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Shock Formation for 2D Isentropic Euler
Equations with Self-similar Variables*
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Abstract The author studies the 2D isentropic Euler equations with the ideal gas law.
He exhibits a set of smooth initial data that give rise to shock formation at a single
point near the planar symmetry. These solutions to the 2D isentropic Euler equations are
associated with non-zero vorticity at the shock and have uniform-in-time %-Hblder bound.
Moreover, these point shocks are of self-similar type and share the same profile, which is a
solution to the 2D self-similar Burgers equation. The proof of the solutions, following the
3D construction of Buckmaster, Shkoller and Vicol (in 2023), is based on the stable 2D
self-similar Burgers profile and the modulation method.

Keywords 2D isentropic Euler equations, Shock formation, Self-similar solution
2000 MR Subject Classification 35Q31, 35167, 35B44

1 Introduction

The two-dimensional compressible isentropic Euler equations read

(Op+ Vi - (pu) =0,

{ O (pu) + divy(pu @ u) + Vip = 0, (1.1)
1

Ly — _ Y

kp ’yp ’

where x = (x1,%x2) € R? and t € R are space and time coordinates, respectively. The unknown
scalar p is the fluid density, u = (u1,u2) is the velocity field of the fluid, p = %p” is the
pressure with adiabatic index v > 1. This system describes the evolution of a two-dimensional
compressible ideal gas without viscosity.

We define the vorticity w = Ox, u2 — Ox,u1 and the specific vorticity ¢ = % at those points,
where p > 0. One can deduce from (1.1) that ¢ is purely transported by the velocity field:

¢ +u-Vi(=0. (1.2)
Our main result can be stated roughly as follows.

Theorem 1.1 (Rough statement of the main theorem) There exists a set of initial data

(uo, po) with |V (ug, po)| = (’)(l), such that their corresponding solutions to (1.1) develop a

€

shock-type singularity within time O(g).
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It is well known that governed by compressible Euler equations, shock can develop from
smooth initial data. In the one-dimensional case, this fact can be obtained by studying the
dynamics of the Riemann invariants, which were first introduced in Riemann’s foundational
work in [32]. See the discussion in John [20], Liu [21], and Majda [24].

In multi-dimensional cases, Sideris [33] proved a blow-up result. However, the shock for-
mation remained open. In 2007, Christodoulou [14] studied the relativistic fluids and he found
a set of irrotational initial data that will eventually develop shock-type singularity, which was
considered to be the first proof of shock formation for the compressible Euler equations in
multi-dimensional cases. Later in [17] the authors established the shock formation for non-
relativistic and irrotational flow. In the case of irrotational flow, one can rewrite the isentropic
Euler equations as a scalar second-order quasilinear wave equation. Alinhac in [2-3] proved
the first blow-up result for 2D quasilinear wave equations, which do not satisfy Klainerman’s
null condition. Using geometric method, shock formation for the 3D quasilinear wave equations
was studied in [29, 34-35]. The first result on shock formation that admits non-zero vorticity
for the compressible Euler equations was given by Luk-Speck [22]. They use the geometric
framework and developed new methods to study the vorticity transport. Later in [23] proved
shock formation for full compressible Euler equations in 3D with non-trivial vorticity and vari-
able entropy. In [4-8], the authors proved the low regularity ill-posedness for elastic waves and
MHD equations and showed that the ill-posedness is driven by shock formation. As to the shock
development problem for the compressible Euler equations, one could refer to the discussions
in [1, 9, 15-16].

In [11], Buckmaster, Shkoller, and Vicol utilized the modulation method to construct shock
solutions to the 2D Euler equations with azimuthal symmetry. Later in [13], they extend
this method to the 3D case with no symmetry assumptions. After a dynamical rescaling,
the solutions which they constructed are close to a profile W, which solves the self-similar
Burgers equation. By a singular coordinate transformation controlled by several modulation
variables, proving shock formation is equivalent to showing global existence in the self-similar
coordinate. This approach, known as the modulation method or dynamical rescaling, was
successfully applied in [25-27] for the blow-up of Schrédinger equations and in [28] for the
nonlinear heat equation. The proof in [11] is L® based since there is no derivative in the
forcing term, whereas in [13], an additional L? based energy estimate was used to overcome the
derivative loss in the L*-type argument. They also analyzed the non-isentropic case in [12].

