( ⋃
n∈N

Wn

)
such that the

restriction of ψ to S(Vn) is a homeomorphism onto S(Wn) for each n ∈ N , where S(·) denotes

the unit sphere of a subspace of a Banach space.

For example, the Banach space ℓp has Property (H) for any p ≥ 1. In [1], Chen, Wang

and Yu prove the coarse Novikov conjecture for discrete metric spaces with bounded geometry

which are coarsely embeddable into Banach spaces with Property (H).

The main purpose of this paper is to prove the following result, which generalizes the above

result to the ℓp setting.

Theorem 1.1 Let X be a discrete metric space with bounded geometry, and let 1 < p <

∞. If X admits a coarse embedding into a Banach space with Property (H), then the coarse

geometric ℓp-Novikov conjecture holds for X, i.e., the index map

e∗ : lim
d→∞

K∗(B
p
L(Pd(X))) → K∗(B

p(X))

is injective.

This paper is organized as follows. In Section 2, we recall the formulation of the coarse ℓp-

Novikov conjecture, and the idea of ℓp-localization. In Section 3, we define the twisted ℓp-Roe

algebra and its ℓp-localization counterpart for a metric space which admits a coarse embedding

into a Banach space with Property (H). We construct uniformly almost flat Bott generators to

establish a Bott map β from the K-theory of the ℓp-Roe algebra to the K-theory of the twisted

ℓp-Roe algebra, and a Bott map βL between the K-theory of the corresponding localization

algebras. In Section 4, we discuss various ideals of the twisted algebras and show that the

evaluation map from the twisted ℓp-localization algebra to the twisted ℓp-Roe algebra induces

an isomorphism at the K-theory level. In Section 5, we complete the proof of the main result of

this paper. To do so, we construct one more Bott map β∞
L and use it, together with the results

in previous sections, to show the injectivity of βL, which implies Theorem 1.1.

2 The Coarse ℓp-Novikov Conjecture

In this section, we shall recall the concepts of the ℓp-Roe algebras (cf. [3, 12]), Yu’s ℓp-

localization algebras (cf. [3, 17]) and the coarse geometric ℓp-Novikov conjecture.

For r > 0, an r-net inX is a discrete subset Y ⊂ X such that for any y1, y2 ∈ Y , d(y1, y2) ≥ r

and for any x ∈ X there is a y ∈ Y such that d(x, y) < r. A general metric space X is called to

have bounded geometry if X has an r-net Y for some r > 0 such that Y has bounded geometry.
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Throughout the paper, p > 1. And Kp = K(ℓp), the set of all compact operators over ℓp.

Definition 2.1 (cf. [3, 12]) Let X be a proper metric space (a metric space is called proper

if every closed ball is compact), and fix a countable dense subset Z ⊂ X. Let T be a bounded

operator on ℓp(Z, ℓp), and write T = (T (x, y))x,y∈Z so that each T (x, y) is a bounded operator

on ℓp. T is said to be locally compact if

(i) each T (x, y) is a compact operator on ℓp;

(ii) for every bounded subset B ⊂ X, the set

{(x, y) ∈ (B ×B) ∩ (Z × Z) | T (x, y) 6= 0}

is finite.

The propagation of T is defined to be

prop(T ) = inf{S > 0 | T (x, y) = 0 for all x, y ∈ Z with d(x, y) > S}.

The algebraic Roe algebra of X, denoted by Cp[X ], is the subalgebra of B(ℓp(Z, ℓp)) consisting

of all finite propagation, locally compact operators. The ℓp-Roe algebra of X, denoted by Bp(X),

is the closure of Cp[X ] in B(ℓp(Z, ℓp)). Bp(X) does not depend on the choice of Z. See [20]

for a proof.

Definition 2.2 (cf. [3, 17]) Let X be a proper metric space, and let Cp[X ] be its algebraic

Roe algebra. Let C
p
L[X ] be the algebra of bounded, uniformly norm-continuous functions g :

[0,∞) → Cp(X) such that prop(g(t)) → 0 as t→ ∞. Equip C
p
L[X ] with the norm

‖g‖ := sup
t∈[0,∞)

‖g(t)‖Bp(X).

The completion of C
p
L[X ] under this norm, denoted by Bp

L(X), is the ℓp-localization algebra of

X.

The evaluation homomorphism e from Bp
L(X) to Bp(X) is defined by e(g) = g(0) for g ∈

Bp
L(X).

Definition 2.3 Let X be a discrete metric space with bounded geometry. For each d ≥ 0,

the Rips complex Pd(X) at scale d is defined to be the simplicial polyhedron in which the set of

vertices is X, and a finite subset {x0, x1, · · · , xq} ⊂ X spans a simplex if and only if d(xi, xj) ≤

d for all 0 ≤ i, j ≤ q.

Endow Pd(X) with the spherical metric. Recall that on each path connected component of

Pd(X), the spherical metric is the maximal metric whose restriction to each simplex
{ q∑

i=0

tixi |

ti ≥ 0,
q∑

i=0

ti = 1
}
is the metric obtained by identifying the simplex with Sq

+ via the map

q∑

i=0

tixi 7→
( t0√

q∑
i=0

t2i

,
t1√
q∑

i=0

t2i

, · · · ,
tq√
q∑

i=0

t2i

)
,
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where Sq
+ :=

{
(s0, s1, · · · , sq) ∈ Rq+1 | si ≥ 0,

q∑
i=0

s2i = 1
}

is endowed with the standard

Riemannian metric. If y0, y1 belong to two different connected components Y0, Y1 of Pd(X),

respectively, we define

d(y0, y1) = min{d(y0, x0) + dX(x0, x1) + d(x1, y1) | x0 ∈ X ∩ Y0, x1 ∈ X ∩ Y1}.

In [17], Yu proved that the local index map from K-homology to K-theory of localization

algebra is an isomorphism for finite-dimensional simplicial complexes. In [11], Qiao and Roe

generalized this isomorphism to general locally compact metric spaces. Therefore for 1 < p <∞,

considering the analogs of ℓp-Roe algebra and ℓp-localization algebra, we define the following

assembly map which is equivalent to the original map when p = 2. The following conjecture is

called the coarse ℓp-Novikov conjecture.

Conjecture If X is a discrete metric space with bounded geometry, then the index map

e∗ : lim
d→∞

K∗(B
p
L(Pd(X))) → lim

d→∞
K∗(B

p(Pd(X))) ∼= K∗(B
p(X))

is injective.

3 Twisted ℓp-Roe Algebras and Twisted ℓp-Localization Algebras

In this section, we shall define the twisted ℓp-Roe algebra and its localization counterpart for

a metric space of bounded geometry which admits a coarse embedding into a Banach space with

Property (H). We shall then construct a Bott map β from the K-theory of the ℓp-Roe algebra

to the K-theory of the twisted ℓp-Roe algebra, and a Bott map βL between the K-theory of

the corresponding ℓp-localization algebras, to build the following commutative diagram for each

d ≥ 0,

K∗(B
p
L(Pd(X)))

βL //

e∗

��

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N)))

eA
∗

��
K∗(B

p(Pd(X)))
β // K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))),

where eA∗ is the homomorphism induced by the evaluation map from the twisted ℓp-localization

algebra to the twisted ℓp-Roe algebra. The diagram plays a central role in the proof of Theorem

1.1.

3.1 The twisted ℓp-Roe algebra

Let X be a discrete metric space with bounded geometry which admits a coarse embedding

f : X → V into a real Banach space V with Property (H). There exists an increasing sequence of

finite dimensional subspaces Vn of V , and an increasing sequence of finite dimensional subspaces

Wn of a real Hilbert space such that

(i)
⋃

n∈N

Vn is dense in V ,
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(ii) there exists a uniformly continuous map ψ : S
( ⋃
n∈N

Vn
)
→ S

( ⋃
n∈N

Wn

)
such that the

restriction of ψ to S(Vn) is a homeomorphism onto S(Wn) for each n ∈ N .

