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Abstract The authors introduce a notion of a weak graph map homotopy (they call it
M -homotopy), discuss its properties and applications. They prove that the weak graph
map homotopy equivalence between graphs coincides with the graph homotopy equivalence
defined by Yau et al in 2001. The difference between them is that the weak graph map
homotopy transformation is defined in terms of maps, while the graph homotopy transfor-
mation is defined by means of combinatorial operations. They discuss its advantages over
the graph homotopy transformation. As its applications, they investigate the mapping
class group of a graph and the 1-order MP -homotopy group of a pointed simple graph.
Moreover, they show that the 1-order MP -homotopy group of a pointed simple graph is
invariant up to the weak graph map homotopy equivalence.
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1 Introduction

Molecular spaces play an important role in digital topology for image processing, computer

graphics and pattern recognition etc (see [16]). And the topological interpretation of the induced

intersection graph from the molecular spaces are helpful to understand molecular spaces. So,

the homotopy theories of graphs have been constructed in a series of previous papers (see

for example, [1–2, 4–7, 10, 20]). In [4], Chen, Yau and Yeh have studied graph homotopy

equivalence based on contractible graph transformations introduced in [13–14]. Ivashchenko and

Yeh have showed that contractible graph transformations do not change the Euler characteristic

and the homology groups of graphs (see [13–17, 21]). In [8], Espinoza, Fras-Armenta and

Hernndez have had an application of contractible graph transformation to the computation of
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the persistent homology of the filtered Vietoris-Rips complex, which is an important tool of

topological data analysis. Moreover, Boulet, Fieux and Jouve have defined the s-homotopy for

graphs in [3] by introducing the notion of s-dismantlability, which is closely related to the graph

homotopy.

In order to deeply study the homotopy transformations of graphs, we introduce notions of

weak graph map (see Definition 2.1) and weak graph map homotopy (we call it M -homotopy)

for graphs (see Definition 2.2). The main results consist of Theorems 2.1–2.5, 3.1 and 4.3. The

idea comes from algebraic topology in which topological homotopy and homotopic invariants

are studied in [11]. It turns out that the M -homotopy equivalence between graphs coincides

with the graph homotopy equivalence defined by Yau et al. in [4] (see Theorem 3.1). The

difference between them is that the M -homotopy transformation is defined in terms of maps,

while the graph homotopy transformation in [4] is defined by means of combinatorial opera-

tions. One of advantages of M -homotopy transformation is that it reflects the transformation

process more accurately than the graph homotopy transformation in [4]. Based on the advan-

tage, we investigate some applications of M -homotopy transformation, including the mapping

class group of a graph and the 1-order MP -homotopy group of a pointed simple graph. Some

theorems in Sections 2 and 4 (see, Theorems 2.1–2.5, Corollary 2.2, Propositions 4.1–4.2, The-

orems 4.2–4.4) show advantages of the M -homotopy transformation over the graph homotopy

transformation. Moreover, we show that the M -homotopy equivalence has close relationships

with the s-homotopy type in [3], and that the 1-order MP -homotopy group of a pointed simple

graph and homology groups of a graph are invariant up to the M -homotopy equivalence (see

Theorem 4.3).

The rest of the paper is organized as follows. In Section 2, we introduce notions of weak

graph map and weak graph map homotopy (we call itM -homotopy) for graphs, study properties

of the M -homotopy. In Section 3, we discuss relations between the M -homotopy transformation

and other homotopy transformations on graphs. Section 4 gives applications of M -homotopy to

the mapping class group of a graph and the 1-order MP -homotopy group of a pointed simple

graph.

2 Weak Graph Map Homotopy

Let G = (V,E) be a simple graph, i.e., a graph without loops and multiple edges, where V

is the vertex set and E is the edge set. We always regard V as a finite set in present paper.

The edge set E is also called an adjacency relation. If u, v ∈ V are adjacent vertices, we just

write uv ∈ E. For a subset V ′ ⊂ V and for E′ = {uv ∈ E | u, v ∈ V ′}, the graph G′ = (V ′, E′)

is called the induced subgraph of G (see [19]).

Let G = (V,E) be a simple graph and for each vertex v ∈ G,

ANG(v) = {v′ ∈ G | v′v ∈ E} ∪ {v}.

Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. A mapping of the vertex sets

f : V1 → V2 is called a graph map if f(ANG1
(v)) ⊂ ANG2

(f(v)) for all v ∈ V1 (see [6]). G1 and
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G2 are called graph isomorphic if there are graph maps f : G1 → G2 and g : G2 → G1 such

that g ◦ f = 1G1
and f ◦ g = 1G2

, f is called a graph isomorphism between G1 and G2, and in

the case G1 = G2 = G, f is called an automorphism of the graph G. All automorphisms of G

form a group under composition of graph maps, which is denoted by Aut(G).

For our purpose, we review some notions firstly.

Two vertices u and v of a simple graph G = (V,E) are semi-adjacent if uv /∈ E and there is

a vertex w such that uw,wv ∈ E (see [9]). Notice that w is not necessarily unique. Let

SNG(v) = {v′ ∈ G | v′ is semi-adjacent to v}

and

SANG(v) = ANG(v) ∪ SNG(v).

Contractible graphs (see [4]) are defined inductively by gluing and deleting vertices and

edges as follows: (1) The graph of a single vertex is a contractible graph; (2) a graph is called a

contractible graph if it can be obtained from a contractible graph by a sequence of the following

graph operations:

(GO1) Deleting a vertex: A vertex v of a simple graph G can be deleted if LG(v) is a

contractible graph, where LG(v) is a subgraph of G induced by ANG(v) \ {v}.

