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Integral Operators Between Fock Spaces*

Yongqing LIU? Shengzhao HOU?

Abstract In this paper, the authors study the integral operator
Sf(2) = [ oz m)fw)dra(w)

induced by a kernel function ¢(z,-) € F$° between Fock spaces. For 1 < p < oo, they
prove that Sy : F2 — FZ is bounded if and only if

p,a < 00, (T)

sup || Sg kal
acC

where k, is the normalized reproducing kernel of F2; and, Sy : Fa — FE is compact if and
only if

lim || Sokallp.a = 0.
|a|—o0

When 1 < g < o0, it is also proved that the condition (t) is not sufficient for boundedness
of Sy : Fl — F¥.

In the particular case ¢(z,W) = e** (2 — W) with ¢ € F2, for 1 < g < p < oo, they
show that S4 : F§ — FJl is bounded if and only if ¢ = 0; for 1 < p < g < o0, they give

sufficient conditions for the boundedness or compactness of the operator Sy : FL — Fi.
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1 Introduction

Fock spaces are deeply connected with quantum mechanics, partial differential equations,
and harmonic analysis. For instance, creation and annihilation operators in quantum mechanics
are multiplication and, respectively, differential operators on Fock spaces. Characterizing the
zero sequence of Fock space is equivalent to studying the completeness of coherent state systems
in quantum mechanics (see [4, 11] and the references therein).

Let a be a positive number, and d\,(z) = %e_o“z‘2dA(z) be the Gaussian measure on the

complex plane C, where dA is the Euclidean area measure on C. For 0 < p < oo, the Fock

Manuscript received February 21, 2022. Revised September 30, 2022.
ISchool of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, Jiangsu,
China. E-mail: yongqingliu@cslg.edu.cn
2Corresponding author. School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu,
China. E-mail: shou@suda.edu.cn
*This work was supported by the National Natural Science Foundation of China (No.11971340).



266 Y. Q. Liu and S. Z. Hou

space FP consists of all entire functions f such that

/1

1
pe= (2 / 7z HF PAA())” < oo, (1.1)
The Fock space F2° (i.e., p = 00) consists of all entire functions f such that

HfHooa—SHpr( e~ 31" < oo, (1.2)

When 1 < p < oo, Fock space FP is a Banach space. In particular, F? is a Hilbert space.
{en(z) = \/%72", n=0,1,2,3,---} is an orthonormal basis for F2. The reproducing kernel

of F2is given by K, (z,w) = Y en(2)en(w) = ¢**¥, and the normalized reproducing kernel at

n=0

w € Cis ky(z) = e 5wl
Integral operators on Fock spaces have been studied widely (see [1-3, 5, 11]). We know in

[4] that every bounded operator T' on Fock space F2 can be expressed as the integral operator:

2) = /C 62, ) f (w)dAa (),

where the kernel function ¢(z,w) = TKy(-,w)(z), and ¢(-,w) € F2 for all w € C and ¢(z,-) €
F? for all z € C. On the other hand, it is a difficult problem to obtain conditions on ¢
under which the corresponding integral operator is bounded or compact. In this paper, we
study the boundedness and compactness of the integral operators induced by a kernel function
¢(z,-) € F° between Fock spaces.

In [10], the authors gave some sufficient conditions for a linear operator on F2 to be bounded
and compact. The authors of [7] extended the work in [10] to FP. Precisely, using the atomic
decomposition of Fock spaces, the authors of [7] proved that for 0 < p < 1 a linear operator
T : FP — FP is bounded if and only if

sup [|Tkq|lp,a < oo.
acC
For ¢(z,-) € F°, let
Sef(z /<b (2,70) Ao (w)

be the integral operator induced by ¢. In Section 2, for 1 < p < oo, we prove that Sy : F.! — F?
is bounded if and only if

sup || Spkallp,a < 00 (1.3)
acC

(see Theorem 2.1); and, Sy : Fi — FP is compact if and only if o hm 1Sskallpe = 0 (see
Theorem 2.3). When 1 < ¢ < o0, it is also proved that the condition (1 3) is not sufficient for

boundedness of Sy : FI — F? (see Theorem 2.2).
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In particular, for ¢ € F2, let ¢(z,W) = e**¥p(z — W), we consider corresponding integral

operator
Tof(2) = [ € Polz =) f(u)ddo o)

