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Integral Operators Between Fock Spaces∗

Yongqing LIU1 Shengzhao HOU2

Abstract In this paper, the authors study the integral operator

Sφf(z) =

∫
C

φ(z, w)f(w)dλα(w)

induced by a kernel function φ(z, ·) ∈ F∞
α between Fock spaces. For 1 ≤ p ≤ ∞, they

prove that Sφ : F 1

α → F p
α is bounded if and only if

sup
a∈C

‖Sφka‖p,α < ∞, (†)

where ka is the normalized reproducing kernel of F 2

α; and, Sφ : F 1

α → F p
α is compact if and

only if

lim
|a|→∞

‖Sφka‖p,α = 0.

When 1 < q ≤ ∞, it is also proved that the condition (†) is not sufficient for boundedness
of Sφ : F q

α → F p
α .

In the particular case φ(z, w) = eαzwϕ(z − w) with ϕ ∈ F 2

α, for 1 ≤ q < p < ∞, they

show that Sφ : F p
α → F q

α is bounded if and only if ϕ = 0; for 1 < p ≤ q < ∞, they give

sufficient conditions for the boundedness or compactness of the operator Sφ : F p
α → F q

α.
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1 Introduction

Fock spaces are deeply connected with quantum mechanics, partial differential equations,

and harmonic analysis. For instance, creation and annihilation operators in quantum mechanics

are multiplication and, respectively, differential operators on Fock spaces. Characterizing the

zero sequence of Fock space is equivalent to studying the completeness of coherent state systems

in quantum mechanics (see [4, 11] and the references therein).

Let α be a positive number, and dλα(z) =
α
π
e−α|z|2dA(z) be the Gaussian measure on the

complex plane C, where dA is the Euclidean area measure on C. For 0 < p < ∞, the Fock
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space F p
α consists of all entire functions f such that

‖f‖p,α =
(pα

2π

∫

C

|f(z)e−
α
2 |z|2 |pdA(z)

)
1
p

< ∞. (1.1)

The Fock space F∞
α (i.e., p = ∞) consists of all entire functions f such that

‖f‖∞,α = sup
z∈C

|f(z)|e−
α
2 |z|2 < ∞. (1.2)

When 1 ≤ p ≤ ∞, Fock space F p
α is a Banach space. In particular, F 2

α is a Hilbert space.
{

en(z) =
√

αn

n! z
n, n = 0, 1, 2, 3, · · ·

}

is an orthonormal basis for F 2
α. The reproducing kernel

of F 2
α is given by Kα(z, w) =

∞
∑

n=0
en(z)en(w) = eαzw, and the normalized reproducing kernel at

w ∈ C is kw(z) = eαzw−α
2 |w|2.

Integral operators on Fock spaces have been studied widely (see [1–3, 5, 11]). We know in

[4] that every bounded operator T on Fock space F 2
α can be expressed as the integral operator:

Tf(z) =

∫

C

φ(z, w)f(w)dλα(w),

where the kernel function φ(z, w) = TKα(·, w)(z), and φ(·, w) ∈ F 2
α for all w ∈ C and φ(z, ·) ∈

F 2
α for all z ∈ C. On the other hand, it is a difficult problem to obtain conditions on φ

under which the corresponding integral operator is bounded or compact. In this paper, we

study the boundedness and compactness of the integral operators induced by a kernel function

φ(z, ·) ∈ F∞
α between Fock spaces.

In [10], the authors gave some sufficient conditions for a linear operator on F 2
α to be bounded

and compact. The authors of [7] extended the work in [10] to F p
α . Precisely, using the atomic

decomposition of Fock spaces, the authors of [7] proved that for 0 < p ≤ 1 a linear operator

T : F p
α → F p

α is bounded if and only if

sup
a∈C

‖Tka‖p,α < ∞.

