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A Generalized Blow up Criteria with One Component of
Velocity for 3D Incompressible MHD System*
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Abstract In this paper, the authors study the global regularity of the 3D magnetohydro-
dynamics system in terms of one velocity component. In particular, they establish a new
Prodi-Serrin type regularity criterion in the framework of weak Lebesgue spaces both in
time and space variables.
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1 Introduction

In this work, we investigate the Cauchy problem of the following incompressible magneto-
hydrodynamics (MHD for short) system on R3,

Ow+v-Vu—>b-Vb+ Vp=Av,

Ob+v-Vb—0b-Vv=Ab, (1.1)
dive =divdb = 0, )
v]t=0 = vo, blt=0 = bo,

where b = (b%,b6%,6%), v = (v!,v?%,03) and p denote the magnetic fields, velocity fields and

scalar pressure of fluid, respectively. (v, by) is the prescribed initial data which satisfy div vy =
div by = 0 in the sense of distribution. Physically, system (1.1) governs the dynamics of velocity
and magnetic fields in electrically conducting fluids, such as plasmas, liquid metals and salt
water. Moreover, the first equation reflects the conservation of momentum, and the second one
is the induction equation. Since universal physical laws should be independent of the underlying
units (dimension), system (1.1) remains invariant under natural scaling transformations. Indeed,
if (v,b,p) is a solution of (1.1), then for any A > 0,

oa(t, ) = (N2t Ax),  ba(t,xz) = Nb(N*t, Ax),  pa(t,z) = N2p(A\2t, Ax)

is also a solution corresponding to rescaled initial data vg x(z) = Avo(Ax), bo, A (x) = Abo(Ax). As
the classical Navier-Stokes system, such a scaling transformation determines the critical space
(norm) for MHD system and plays a fundamental role in the well-posedness theory.

It is obvious that (1.1) is the system with full viscosity and diffusion, and it is globally well-
posed in two dimension. In the general case RY, Duvaut and Lions in [8] established the local
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existence and uniqueness of solution in the classical Sobolev space H*(R?), s > d; they also
proved the global existence of solutions to this system with small initial data. Abidi and Paicu
[1] proved similar result as that in [8] for the so called inhomogeneous MHD system with initial
data in the critical spaces. With mixed partial dissipation and additional magnetic diffusion in
the two-dimensional MHD system, Cao and Wu [4] (see also [3]) proved that such a system is
globally well-posed for any data in H?(R?). Chemin et al. [5] proved the local well-posedness
of (1.1) with initial data in the critical Besov spaces.

On the other hand, there exists a vast literature on finite time blowup or non-blowup criteria
for local strong solutions. By discovering some special structures of the nonlinear coupling terms
with the magnetic field, the authors of [9, 14-18, 20] were able to provide us some regularity
criteria involving lesser components of the velocity field and the magnetic field.

One can easily find out that, when b is a constant, (1.1) is nothing but the classical Navier-
Stokes equations. Most of the regularity and uniqueness criteria of Navier-Stokes equations can
be extended to MHD equations. It is also well known that system (1.1) has a local weak solution.
Similarly, we can impose additional conditions on the weak solution of the MHD equations to
obtain its global regularity. Motivated by [6], Yamazaki in [19] established the following blow
up criteria for MHD system: Let (v,b) be the solution of 3D incompressible MHD system on
[0,7%*) and if

-
| el s 1017, + 100 + 1981200t < o0 (1.2

holds for e € 82, p € (4,6) and p; > 9, py > %, then T = co. Later, corresponding to [7], Liu
successfully extended p in [19] to (4, 00) and also got rid of the terms ||b||%, + || Vb||%, in (1.2).
In other words, he proved that if for some p € (4, 00) there holds

-
| el s #1007 )t < o,

then T* = oo. The general case p € [2,00) was proved by the authors in [11]. While in [10], the
authors proved an improved blow up criterion that concerns with the H2%% norm of (v-e) and
the Lebesgue norm of b for all 2 < p < co.

Recently, an important class of regularity criteria was proved in [12], which was concerned
with Lebesgue norm of one component of the velocity. More precisely, the authors proved that
if the initial value (vg, bg) € H?(R3) with s > 3, and (v, b) satisfies

2 3
ba UBGLPI(OaT;qu(Rg))a —+ — Slv 3<q1 SOO,
P @
, 2 3 3
Osb, Osv € LP2(0,T; L=2(R%)), —+ — <2, = < g2 <oq,
P2 Q2 2

then the weak solution of (1.1) is smooth on [0,T]. Motivated by [2], the main work of this
paper is to prove a new Prodi-Serrin type regularity criterion for the MHD equations. More
precisely, we refine the criterion to Lorentz space, and have the following theorem.