Bounded operators on Fock space F2 and on L?(R,dxr) can be connected through the unitary
operator Bargmann transform. Using Bargmann transform, Zhu [12] transferred the classical
Hilbert transform to the integral operator i, on F2, where p(z) = foﬁ v’ du, and proposed a
question: Find necessary and sufficient conditions in terms of ¢ € F? such that T}, is bounded
on F2. Recently, Cao et al. [1] proved that T}, is bounded on F? if and only if there exists an
m € L>®(R) such that

o(z) = / e_2(1_%z)2m(x)dx, z e C.
R

In Section 3, we study boundedness and compactness of the integral operator 7, from F%
to Fa. For 1 < ¢ < p < oo, we proved that there are no non-zero bounded integral operators
T, from FP to F@ (see Theorem 3.1). But, when 1 < p < ¢ < oo, we give sufficient conditions
for T, from F? to F? to be bounded (see Theorem 3.2) and compact (see Theorem 3.3).

In this paper, we use C' to denote a positive number, which may vary from place to place.
For two quantities A and B, A < B means that there exists a constant C' > 0, independent of
the involved variables, such that A < CB, and A ~ B if and only if A < B and B < A.

2 Boundedness and Compactness of S

In this section, we give necessary and sufficient conditions for integral operator Sy from F!
to F? to be bounded, and, respectively, compact, for 1 < p < oc.

In order to prove Theorem 2.1, we need the following Minkowski’s integral inequality from
[9]-

Lemma 2.1 Let (X,u) and (Y,v) be two o-finite measure spaces and let 1 < p < co. For

every nonnegalive measurable function F' on the product space (X, u) x (Y,v) we have

[ /Y ( /X F(x,y)du(x))pdv(y)]% < /X [ /Y Fla, gl du(yv]” du(a).

The following result provides a necessary and sufficient condition for Sy to be bounded.

Theorem 2.1 Let 1 < p < oco. For any z € C, suppose ¢(z,-) € F°. Then Sy is bounded
from F} to F? if and only if

sup [|Sgkalp.a < 00,
aeC
or equivalently

sup/ |¢(z,6)e_%‘z‘2_% “|2|pdA(z) <oo, 1<p<oo;
acCJC
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sup sup |¢(z,ﬁ)e_%‘z‘2_%‘“‘2| <00, p=o0.
a€C zeC

Proof Assume that Sy is bounded from F.! to F?. Since each k, is a unit vector in F!, we
have
||S¢>ka||p7a < ||S¢||F;—>F£-

By the reproducing formula (see [2, Lemma 2.15]), we get

Seko(2) = [ 6(:.)kalw)ddo w0)
—eza'2/<z> e AN (1)

Therefore, we have
sup/ |p(2 E)e_%|z|2_% “|2|pdA(z) <oo, 1<p<oo
acCJC

and
supsup |p(z,a@)e” 217 _%|“|2| <00, p=o00.
a€eC zeC
Conversely, when 1 < p < oo, let
—sup/ |o(z,a)e el |pdA( ) <
acC
For f € F}, by Lemma 2.1 and Fubini’s Theorem, we have

156l = (%[C|5¢f(z)e‘ (z))%
e aa)’

(5 [ [otzmrman|
/ 22 [otem e aa) draw)

S5 [ e aaw) (52 [ oz mpe =4

sCig [ AGw),

156fllp.a < C7 [ fll1,a-

MdA(z))%

Hence, we obtain

For p = oo, by Fubini’s Theorem, we have

alz|?

sup|S¢f(z)e_ z |
/|¢z ) (w)]dAa (w)e

alz|?
2
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alz|?

=2 [ loem) fwle ' dA(w)e”
C
‘2

a\z\2 oc\w\z alw
Ssupsuplo(zwle” “F e L [ | w)e * aaw)
weC zeC 2T Jc

1212 _alw)?

=supsup|¢(z,We™ "7 e 2
weC zeC

£l

By the assumption, we obtain

156 flloo,a < Cl[ fll1,0-

This completes the proof.

The following result shows that the condition in Theorem 2.1 is no longer sufficient for Sy

to be bounded, when ¢ > 1.