For φ(z, ·) ∈ F∞
α , let

Sφf(z) =

∫

C

φ(z, w)f(w)dλα(w)

be the integral operator induced by φ. In Section 2, for 1 ≤ p ≤ ∞, we prove that Sφ : F 1
α → F p

α

is bounded if and only if

sup
a∈C

‖Sφka‖p,α < ∞ (1.3)

(see Theorem 2.1); and, Sφ : F 1
α → F p

α is compact if and only if lim
|a|→∞

‖Sφka‖p,α = 0 (see

Theorem 2.3). When 1 < q ≤ ∞, it is also proved that the condition (1.3) is not sufficient for

boundedness of Sφ : F q
α → F p

α (see Theorem 2.2).
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In particular, for ϕ ∈ F 2
α, let φ(z, w) = eαzwϕ(z − w), we consider corresponding integral

operator

Tϕf(z) =

∫

C

eαzwϕ(z − w)f(w)dλα(w).

Bounded operators on Fock space F 2
α and on L2(R, dx) can be connected through the unitary

operator Bargmann transform. Using Bargmann transform, Zhu [12] transferred the classical

Hilbert transform to the integral operator Tϕ on F 2
α, where ϕ(z) =

∫

z√
2

0 eu
2

du, and proposed a

question: Find necessary and sufficient conditions in terms of ϕ ∈ F 2
α such that Tϕ is bounded

on F 2
α. Recently, Cao et al. [1] proved that Tϕ is bounded on F 2

α if and only if there exists an

m ∈ L∞(R) such that

ϕ(z) =

∫

R

e−2(x− i
2 z)

2

m(x)dx, z ∈ C.

In Section 3, we study boundedness and compactness of the integral operator Tϕ from F p
α

to F q
α. For 1 ≤ q < p < ∞, we proved that there are no non-zero bounded integral operators

Tϕ from F p
α to F q

α (see Theorem 3.1). But, when 1 < p ≤ q < ∞, we give sufficient conditions

for Tϕ from F p
α to F q

α to be bounded (see Theorem 3.2) and compact (see Theorem 3.3).

In this paper, we use C to denote a positive number, which may vary from place to place.

For two quantities A and B, A . B means that there exists a constant C > 0, independent of

the involved variables, such that A ≤ CB, and A ≃ B if and only if A . B and B . A.

2 Boundedness and Compactness of Sφ

In this section, we give necessary and sufficient conditions for integral operator Sφ from F 1
α

to F p
α to be bounded, and, respectively, compact, for 1 ≤ p ≤ ∞.

In order to prove Theorem 2.1, we need the following Minkowski’s integral inequality from

[9].

Lemma 2.1 Let (X,µ) and (Y, ν) be two σ-finite measure spaces and let 1 ≤ p < ∞. For

every nonnegative measurable function F on the product space (X,µ)× (Y, ν) we have

[

∫

Y

(

∫

X

F (x, y)dµ(x)
)p

dν(y)
]

1
p

≤

∫

X

[

∫

Y

F (x, y)pdν(y)v
]

1
p

dµ(x).

The following result provides a necessary and sufficient condition for Sφ to be bounded.

Theorem 2.1 Let 1 ≤ p ≤ ∞. For any z ∈ C, suppose φ(z, ·) ∈ F∞
α . Then Sφ is bounded

from F 1
α to F p

α if and only if

sup
a∈C

‖Sφka‖p,α < ∞,

or equivalently

sup
a∈C

∫

C

|φ(z, a)e−
α
2 |z|2−α

2 |a|2 |pdA(z) < ∞, 1 ≤ p < ∞;
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sup
a∈C

sup
z∈C

|φ(z, a)e−
α
2 |z|2−α

2 |a|2 | < ∞, p = ∞.

Proof Assume that Sφ is bounded from F 1
α to F p

α . Since each ka is a unit vector in F 1
α, we

have

‖Sφka‖p,α ≤ ‖Sφ‖F 1
α→F

p
α
.

By the reproducing formula (see [2, Lemma 2.15]), we get

Sφka(z) =

∫

C

φ(z, w)ka(w)dλα(w)

= e−
α
2 |a|2

∫

C

φ(z, w)eαwadλα(w)

= e−
α
2 |a|2φ(z, a).

Therefore, we have

sup
a∈C

∫

C

|φ(z, a)e−
α
2 |z|2−α

2 |a|2 |pdA(z) < ∞, 1 ≤ p < ∞

and

sup
a∈C

sup
z∈C

|φ(z, a)e−
α
2 |z|2−α

2 |a|2 | < ∞, p = ∞.