Theorem 1.1 Let (v,b) be a weak solution of the MHD system with initial condition
(vo,bo) € L2(R3). Then (v,b) is smooth beyond T(T > 0) if

[0 || Looo (0,75 1.500 (®3)) + 1Bl| Loo0 (0,75 1500 (r2)) < 00
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with s > 13—0 and

EPENE
4 2
Notations For any 1 < p < oo and measurable [ R = R, we will use || f||Lomny, || f]|r or
simply || f||, to denote the usual L? norm. For a vector valued function f = (f!,--- , f™), we still
denote ||f]|, := Z | f7]|p- We denote by Li.(LY (L)) the space LI((0,7); LP(Rih' (L5 (R,))))
j_
with z;, = (z1,x2).
For any 0 < T' < oo and any Banach space B with norm | - ||s, we will use the notation

C([0,T], B) or CYB to denote the space of continuous B-valued functions endowed with the
norm

IFlleqors) = max [170)]=

Also for 1 < p < oo, we define
I £l emo,rp) = NIF OBl o,17)-

2 Preparations
Let us grasp basic definitions and properties of Lorentz spaces.

Definition 2.1 (Lorentz Spaces) Let (X, u) be a measure space. For 0 <p < oo, 0 < ¢ <
oo, we define the Lorentz space LP9(X, 1) as collection of measurable function for which

o ([T i)’ <o,

1
sup sd(s)?», qg= o0
s>0

[fllzrea =

is finite, where the distribution function ds(s) is defined as

df(s) = p({x € X :|f(z) > s[}).
Proposition 2.1 (Properties of Lorentz Spaces)
(a) LP(X, p) = LPP(X, ).
(b) [/ NNer.a = || flI]prar for 0 <p, 7 < o0 and 0 < g < 0.
() || fllzrar < || fllpraz for 0 <p<oo and 0 < g2 < ¢1 < co. In particular, there holds

Il < (2) 1 lzne

forl<p<ooandl<qg< .

Proposition 2.2 (cf. [13]) Letl <p < oo, 1<g< 0 and%
assume that 1 < p; <p', ¢ <q < oo, —+1——+—andq =

p
. + L. Then the convolution

+4 =1, %—l—? = 1. Further
1
PR

operator
¥ LP9(RY) x [P0 (RY) s [P2492(RY)

s a bounded bilinear operator.



256 B. Han and X. Xiong

Proposition 2.3 (cf. [2]) Letn >2,1<p <nandq= £ Then for any f € Whp(R™),
we have

[ £llzar < C T N0xF17s-

k=1

Proposition 2.4 (Holder’s Inequality in Lorentz Spaces) If 0 < p1, p2, p < oo and

0<q1, qo, qgoosatzf;fy%:pll—|—]Di2 and%:qil—i—q%. Then

Il fgllzra < C(p1,p2,q1,q2) 1 f|Lrrar [|gl|Lrz a2,

whenever the right-hand side norms are finite.

Lemma 2.1 LetT >0 and ¢ € L2 ([0,T)) be non-negative. Further assume that

loc

t t
W(t) < Co + Cy / p(s)y(s)ds + k / As)' =0 (s) T4 9ds, V0 <e <&,
0 0

Ale)

where k, €9 > 0 are constants, u € L'(0,T), and A(e) > 0 which satisfies li{% == =c¢ >0.
1>

Then 1 stays bounded on [0, T if || A|| 1.0 0,1y < ey thL

3 Proof of Theorem 1.1
By denoting V- =v + b, W = v — b, and starting from system (1.1), we obtain

oW +V . VW — AW + Vp =0,
oWV +W . .VV — AV +Vp =0, (3.1)
divW =divV = 0.