Theorem 2.2 Let 1 < g < oo and 1 < p < oo. For any z € C, there exists a function
@(z,-) € F° such that the integral operator Sy satisfies

sup [|Sgkalp.a < 00,
aeC

but the operator Sy is not bounded from F2 to FY.

Proof When 1 <p <ooand 1 < ¢ < oo, we can choose some

1 11 1
se(b L1 1y
2g 2p 2 2p

Let
[ k.
n;,. o T_ 1
k ng > 2327,
ap,, = ny!
0, others
and

(2, W) = Z Ap, 2" W
k=1
Then for z € C, we have
#(2,-) € F2 C F5°.
Define the integral operator
Sf(2) = [ dzmf@)da(w), zeC.
C

One can check that the operator S, is well-defined on some dense subset of F{.

We first show that Sy is not bounded from FZ to F?. By direct calculation, we get

S¢enk (Z)
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— /C B(2,W)en, (w)dAa (W)
S / 0" o (w)
=an, nElen, (2)

We calculate the norm of Sge,, in FZ for 1 < p < oco. By Stirling’s formula, we have

||S¢€nk||§a

/|anknk enk ) B
«@ 2po<
(Jam, )" (n ) /

~(anlont? (55) (%) P(%H)

b

1
~(lan [ng!)Png "

(2)

(2)

_1
Similarly, for p = oo, we have ||S¢en,|locc,a ~ |@n,|nx!n, *. Therefore,

i1
[1Seenillpa ~ lan,[nelng” *. (2.1)

When 1 < ¢ < oo, the norm estimate of e,, in FZ is

1

a1
lenllga ~ngt (2.2)
Now combining (2.1) with (2.2), we get

S 11
” ||_ien—ﬁ””’a ~ Jan, It
N llg,c

n, =00, k—oo.

So Sy is not bounded from FZ to F?, when 1 < ¢ < oo and 1 < p < 0.

Next we prove that
sup || Skl < .
acC

Using the reproducing formula, we have
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By computation, we get
||S¢ka|

b,

s 2
<37 Jangllal™ ||z [|p.oe™
k=1
(% /(C |z"’“e_% =7 |pdA(z))

> la|
=" lan, llal™e"
k=1
alal? o
SO lan,|(max faf e 5 ) (22) F .
acC e

1
P

g i

k=1
Note that
max|a| —egE (ﬁ)%
acC ae
By Stirling’s formula, we have
1S¢kallp,a

fe%e] N\ %
/S E |a’nk|(_) nkp
e
k=1
o0 o0
nk! 11 6—(
~ |an,| n2w 2 = n
Nk Qe k
k=1

k=1
=1

SZQ_]C < Q0.
k=1

1ol
|~

)

W)

This completes the proof.

We can characterize the compactness of Sy completely.

Theorem 2.3 Let 1 < p < oco. Forany z € C, suppose ¢(z,-) € F°. Then Sy is a compact

operator from E} to FP if and only if

lim ||Sgkallp,a = 0.
al—o0

Proof We firstly prove that S, is a compact operator. Let f,, be a sequence in F! such

that sup || fn]l1,a < 00 and f,, — 0 uniformly on compact sets in C. When 1 < p < oo, by the

n
proof in Theorem 2.1, we get

||5¢fn P

(22 [ e (z))%

/ atwie 57 04w) (B2 [ oz mpre 57 aA(z)’

= [ Upatwpe®

adA(w).
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For any 0 < r < oo, we denote

D, ={weC:|w >r}

Then,
15 frllp.a
< 2 / | fn(w adA(w)
0
=55 |, Untwre” adA(w)
™
o [Fu(w)e = adA(w)
2 {weC:|w|<r}
=1 + I>.
We estimate each item independently. We first estimate I;.
I = Ifn( Je” adA(w)

| /\

_a\W\
/ [ fulw dA(w) sup [[Spkullpa

weD,
= an”La sSup ||S¢kw|
weD,

b,

< 00, we see that Iy — 0 as r — co. We need to make a similar conclusion

Since sup || fn

n
for I», and it follows from sup |[Sgkwl|p,« < 0o that
weC

@ _alw?
b=50 [ fa(w)e™ = [[[Spkuwllp,adA(w)
T J{weC:|w|<r}

S osup [fa(w)].
{weC:|w|<r}

Since f,, — 0 uniformly on compact sets in C, we get that I, — 0 as n — oo. Therefore,
IS frllp,a converges to 0 as n — co. So, Sy is a compact operator.