Conversely, when 1 ≤ p < ∞, let

C = sup
a∈C

∫

C

|φ(z, a)e−
α|z|2

2 −α|a|2
2 |pdA(z) < ∞.

For f ∈ F 1
α, by Lemma 2.1 and Fubini’s Theorem, we have

‖Sφf‖p,α =
(pα

2π

∫

C

|Sφf(z)e
−α|z|2

2 |pdA(z)
)

1
p

=
(pα

2π

∫

C

∣

∣

∣

∫

C

φ(z, w)f(w)dλα(w)
∣

∣

∣

p

e−
pα|z|2

2 dA(z)
)

1
p

≤

∫

C

(pα

2π

∫

C

|φ(z, w)f(w)|pe−
pα|z|2

2 dA(z)
)

1
p

dλα(w)

.
α

2π

∫

C

|f(w)e−
α|w|2

2 |dA(w)
(pα

2π

∫

C

|φ(z, w)|pe−
pα|z|2

2 − pα|w|2
2 dA(z)

)
1
p

. C
1
p
α

2π

∫

C

|f(w)e−
α|w|2

2 |dA(w).

Hence, we obtain

‖Sφf‖p,α ≤ C
1
p ‖f‖1,α.

For p = ∞, by Fubini’s Theorem, we have

sup
z∈C

|Sφf(z)e
−α|z|2

2 |

≤

∫

C

|φ(z, w)f(w)|dλα(w)e
−α|z|2

2
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=
α

π

∫

C

|φ(z, w)f(w)|e−α|w|2dA(w)e−
α|z|2

2

. sup
w∈C

sup
z∈C

|φ(z, w)|e−
α|z|2

2 e−
α|w|2

2
α

2π

∫

C

|f(w)e−
α|w|2

2 |dA(w)

= sup
w∈C

sup
z∈C

|φ(z, w)e−
α|z|2

2 e−
α|w|2

2 |‖f‖1,α.

By the assumption, we obtain

‖Sφf‖∞,α ≤ C‖f‖1,α.

This completes the proof.

The following result shows that the condition in Theorem 2.1 is no longer sufficient for Sφ

to be bounded, when q > 1.

Theorem 2.2 Let 1 < q ≤ ∞ and 1 ≤ p ≤ ∞. For any z ∈ C, there exists a function

φ(z, ·) ∈ F∞
α such that the integral operator Sφ satisfies

sup
a∈C

‖Sφka‖p,α < ∞,

but the operator Sφ is not bounded from F q
α to F p

α.

Proof When 1 ≤ p ≤ ∞ and 1 < q ≤ ∞, we can choose some

δ ∈
( 1

2q
−

1

2p
,
1

2
−

1

2p

)

.

Let

ank
=







nδ
kα

nk

nk!
, nk ≥ 2

k

( 1
2
− 1

2p
)−δ ;

0, others

and

φ(z, w) =

∞
∑

k=1

ank
znkwnk .

Then for z ∈ C, we have

φ(z, ·) ∈ F 2
α ⊂ F∞

α .

Define the integral operator

Sφf(z) =

∫

C

φ(z, w)f(w)dλα(w), z ∈ C.

One can check that the operator Sφ is well-defined on some dense subset of F q
α.

We first show that Sφ is not bounded from F q
α to F p

α. By direct calculation, we get

Sφenk
(z)
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=

∫

C

φ(z, w)enk
(w)dλα(w)

=ank

√

αnk

nk!
znk

∫

C

|w|2nkdλα(w)

=ank
nk!enk

(z).

We calculate the norm of Sφenk
in F p

α for 1 ≤ p ≤ ∞. By Stirling’s formula, we have

‖Sφenk
‖pp,α

=
pα

2π

∫

C

|ank
nk!enk

(z)e−
α|z|2

2 |pdA(z)

=(|ank
|nk!)

p
(αnk

nk!

)

p
2 pα

2π

∫

C

|znke−
α|z|2

2 |pdA(z)

=(|ank
|nk!)

p
(αnk

nk!

)

p
2
( 2

αp

)

np
2

Γ
(nkp

2
+ 1

)

∼(|ank
|nk!)

pn
1
2−

p
4

k .