(GO2) Gluing a vertex: If G′ is a contractible subgraph of G, then a vertex v not in G can

be glued to G to produce a new graph G′′ so that LG′′(v) is G′.

(GO3) Deleting an edge: An edge uv of G can be deleted if LG(u)∩LG(v) is a contractible

graph.

(GO4) Gluing an edge: For two non-adjacent vertices u and v of G, the edge uv can be

glued to G if LG(u) ∩ LG(v) is a contractible graph.

Two graphs are called graph homotopy equivalent (see [4]) if one can be obtained from

the other by a sequence of graph operations (GO1-GO4), which is called a graph homotopy

transformation. Then we introduce the notions of the weak graph map and the weak graph

map homotopy.

Definition 2.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. A map of the

vertex sets f : V1 → V2 is called a weak graph map denoted by f : G1 → G2 if it satisfies the

follows : For all v ∈ V1,

(i) if LG1
(v) is not a contractible graph, then f(ANG1

(v)) ⊂ ANG2
(f(v));

(ii) if LG1
(v) is a contractible graph, then f(ANG1

(v)) ⊂ SANG2
(f(v)).

It is easy to check that a graph map is a weak graph map. But the converse doesn’t hold.

For example, as shown in Figure 1, define r : G → G \ {a} by r(a) = b and r(v) = v for all

v 6= a. Then r is not a graph map though it is a weak graph map.

In addition, notice that the composite of weak graph maps does not need to be a weak

graph map. For example, as shown in Figure 2, let f : G1 → G2 be a weak graph map such

that f(a) = 2, f(b) = 4 and f(c) = 6, g : G2 → G2 be a weak graph map such that g(4) = 5

and g(i) = i for all i 6= 4. Then g ◦ f : G1 → G2 is not a weak graph map since b ∈ ANG1
(a)

and g ◦ f(b) = 5 /∈ SANG2
(2) = SANG2

(g ◦ f(a)).
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Figure 1 An example of a weak graph map but not a graph map

G1 G2

Figure 2 An example showing that the composite of two weak graph maps is not a weak graph map

In order to study the weak graph map homotopy, we need to recall the notion of the strong

product (see [12]) of two graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs.

The strong product of G1 and G2, denoted by G1 × G2, is defined as follows: The vertex set

V (G1 ×G2) is the Cartesian product V1 × V2, two vertices (u1, u2) and (v1, v2) are adjacent

in G1 × G2 if one of the following conditions is satisfied: (i) u1v1 ∈ E1 and u2 = v2; (ii)

u1 = v1 and u2v2 ∈ E2; (iii) u1v1 ∈ E1 and u2v2 ∈ E2 (see [12]), i.e., ANG1×G2
((v1, v2)) =

ANG1
(v1)×ANG2

(v2).

Let [0,m]Z denote a simple graph whose set of vertices is {0, 1, · · · ,m} and the set of edges

is {i(i+ 1) | i = 0, 1, · · · ,m− 1}.

Definition 2.2 Let G1 and G2 be two simple graphs and f, g : G1 → G2 be weak graph

maps. Suppose that there exists a simple graph [0,m]Z and a function F : G1 × [0,m]Z → G2

such that for all (v, t) ∈ G1 × [0,m]Z ,

(i) F (v, 0) = f(v) and F (v,m) = g(v) for all v ∈ G1;

(ii) if LG1
(v) is not a contractible graph, then F (ANG1×[0,m]Z ((v, t))) ⊂ ANG2

(F (v, t));

(iii) if LG1
(v) is a contractible graph, then F ((ANG1

(v)\{v})×AN[0,m]Z (t)) ⊂ SANG2
(F (v, t))

and F ({v} ×AN[0,m]Z (t)) ⊂ ANG2
(F (v, t)).

Then we say that F is a weak graph map homotopy (denoted by M -homotopy) between f and

g, and f and g are M -homotopic, denoted by f ≃M g.

We say that a graphG isM -contractible if the identity map 1G isM -homotopic to a constant

map c : G → G.
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It is not hard to prove that the M -homotopy relation is an equivalence relation.

Definition 2.3 Let (G1, G
′
1) be a pair of simple graphs (i.e., G′

1 is an induced subgraph of

G1), G2 be a simple graph and f, g : G1 → G2 be two weak graph maps. Suppose that there

exists an M -homotopy F : G1 × [0,m]Z → G2 between f and g such that for all t ∈ [0,m]Z ,

Ft(v) = f(v) = g(v) for all v ∈ G′
1. Then we call F an M -homotopy relative to G′

1 between f

and g, and we say that f and g are M -homotopic relative to G′
1, denoted by f ≃M.rel G′

1
g.

A retraction of a simple graph G onto an its induced subgraph G′ is a weak graph map

r : G → G such that r(G) = G′ and r |G′ is the identity map 1G′ . We need to notice that, for a

retraction of G onto an its induced subgraph G′, r : G → G′(⊂ G) does not need to be a weak

graph map but the inclusion i : G′ →֒ G and r = i◦ r : G → G′ →֒ G are weak graph maps. For

example, for the simple graph G2 in Figure 2 and its induced subgraph G′
2 with the vertex set

V ′ = {0, 1, 2, 3, 5, 6, 7}, let r : G2 → G′
2 be a map such that r(4) = 5 and r(i) = i for all i 6= 4.