By a slight modification, we may assume without loss of generality that f(X) ⊂
⋃

n∈N

Vn

and the subspaces Vn and Wn are all even dimensional. For each d ≥ 0, the coarse embedding

f : X →
⋃

n∈N

Vn can be extended a coarse embedding f : Pd(X) →
⋃

n∈N

Vn as follows: For any

point

z =
∑

x∈X

cxx ∈ Pd(X), cx ≥ 0,
∑

x∈X

cx = 1,

where all but finitely many coefficients cx are zero, we define

f(z) =
∑

x∈X

cxf(x) ∈
⋃

n∈N

Vn.

For each n ∈ N , let Cliff(Wn) be the complex Clifford algebra of Wn with respect to the

relation w2 = ‖w‖2 for all w ∈Wn. Let

An := C0(Vn,Cliff(Wn))

be the Banach algebra of all bounded continuous functions from Vn to Cliff(Wn) which vanish

at infinity.

Let Hn := L2(Vn,Cliff(Wn)), the set of all L2 sections of Cliff(Wn), which is a Hilbert

space. An acts on Hn by pointwise multiplication. For a ∈ An and h ∈ Hn. Define amax :=

max{‖a(x)‖ | x ∈ Vn}. Then ‖a · h‖ ≤ amax‖h‖ and An ⊂ B(Hn). For n ∈ N, define

H
(m)
n,p := Hn ⊕p · · ·⊕pHn, the ℓ

p-direct sum of m copies of Hn. The ℓ
p-norm of H

(m)
n,p is defined

as

‖(h1, · · · , hm)‖p :=
( m∑

i=1

‖hi‖
p
) 1

p

for h1, · · · , hm ∈ Hn.

Let Mm(An) be the set of m×m matrices with entries in An. Then elements of Mm(An)

act onH
(m)
n,p by matrix multiplication. ForM = (Mi,j)i,j∈{1,··· ,m} ∈ Mm(An) and h

(m) ∈ H
(m)
n,p ,

‖M · h(m)‖ ≤ max
i,j∈{1,··· ,m}

{(Mi,j)max} · ‖h
(m)‖.

Hence Mm(An) ⊂ B(H
(m)
n,p ). Let rm,m+1 : H

(m+1)
n,p → H

(m)
n,p be the projection map defined by

rm,m+1(h1, · · · , hm, hm+1) := (h1, · · · , hm)

for (h1, · · · , hm, hm+1) ∈ H
(m+1)
n,p . Define r∗m,m+1 : Mm(An) → Mm+1(An) by

(r∗m,m+1(T ))(v) := im,m+1(T (rm,m+1(v)))

for all T ∈ Mm(An) and v ∈ H
(m+1)
n,p , where im,m+1 : H

(m)
n,p → H

(m+1)
n,p is the canonical

inclusion defined by (h1, · · · , hm) 7→ (h1, · · · , hm, 0). This is equivalent to embed Mm(An)
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into Mm+1(An) by placing matrices at the top left corner and inserting 0 at the right column

and the bottom line. And ‖r∗m,m+1(M)‖ ≤ ‖M‖ for all M ∈ Mm(An).

Let M∞(An) be the inductive limit of {Mm(An)}∞m=1. Define H∞
n,p to be the ℓp-direct sum

of infinite copies of Hn with the ℓp-norm

‖{hi}
∞
i=1‖p :=

( ∞∑

i=1

‖hi‖
p
) 1

p

for {hi}∞i=1 ∈ H∞
n,p. Then H∞

n,p
∼= ℓp(N,Hn) and all Mm(An) can be considered as subalgebras

of B(H∞
n,p).

Denote by An ⊗alg Kp the algebraic tensor product of An and Kp. Naturally An ⊗alg Kp

acts on H∞
n,p and An ⊗alg Kp ⊂ B(H∞

n,p). Let An ⊗p Kp := An ⊗alg Kp
B(H∞

n,p). It follows that

An ⊗p Kp
∼= M∞(An).

For a function h ∈ An ⊗p Kp
∼= C0(Vn,Cliff(Wn)⊗p Kp), the support of h is defined to be

Supp(h) = {v ∈ Vn | h(v) 6= 0} ⊂ Vn.

Let
∞∏

n=1
An ⊗p Kp be the Banach algebra direct product, i.e., the algebra of all bounded

sequences (h1, · · · , hn, · · · ) with hn ∈ An ⊗p Kp for all n ∈ N, and let
∞⊕

n=1
An ⊗p Kp be the

ideal of
∞∏
n=1

An ⊗p Kp generated by those sequences (h1, · · · , hn, · · · ) such that lim
n→∞

‖hn‖ = 0.

Denote the quotient algebra as

Q((An ⊗p Kp)n∈N) :=

∞∏
n=1

An ⊗p Kp

∞⊕
n=1

An ⊗p Kp

.

Take a countable dense subset Zd ⊂ Pd(X) for each d ≥ 0 in such a way that Zd ⊂ Zd′

whenever d < d′.

Denote by #A the number of elements in a set A.

Definition 3.1 For each d ≥ 0, define

C
p[Pd(X),Q((An ⊗p Kp)n∈N)]

to be the set of all bounded functions

T : Zd × Zd → Q((An ⊗p Kp)n∈N)

such that

(1) for any bounded subset B ⊂ X, the set

{(x, y) ∈ B ×B ∩ Z × Z | T (x, y) 6= 0}

is finite;
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(2) there exists L > 0 such that

#{y ∈ Z | T (x, y) 6= 0} < L, #{y ∈ Z | T (y, x) 6= 0} < L

for all x ∈ Z;

(3) there exists R ≥ 0 such that T (x, y) = 0 whenever d(x, y) > R for x, y ∈ Z; (The least

such R is called the propagation of T.)

(4) there exists r > 0 such that, for all x, y ∈ Zd, T (x, y) is of the form

T (x, y) = [(h1, · · · , hn, · · · )] ∈ Q((An ⊗p Kp)n∈N)

where hn ∈ An ⊗p Kp
∼= C0(Vn,Cliff(Wn)⊗p Kp) such that

Supp(hn) ⊂ BallVn
(f(x), r)

for n ∈ N large enough such that f(x) ∈ Vn.

The algebraic structure for Cp[Pd(X),Q((An ⊗p Kp)n∈N)] is defined by regarding elements

T as Zd × Zd-matrices. Let

E =
{ ∑

x∈Zd

ax[x]
∣∣∣ ax ∈ Q((An ⊗p Kp)n∈N),

∑

x∈Zd

‖ax‖
p converges

}
.

Then E is a Lp-X-module over Q((An ⊗p Kp)n∈N):

( ∑

x∈Zd

ax[x]
)
a =

∑

x∈Zd

axa[x]

for any a ∈ Q((An ⊗p Kp)n∈N). The algebra Cp[Pd(X),Q((An ⊗p Kp)n∈N)] acts on E by the

formula

T
( ∑

x∈Zd

ax[x]
)
=

∑

x∈Zd

( ∑

y∈Zd

T (x, y)ay

)
[x]

for T ∈ Cp[Pd(X),Q((An ⊗p Kp)n∈N)] and
∑

x∈Zd

ax[x] ∈ E. Note that T is a module homomor-

phism. Let B(E) be the Banach algebra of all module homomorphisms from E to E.

Definition 3.2 The twisted ℓp-Roe algebra Bp(Pd(X),Q((An ⊗p Kp)n∈N)) is defined to

be the norm completion of Cp[Pd(X),Q((An ⊗p Kp)n∈N)] in B(E).