Similarly, for p = ∞, we have ‖Sφenk
‖∞,α ∼ |ank

|nk!n
− 1

4

k . Therefore,

‖Sφenk
‖p,α ∼ |ank

|nk!n
1
2p−

1
4

k . (2.1)

When 1 < q ≤ ∞, the norm estimate of en in F q
α is

‖enk
‖q,α ∼ n

1
2q−

1
4

k . (2.2)

Now combining (2.1) with (2.2), we get

‖Sφenk
‖p,α

‖enk
‖q,α

∼ |ank
|nk!n

1
2p−

1
2q

k

= αnkn
δ−( 1

2q−
1
2p )

k → ∞, k → ∞.

So Sφ is not bounded from F q
α to F p

α, when 1 < q ≤ ∞ and 1 ≤ p ≤ ∞.

Next we prove that

sup
a∈C

‖Sφka‖p,α < ∞.

Using the reproducing formula, we have

Sφka(z)

=

∫

C

φ(z, w)ka(w)dλα(w)

=

∞
∑

k=1

ank
znk

∫

C

wnkka(w)dλα(w)

=

∞
∑

k=1

ank
znkanke−

α
2 |a|2 .
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By computation, we get

‖Sφka‖p,α

≤

∞
∑

k=1

|ank
||a|nk‖znk‖p,αe

−α
2 |a|2

=

∞
∑

k=1

|ank
||a|nke−

α|a|2
2

(pα

2π

∫

C

|znke−
α
2 |z|2 |pdA(z)

)
1
p

.

∞
∑

k=1

|ank
|
(

max
a∈C

|a|nke−
α|a|2

2

)(nk

αe

)

nk
2

n
1
2p

k .

Note that

max
a∈C

|a|ne−
α|a|2

2 =
( n

αe

)
n
2 .

By Stirling’s formula, we have

‖Sφka‖p,α

.

∞
∑

k=1

|ank
|
(nk

αe

)nk

n
1
2p

k

∼

∞
∑

k=1

|ank
|
nk!

αnk
n

1
2p−

1
2 =

∞
∑

k=1

n
δ−( 1

2−
1
2p )

k

≤
∞
∑

k=1

1

2k
< ∞.

This completes the proof.

We can characterize the compactness of Sφ completely.

Theorem 2.3 Let 1 ≤ p ≤ ∞. For any z ∈ C, suppose φ(z, ·) ∈ F∞
α . Then Sφ is a compact

operator from F 1
α to F p

α if and only if

lim
|a|→∞

‖Sφka‖p,α = 0.

Proof We firstly prove that Sφ is a compact operator. Let fn be a sequence in F 1
α such

that sup
n

‖fn‖1,α < ∞ and fn → 0 uniformly on compact sets in C. When 1 ≤ p < ∞, by the

proof in Theorem 2.1, we get

‖Sφfn‖p,α

=
(pα

2π

∫

C

|Sφfn(z)e
−α|z|2

2 |pdA(z)
)

1
p

≤
α

2π

∫

C

|fn(w)e
−

α|w|2
2 |dA(w)

(pα

2π

∫

C

|φ(z, w)|pe−
pα|z|2

2 −
pα|w|2

2 dA(z)
)

1
p

=
α

2π

∫

C

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w).
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For any 0 < r < ∞, we denote

Dr = {w ∈ C : |w| > r}.

Then,

‖Sφfn‖p,α

≤
α

2π

∫

C

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w)

=
α

2π

∫

Dr

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w)

+
α

2π

∫

{w∈C:|w|≤r}

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w)

=I1 + I2.

We estimate each item independently. We first estimate I1.

I1 =
α

2π

∫

Dr

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w)

≤
α

2π

∫

C

|fn(w)e
−α|w|2

2 |dA(w) sup
w∈Dr

‖Sφkw‖p,α

= ‖fn‖1,α sup
w∈Dr

‖Sφkw‖p,α.

Since sup
n

‖fn‖1,α < ∞, we see that I1 → 0 as r → ∞. We need to make a similar conclusion

for I2, and it follows from sup
w∈C

‖Sφkw‖p,α < ∞ that

I2 =
α

2π

∫

{w∈C:|w|≤r}

|fn(w)e
−α|w|2

2 |‖Sφkw‖p,αdA(w)

. sup
{w∈C:|w|≤r}

|fn(w)|.