Then r is not a weak graph map since 0 ∈ ANG2
(4) and r(0) = 0 /∈ SANG′

2
(5) = SANG′

2
(r(4)).

However, the inclusion i : G′
2 →֒ G2 and r = i ◦ r : G2 → G′

2 →֒ G2 are weak graph maps. If

the identity map 1G is M -homotopic to a retraction r : G → G relative to r(G) ⊂ G, then we

say that r(G) is an M -strong deformation retract of G. As a special case, if there is a vertex

v0 ∈ G such that v0 is an M -strong deformation retract of G, then we say that (G, v0) is pointed

M -contractible.

By M -strong deformation retracts, one could define the notion of M -homotopy equivalence

as follows.

Definition 2.4 Two simple graphs G1 and G2 are called M -homotopy equivalent if there

exists a sequence of simple graphs G1 = G′
0, G

′
1, · · · , G

′
n = G2 such that one of the two simple

graphs G′
i and G′

i+1 is an M -strong deformation retract of the other for every 0 ≤ i ≤ n− 1.

Clearly this defines an equivalence relation. In addition, if (G, v0) is pointed M -contractible,

then G is M -homotopy equivalent to a graph with a single vertex. A transformation of a graph

up to M -homotopy equivalence is called an M -homotopy transformation.

Definition 2.5 A vertex v of a simple graph G is a trivial vertex if LG(v) is a contractible

graph.

Proposition 2.1 Let G be a simple graph and v ∈ G. If there is a vertex u in the set

ANG(v) \ {v} that is adjacent to any vertex z ∈ ANG(v) \ {v, u}, then v is a trivial vertex.

Proof If there is a vertex u in the set ANG(v) \ {v} that is adjacent to any vertex z ∈

ANG(v) \ {v, u}, then LG(v) is a cone graph which is a contractible graph by [4, Lemma 3.3].

So v is a trivial vertex of G.
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However, the converse doesn’t hold. For example, as Figure 1, the vertex a is a trivial vertex

and there is no vertex u in ANG(a) \ {a} that is adjacent to any vertex z ∈ ANG(a) \ {a, u}.

Now we have the following theorem.

Theorem 2.1 Let G be a simple graph and v0, v1, · · · , vn be trivial vertices of G. If

(ANG(vi) \ {vi}) ∩ (ANG(vj) \ {vj}) = ∅ (0 ≤ i, j ≤ n and i 6= j), then G \ {v0, v1, · · · , vn} is

an M -strong deformation retract of G.

Proof Assume that vi (0 ≤ i ≤ n) is a trivial vertex. For any ui ∈ LG(vi), define a map

r : G → G by r(vi) = ui and r(v′) = v′ for all v′ /∈ {v0, v1, · · · , vn}. Then r is a retraction of G

onto G \ {v0, v1, · · · , vn}. In fact, for all wi ∈ LG(vi), r(wi) = wi ∈ SANG(ui) = SANG(r(vi)),

so r is a weak graph map. It’s immediate that 1G ≃M.rel (G\{v0,v1,··· ,vn}) r.

Corollary 2.1 Let G be a simple graph and v ∈ G a trivial vertex. Then G \ {v} is an

M -strong deformation retract of G.

Remark 2.1 Let G be a simple graph and v ∈ G. If there is a vertex u in the set

ANG(v) \ {v} that is adjacent to any vertex z ∈ ANG(v) \ {v, u}, then a map f : G → G \ {v}

given by f(v) = u and f(v′) = v′ for all v′ 6= v, is called a folding of G at the vertex v (see [6]).

In terms of M -homotopy, f is a retraction of G onto G \ {v} by Proposition 2.1. However, the

converse doesn’t hold. For example, as Figure 1, r : G → G given by r(a) = b and r(v′) = v′

for all v′ 6= a, then r is not a folding of G at the vertex a though it is a retraction of G onto

G \ {a}.

Later, we will show that the converse of Corollary 2.1 does also hold (see Corollary 2.3).

For our purpose, we give the following theorem which provides a useful property of two weak

graph maps which are already known to be M -homotopic.

Theorem 2.2 Let G1 and G2 be two simple graphs and f, g : G1 → G2 be weak graph maps.

If f ≃M g, then there exists a sequence f = f0, f1, · · · , fn = g such that for every 0 ≤ i ≤ n−1,

fi is a weak graph map and there is a vertex vi ∈ G1 with the following properties :

(1) fi(v) and fi+1(v) coincide in G1 \ {vi}, and

(2) fi(vi) ∈ ANG2
(fi+1(vi)).

Proof Since f ≃M g, there is a simple graph [0,m]Z and a mapping F : G1× [0,m]Z → G2

such that for all (v, t) ∈ G1 × [0,m]Z, (i) F (v, 0) = f(v) and F (v,m) = g(v) for all v ∈ G1;

(ii) if LG1
(v) is not a contractible graph, then F (ANG1×[0,m]Z ((v, t))) ⊂ ANG2

(F (v, t)); (iii) if

LG1
(v) is a contractible graph, then F (ANG1

(v) \ {v} × AN[0,m]Z (t)) ⊂ SANG2
(F (v, t)) and

F ({v} × AN[0,m]Z (t)) ⊂ ANG2
(F (v, t)).

Let i0 = min{j | ∃ v ∈ G1such that f0(v) 6= F (v, j)} and A0 = {v ∈ G1 | f0(v) 6=

F (v, i0)}(6= ∅). Choose v0 ∈ A0, we may define f1 : G1 → G2 by f1(v)|G1\{v0} = f0(v)|G1\{v0}
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and f1(v0) = F (v0, i0).