Definition 3.3 For each d ≥ 0, define

C
p
L[Pd(X),Q((An ⊗p Kp)n∈N)]

to be the algebra of all bounded, uniformly norm-continuous functions

g : [0,∞) → C
p[Pd(X),Q((An ⊗p Kp)n∈N)]

such that
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(1) for any bounded subset B ⊂ X, the set

{(x, y) ∈ B ×B ∩ Z × Z | (g(t))(x, y) 6= 0}

is finite for any t ∈ [0,∞);

(2) there exists L > 0 such that

#{y ∈ Z | (g(t))(x, y) 6= 0} < L, #{y ∈ Z | (g(t))(y, x) 6= 0} < L

for any t ∈ [0,∞) and for all x ∈ Z;

(3) there exists a bounded function R : R+ → R+ with lim
t→∞

R(t) = 0 such that (g(t))(x, y) =

0 whenever d(x, y) > R(t) for x, y ∈ Z;

(4) there exists r > 0 such that, for all t ∈ [0,∞) and x, y ∈ Zd, if (g(t))(x, y) is of the form

(g(t))(x, y) = [(h1, · · · , hn, · · · )] ∈ Q((An ⊗p Kp)n∈N)

with hn ∈ An ⊗p Kp
∼= C0(Vn,Cliff(Wn)⊗p Kp), then

Supp(hn) ⊂ BallVn
(f(x), r)

for all n ∈ N large enough such that f(x) ∈ Vn.

Definition 3.4 The twisted ℓp-localization algebra Bp
L(Pd(X),Q((An ⊗p Kp)n∈N)) is de-

fined to be the norm completion of C
p
L[Pd(X),Q((An ⊗p Kp)n∈N)] with respect to the norm

‖g‖∞ = sup
t∈[0,∞)

‖g(t)‖, where the norm ‖g(t)‖ is the norm in Bp(Pd(X),Q((An ⊗p Kp)n∈N)).

The evaluation homomorphism eA fromBp
L(Pd(X),Q((An⊗pKp)n∈N)) toB

p(Pd(X),Q((An⊗p

Kp)n∈N)) defined by eA(g) = g(0) induces a homomorphism on K-theory:

eA∗ : lim
d→∞

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))) → lim

d→∞
K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))).

3.2 Uniformly almost flat Bott generators

In this subsection, we shall recall some basic facts of uniformly almost flat bundles.

For any n ∈ N, x ∈ Vn and r > 0, define a function

f (n)
x,r : Vn →Wn ⊂ Cliff(Wn)

by the formula

f (n)
x,r (v) = φr(‖v − x‖)ψ

( v − x

‖v − x‖

)

where ψ : S
( ⋃
n∈N

Vn
)
→ S

( ⋃
n∈N

Wn

)
is the uniformly continuous function as in the definition

of Property (H) for V , and the function

φr : [0,∞) → [0,∞)
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is defined by

φr(t) =





0, if 0 ≤ t ≤
r

2
;

2t

r
− 1, if

r

2
≤ t ≤ r;

1, if t ≥ r.

The following result describes a certain “uniform almost flatness” of the functions

{f
(n)
x,r }n∈N,x∈Vn,r>0.

Lemma 3.1 For any R > 0, ε > 0, there exists r > 0 large enough such that the family

of functions {f
(n)
x,r }n∈N,x∈Vn,r>0 constructed above satisfy the following condition:

‖x− y‖ < R⇒ sup
v∈Vn

‖f (n)
x,r (v) − f (n)

y,r (v)‖ < ε

for all x, y ∈ Vn, n ∈ N.

Proof For given R > 0, ε > 0, take r large enough, say, r > 10R
ε

. Then the result follows

from the uniform continuity of ψ from Property (H) of V and elementary calculations.

Note that f
(n)
x,r ∈ Cb(Vn,Cliff(Wn)), the Banach algebra of all bounded continuous functions

from Vn to Cliff(Wn), such that

(f (n)
x,r )

2 − 1 ∈ An = C0(Vn,Cliff(Wn)).

The invertible element

[f (n)
x,r ] ∈ Cb(Vn,Cliff(Wn))/C0(Vn,Cliff(Wn))

defines an element in K1(Cb(Vn,Cliff(Wn))/C0(Vn,Cliff(Wn))). With the help of the index

map

∂ : K1(Cb(Vn,Cliff(Wn))/C0(Vn,Cliff(Wn))) → K0(C0(Vn,Cliff(Wn))),

we obtain an element

∂([f (n)
x,r ]) ∈ K0(C0(Vn,Cliff(Wn))) ∼= Z,

where recall that we assume that all the subspaces Vn are of even dimensional. It follows from

the construction of f
(n)
x,r that, for every x ∈ Vn and r > 0, the element ∂([f

(n)
x,r ]) is nothing but

the Bott generator of K0(C0(Vn,Cliff(Wn))).

The element ∂([f
(n)
x,r ]) can be expressed explicitly as follows. Let

Wx,r =

(
1 f

(n)
x,r

0 1

)(
1 0

f
(n)
x,r 1

)(
1 f

(n)
x,r

0 1

)(
0 −1
1 0

)
,

b(n)x,r =Wx,r

(
1 0
0 0

)
W−1

x,r ,

b0 =

(
1 0
0 0

)
.
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Then both b
(0)
x,r and b0 are idempotents in M2(A+

n ), where A
+
n is the Banach algebra unitization

of An. It is easy to check that

b(n)x,r − b0 ∈ Cc(Vn,Cliff(Wn))⊗M2(C),

the algebra of 2× 2 matrices of compactly supported continuous functions, with

Supp(b(n)x,r − b0) ⊂ BallVn
(f(x), r) := {v ∈ Vn | ‖v − x‖ ≤ r},

where for a matrix a =

(
a11 a12
a21 a22

)
of functions on Vn we define the support of a by

Supp(a) =
2⋃

i,j=1

Supp(ai,j).

Now we have the explicit expression

∂([f (n)
x,r ]) = [f (n)

x,r ]− [b0] ∈ K0(An).

Lemma 3.2 (Uniform almost flatness of the Bott generators (cf. [13])) The family of

idempotents {b
(n)
x,r}n∈N,x∈Vn,r>0 in M2(A

+
n ) = C0(Vn,Cliff(Wn))

+ ⊗M2(C) constructed above

are uniformly almost flat in the following sense : For any R > 0 and ε > 0, there exists r > 0

large enough such that, for any n ∈ N and any x, y ∈ Vn, we have

‖x− y‖ < R ⇒ sup
v∈Vn

‖b(n)x,r(v)− b(n)y,r (v)‖Cliff(Wn)⊗M2(C) < ε.

Proof Straightforward from Lemma 3.1.

It would be convenient to introduce the following notion.

Definition 3.5 For R > 0, ε > 0, r > 0, a family of idempotents {b
(n)
x }n∈N,x∈Vn

in

M2(A
+
n ) = C0(Vn,Cliff(Wn))

+ ⊗M2(C),

n ∈ N, is said to be (R, ε; r)-flat if

(1) for any x, y ∈ Vn, n ∈ N with ‖x− y‖ < R, we have

sup
v∈Vn

‖b(n)x (v)− b(n)y (v)‖Cliff(Wn)⊗M2(C) < ε;

(2) b
(n)
x − b0 ∈ Cc(Vn,Cliff(Wn))⊗M2(C) and

Supp(b(n)x − b0) ⊂ BallVn
(f(x), r) := {v ∈ Vn | ‖v − x‖ ≤ r}.