Since fn → 0 uniformly on compact sets in C, we get that I2 → 0 as n → ∞. Therefore,

‖Sφfn‖p,α converges to 0 as n → ∞. So, Sφ is a compact operator.

Conversely, suppose that Sφ is a compact operator. Since ka is a unit vector in F 1
α and

converges uniformly to 0 on any compact subset of C as |a| → ∞, we have

‖Sφka‖p,α → 0, |a| → ∞.

For p = ∞, the proof is similar above, we omit it. This completes the proof.

3 Boundedness and Compactness of Tϕ

The section is devoted to studying the integral operator

Tϕf(z) =

∫

C

eαzwϕ(z − w)f(w)dλα(w)

between Fock spaces.

Let B(z, r) be the open Euclidean disk centred at z with radius r. The following lemma

gives us the optimal pointwise estimates for functions in Fock spaces.
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Lemma 3.1 (see [5, Lemma 2.1]) For any r > 0 and p > 0, there exists a constant C > 0

such that

|f(z)e−
α
2 |z|2 |p ≤ C

∫

B(z,r)

|f(w)e−
α
2 |w|2|pdA(w)

for all entire function f and all z ∈ C.

For our next lemma, we need the concept of a lattice. For r > 0, a sequence {ak} in C is

called an r-lattice if the following conditions are satisfied:

(1)
∞
⋃

k=1

B(ak, r) = C.

(2)
{

B
(

ak,
r
2

)}∞

k=1
are mutually disjoint.

If {ak} is an r-lattice, then for any δ > 0 there exists a positive integer m (depending only

on r and δ) such that every point in C belongs to at most m of the sets B(ak, δ).

The following lemma is some partial result about atomic decomposition of Fock spaces.

Lemma 3.2 (see [6, Theorem 8.2]) Let r > 0 and {ak} be an r-lattice. For 1 ≤ p ≤ ∞

and {ck} ∈ lp, set

f(z) =

∞
∑

k=1

cke
αzak−

α
2 |ak|

2

. (3.1)

Then f ∈ F p
α. Moreover,

‖f‖p,α . inf ‖{ck}‖lp ,

where the infimum is taken over all sequences {ck} that give rise to the representation of f in

(3.1).

We shall use the following technique (due to Luecking [8]) in our proof of boundedness of

the integral operator Tϕ. Recall that the Rademacher functions rk are defined by

r0(t) =











1, if 0 ≤ t− [t] <
1

2
,

−1, if
1

2
≤ t− [t] < 1

and rk(t) = r0(2
kt) for k = 1, 2, · · · , where [t] denotes the largest integer not greater than t. An

important property of Rademacher functions is the Khinchine’s inequality: For any 0 < p < ∞,

there exist some positive constants C1 and C2 depending only on p such that

C1

(

∞
∑

k=1

|bk|
2
)

p
2

≤

∫ 1

0

∣

∣

∣

∞
∑

k=1

bkrk(t)
∣

∣

∣

p

dt ≤ C2

(

∞
∑

k=1

|bk|
2
)

p
2

for any complex number sequences {bk}
∞
k=1.

The following result shows that there are no non-zero bounded integral operators Tϕ from

F p
α to F q

α if 1 ≤ q < p < ∞.
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Theorem 3.1 Let 1 ≤ q < p < ∞. Suppose ϕ ∈ F 2
α, then the integral operator Tϕ is

bounded from F p
α to F q

α if and only if ϕ = 0.

Proof We need only to prove that ϕ = 0 if Tϕ is bounded from F p
α to F q

α. Let r > 0 and

let {ak} be an r-lattice. For any {ck} ∈ lp, then {ckrk(t)} ∈ lp, where rk(t) is a Rademacher

function. By Lemma 3.2, the function

ft(z) =

∞
∑

k=1

ckrk(t)kak
(z) =

∞
∑

k=1

ckrk(t)e
αzak−

α
2 |ak|

2

belongs to F p
α and ‖ft‖p,α . ‖{ck}‖lp . Since Tϕ is bounded from F p

α to F q
α, we get

‖Tϕft‖q,α ≤ ‖Tϕ‖Fp
α→F

q
α
‖ft‖p,α . ‖Tϕ‖Fp

α→F
q
α
‖{ck}‖lp .