For all v′ ∈ ANG1
(v0) \ {v0}, then

(v′, i0 − 1) ∈ ANG1
(v0)×AN[0,m]Z (i0) = ANG1×[0,m]Z ((v0, i0)).

If LG1
(v0) is not a contractible graph, then f1(v

′) = f0(v
′) = F (v′, i0− 1) ∈ ANG2

(F (v0, i0)) =

ANG2
(f1(v0)); if LG1

(v0) is a contractible graph, then

f1(v
′) = f0(v

′) = F (v′, i0 − 1) ∈ SANG2
(F (v0, i0)) = SANG2

(f1(v0)).

Therefore, f1 is a weak graph map.

By induction and finiteness of G1 and G2, we arrive at the result.

Definition 2.6 Let G be a simple graph and G′ be an induced subgraph of G.

(i) If G has no trivial vertices, then G is called a minimal simple graph.

(ii) If all the trivial vertices of G are in G′, then the pair (G,G′) of simple graphs is called

a minimal pair.

Theorem 2.3 Let G be a simple graph and (G,G′) be a minimal pair. A weak graph map

f : G → G is M -homotopic to the identity 1G relative to G′ if and only if f = 1G.

Proof According to Theorem 2.2, if f ≃M.rel G′ 1G, then there is a sequence 1G =

f0, f1, · · · , fn = f such that for every 0 ≤ i ≤ n − 1, fi is a weak graph map and there is

a vertex vi ∈ G such that fi(v) and fi+1(v) coincide in G \ {vi} and fi(vi) ∈ ANG(fi+1(vi)).

We suppose that f1|G\{v0} = 1G\{v0} and f1(v0) 6= v0. Then v0 /∈ G′, hence LG(v0) is not a

contractible graph. Then v′ = f1(v
′) ∈ ANG(f1(v0)) for all v

′ ∈ ANG(v0) \ {v0} since f1 is a

weak graph map. Since f1(v0) ∈ ANG(v0), v0 is a trivial vertex by Proposition 2.1, which is a

contradiction.

Corollary 2.2 Let G be a minimal simple graph. A weak graph map f : G → G is M -

homotopic to the identity 1G if and only if f = 1G.

Proof Since G is a minimal simple graph, G′ = ∅ in Theorem 2.3. So f : G → G is

M -homotopic to the identity 1G if and only if f is M -homotopic to 1G relative to ∅ if and only

if f = 1G.

Theorem 2.4 Let G be a simple graph and (G,G′) (G′ 6= ∅) be a pair of graphs. If G \G′

is an M -strong deformation retract of G, then there is a trivial vertex v of G such that v ∈ G′.

Proof Suppose that there is no trivial vertex of G in G′. Then (G,G \G′) is a minimal

pair. Since G\G′ is an M -strong deformation retract of G, 1G ≃M.rel (G\G′) r, where r : G → G

is a retraction of G onto G \G′. According to Theorem 2.3, r = 1G, which is a contradiction.
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Corollary 2.3 Let G be a simple graph and v ∈ G. If G \ {v} is an M -strong deformation

retract of G, then v is a trivial vertex of G.

Now we arrive at one of the main theorems.

Theorem 2.5 Let G be a simple graph and {v0, v1, · · · , vn} ⊂ V (G). If G\{v0, v1, · · · , vn}

is an M -strong deformation retract of G, then there exists a sequence

G = G0, G1 = G0 \ {vi0}, G2 = G1 \ {vi1}, · · · , Gn+1 = Gn \ {vin}

({vi0 , vi1 , · · · , vin} = {v0, v1, · · · , vn}) such that Gj+1 is an M -strong deformation retract of Gj

(0 ≤ j ≤ n).

Proof According to Theorem 2.4, there is vi0 ∈ {v0, v1, · · · , vn} such that vi0 is a trivial

vertex of G since G \ {v0, v1, · · · , vn} is an M -strong deformation retract of G. By Corollary

2.1, G1 = G0 \ {vi0} is also an M -strong deformation retract of G. So we have the following

diagram:

G
r10 //
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where r10 : G → G and rn+1
0 : G → G are retractions of G onto its induced subgraphs G1 and

Gn+1, respectively; r
n+1
1 : G1 → G1 is a retraction of G1 onto an its induced subgraph Gn+1;

i01 : G1 → G, i0n+1 : Gn+1 → G, i1n+1 : Gn+1 → G1 are the inclusions. Because G1 and Gn+1

are both M -strong deformation retracts of G, r10 ◦ i
0
1 = 1G1

, i0n+1 ◦ r
n+1
0 ≃M.rel Gn+1

1G. Since

rn+1
1 = rn+1

0 ◦ i01,

and

i1n+1 = r10 ◦ i
0
n+1,

rn+1
1 = i1n+1 ◦ r

n+1
1 = r10 ◦ i

0
n+1 ◦ r

n+1
0 ◦ i01 ≃M.rel Gn+1

r10 ◦ 1G ◦ i01 = r10 ◦ i
0
1 = 1G1

.

Therefore, Gn+1 is also an M -strong deformation retract of G1. By Theorem 2.4, there is

vi1 ∈ {v0, v1, · · · , vn} \ {vi0} such that vi1 is a trivial vertex of G1. The result holds by the

mathematical induction.