Conversely, suppose that S, is a compact operator. Since k, is a unit vector in F! and
converges uniformly to 0 on any compact subset of C as |a| — oo, we have

[S¢kallp.a =0, laf = oo

For p = oo, the proof is similar above, we omit it. This completes the proof.

3 Boundedness and Compactness of T,

The section is devoted to studying the integral operator

Tof(2) = [ e Tple =) (o )
between Fock spaces.

Let B(z,r) be the open Euclidean disk centred at z with radius . The following lemma

gives us the optimal pointwise estimates for functions in Fock spaces.
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Lemma 3.1 (see [5, Lemma 2.1]) For any r > 0 and p > 0, there exists a constant C > 0
such that

If(2)e 212 P < O/B< )|f(w)e‘%‘”‘2lpdz4(w)

for all entire function f and all z € C.

For our next lemma, we need the concept of a lattice. For r > 0, a sequence {ax} in C is
called an r-lattice if the following conditions are satisfied:

(1) kﬁl Blax,r) = C.

(2) {b (ar, %) }:;1 are mutually disjoint.

If {ax} is an r-lattice, then for any 6 > 0 there exists a positive integer m (depending only
on 7 and ¢) such that every point in C belongs to at most m of the sets B(ay, ).

The following lemma is some partial result about atomic decomposition of Fock spaces.

Lemma 3.2 (see [6, Theorem 8.2]) Let r > 0 and {ar} be an r-lattice. For 1 < p < oo
and {ci} €17, set

f(z) =Y epersmglnl, (3.1)
k=1
Then f € FP. Moreover,

[ fllp,o S f [[{ex i,

where the infimum is taken over all sequences {ci} that give rise to the representation of f in
(3.1).

We shall use the following technique (due to Luecking [8]) in our proof of boundedness of

the integral operator T,,. Recall that the Rademacher functions rj are defined by

1

1, ifo<t—[f] <y,

ro(t) = 1
1, g <t <1

and ry,(t) = r9(2Ft) for k = 1,2, - -, where [t] denotes the largest integer not greater than t. An
important property of Rademacher functions is the Khinchine’s inequality: For any 0 < p < oo,

there exist some positive constants C; and Cs depending only on p such that

Ol(i|bk|2)% < /1 | ibkrk(t)‘pdt < 02(i|bk|2)%
k=1 (O —

for any complex number sequences {by} 72 ;.
The following result shows that there are no non-zero bounded integral operators T, from

FPto Fiif1 <qg<p<oo.
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Theorem 3.1 Let 1 < q¢ < p < oo. Suppose ¢ € F?2, then the integral operator T, is
bounded from FP to F2 if and only if ¢ = 0.

Proof We need only to prove that ¢ = 0 if T, is bounded from FP? to F4. Let r > 0 and
let {ar} be an r-lattice. For any {c;} € [P, then {cyri(t)} € P, where 74(t) is a Rademacher

function. By Lemma 3.2, the function

o0 o0
z) = Z ekt (t)ka, (2) = Z crri(t)e O‘Z“’“_*Ia’cﬁ
k=1 k=1

belongs to F2 and || f¢|[p,a < [[{ck}|liw. Since T, is bounded from F? to FZ, we get

1T fillg.o < NTollpz—rell fellp.a S 1Tl pz— rzl{ck} -

In the above inequality, integrate with respect to ¢ from 0 to 1. By Fubini’s theorem and

Khinchine’s inequality, we have

1
AT
0
! olz|?
- / / T, £ (2)e 5" [1d A(z)at

-/ }Zcm Ok, ()] e A
_ / / ‘chrk(t)mak )| ate” “Eaa(z)
/(Zw Tk, (2)2) e ¥ 0 (2)

1 o)z|?
ZZ/ Zlf:kl Tk ()?) ™5~ dA(2).
=1 B(aj, r)
For j fixed, we have
Y lenlPIToka () = les P Tpka, (2).
k=1
This, together with Lemma 3.1, shows that
3 _aalzl?
Z/ (Sl (F) e 5 a0
B(aj, r)

>Z/ 6519 Tk, (2) |6 (2)

B(aj,r)

_alz/?
:Z|Cj|q/ [T ok, (2)]%e™ 2~ du(z)

B(aj,r)

8&

alaj|?