In the above inequality, integrate with respect to t from 0 to 1. By Fubini’s theorem and

Khinchine’s inequality, we have
∫ 1

0

‖Tϕft‖
q
q,αdt

=

∫ 1

0

∫

C

|Tϕft(z)e
−α|z|2

2 |qdA(z)dt

=

∫ 1

0

∫

C

∣

∣

∣

∞
∑

k=1

ckrk(t)Tϕkak
(z)

∣

∣

∣

q

e−
qα|z|2

2 dA(z)dt

=

∫

C

∫ 1

0

∣

∣

∣

∞
∑

k=1

ckrk(t)Tϕkak
(z)

∣

∣

∣

q

dte−
qα|z|2

2 dA(z)

&

∫

C

(

∞
∑

k=1

|ck|
2|Tϕkak

(z)|2
)

q
2

e−
qα|z|2

2 dA(z)

&

∞
∑

j=1

∫

B(aj ,r)

(

∞
∑

k=1

|ck|
2|Tϕkak

(z)|2
)

q
2

e−
qα|z|2

2 dA(z).

For j fixed, we have

∞
∑

k=1

|ck|
2|Tϕkak

(z)|2 ≥ |cj |
2|Tϕkaj

(z)|2.

This, together with Lemma 3.1, shows that

∞
∑

j=1

∫

B(aj ,r)

(

∞
∑

k=1

|ck|
2|Tϕkak

(z)|2
)

q
2

e−
qα|z|2

2 dA(z)

≥

∞
∑

j=1

∫

B(aj ,r)

|cj |
q|Tϕkaj

(z)|qe−
qα|z|2

2 dA(z)

=
∞
∑

j=1

|cj |
q

∫

B(aj ,r)

|Tϕkaj
(z)|qe−

q|z|2
2 dv(z)

&

∞
∑

j=1

|cj |
q|Tϕkaj

(aj)|
qe−

q|aj |2
2 .
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By direct calculation, we have

Tϕkaj
(aj)e

−
|aj |2

2 = ϕ(aj − aj).

Therefore, we get

∞
∑

j=1

|cj |
q|ϕ(aj − aj)|

q .

∫ 1

0

‖Tϕft‖
q
q,αdt . ‖Tϕ‖

q

F
p
α→F

q
α
‖{ck}‖

q
lp .

Denote dj = |cj |
q, then

∞
∑

j=1

|dj ||ϕ(aj − aj)|
q . ‖Tϕ‖

q

F
p
α→F

q
α
‖{dj}‖

l
p
q
.

Since the conjugate exponent of p
q
is p

p−q
, by a duality argument (l

p
q )∗ = l

p
p−q , we imply that

∞
∑

j=1

|ϕ(aj − aj)|
pq

p−q . ‖Tϕ‖
pq

p−q

F
p
α→F

q
α
. (3.2)

Notice that the above inequality (3.2) holds for any r-lattices. Choose a point ξj ∈ B(aj , r)

such that

|ϕ(ξj − ξj)| = sup
z∈B(aj,r)

|ϕ(z − z)|.

Hence, we conclude
∫

C

|ϕ(z − z)|
pq

p−q dA(z)

≤

∞
∑

j=1

∫

B(aj ,r)

|ϕ(z − z)|
pq

p−q dA(z)

.

∞
∑

j=1

sup
z∈B(aj ,r)

|ϕ(z − z)|
pq

p−q

≤
∞
∑

j=1

|ϕ(ξj − ξj)|
pq

p−q .

Notice that there exists some δ > 0 such that {ξj} is a finite union of δ-lattices. This together

with (3.2) shows
∫

C

|ϕ(z − z)|
pq

p−q dA(z) < ∞,

which is impossible unless ϕ = 0. In fact, if ϕ(z0 − z0) 6= 0, set z = x+ iy, z0 = x0 + iy0, there

exists r > 0 such that
∫

C

|ϕ(z − z)|
pq

p−q dA(z)

=

∫

R

∫

R

|ϕ(2iy)|
pq

p−q dydx
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≥

∫

R

∫ y0+r

y0−r

|ϕ(2iy)|
pq

p−q dydx = ∞.

This completes the proof.

The next result is a sufficient condition for Tϕ to be bounded from F p
α to F q

α.