From Theorem 2.5, one can find all M -strong deformation retracts of a simple graph by

removing trivial vertices one by one. For example, if a simple graph G is a connected tree then

there exists a v0 ∈ G such that (G, v0) is pointed M -contractible, i.e., an M -strong deformation

retract of G can be obtained by removing trivial vertices one by one until there is a single

vertex.
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3 Relations Between the M -Homotopy Transformation and Other

Homotopy Transformations on Graphs

In this section we mainly compare the M -homotopy transformation defined in terms of maps

with the graph homotopy transformation in [4] and the s-homotopy transformation in [3] defined

by means of combinatorial operations. Some theorems (see, Theorems 2.1–2.5, Corollary 2.2)

in Section 2 have shown the advantages of the M -homotopy transformation, in next section we

further discuss its applications.

By definitions, the trivial vertex is coincident with the deletable vertex in [4, 14–17]. Fur-

thermore, we have another main theorem.

Theorem 3.1 Let G1 and G2 be two simple graphs. G1 and G2 are M -homotopy equivalent

if and only if they are graph homotopy equivalent (in the sense of Yau et al. [4]).

Proof [4, Lemma 3.4] proves that the edge deletion (gluing) can be realized by the compo-

sition of a vertex gluing (deletion) and a vertex deletion (gluing). And its proof shows that a

vertex v gluing or deletion satisfies that LG(v) is a contractible graph, i.e., v is a trivial vertex.

If G1 and G2 are graph homotopy equivalent, then one of the two simple graphs can be

obtained from the other by a sequence of vertex deletion operations (GO1) and vertex gluing

operations (GO2). By Corollary 2.1, a vertex v gluing or deletion satisfies that one of the two

simple graphs G0
v and G1

v is an M -strong deformation retract of the other, where G0
v is the

simple graph before changing the vertex v and G1
v is the simple graph after changing the vertex

v. So there exists a sequence of simple graphs G1 = G′
0, G

′
1, · · · , G

′
n = G2 such that one of

the two simple graphs G′
i and G′

i+1 is an M -strong deformation retract of the other for every

0 ≤ i ≤ n− 1, i.e., G1 and G2 are M -homotopy equivalent.

Conversely, if G1 and G2 are M -homotopy equivalent, then there exists a sequence of simple

graphs G1 = G′
0, G

′
1, · · · , G

′
n = G2 such that one of the two simple graphs G′

i and G′
i+1 is an

M -strong deformation retract of the other for every 0 ≤ i ≤ n− 1. Without loss of generality,

suppose G′
i+1 is an M -strong deformation retract of G′

i. According to Theorem 2.5, there exists

a sequence

G′
i = G′′

0 , G
′′
1 = G′′

0 \ {vi0}, G
′′
2 = G′′

1 \ {vi1}, · · · , G
′
i+1 = G′′

n \ {vin}

({vi0 , vi1 , · · · , vin} ⊂ G′
i) such that G′′

j+1 is an M -strong deformation retract of G′′
j (0 ≤ j ≤

n). Therefore, one of the two simple graphs G1 and G2 can be obtained from the other by

removing or gluing trivial vertices one by one, i.e., by a sequence of graph operations (GO1-

GO2). Therefore, G1 and G2 are graph homotopy equivalent.

Therefore, the M -homotopy equivalence coincides with the graph homotopy equivalence.

Remark 3.1 The clique complex of a simple graph G is an abstract simplicial complex
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with all complete subgraphs of G as its faces (see [18]). Homology groups of G are defined as

homology groups of the clique complex of G. If v ∈ G is a trivial vertex, then G \ {v} has

the same homology groups as G by [14], i.e., the M -homotopy transformation preserves the

invariance of homology groups. In next section, we will introduce the 1-order homotopy group

and show the invariance up to the M -homotopy transformation (see Theorem 4.3 for more

details).

Let us investigate the relations between the M -homotopy transformation and s-homotopy

transformation in [3].

We recall the notion of s-dismantlable in [3] as follows: Let G be a simple graph. A vertex

v of G is called dismantlable if there is another vertex v′ 6= v such that ANG(v) ⊂ ANG(v
′).

A graph G is called dismantlable if one can write V (G) = {v1, v2, · · · , vn} such that vi is

dismantlable in the subgraph induced by {v1, v2, · · · , vi} for 2 ≤ i ≤ n. A vertex v of a simple

graph G is called s-dismantlable in G if LG(v) is dismantlable (see [3]). Two simple graphs

G and G′ have the same s-homotopy type if there is a sequence G = G0, G1, · · · , Gn = G′ of

simple graphs such that G = G0
s

−→ G1
s

−→ · · ·
s

−→ Gn = G′, where each arrow
s

−→ represents

the suppression or the addition of an s-dismantlable vertex (see [3]). The above process is called

an s-homotopy transformation.

From [3, Proposition 5.1(1)], we know that if two simple graphs G1 and G2 have the same

s-homotopy type, then they are M -homotopy equivalent.

In summary, the M -homotopy transformation is defined in terms of maps, and the graph

homotopy transformation and the s-homotopy transformation are defined by combinatorial

operations. Simple graphs G1 and G2 are M -homotopy equivalent if and only if they are graph

homotopy equivalent. If simple graphs G1 and G2 have the same s-homotopy type, then they

are M -homotopy equivalent.

In next section, we further show some advantages of the M -homotopy over the graph ho-

motopy and s-homotopy by investigating applications of the M -homotopy.

4 Applications of M -Homotopy

In this section, as applications of M -homotopy, we investigate the mapping class group of a

simple graph and the 1-order MP -homotopy group of a pointed simple graph.