Setting V), = (01, 02), and for some tg € (0,t) which will be specified later, we define

t
Ji(t) =1+ sup [|[VaW|32(7) + 2/ VVLW |3 dr,
to

Te(to,t)

t
Ta(t)i= 1+ sw [VuVIEa(r) +2 [ VYAV dr,
to

TE(to,t)

t
Li(t): =14 sup ||VW||%2(T)—|-2/ |V2W |3, dr,
to

Te(to,t)

t
Lo(t) =1+ sup [VV|2a(r) +2 / V2V 2, dr,
to

TE(to,t)

t ¢
e1(to) :== VW |32dr, ea(ty) = IVV|3.dr.
to tO
Then we set J = J; + Ja, L = L1 + Ly and e = ey + ez. It is easy to verify that J(t), L(t) are
non-decreasing, and satisfy J(t) < L(t). e(tg) < e(0) < oo and their exactly value can be made
arbitrarily small through choosing ¢y close to T.
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3.1 The relationship between L(t) and J(t)

We will focus on the first equation of system (3.1), and deal with the second equation in a
similar way. We multiply the first equation by —AW and integrate over R3. Then integration
by parts implies

d . . .
GIVWIE+ IVWIE =~ [ aviawiow d. (3.2)

N =

where 4,5,k =1,2,3.
When k£ =1,20r¢=1,2, we have
MV IOWIgWI dx < C/ Vi V||[VIW|? da.
R3 R3
By using of div W = 0, we can gain the same estimation when k£ =i = 3,

O3V30sWI9s W7 dx = _/ (OVE+ 0.V (03 W) da < 0/ IVLVI|IVIV|? da.
R3 R3 R3

Here and after, C' denotes a pure positive constant. Thus, we reach that
1d
2dt

Application of Holder and Troisi inequalities now gives

IVWI3 + VW3 SC/ VaVIIVW* da. (3-3)
R3

/ VA VIVW2de < [[VaV ]| V]2
R3

1 3
<VaVIRIVWIS IV

1 1
SIVRVIAVW I VAV W |2 VW] 3. (3-4)

Performing the time integration over the interval [to, ] for any ¢ > ¢ for (3.3), one has

t
VW@ — VW (to) 3 + 2 / VW2 dr
0
t 1 1
<C s ViV, / VW3 V2 YW (ol V2W S dr
to,t) to

t 1
Iv2w3ar)

to

[ Lot }
<cai( [ owigar) ([ 19.vwizar)’(
to to
< Cei(to)iJy(t)2 Jo(t) 2 Ly(t)3. (3.5)
By the definition of L;(t), we can obtain
Li(t) < C(to) + Ceq(to) 3 J1 ()7 Jo(t)2 Ly (t)5 .
Application of Young’s inequality now gives
Li(t) < C(to) + Cer(to)3 J1 ()5 Ja(t)5.
Similarly, the operation on the section equation of system (3.1) implies that
Lo(t) < C(to) + Cea(to)3 Ji(t)5 Jo(t)5.
Thus, we have
L(t) < C(to) + Ce(to)3 J(t)3.

In what follows, we are going to prove the uniform boundedness of L(t) on (to,T).
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3.2 H! energy estimate
We set

8s
7=
35 —10

which satisfies % + % = % + 21—5
We multiply the first equation in system (3.1) by —A,W and integrate over R3. Then
integration by parts implies

1d . . _
5&thwn‘g‘ +[IVVaW3 = — | VOWI0,WI da,
R3

where 7,7 = 1,2,3; k = 1,2. The right hand side of the above equation can be decomposed into
four parts.
CaseI j=3;i=1,2,3; k=1,2. We integrate by parts to reach

Ji B - g VIO, W30, W3 da
< /R |W38kai8iW3|dx+/RS|W38kVi8ikW3|dx
< O/RB |W3||VW||VVhV|dx+/RS |W3||VV||IVV, WV |dz. (3.6)
Case II i=3; j,k =1,2. Similarly, integration by parts gives
Jig 2 — g V3 WI0, Wi da
S/R?’ |V383kwjakwj|dx+/RS|V383Wjakkwj|dx
< C/RS V3| |[VW||VV,, W] da. (3.7)

CaseIll 1=j=k=1landi=j)=%k=2.

Jiz 2 — g nViowrowtdx — g V20 W20,W? da
=/, VIO Wo,W? dx + g V0, W20,W? dx
-/, NV 0, W20,W? dx — g Do V20, W20, W2 du
+ g VIO WosW3 dx
=L V10, W20sW3 da + . D3 V30, W20, W dr
+ g VIO WosW3 dx

< c/ |W3||VW||VVhV|dx+C/ VYWYV, da. (3.8)
R3 R3
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Case IV The fourth part is for the remaining items:
Jig 2 — WVIOWIOWI do = — 8k(vi + bi)&-(vj - bj)ak(vj — bj) dz.
R3 R3
Thus, the terms in Jy4 can be estimated by