3.3 Construction of the Bott map β

In this subsection, we shall use the uniformly almost flat Bott generators for K0(An) con-

structed in the above subsection to construct a Bott map

β : K∗(B
p(Pd(X))) → K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))).
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Definition 3.6 For each d ≥ 0, let Zd be a countable dense subset of Pd(X). Define

Cp[Pd(X)] to be the set of all bounded functions

T : Zd × Zd → Kp

such that

(1) for any bounded subset B ⊂ Pd(X), the set

{(x, y) ∈ B ×B ∩ Zd × Zd | T (x, y) 6= 0}

is finite;

(2) there exists L > 0 such that

#{y ∈ Zd | T (x, y) 6= 0} < L, #{y ∈ Zd | T (y, x) 6= 0} < L

for all x ∈ Zd;

(3) there exists R ≥ 0 such that T (x, y) = 0 whenever d(x, y) > R for x, y ∈ Zd.

The product structure on Cp[Pd(X)] is defined by

(T1T2)(x, y) =
∑

z∈Zd

T1(x, z)T2(z, y).

The algebra Cp[Pd(X)] acts on ℓp(Zd, ℓ
p). The operator norm completion of Cp[Pd(X)] with

respect to this action is isomorphic to Bp(Pd(X)) when X has bounded geometry.

Note that Bp(Pd(X)) is stable in the sense that

Bp(Pd(X)) ∼= Bp(Pd(X))⊗Mk(C)

for all natural number k. Indeed, since Mk(C) is finite dimensional, the ℓp-tensor product is

equivalent to the canonical tensor product. Notice that Bp(Pd(X))⊗p Mk(C) has a canonical

faithful representation on ℓp(Z, ℓp)⊗pC
k ∼= ℓp(Z, ℓp⊗pC

k) ∼= ℓp(Z, ℓp). Since K(ℓp)⊗Mk(C) ∼=

K(ℓp⊗Ck) ∼= K(ℓp), one has that Bp(Pd(X)) ∼= Bp(Pd(X))⊗pMk(C) by definition. Thus, any

element inK0(B
p(Pd(X))) can be expressed as a difference of theK0-classes of two idempotents

in Bp(Pd(X)). To define the Bott map

β : K∗(B
p(Pd(X))) → K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))),

it suffices to specify the value β([P ]) in K∗(B
p(Pd(X),Q((An⊗pKp)n∈N))) for any idempotent

P ∈ Bp(Pd(X)).

Let P ∈ Bp(Pd(X)) be an idempotent. For any 0 < ε1 < 1
100 , take an element Q ∈

C
p[Pd(X)] such that

‖P −Q‖ <
ε1
4
‖P‖.

Then ‖Q − Q2‖ < ε1, and there is Rε1 > 0 such that Q(x, y) = 0 whenever d(x, y) > Rε1 for

x, y ∈ Zd.
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For any ε2 > 0, take by Lemma 3.2 a family of (Rε1 , ε2; r)-flat idempotents {b
(n)
v }n∈N,x∈Vn

in M2(A+
n ), n ∈ N, for a sufficiently large r > 0, such that

Supp(b(n)v − b0) ⊂ BallVn
(f(x), r).

Denote

Q((M2(A
+
n )⊗p Kp)n∈N) :=

∞∏
n=1

A+
n ⊗M2(C)⊗p Kp

∞⊕
n=1

A+
n ⊗M2(C)⊗p Kp

,

Q((M2(An)⊗p Kp)n∈N) :=

∞∏
n=1

An ⊗M2(C)⊗p Kp

∞⊕
n=1

An ⊗M2(C)⊗p Kp

.

Define

Q̃, Q̃0 : Zd × Zd → Q((M2(A
+
n )⊗p Kp)n∈N)

by the formula

Q̃(x, y) = [(b
(1)
f(x) ⊗p Q(x, y), · · · , b

(n)
f(x) ⊗p Q(x, y), · · · )],

Q̃0(x, y) = [(b0 ⊗p Q(x, y), · · · , b0 ⊗p Q(x, y), · · · )],

respectively, for all (x, y) ∈ Zd × Zd, where b
(n)
f(x) is well defined for n large enough such that

f(x) ∈ Vn, and b0 =

(
1 0
0 0

)
. Then

Q̃, Q̃0 ∈ C
p[Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N)]

and

Q̃− Q̃0 ∈ C
p[Pd(X),Q((M2(An)⊗p Kp)n∈N)].

Since X has bounded geometry, by the uniform almost flatness of the Bott generators

(Lemma 3.2), we can choose ε1 and then ε2 small enough to obtain Q̃, Q̃0 as constructed above

such that ‖Q̃2 − Q̃‖ < 1
5 and ‖Q̃2

0 − Q̃0‖ <
1
5 .

It follows that the spectrum of either Q̃ or Q̃0 is contained in disjoint neighborhoods S0 of

0 and S1 of 1 in the complex plane. Let χ : S0 ⊔ S1 → C be a continuous function such that

χ(S0) = {0}, χ(S1) = {1}. Define Θ = χ(Q̃) and Θ0 = χ(Q̃0) by functional calculus. Then Θ

and Θ0 are idempotents in the Banach algebra

Bp(Pd(X),Q((M2(A
+
n )⊗p Kp)n∈N))

with

Θ−Θ0 ∈ Bp(Pd(X),Q((M2(An)⊗p Kp)n∈N)).
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Note that Bp(Pd(X),Q((M2(An)⊗p Kp)n∈N)) is a closed two-sided ideal of

Bp(Pd(X),Q((M2(A
+
n )⊗p Kp)n∈N)).

At this point we need to recall the difference construction in K-theory of Banach algebras

introduced by Kasparov-Yu [6]. Let J be a closed two-sided ideal of a Banach algebra B. Let

p, q ∈ B be idempotents such that p − q ∈ J . Then a difference element D(p, q) ∈ K0(J)

associated to the pair p, q is defined as follows. Let

Z(p, q) =




q 0 1− q 0
1− q 0 0 q
0 0 q 1− q
0 1 0 0


 ∈ M4(B

+).

We have

(Z(p, q))−1 =




q 1− q 0 0
0 0 0 1

1− q 0 q 0
0 q 1− q 0


 ∈ M4(B

+).

Define

D0(p, q) = (Z(p, q))−1




p 0 0 0
0 1− q 0 0
0 0 0 0
0 0 0 0


Z(p, q).

Let

p1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Then D0(p, q) ∈ M4(J
+) and D0(p, q) ≡ p1 modulo M4(J). We define the difference element

D(p, q) := [D0(p, q)]− [p1]

in K0(J).

Now, for any idempotent P ∈ Bp(Pd(X)) representing an element [P ] in K0(B
p(Pd(X))),

we define

β([P ]) = D(Θ,Θ0) ∈ K0(B
p(Pd(X),Q((An ⊗p Kp)n∈N))).

The correspondence [P ] → β([P ]) extends to a homomorphism, the Bott map,

β : K0(B
p(Pd(X))) → K0(B

p(Pd(X),Q((An ⊗p Kp)n∈N))).

By suspension, we similarly define the Bott map for K1,

β : K1(B
p(Pd(X))) → K1(B

p(Pd(X),Q((An ⊗p Kp)n∈N))).
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3.4 The Bott map βL for ℓp-localization algebras

In this subsection, we shall construct a Bott map βL for the K-theory of ℓp-localization

algebras:

βL : K∗(B
p
L(Pd(X))) → K∗(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

Definition 3.7 For each d ≥ 0, let Zd be a countable dense subset of Pd(X). Define

C
p
L[Pd(X)] to be the algebra of all bounded, uniformly norm-continuous functions

g : [0,∞) → C
p[Pd(X)]

such that

(1) for any bounded subset B ⊂ Pd(X), the set

{(x, y) ∈ B ×B ∩ Zd × Zd | (g(t))(x, y) 6= 0}

is finite for all t ∈ [0,∞);

(2) there exists L > 0 such that

#{y ∈ Zd | (g(t))(x, y) 6= 0} < L, #{y ∈ Zd | (g(t))(y, x) 6= 0} < L

for all t ∈ [0,∞) and x ∈ Zd;

(3) there exists a bounded function R : [0,∞) → [0,∞) with lim
t→∞

R(t) = 0 such that (g(t))

(x, y) = 0 whenever d(x, y) > R(t).