4.1 Mapping class group up to M-homotopy

As an application of M -homotopy, we introduce the mapping class group of a graph G =

(V,E). It is defined by

MCG(G) = Aut(G)/ (M -homotopy) = Aut(G)/Aut0(G),
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namely, the group of M -homotopy classes of all automorphisms of G, where Aut0(G) is the

subgroup of Aut(G) consisting of elements that are M -homotopic to the identity 1G.

In general, there is a short exact sequence of groups:

1 → Aut0(G) → Aut(G) → MCG(G) → 1.

The study of the mapping class group as a quotient group of the automorphism group is

helpful to understand the structure of the automorphism group, which has a close relation to

symmetries of graphs. Moreover, the mapping class group is invariant up to graph isomorphism.

By definition, it is immediate to have MCG(G) = 0 if G is a complete graph.

Example 4.1 The mapping class group MCG(G) of a graph G as shown in Figure 3.

Figure 3 A graph G with MCG(G) = Z2

For the simple graph G in Figure 3,

Aut(G) = 〈e, a, b, ab | a2 = b2 = e, ab = ba〉, Aut0(G) = 〈e, a | a2 = e〉,

where

e = 1G, a =

(

0 1 2 3 4 5
1 0 2 3 4 5

)

(i.e., exchange of two vertices 0 and 1),

b =

(

0 1 2 3 4 5
0 1 2 5 4 3

)

.

So,

MCG(G) = Aut(G)/Aut0(G) = 〈e, b | b2 = e〉 = Z2,

which reflects the symmetry of the graph G with a symmetric axis determined by the two

vertices 2 and 4.

Definition 4.1 Let G = (V,E) be a simple graph. G is called a semi-complete graph if any

two vertices u and v of G are semi-adjacent and LG(v) is a contractible graph for every v ∈ G.
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Figure 4 An example of a semi-complete graph G

For example, as shown in Figure 4, G is a semi-complete graph.

Then we have immediately the following proposition.

Proposition 4.1 Let G = (V,E) be a semi-complete graph. Then MCG(G) = 0.

By Corollary 2.2, we have the following proposition.

Proposition 4.2 If G is a minimal simple graph, then MCG(G) = Aut(G).

The above propositions show some advantages of the M -homotopy transformation over the

graph homotopy transformation and s-homotopy transformation.

4.2 MP -homotopy group

A pointed simple graph G∗ is a simple graph G with a fixed base vertex ∗G ∈ V (G). A

pointed weak graph map f : G∗ → H∗ between pointed simple graphs is a weak graph map

f : G → H such that f(∗G) = ∗H .

Two pointed weak graph maps f, g : G∗ → H∗ are called M -homotopic if they are M -

homotopic relative to ∗G.

4.2.1 Construction of π0

Let G∗ be a pointed simple graph, V ∗
2 = {0, 1} be the pointed simple graph consisting of

two isolated vertices with the base vertex ∗V2
= 0, and [V ∗

2 , G
∗] be the set of pointed weak

graph maps from V ∗
2 to G∗. It is clear that there is a one to one correspondence between the

set of such maps and the set of vertices of the simple graph G.

For ϕ ∈ [V ∗
2 , G

∗], we denote by [ϕ]M the M -homotopy class of the element ϕ, and π0(G
∗) =

{[ϕ]M | ϕ ∈ [V ∗
2 , G

∗]}. The set π0(G
∗) coincides with the set of path connected components of

G. In particular, G is path connected if and only if π0(G
∗) = {[c∗]M}, where c∗ : V ∗

2 → ∗G is

the constant map.
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Theorem 4.1 Let G∗ and H∗ be two pointed simple graphs. Any pointed weak graph map

f : G∗ → H∗ induces a map π0(f) : π0(G
∗) → π0(H

∗). If f, g : G∗ → H∗ are M -homotopic,

then π0(f) = π0(g).

Proof For [ϕ]M being presented by a pointed weak graph map ϕ : V ∗
2 → G∗, we define

π0(f)([ϕ]M ) = [f ◦ϕ]M ∈ π0(H
∗). If there is a pointed weak graph map φ : V ∗

2 → G∗ such that

φ ≃M ϕ, it is not hard to check that f ◦ φ ≃M f ◦ ϕ, that is, [f ◦ φ]M = [f ◦ ϕ]M . So π0(f) is

well-defined.

For the M -homotopic maps f, g : G∗ → H∗, we have f ◦ ϕ ≃M g ◦ ϕ for any pointed weak

graph map ϕ : V ∗
2 → G∗, that is [f ◦ ϕ]M = [g ◦ ϕ]M . So, π0(f) = π0(g).

4.2.2 MP -Homotopy and 1-order MP -homotopy group π1

For [0,m]Z , a pointed simple graph [0,m]∗Z always has the base vertex ∗ = 0.

Definition 4.2 A pointed path-map on a pointed simple graph G∗ is a pointed weak graph

map (in fact, pointed graph map) ϕ : [0,m]∗Z → G∗. A loop on G∗ is a pointed path-map

ϕ : [0,m]∗Z → G∗ such that ϕ(m) = ∗G.