Z|CJ| Tk, (az)[%e™ 2
j=1
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By direct calculation, we have

Therefore, we get
oo 1
S leyea; =TI [Tl adt S Ty sl
j=1

Denote d; = |¢;|?, then

> ldjllela; =) S ITellfp, pall{di} 2
j=1

Since the conjugate exponent of % is ﬁ, by a duality argument (I %)* = |74, we imply that

Z|<P @) S 1T IIFp%Fq (3.2)

Notice that the above inequality (3.2) holds for any r-lattices. Choose a point §; € B(a;,7)
such that

(& — &)l = sup oz —2)|.

z€B(aj,r)

Hence, we conclude

/w—z HidA(z)
<[ e -maae)

j=1
< lelg - )l
j=1

Notice that there exists some ¢ > 0 such that {;} is a finite union of J-lattices. This together
with (3.2) shows

/ lo(z — E)|%dA(z) < 00
C

which is impossible unless ¢ = 0. In fact, if p(z9 —Zg) # 0, set z = x + 1y, z0 = xo + iyo, there
exists r > 0 such that

/ lo(z — 2)| P dA()
C

= [ [ letzin)#ayda
RJR
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Yo+r pa
> [ [ etew) #dyde = o0
R Jyg—r

The next result is a sufficient condition for T, to be bounded from F? to FJ.

This completes the proof.

Theorem 3.2 Let1l <p<g<oo. If

sup/ lp(z — 6)|e_%|z_a|2dA(z) < o0,

acC.JC
then T, is bounded from FY to FJ.

Proof By Hoélder’s Inequality, we get
T f(z)e” 2|
< [ ooz~ m)fw)e”

_o / Fw)e™ 5 lp(z —m)fe
< ( [lotz w5 aaw) ™

([ 15 plote - e 5 aA(w))
C

Using hypothesis and Fubini’s Theorem, we have

alz|?
2

a(w)

alz— w\

dA(w)

ITofIE.
e / ITof(2) (2)

_a\w\ p 5 — W)l olz— w\ >
< /C /C Fw)e 35 Plo(: — )| dA(w)dA(2)

= [ty (w) [ lete = w5 a4)
< /C [Fw)e 5= P A(w).

Therefore,

ITefllpa < Clifllp,a-

Since || fllg,a S | fllp,a if p < g for any f € FP, we see that T, is bounded from FZ? to FZ. This

completes the proof.

We also give a sufficient condition for i, to be a compact operator from FY to FJ.

Theorem 3.3 Let1 <p<g<oo. If

lim / lp(z — E)|e_%|z_“|2dA(z) =0,

la| = JC

then T, is compact from FE to FJ.
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Proof By the argument in the proof of Theorem 3.2, we have

1T f11,0
a\sz\2

Sc/c /C|f<w>e—°“¥‘2|P|so<z—w>|e— = 4 A(w)dA(2)

ajw|?

- p Z—W _Q‘%W z w).
—c /C |Fw)e 55| /C o(z — e dA()dA(w)

Let f,, be a sequence in F? such that

SUp [| follp,a < 00
n

and
fn—0

uniformly on compact sets in C. For any 0 < r < oo, we denote
D, ={weC:|w >r}.
Then,
”Tsaang,a
SC/ |fn(w)e_%'w'2|p/ lp(z —W)[e™ 317 dA(2)dA(w)
D, C
+ Falw)e™ 2P [ oz~ @) A AAw)
{weC:|w|<r} C
=Ji + Jo.
We estimate each item independently. We first estimate J;.

= [ 18 [ o @ 8 aA)aAw)

— 2 z—wl|?
< 1l sup /C lo(z —m)[e~ T dA(2).

Since sup || fn|/p,a < 00, we see that J; — 0 as r — co. We next estimate Jo.
n

n= | a3 [ folc —m)le 2= A w)
{weC:|w|<r} C

<C sup | fr(w)]-
{weC:|w|<r}

Since f,, — 0 uniformly on compact sets in C, we get that J, — 0 as n — oo. Therefore,

| Ty frllg,a converges to 0 as n — co. So, T, is a compact operator. This completes the proof.
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