The ℓp-localization algebra Bp
L(Pd(X)) is isomorphic to the norm completion of Cp

L[Pd(X)]

under the norm

‖g‖∞ = sup
t∈[0,∞)

‖g(t)‖

when X has bounded geometry. Note that Bp
L(Pd(X)) is stable in the sense that

Bp
L(Pd(X)) ∼= Bp

L(Pd(X))⊗Mk(C)

for all natural number k. Hence, any element inK0(B
p
L(Pd(X))) can be expressed as a difference

of the K0-classes of two idempotents in Bp
L(Pd(X)). To define the Bott map

βL : K0(B
p
L(Pd(X))) → K0(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))),

we need to specify the value βL([P ]) in

K0(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N)))

for any idempotent g ∈ Bp
L(Pd(X)) representing an element [g] ∈ K0(B

p
L(Pd(X))).

Let g ∈ Bp
L(Pd(X)) be an idempotent. For any 0 < ε1 <

1
100 , take an element h ∈ C

p
L[Pd(X)]

such that

‖g − h‖∞ <
ε1
4
‖g‖∞.
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Then ‖h−h2‖ < ε1, and there is a bounded function Rε1(t) > 0 with lim
t→∞

Rε1(t) = 0 such that

(h(t))(x, y) = 0 whenever d(x, y) > Rε1(t) for every t and all x, y ∈ Zd. Let R̃ε1 = sup
t∈R+

R(t).

For any ε2 > 0, take by Lemma 3.2 a family of (R̃ε1 , ε2; r)-flat idempotents {b
(n)
v }n∈N,x∈Vn

in

M2(A+
n ) for a sufficiently large r > 0. Define

h̃, h̃0 : [0,∞) → C
p[Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N)]

by the formulas

(h̃(t))(x, y) = [(b
(1)
f(x) ⊗p (h(t))(x, y), · · · , b

(n)
f(x) ⊗p (h(t))(x, y), · · · )],

(h̃0(t))(x, y) = [(b0 ⊗p (h(t))(x, y), · · · , b0 ⊗p (h(t))(x, y), · · · )]

for all t ∈ [0,∞) and x, y ∈ Zd, where b0 =

(
1 0
0 0

)
. Then we have

h̃, h̃0 ∈ C
p
L[Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N)]

and

h̃− h̃0 ∈ C
p
L[Pd(X),Q((M2(An)⊗p Kp)n∈N)].

Since X has bounded geometry, by the uniform almost flatness of the Bott generators,

we can choose ε1 and then ε2 small enough to obtain h̃, h̃0, as constructed above, such that

‖h̃2 − h̃‖∞ < 1
5 and ‖h̃20 − h̃0‖ <

1
5 . The spectrum of either h̃ or h̃0 is contained in disjoint

neighborhoods S0 of 0 and S1 of 1 in the complex plane. Let χ : S0 ⊔ S1 → C be a continuous

function such that χ(S0) = {0}, χ(S1) = {1}. Let η = χ(h̃) and η0 = χ(h̃0). Then η and η0

are idempotents in

Bp
L(Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N))

with

η − η0 ∈ Bp
L(Pd(X),Q((M2(An)⊗p Kp)n∈N)).

Thanks to the difference construction, we define

βL([g]) = D(η, η0) ∈ K0(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

The correspondence [g] → βL([g]) extends to a homomorphism, the Bott map,

βL : K0(B
p
L(Pd(X))) → K0(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

The case for K1 can be dealt with by suspension. Thus, we obtain the Bott map βL,

βL : K∗(B
p
L(Pd(X))) → K∗(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

It follows from the constructions of β and βL, we have the following commuting diagram

K∗(B
p
L(Pd(X)))

βL //

e∗

��

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N)))

eA∗
��

K∗(B
p(Pd(X)))

β // K∗(B
p(Pd(X),Q((An ⊗p Kp)n∈N))).
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4 Isomorphism for Twisted Algebras

In this section, we shall prove the following result.

Theorem 4.1 Let X be a discrete metric space with bounded geometry which admits a

coarse embedding into a Banach space with Property (H). The evaluation map

eA∗ : lim
d→∞

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))) → lim

d→∞
K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N)))

is an isomorphism.

The proof proceeds by decomposing the twisted algebras into various smaller ideals or

subalgebras and applying a Mayer-Vietoris sequence argument. Let X be a discrete metric

space with bounded geometry which admits a coarse embedding f : X → V into a Banach

space V with Property (H). To begin with, we shall discuss ideals of the twisted algebras

supported on open subsets of V .

Definition 4.1 Let O ⊂ V be an open subset of V . For each d ≥ 0, define

C
p[Pd(X),Q((An ⊗p Kp)n∈N)]O

to be the subalgebra of Cp[Pd(X),Q((An ⊗p Kp)n∈N)] generated by the elements

T ∈ C
p[Pd(X),Q((An ⊗p Kp)n∈N)]

for which

Supp((T (x, y))(n)) ⊂ O ∩ Vn

for all n ∈ N, x, y ∈ Zd, where we denote

T (x, y) = [((T (x, y))(1), · · · , (T (x, y))(n), · · · )] ∈ Q((An ⊗p Kp)n∈N).

Define

Bp(Pd(X),Q((An ⊗p Kp)n∈N))O

to be the norm closure of Cp[Pd(X),Q((An ⊗p Kp)n∈N)]O in Bp(Pd(X),Q((An ⊗p Kp)n∈N)).

Similarly, define

C
p
L[Pd(X),Q((An ⊗p Kp)n∈N)]O

to be the subalgebra of C
p
L[Pd(X),Q((An ⊗p Kp)n∈N)] generated by those functions

g : [0,∞) → C
p[Pd(X),Q((An ⊗p Kp)n∈N)]

such that g(t) ∈ Cp[Pd(X),Q((An ⊗p Kp)n∈N)]O for all t ∈ [0,∞). Define

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))O

to be the completion of C
p
L[Pd(X),Q((An ⊗p Kp)n∈N)]O in Bp

L(Pd(X),Q((An ⊗p Kp)n∈N)).
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It is easy to see that

Bp(Pd(X),Q((An ⊗p Kp)n∈N))O

is an ideal of Bp(Pd(X),Q((An ⊗p Kp)n∈N)), and B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))O is an ideal

of

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N)).

There is also an evaluation map

eA : Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))O → Bp(Pd(X),Q((An ⊗p Kp)n∈N))O

given by eA(g) = g(0).

Definition 4.2 (cf. [1]) Let Γ ⊂ X and r > 0. An open subset O ⊂ V is said to be

(Γ, r)-separate if

(1) O =
⊔
γ∈Γ

Oγ , where Oγ ⊂ V such that Oγ ∩Oγ′ = ∅ whenever γ 6= γ′.

(2) Oγ ⊂ BallVn
(f(x), r) for all γ ∈ Γ.

Lemma 4.1 Suppose Γ ⊂ X and r > 0. Then for any (Γ, r)-separate open subset O of V ,

the evaluation homomorphism induced on K-theory

eA∗ : lim
d→∞

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))O) → lim

d→∞
K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))O)

is an isomorphism.

We need some preparations before we can prove Lemma 4.1. For any d ≥ 0, let (Yγ)γ∈Γ be

a family of closed subsets of Pd(X) indexed by Γ such that

(1) γ ∈ Yγ for all γ ∈ Γ,

(2) the family (Yγ)γ∈Γ is uniformly bounded in the sense that there exists M > 0 such that

diameter(Yγ) ≤M

for all γ ∈ Γ.