Definition 4.3 Let G∗ be a pointed simple graph and ϕ : [0,m]∗Z → G∗, φ : [0,m′]∗Z → G∗

be two pointed path-maps. We say that ϕ and φ are elementary MP -homotopic, if

(1) for m ≥ m′, there is a vertex v0 ∈ [0,m]∗Z and a monotonically increasing graph map

h : [0,m]∗Z → [0,m′]∗Z such that (i) h(0) = 0, h(m) = m′, and ϕ ≃M φ◦h; (ii) ϕ(v) and φ(h(v))

coincide in [0,m]∗Z \ {v0}; (iii) ϕ(v0) ∈ ANG(φ(h(v0))), or

(2) for m′ ≥ m, there is a vertex v0 ∈ [0,m′]∗Z and a monotonically increasing graph map

h : [0,m′]∗Z → [0,m]∗Z such that (i) h(0) = 0, h(m′) = m, and φ ≃M ϕ◦h; (ii) φ(v) and ϕ(h(v))

coincide in [0,m′]∗Z \ {v0}; (iii) φ(v0) ∈ ANG(ϕ(h(v0))).

Example 4.2 An example of elementary MP -homotopy is shown in Figure 5. The loops

ϕ and φ are elementary MP -homotopic.

Figure 5 The loops ϕ : [0, 5]∗Z → G∗ and φ : [0, 4]∗Z → G∗



248 C. L. Zhang, Y. Y. Wang, Z. G. Zhang and Y. Zhao

Definition 4.4 Let G∗ be a pointed simple graph. Two pointed path-maps ϕ and φ in G∗ are

called MP -homotopic and write ϕ ≃MP φ if there exists a finite sequence ϕ = ϕ0, ϕ1, · · · , ϕn =

φ in G∗ such that ϕi and ϕi+1 are elementary MP -homotopic for any i = 0, 1, · · · , n− 1.

It is not hard to prove that the MP -homotopy is an equivalence relation.

Let [ϕ]MP be the MP -homotopy class of the loop ϕ of a pointed simple graph G∗ and

A1(G
∗) be the set of all [ϕ]MP . Then we will define a group structure on A1(G

∗).

For two simple graphs [0,m]Z and [0,m′]Z , [0,m]Z ∨ [0,m′]Z denotes a simple graph defined

by identification of the vertices m ∈ [0,m]Z and 0 ∈ [0,m′]Z .

(i) For a path-map ϕ : [0,m]Z → G, the inverse path-map ϕ− : [0,m]Z → G is defined by

ϕ−(i) = ϕ(m− i) for all 0 ≤ i ≤ m.

(ii) For two path-maps ϕ : [0,m]Z → G and φ : [0,m′]Z → G with ϕ(m) = φ(0), the

concatenation path-map ϕ ∨ φ : [0,m+m′]Z → G is defined by

ϕ ∨ φ(i) =

{

ϕ(i), 0 ≤ i ≤ m,

φ(i −m), m ≤ i ≤ m+m′.

Clearly, if ϕ is a loop in G∗ then ϕ− is also a loop, and the concatenation of two loops is

also a loop. Let us define a product in A1(G
∗) as follows.

Definition 4.5 Let G∗ be a pointed simple graph. For any two loops ϕ : [0,m]∗Z → G∗,

φ : [0,m′]∗Z → G∗, a product of [ϕ]MP and [φ]MP is defined by [ϕ]MP · [φ]MP = [ϕ ∨ φ]MP .

It is obvious that the product in A1(G
∗) is well-defined. In fact, if there are two loops

ϕ′ : [0, n]∗Z → G∗, φ′ : [0, n′]∗Z → G∗ such that ϕ′ ≃MP ϕ and φ′ ≃MP φ, then ϕ′ ∨ φ′ ≃MP

ϕ′ ∨ φ ≃MP ϕ ∨ φ, i.e., [ϕ′ ∨ φ′]MP = [ϕ ∨ φ]MP .

Proposition 4.3 Let G∗ be a pointed simple graph. Then A1(G
∗) is a group under the

product in Definition 4.5.

Proof (i) The product in Definition 4.5 satisfies the associative law.

(ii) The MP -homotopy class [e]MP of the loop e : {0}∗ → G∗ satisfies the condition of an

identity element.

(iii) For any MP -homotopy class [ϕ]MP of the loop ϕ : [0,m]∗Z → G∗, [ϕ−]MP is the inverse

of [ϕ]MP .

This group is called 1-order MP -homotopy group of G∗, denoted by π1(G
∗).

Theorem 4.2 Let G∗ denote a simple graph G with a base vertex ∗G and G∗′

denote a

simple graph G with a base vertex ∗′G. If γ : [0, h]∗Z → G∗ is a pointed path-map with γ(h) = ∗′G,

then γ induces an isomorphism of 1-order MP -homotopy groups

βγ : π1(G
∗) → π1(G

∗′

).
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Proof For any loop ϕ in G∗, define

βγ([ϕ]MP ) = [γ− ∨ ϕ ∨ γ]MP .

It is not hard to prove that βγ is well-defined. Further, βγ is a homomorphism since

βγ([ϕ]MP · [φ]MP ) = βγ([ϕ ∨ φ]MP )

= [γ− ∨ ϕ ∨ φ ∨ γ]MP

= [γ− ∨ ϕ ∨ γ ∨ γ− ∨ φ ∨ γ]MP

= [γ− ∨ ϕ ∨ γ]MP · [γ− ∨ φ ∨ γ]MP

= βγ([ϕ]MP ) · βγ([φ]MP ).