/ ' 0 O da < C/ |v3]| V||V Vol dz,

R3 R3

/ b O O b d < C/ |b"||Vb||VV b da,
R3 R3

b O Ov? da < C/ |b"||Vo||VV 0| da,
R3 R3

/ Bkviﬁibjﬁkbjdxg(?/ |bh||Vv||VVhb|dx+/ [b"||Vb||VV po| da.
R3 R3 R3

Applying Propositions 2.2 and 2.4, we have

sl’

/ [W3||VW||VV,V|dz < C||[W3s,

< C||W3|\S,Oo||VW|\ 2 5| VVLV ]2

1-3

< CIw?ls, oo||VWH2 ||V2W||2 HVVhW

VVLV]|2

E
2

< W2 IVW I, V2w

2
+ ;I\Vvhwné + §|\vvhvng
and
(W3 VV|IVVAW | da < C[W24 0 [VVV VLW < 4
R3
S OIW3 .00l VV | 22, o[ VVRW |2

1-3

< OIW|s o IVV 32 V2V ||vth||2 VLW ||

< CIWI 2|V vV

2 1
+ZIVIAVIE + SIVVWIS.
Similarly, we obtain that

2s
-2
5,00 [VIV

25-6 21
/ V3|V ||V VW da < C|[V? s HV2WH5’2 + §IIVWW|\§,

1
/ o3[Vl [V V3| de < Ol |22 [ Vo], s+ 51VVaels,

20-8 1
/Rg BIVBIIVTab] de < CIB 221 Vb], 975 *+ S IVVabl3,

/ 6|V o[[V Vol dz < ClI6" |52 Vol ™ = 51Vl
R3
2 1
/RS DB V0] de < OB |22 9B, [ 92]5 T+ ZIVVRIE + SV VA,
[ WIVelI9 9l do < €l 2 vl T4 21Vl + IVl
R3

259



260 B. Han and X. Xiong
Thus, we can obtain

Ji=Ju + Jig + Jiz + Jua

2s_ 25-6 2 _2s_ 25-6
< C”WB s—2 |VW s—2 ||V2 572 +C||W3 s—2 |VV||2572 ||V2

el e N e e Vol ||V2v||

+ C||p"

QTOZIIVbIIJTIIVQbIIF+0llbh||§,73||Vv||;j||V2vllij
2 , /1 2 )
+ (14 2) IV + (5 +5) IVVaVI3
3 2 2 2
+ (14 5)I99n0l + (14 ) IV Vabl3: (3.9)

Similarly, for Jo, we get

T < CIVAEZIW], = V2wl +CIIV3 IIVV e
+OIW?EE IVV ﬁIIVQWII vl ||V2v||
T OB IVbl, V25 + Ol QTZIIVUIIFIIVQUIIF

1
z 2 - z 2
+ (14 2)IVVVIB + (5 +2)IVTw 3
3 2 2 2
+ (14 5)I99n0l + (1+ ) I99abl3. (3.10)
It can be seen from the definition of V that
16115 < CUIVI3 + [W]]3)-

Integrating the equation (2<L|V,W|3+ |[VV,W|3 = J1) from to to ¢ we can estimate J; as
Ji < C/ W3l |VW||23 = IV2W 5 + W3 |VV||2S H IV2V57) dr
+C/ (V3 ||VW||23 = VW52 + [P 522 ||VU||23 + V%]l dr

+C/ ||bh

+(—+— /||vth||§dT+C(to). (3.11)
2 s/ [y

2
S NVIET + [0 2 Voll, = 920l dr

||Vb

Similarly, we estimate J; as

SRV 4+ VAR IVW, 9T dr

b<C/HWH|WV

+C/ |W3

+0/ (I 1252 190 192005 + (01522 9oll, = [920ll5 ) dr

) _2s 226 2
= IV=VI5~ - sVl [ V20l5 ) dr

||VV

+ (5 +- / VYR W[5 d7 + C(to). (3.12)
to
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It is suffice to estimate one term of the right hand side of (3.11).

/ W E2 OV, [V2V]IE dr

5—3

/ Iw?