In particular, we will mainly consider the following three cases of (Yγ)γ∈Γ:

(1) Yγ = BallPd(X)(γ, S) := {x ∈ Pd(X) | d(x, γ) ≤ S}, with respect to a common bound

S > 0 for all γ ∈ Γ;

(2) Yγ = ∆γ , a simplex in Pd(X) with γ ∈ ∆γ for each γ ∈ Γ;

(3) Yγ = {γ} for each γ ∈ Γ.

Let O =
⊔
γ∈Γ

Oγ be a (Γ, r)-separate open subset of V . For each γ ∈ Γ, let

(Q((An ⊗p Kp)n∈N))Oγ

be the subalgebra of Q((An⊗pKp)n∈N) generated by those equivalence classes [(h1, · · · , hn, · · · )]

such that the functions hn ∈ An ⊗p Kp
∼= C0(Vn,Cliff(Wn)⊗p Kp) satisfy

Supp(hn) ⊂ Oγ ∩ Vn
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for all n ∈ N. We define

A∗((Yγ)γ∈Γ) =
∏

γ∈Γ

(Bp(Yγ)⊗ (Q((An ⊗p Kp)n∈N))Oγ
)

=
{
(Tγ)γ∈Γ |Tγ ∈ Bp(Yγ)⊗ (Q((An ⊗p Kp)n∈N))Oγ

, sup
γ∈Γ

‖bγ‖ <∞
}
,

where Bp(Yγ) is the ℓ
p-Roe algebra of Yγ . Similarly we define A∗

L((Yγ)γ∈Γ) to be the subalgebra

of {
(bγ)γ∈Γ | bγ ∈ Bp

L(Yγ)⊗ (Q((An ⊗p Kp)n∈N))Oγ
, sup

γ∈Γ
‖bγ‖ <∞

}

generated by elements (bγ)γ∈Γ such that

(1) the function

(bγ)γ∈Γ : [0,∞) →
∏

γ∈Γ

(Bp(Yγ)⊗ (Q((An ⊗p Kp)n∈N))Oγ
)

is uniformly norm-continuous in t ∈ [0,∞);

(2) there exists a bounded function R(t) > 0 on [0,∞) with lim
t→∞

R(t) = 0 such that

(bγ(t))(x, y) = 0

whenever d(x, y) > R(t) for all γ ∈ Γ, x, y ∈ Zd and t ∈ [0,∞).

For any S > 0, let ∆γ(S) be the simplex with vertices {x ∈ X | d(x, γ) ≤ S} in Pd(X) for

d > S.

Lemma 4.2 Let O =
⊔
γ∈Γ

Oγ be a (Γ, r)-separate open subset of V . Then

(1) Bp(Pd(X),Q((An ⊗p Kp)n∈N))O ∼= lim
S→∞

A∗((BallPd(X)(γ, S))γ∈Γ);

(2) Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))O ∼= lim

S→∞
A∗

L((BallPd(X)(γ, S))γ∈Γ);

(3) lim
d→∞

Bp(Pd(X),Q((An ⊗p Kp)n∈N))O ∼= lim
S→∞

A∗((∆γ(S))γ∈Γ);

(4) lim
d→∞

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))O ∼= lim

S→∞
A∗

L((∆γ(S))γ∈Γ).

Proof Similar to the arguments in [18, Section 6].

Now we turn to recall the notion of strong Lipschitz homotopy (cf. [18]).

Let (Xγ)γ∈Γ and (Yγ)γ∈Γ be two families of uniformly bounded closed subspaces of Pd(X)

for some d ≥ 0 with γ ∈ Xγ , γ ∈ Yγ for every γ ∈ Γ. A map g :
⊔
γ∈Γ

Xγ →
⊔
γ∈Γ

Yγ is said to be

Lipschitz if

(1) g(Xγ) ⊂ Yγ for each γ ∈ Γ;

(2) there exists a constant c, independent of γ ∈ Γ, such that

d(g(x), g(y)) ≤ cd(x, y)

for all x, y ∈ Xγ , γ ∈ Γ.
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Let g1, g2 be two Lipschitz maps from
⊔
γ∈Γ

Xγ to
⊔
γ∈Γ

Yγ . We say g1 is strongly Lipschitz

homotopy equivalent to g2 if there exists a continuous map

F : [0, 1]×
( ⊔

γ∈Γ

Xγ

)
→

⊔

γ∈Γ

Yγ

such that

(1) F (0, x) = g1(x), F (1, x) = g2(x) for all x ∈
⊔
γ∈Γ

Xγ ;

(2) there exists a constant c for which d(F (t, x), F (t, y)) ≤ cd(x, y) for all x, y ∈ Xγ , γ ∈ Γ,

and t ∈ [0, 1];

(3) F is equi-continuous in t, i.e., for any ε > 0 there exists δ > 0 such that d(F (t1, x), F (t2, x))

< ε for all x ∈
⊔
γ∈Γ

Xγ if |t1 − t2| < δ.

We say the family (Xγ)γ∈Γ is strongly Lipschitz homotopy equivalent to the family (Yγ)γ∈Γ

if there exist Lipschitz maps g1 :
⊔
γ∈Γ

Xγ →
⊔
γ∈Γ

Yγ and g2 :
⊔
γ∈Γ

Yγ →
⊔
γ∈Γ

Xγ such that g1g2 and

g2g1, respectively strongly Lipschitz homotopy equivalent to identity maps.

Define A∗
L,0((Yγ)γ∈Γ) to be the subalgebra of A∗

L((Yγ)γ∈Γ) consisting of elements (bγ)γ∈Γ

satisfying bγ(0) = 0 for all γ ∈ Γ.

Lemma 4.3 (cf. [18]) If (Xγ)γ∈Γ is strongly Lipschitz homotopy equivalent to (Yγ)γ∈Γ,

then K∗(A
∗
L,0((Xγ)γ∈Γ)) is isomorphic to K∗(A

∗
L,0((Yγ)γ∈Γ)).

Let e be the evaluation homomorphism from A∗
L((Xγ)γ∈Γ) to A

∗((Xγ)γ∈Γ) given by

(bγ)γ∈Γ 7→ (bγ(0))γ∈Γ.

Lemma 4.4 (cf. [18]) Let O =
⊔
γ∈Γ

Oγ be a (Γ, r)-separate open subset of V as above, and

let d ≥ 0. If (∆γ)γ∈Γ is a family of simplices in Pd(X) such that γ ∈ ∆γ for all γ ∈ Γ, then

the induces map

e∗ : K∗(A
∗
L((∆γ)γ∈Γ)) → K∗(A

∗((∆γ)γ∈Γ))

is an isomorphism.

Proof Note that (∆γ)γ∈Γ is strongly Lipschitz homotopy equivalent to (γ)γ∈Γ. By an

argument of Eilenberg swindle, we have K∗(A
∗
L,0((γ)γ∈Γ)) = 0. Consequently, Lemma 4.4

follows from Lemma 4.3 and the six term exact sequence of Banach algebra K-theory.

Proof of Lemma 4.1 By Lemma 4.2, we have the following commuting diagram

lim
d→∞

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))O

eA //

∼=

��

lim
d→∞

Bp(Pd(X),Q((An ⊗p Kp)n∈N))O

∼=

��
lim

S→∞
A∗

L((∆γ(S))γ∈Γ)
e // lim

S→∞
A∗((∆γ(S))γ∈Γ),
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which induces the following commuting diagram at K-theory level

lim
d→∞

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N))O)

eA
∗ //

∼=

��

lim
d→∞

K∗(B
p(Pd(X),Q((An ⊗p Kp)n∈N))O)

∼=

��
lim

S→∞
K∗(A

∗
L((∆γ(S))γ∈Γ))

e∗ // lim
S→∞

K∗(A
∗((∆γ(S))γ∈Γ)).