Finally, βγ is an isomorphism with inverse βγ− since

βγ− ◦ βγ([ϕ]MP ) = βγ−([γ− ∨ ϕ ∨ γ]MP )

= [γ ∨ γ− ∨ ϕ ∨ γ ∨ γ−]MP

= [ϕ]MP ,

and similarly βγ ◦ βγ−([ϕ′]MP ) = [ϕ′]MP for any loop ϕ′ in G∗′

.

Thus if G is path connected, the group π1(G
∗) is, up to isomorphism, independent of the

choice of base vertex ∗G.

In order to prove the 1-order MP -homotopy group is invariant up to the M -homotopy

equivalence, we introduce the following definition.

Definition 4.6 A core of a simple graph G is an M -strong deformation retract of G which

is a minimal simple graph.

Remark 4.1 The cores of a simple graph G might not be unique. For example, let G be a

simple graph as in Figure 6(a), then (b) and (c) are both the cores of G. However, the cores of

a simple graph G have the same homology groups as G (see Remark 3.1 for details).

Theorem 4.3 Let G∗
1 and G∗

2 be two path connected pointed simple graphs. If G1 and G2

are M -homotopy equivalent, then there is an isomorphism

π1(G
∗
1) ≈ π1(G

∗
2).

Proof For G∗
1, one can obtain, by Theorem 4.2, a path connected pointed simple graph

G∗′

1 such that ∗′ belongs to the core of G1 and π1(G
∗
1) ≈ π1(G

∗′

1 ). Suppose v ∈ G∗′

1 is a trivial

vertex of G1. Then v 6= ∗′ and G1 \ {v} is an M -strong deformation retract of G1. For a loop

ϕ : [0, n]∗Z → G∗′

1 such that v ∈ ϕ([0, n]∗Z), then there is an i0 = min{i | 0 < i < n and ϕ(i) = v},

hence ϕ(i0 − 1) 6= v and ϕ(i0 − 1) ∈ ANG1
(v). Since LG1

(v) is a contractible graph, one could

choose ϕv : [0, nv]Z → LG1
(v) such that ϕv(0) = ϕ(i0−1) and ϕv(nv) = ϕ(i0+ lv), where lv > 0
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(a) (b) (c)

Figure 6 An example of non-uniqueness of the cores

is the minimal integer such that ϕ(i0 + lv) 6= v. So ϕ1 ∨ ϕv ∨ ϕ2 ≃MP ϕ, where ϕ1 = ϕ[0,i0]∗Z

and ϕ2 : [0, n− i0 − lv]Z → G1 satisfies that ϕ2(j) = ϕ(j + i0 + lv). By finiteness of the length

of the loop ϕ, one could obtain a loop ϕ′ : [0, n′]∗Z → G∗′

1 such that ϕ′([0, n′]∗Z) ⊂ (G1 \ {v})∗
′

and ϕ′ ≃MP ϕ, i.e., ϕ ∈ [ϕ′]MP . So π1((G1 \ {v})∗
′

) ≈ π1(G
∗′

1 ). Therefore, every M -strong

deformation retract of G1 has, by Theorem 2.5 and induction, the same 1-order MP -homotopy

group as G∗′

1 .

Since G1 and G2 are M -homotopy equivalent, there exists a sequence of simple graphs

G1 = G′
0, G

′
1, · · · , G

′
m = G2 such that one of the two simple graphs G′

i and G′
i+1 is an M -

strong deformation retract of the other for every 0 ≤ i ≤ m− 1. Therefore, we have

π1(G
∗
1) = π1(G

′∗
0 ) ≈ π1(G

′∗
1 ) ≈ · · · ≈ π1(G

′∗
m) = π1(G

∗
2).

Therefore, the 1-order MP -homotopy group of a pointed simple graph G∗ is invariant up

to M -homotopy equivalence.

Theorem 4.4 For a simple graph G, there is a unique MP -homotopy class of path-maps

connecting any two vertices in G if and only if it is path connected and has trivial 1-order

MP -homotopy group.

Proof The existence of path-maps connecting every pair of vertices of G means path

connectedness, so it suffices to concern only with the uniqueness of MP -homotopy class of

path-maps. Suppose π1(G) = 0. If ϕ and φ are two path-maps from u to v in G, then

ϕ ≃MP ϕ∨φ− ∨φ ≃MP φ since φ− ∨φ ≃MP ev and ϕ∨φ− ≃MP eu, where ev : {0} → G such

that ev(0) = v and eu : {0} → G such that eu(0) = u.

Conversely, since there is only one MP -homotopy class of path-maps connecting a base

vertex ∗G to itself, all loops at ∗G are MP -homotopic to the constant loop e : {0}∗ → G∗, that

is,

π1(G
∗) = 0.
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5 Summary and Further Works

This paper has developed a new concept of a weak graph map homotopy (we call it M -

homotopy) on graphs. It turns out that the M -homotopy equivalence between graphs coincides

with the graph homotopy equivalence defined in [4]. The difference between them is that the M -

homotopy transformation is defined in terms of maps, while the graph homotopy transformation

in [4] is defined by means of combinatorial operations. As its applications, we investigate the

mapping class group of a graph and the 1-order MP -homotopy groups of a pointed simple

graph. In addition, we show that the M -homotopy transformation has its advantages over

the graph homotopy transformation, that the M -homotopy equivalence has close relationships

with the s-homotopy type in [3], and that the 1-order MP -homotopy group of a pointed simple

graph and homology groups of a graph are invariant up to the M -homotopy equivalence.

As a further work, we attempt to deeply probe into the mapping class groups of graphs up

to M -homotopy, and investigate higher order MP -homotopy group of a pointed simple graph.
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