Theorem 3.2 Let 1 < p ≤ q < ∞. If

sup
a∈C

∫

C

|ϕ(z − a)|e−
α
2 |z−a|2dA(z) < ∞,

then Tϕ is bounded from F p
α to F q

α.

Proof By Hölder’s Inequality, we get

|Tϕf(z)e
−α|z|2

2 |

≤

∫

C

|eαzwϕ(z − w)f(w)e−
α|z|2

2 |dλα(w)

=
α

π

∫

C

|f(w)e−
α|w|2

2 ||ϕ(z − w)|e−
α|z−w|2

2 dA(w)

≤
α

π

(

∫

C

|ϕ(z − w)|e−
α|z−w|2

2 dA(w)
)

p−1
p

·
(

∫

C

|f(w)e−
α|w|2

2 |p|ϕ(z − w)|e−
α|z−w|2

2 dA(w)
)

1
p

.

Using hypothesis and Fubini’s Theorem, we have

‖Tϕf‖
p
p,α

=C

∫

C

|Tϕf(z)e
−

α|z|2
2 |pdA(z)

.

∫

C

∫

C

|f(w)e−
α|w|2

2 |p|ϕ(z − w)|e−
α|z−w|2

2 dA(w)dA(z)

=

∫

C

|f(w)e−
α|w|2

2 |pdA(w)

∫

C

|ϕ(z − w)|e−
α|z−w|2

2 dA(z)

.

∫

C

|f(w)e−
α|w|2

2 |pdA(w).

Therefore,

‖Tϕf‖p,α ≤ C‖f‖p,α.

Since ‖f‖q,α . ‖f‖p,α if p ≤ q for any f ∈ F p
α, we see that Tϕ is bounded from F p

α to F q
α. This

completes the proof.

We also give a sufficient condition for Tϕ to be a compact operator from F p
α to F q

α.

Theorem 3.3 Let 1 < p ≤ q < ∞. If

lim
|a|→∞

∫

C

|ϕ(z − a)|e−
α
2 |z−a|2dA(z) = 0,

then Tϕ is compact from F p
α to F q

α.
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Proof By the argument in the proof of Theorem 3.2, we have

‖Tϕf‖
q
q,α

≤C

∫

C

∫

C

|f(w)e−
α|w|2

2 |p|ϕ(z − w)|e−
α|z−w|2

2 dA(w)dA(z)

=C

∫

C

|f(w)e−
α|w|2

2 |p
∫

C

|ϕ(z − w)|e−
α|z−w|2

2 dA(z)dA(w).

Let fn be a sequence in F p
α such that

sup
n

‖fn‖p,α < ∞

and

fn → 0

uniformly on compact sets in C. For any 0 < r < ∞, we denote

Dr = {w ∈ C : |w| > r}.

Then,

‖Tϕfn‖
q
q,α

≤C

∫

Dr

|fn(w)e
−α

2 |w|2|p
∫

C

|ϕ(z − w)|e−
α
2 |z−w|2dA(z)dA(w)

+

∫

{w∈C:|w|≤r}

|fn(w)e
−α

2 |w|2|p
∫

C

|ϕ(z − w)|e−
α
2 |z−w|2dA(z)dA(w)

=J1 + J2.

We estimate each item independently. We first estimate J1.

J1 =

∫

Dr

|fn(w)e
−α

2 |w|2 |p
∫

C

|ϕ(z − w)|e−
α
2 |z−w|2dA(z)dA(w)

≤ ‖fn‖
p
p,α sup

w∈Dr

∫

C

|ϕ(z − w)|e−
α
2 |z−w|2dA(z).

Since sup
n

‖fn‖p,α < ∞, we see that J1 → 0 as r → ∞. We next estimate J2.

J2 =

∫

{w∈C:|w|≤r}

|fn(w)e
−α

2 |w|2|p
∫

C

|ϕ(z − w)|e−
α
2 |z−w|2dA(z)dA(w)

≤ C sup
{w∈C:|w|≤r}

|fn(w)|.

Since fn → 0 uniformly on compact sets in C, we get that J2 → 0 as n → ∞. Therefore,

‖Tϕfn‖q,α converges to 0 as n → ∞. So, Tϕ is a compact operator. This completes the proof.
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