Now Lemma 4.1 follows from Lemma 4.4 by using the above commuting diagram. This ends

the proof.

Lemma 4.5 Let N be a positive integer, and let Γ1, · · · ,ΓN be N mutually disjoint subsets

of X. For any r > 0, let

Or,j =
⋃

γ∈Γj

BallV (f(γ), r)

for each j ∈ {1, 2, · · · , N}. Then for any r0 > 0 and k ∈ {1, 2, · · · , N−1}, we have the following

equalities:

(1)

lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or,k

+ lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N))k−1⋃

j=1

Or,j

= lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N)) k⋃

j=1

Or,j

;

(2)

lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or,k

∩ lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N))k−1⋃

j=1

Or,j

= lim
r<r0,r→r0

Bp(Pd(X),Q((An ⊗p Kp)n∈N))
Or,k∩

( k−1⋃

j=1

Or,j

);

(3)

lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))Or,k

+ lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))k−1⋃

j=1

Or,j

= lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N)) k⋃

j=1

Or,j

;

(4)

lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))Or,k
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∩ lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))k−1⋃

j=1

Or,j

= lim
r<r0,r→r0

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))

Or,k∩
( k−1⋃

j=1

Or,j

).

Proof Similar to the proof of [18, Lemma 6.3].

We are now ready to give a proof to Theorem 4.1.

Proof of Theorem 4.1 For any r > 0, define

Or =
⋃

x∈X

BallV (f(x), r),

where f : X → V is the coarse embedding, and

BallV (f(x), r) := {v ∈ V | ‖v − f(x)‖ ≤ r}.

By definition, we have

Bp(Pd(X),Q((An ⊗p Kp)n∈N)) ∼= lim
r→∞

Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or
,

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N)) ∼= lim

r→∞
Bp

L(Pd(X),Q((An ⊗p Kp)n∈N))Or
.

For any d ≥ 0, if r < r′, then

Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or
⊂ Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or′

,

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))Or

⊂ Bp
L(Pd(X),Q((An ⊗p Kp)n∈N))Or′

.

Consequently, it suffices to show that, for each r0 > 0, the evaluation map

eA∗ : lim
d→∞

K∗

(
lim

r<r0,r→r0
Bp

L(Pd(X),Q((An ⊗p Kp)n∈N))Or

)

→ lim
d→∞

K∗

(
lim

r<r0,r→r0
Bp(Pd(X),Q((An ⊗p Kp)n∈N))Or

)

is an isomorphism.

Let r0 > 0. Since X has bounded geometry, there exists N > 0 such that #BallX(x, r0) < N

for all x ∈ X . It follows that there exists an integer N such that

(1) X =
N⊔
j=1

Γj for some subspaces Γj ⊂ X with Γj ∩ Γj′ = ∅ whenever γ 6= γ′;

(2) for each j ∈ {1, 2, · · · , N}, and for any distinct γ, γ′ ∈ Γj , we have

‖f(γ)− f(γj)‖ > 2r

in V .

For any 0 < r < r0 and each j ∈ {1, 2, · · · , N}, let

Or,j =
⋃

x∈Γj

BallV (f(x), r).
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Then Or =
N⋃
j=1

Or,j , and each Or,j or

Or,j ∩
( j−1⋃

i=1

Or,i

)

are (Γj , r)-separate for any j ∈ {1, 2, · · · , N}. Now, Theorem 4.1 follows from Lemma 4.5,

together with a Mayer-Vietoris sequence argument. This ends the proof.

5 Proof of the Main Result

In this final section, we shall complete the proof of Theorem 1.1. To do so, we need to

construct one more Bott map, β∞
L . Let Zd ⊂ Pd(X) is the countable dense subset for each

d ≥ 0 as before. Let
∞∏

n=1
Kp be the Banach algebra direct product of countably many copies of

Kp, and let
∞⊕
n=1

Kp be the ideal of
∞∏

n=1
Kp consists of those sequences (k1, · · · , kn, · · · ) such that

lim
n→∞

‖kn‖ = 0. Denote the quotient algebra as

Q((Kp)n∈N) :=

∞∏
n=1

Kp

∞⊕
n=1

Kp

.

Definition 5.1 For each d ≥ 0, define

C
p[Pd(X),Q((Kp)n∈N)]

to be the set of all bounded functions

T : Zd × Zd → Q((Kp)n∈N)

such that

(1) for any bounded subset B ⊂ Pd(X), the set

{(x, y) ∈ B ×B ∩ Zd × Zd | T (x, y) 6= 0}

is finite;

(2) there exists L > 0 such that

#{y ∈ Zd | T (x, y) 6= 0} < L, #{y ∈ Zd | T (y, x) 6= 0} < L

for all x ∈ Zd;

(3) there exists R ≥ 0 such that T (x, y) = 0 whenever d(x, y) > R for x, y ∈ Zd. (The least

such R is called the propagation of T.)
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The algebraic structure for C
p[Pd(X),Q((Kp)n∈N)] is defined by regarding elements T as

Zd × Zd-matrices. Let

E =
{ ∑

x∈Zd

ax[x]
∣∣∣ ax ∈ Q((Kp)n∈N),

∑

x∈Zd

‖ax‖
p converges

}
.

Then E is a Lp-X-module over Q((Kp)n∈N):

( ∑

x∈Zd

ax[x]
)
a =

∑

x∈Zd

axa[x]

for any a ∈ Q((Kp)n∈N). The algebra Cp[Pd(X),Q((Kp)n∈N)] acts on E by the formula

T
( ∑

x∈Zd

ax[x]
)
=

∑

x∈Zd

( ∑

y∈Zd

T (x, y)ay

)
[x]

for T ∈ Cp[Pd(X),Q((Kp)n∈N)] and
∑

x∈Zd

ax[x] ∈ E. Note that T is a module homomorphism.

Let B(E) be the Banach algebra of all module homomorphisms from E to E.

Definition 5.2 The Banach algebra Bp(Pd(X),Q((Kp)n∈N)) is defined to be the norm

completion of Cp[Pd(X),Q((Kp)n∈N)] in B(E).

Definition 5.3 For each d ≥ 0, define

C
p
L[Pd(X),Q((Kp)n∈N)]

to be the algebra of all bounded, uniformly norm-continuous functions

g : [0,∞) → C
p[Pd(X),Q((Kp)n∈N)]

such that

(1) for any bounded subset B ⊂ Pd(X), the set

{(x, y) ∈ B ×B ∩ Zd × Zd | (g(t))(x, y) 6= 0}

is finite for all t ∈ [0,∞);

(2) there exists L > 0 such that

#{y ∈ Zd | (g(t))(x, y) 6= 0} < L, #{y ∈ Zd | (g(t))(y, x) 6= 0} < L

for all t ∈ [0,∞) and x ∈ Zd;

(3) there exists a bounded function R : [0,∞) → [0,∞) with lim
t→∞

R(t) = 0 such that

(g(t))(x, y) = 0 whenever d(x, y) > R(t).

Definition 5.4 The ℓp-localization Banach algebra Bp
L(Pd(X),Q((Kp)n∈N)) is defined to

be the norm completion of C
p
L[Pd(X),Q((Kp)n∈N)] with respect to the norm

‖g‖∞ = sup
t∈[0,∞)

‖g(t)‖.
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We now define the Bott map

β∞
L : K∗(B

p
L(Pd(X),Q((Kp)n∈N))) → K∗(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

Note that Bp
L(Pd(X),Q((Kp)n∈N)) is also a stable Banach algebra. Let

g ∈ Bp
L(Pd(X),Q((Kp)n∈N))

be an idempotent. For any 0 < ε1 <
1

100 , take an element h ∈ C
p
L[Pd(X),Q((Kp)n∈N)] such

that

‖g − h‖∞ <
ε1
4
‖g‖∞.