3 t 1
/IIW3H IV IV VI ar) T ([ 1eevigen)”
to
- t 1
1 45 s—
<)t ([ Wl 9VI3ar) 8( Iv2Vigar)
to to
t 3457180 .
<C( [ WAl sLa(r)dr) " Lo(r) . (3.13)
to
Other items in (3.11) and (3.12) can be estimated by
?*%) 1
/||W3 VW W ar <0 /I|W3H L(r)dr) " L),
%f—lo )
[ e ar < o v <T>dT) L,
35 10
3 S o2t e 3 -8 !
HV 29V 192Vl dr (/ IVAI o La(r) dr) "7 La(r) 7,
?\g) .
/ |\v3 Wl v 2dT<c(/ W35 oL (1) dr) % La(r) 2,
P 35 g} B
/||v3|| 2190l 9% HdT<C(/ 0% s La(r) dr) " La(r) 73,
T‘fg .
/ 0" 122198, 19257 dr < o 5 ||bh||;OOL2<T>dT) Ly(r) 7,
?:}S L
/ 121905 195 ar < o [ I8 Loty ar) T L),
to to
Thus, we reach that
t 3451180 L
90 < Otto) + O [ (W + VP e+ 17+ 18115 ) LAY ) T L) 7.
to

Eivvigar) = ([ v vigar)

Using the inequality (a + b)3 < (2a)% + (2b)F and Young’s inequality, we obtain
s ! L 14
J(1)F < [Ctto) + ( / (IWAIZ oo+ IV o+ 18*17 ) L(7) dr ) 7 L(r) 72
9
3s—10

t
<)+ C( [ (Wl +IV?

t
<Clt) + C / (IW3E o + [V
to

Thus, we have

4
3

L(t) < C(to) + Ce(to) 5 J(t)

h
500 T 1075 00

35—6

L(T) 35—6

Lo V"7 00 L (7) d7 )

)L(7) d7 + Ce(to) L(7).
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t
< C(to) + Ce(to) / W30 o + V2 0 + D117 00) L(7) d7 + Ce(to) S (7). (3.14)

to
When ¢y infinitely approaches T', we have
t
L(#) < C(to) + Ce(to)? / (W25 00 + V215 0 + 1”115 00) L) dr.
to

In the following, we discuss the right hand side of the above inequality in two cases.
Case I When s < 6, there exists a small positive constant ¢ such that

IW3|me, < CIW3 e < C|wjsms | VWIS~ < CL(t)*,
IV3|me, < OV < CVIISe WV I§ 27 < CL(1)*,
B"(|72,, < CbR|[%E < Cllb)l2e < CIV 12 + W) < CL(#)*,

6—s

where o« = oo
This leads to

t
L{t) < Clto) + Celto)} | (W + VAL + 12 )Ly e dr,

to
Case IT When s > 6, we have
W2 < CIW? I < Vw2 vew )
< CL(t )’”5( 1t3%) V2W|| %—‘;)

< CL(t )’”E< i) V2V||TE(2 ?),
< O[5 < Cllblls® < C(||V||TE +[W159)

3

5 re(L_3
< CL(y =GB (|75 92w ).

6115

5,00 —

Thus, for the sufficient small constant ¢, we finally get that
L(t) < C(to) + Ce(to) ||W3||T (=9 () e [ 2 |2 g

to

re(l_3
et [ VAL vV D ar
to
3

t
+ Ce(ty)s / 1o 7D Ly e (|02 |57 ) 4 vy dr

1 r(l—e) ce 75 t %
SC’e(tO)s/(”WSH (1=&) [ (r)Ltes) 1= 5=t g7 4 0007 (o) /HVQW”2

to

t 1 1
P rES v t
+Celt)t [ (VAL ) R ar 4 awt 0 [ ivvigar
to tO
L[t —r e(to)% ¢
+Celto)} [ (1O FR ar 4 SO8 [ oy gar

to tO

+ C(to)
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t 1

< Ce(ty)? / (W20 + V317059 4 o209 L(r) t+ee] - 55167 dr
to
1
tn)3
At 3)3 L(#) + C(to). (3.15)

When tg infinitely approaches T', we have

l—e 14ce
2s 2

t
L{t) < Clta) + Celta)} [ (W3[50 + V3l + 105 ) ™50 L) ™5
to

Setting 1 — 1&% as a new ¢ in the case s > 6, we can get the same form as in the first case
T 3s—10

t
L(t) < C(to) +Ce(to)%/ (W25 + IVEESE D + 655 L(r) e dr
to
for some A(e) = O(e). Thus, the results of the two cases hold with the same inequality when
to closes enough to T . Using Lemma 2.1, we can get that (V, W) is smooth beyond T'. By the
fact that

V3 p.00 S 107 1pi00 + [bllpscs W2 lp.oo S 102 llp.c0 + [1Bllp.c0:

we then finished the proof of the main theorem.
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