Then ‖h−h2‖ < ε1, and there is a bounded function Rε1(t) > 0 with lim
t→∞

Rε1(t) = 0 such that

(h(t))(x, y) = 0 whenever d(x, y) > Rε1(t) for every t and all x, y ∈ Zd. Let R̃ε1 = sup
t∈[0,∞)

R(t).

For any ε2 > 0, take by Lemma 3.2 a family of (R̃ε1 , ε2; r)-flat idempotents {b
(n)
v }n∈N,x∈Vn

in

M2(A+
n ) for a sufficiently large r > 0. Define

h̃, h̃0 : [0,∞) → C
p[Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N)]

by the formulas

(h̃(t))(x, y) = [(b
(1)
f(x) ⊗p k

(1), · · · , b
(n)
f(x) ⊗p k

(n), · · · )],

(h̃0(t))(x, y) = [(b0 ⊗p k
(1), · · · , b0 ⊗p k

(n), · · · )]

for all t ∈ [0,∞) and x, y ∈ Zd, where we denote

(h(t))(x, y) = [(k(1), · · · , k(n), · · · )] ∈ Q((Kp)n∈N),

and recall that b0 =

(
1 0
0 0

)
. Then we have

h̃, h̃0 ∈ C
p
L[Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N)]

and

h̃− h̃0 ∈ C
p
L[Pd(X),Q((M2(An)⊗p Kp)n∈N)].

Since X has bounded geometry, by the uniform almost flatness of the Bott generators,

we can choose ε1 and then ε2 small enough to obtain h̃, h̃0, as constructed above, such that

‖h̃2 − h̃‖∞ < 1
5 and ‖h̃20 − h̃0‖ <

1
5 . The spectrum of either h̃ or h̃0 is contained in disjoint

neighborhoods S0 of 0 and S1 of 1 in the complex plane. Let χ : S0 ⊔ S1 → C be a continuous

function such that χ(S0) = {0}, χ(S1) = {1}. Let η = χ(h̃) and η0 = χ(h̃0). Then η and η0

are idempotents in

Bp
L(Pd(X),Q((M2(A

+
n )⊗p Kp)n∈N))



218 H. Wang and Q. Wang

with

η − η0 ∈ Bp
L(Pd(X),Q((M2(An)⊗p Kp)n∈N)).

Thanks to the difference construction, we define

β∞
L ([g]) = D(η, η0) ∈ K0(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

The correspondence [g] → β∞
L ([g]) extends to a homomorphism, the Bott map,

β∞
L : K0(B

p
L(Pd(X),Q((Kp)n∈N))) → K0(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

The case for K1 can be dealt with by suspension. Thus, we obtain the Bott map

β∞
L : K∗(B

p
L(Pd(X),Q((Kp)n∈N))) → K∗(B

p
L(Pd(X),Q((An ⊗p Kp)n∈N))).

Lemma 5.1 β∞
L is an isomorphism.

Proof Since X has bounded geometry, and the K-theory of Bp
L(Pd(X),Q((Kp)n∈N)) and

Bp
L(Pd(X),Q((An ⊗p Kp)n∈N)) has strong Lipschitz homotopy invariance, one can follow the

argument in [17, Theorem 3.2] to reduce the problem to proving β∞
L is an isomorphism when

Pd(X) is 0-dimensional. In this case, it suffices to show β∗ : K∗(Q((Kp)n∈N)) → K∗(Q((An ⊗p

Kp)n∈N)) is an isomorphism, which holds clearly by Bott periodicity theorem, see [1, 7]. This

ends the proof.

Furthermore, there exists a natural homomorphism

τ̃ :
∞∏

n=1

K∗(B
p
L(Pd(X))) → K∗(B

p
L(Pd(X),Q((Kp)n∈N)))

which induces a homomorphism

τ :

∞∏
n=1

K∗(B
p
L(Pd(X)))

∞⊕
n=1

K∗(B
p
L(Pd(X)))

→ K∗(B
p
L(Pd(X),Q((Kp)n∈N)))

Lemma 5.2 τ is an isomorphism.

Proof Note that both group

∞∏

n=1

K∗(B
p

L
(Pd(X)))

∞⊕

n=1

K∗(B
p

L
(Pd(X)))

and K∗(B
p
L(Pd(X),Q((Kp)n∈N))) satisfies

strong Lipschitz homotopy invariance and Mayer-Vietoris theorem by using a similar argument

with [17, Theorem 3.2]. If Pd(X) is a single point (equally speaking, if Pd(X) is 0-dimensional),

then τ is an isomorphism by definition. Then the general case follows from an argument of

strong Lipschitz homotopy invariance and Mayer-Vietoris sequence as in [17, Theorem 3.2].

Finally, we are ready to complete the proof of the main result of this paper.
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Proof of Theorem 1.1 Consider the commutative diagram

∞∏

n=1

K∗(B
p

L
(Pd(X)))

∞⊕

n=1

K∗(B
p

L
(Pd(X)))

τ // K∗(B
p
L(Pd(X),Q((Kp)n∈N)))

β∞

L

��
K∗(B

p
L(Pd(X)))

ζ

OO

βL //

e∗

��

K∗(B
p
L(Pd(X),Q((An ⊗p Kp)n∈N)))

eA
∗

��
K∗(B

p(Pd(X)))
β // K∗(B

p(Pd(X),Q((An ⊗p Kp)n∈N))),

where the map ζ is defined by the mapping x 7→ [(x, x, · · · , x, · · · )] via constant sequences.

Clearly ζ is injective. Passing to inductive limit as d→ ∞, Theorem 1.1 follows from Theorem

4.1 and Lemmas 5.1–5.2. This completes the proof.
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Avec un appendice d’Hervé Oyono-Oyono., J. Inst. Math. Jussieu., 6(3), 2007, 415–451.

[10] Liao, B. and Yu, G., K-theory of group Banach algebras and Banach property RD, 2017, arXiv: 1708.01982.

[11] Qiao, Y. and Roe, J., On the localization algebra of Guoliang Yu, Forum Math., 22(4), 2010, 657–665.

[12] Roe, J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math.

Soc., 104(497), 1993, x+90 pp.

[13] Shan, L. and Wang, Q., The coarse geometric Novikov conjecture for subspaces of non-positively curved
manifolds, J. Funct. Anal., 248(2), 2007, 448–471.



220 H. Wang and Q. Wang

[14] Shan, L. and Wang, Q., The Coarse Geometric ℓp-Novikov Conjecture for Subspaces of Non-positively
Curved Manifolds, J. Noncommut. Geom., 15(4), 2021, 1323–1354.

[15] Yu, G., Coarse Baum-Connes conjecture, K-theory, 9(3), 1995, 199–221.

[16] Yu, G., Baum-Connes conjecture and coarse geometry, K-theory, 9(3), 1995, 223–231.

[17] Yu, G., Localization algebras and the coarse Baum-Connes conjecture, K-theory, 11(4), 1997, 307–318.

[18] Yu, G., The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert
space, Invent. Math., 139(1), 2000, 201–240.

[19] Yu, G., Hyperbolic groups admit proper affine isometric actions on ℓp-spaces, Geom. Funct. Anal., 15(5),
2005, 1144–1151.

[20] Zhang, J. and Zhou, D., Lp Coarse Baum-Connes conjecture and K-theory for Lp Roe algebras, J. Non-

commut. Geom., 15(4), 2021, 1285–1322.