Following the work in [13], we utilize the self-similar Burgers ansatz to construct shock
solutions. To keep track of the curvature of shock formation while maintaining the solution’s
stationarity in the far field, we make a minor modification to the construction in [13]. Different
from the construction in [11], we consider shock solutions without any symmetry.

The shock which we attempt to construct is of self-similar type. We introduce a self-similar
coordinate transformation (t,x) — (s,y), where (t,x) is the original Cartesian coordinate and

(s,y) is the self-similar coordinate. The new coordinate is aligned to the shock formation and
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will become singular when ¢ approaches the blow-up time T,. Roughly speaking, we have that
Y1~ (T* — t)_%Xl, Yo = (T* — t)_%Xg.

Thus y is a zoom-in version of x. In self-similar coordinates, the Riemann invariant W (will be
defined in the next subsection) will converge to a profile W, uniformly on any compact set of
y. Moreover, W solves the self-similar Burgers equation:

—%W + (gyl + W) Oy, W + %yQaWW =0.
In this sense, the constructed blow-up solution of the Euler equations is close to a fixed shape
on a smaller and smaller scale.

To better understand what happens, we shall examine the simplest 1D inviscid Burgers
model, whose C2° solutions are proved to become singular in finite time. It is pointed out
explicitly in [18-19] that as we are approaching the blow-up point, the blow-up solution can be
well modeled by a dynamically rescaled version of a fixed profile, which belongs to a countable
family F of functions, and the members in F are solutions to the self-similar Burgers equation.
The choice of profile only depends on the derivatives of initial data at the point that achieves
the minimum negative slope. Thus the family F of solutions to the self-similar Burgers equation
plays an important role in the blow-up phenomenon of the Burgers equation. For a detailed
discussion see [18] or the toy model in appendix A.

After the asymptotic blow-up behavior of the inviscid Burgers equation was clarified system-
atically in [18], the self-similar Burgers profiles have been used to explore blow-up phenomena
in various systems (see [10, 13, 30-31, 36]). The modulation method that was developed in the

context of nonlinear dispersive equations, is the suitable for the self-similar Burgers profiles.

2 Preliminaries

We introduce the scaled sound speed o = épo‘, where a = 77_1 > 0. Then the system of

(u, p) is transformed into a system of (u, o), which reads

Oto+u-Vyo+aoVy -u=0,
(2.1)
Ou+ (u-V)u+ aocVyo =0,
By defining ¢t = HTO‘t, the above equations become
1
l{ +a8tcr+u-vxa+ozcrvx-u20,
{ (2.2)
1
( _; aﬁtu + (u-V)u+ aocVio =0,
The vorticity is defined as
w = Ox, Uz — Ox, U1. (2.3)
We also introduce the specific vorticity ¢ := %, which satisfies
1
¢ U Vil = 0. (2.4)

2
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2.1 Coordinates adapted to the shock

In this subsection we introduce a series of coordinate transformations and the Riemann
variables.

Prior to the formation of the shock wave, how can we identify the most likely location for its
emergence? Suppose that w is a time-varying scalar field. To dynamically track the point where
|Vw| is maximized (this point varies with time), we employ a position £(t) = (£1(t), &2(t)).

Unlike the one-dimensional case where there is no shock wave front, and a single position
is sufficient to capture all geometric information of the discontinuity, in two dimensions, dis-
continuities commonly occur along curves. Hence, we consider the “shock wave front” T'(¢).
It is the level set of w and passes through &£(¢). Apart from &, we also need a unit vector
n(t) = (n1(t),n2(t)) to record the normal vector of T at £ and use ¢(t) to denote the curvature
of T at £(¢).

What we aim to achieve is the determination of a curvilinear coordinate system (z1,x2),

where the x5 coordinate axis, denoted by {x; = 0}, mimics the behavior of I'(¢).

I'(t) I'(t) T axis

n(t) T axis

Moreover, we introduce 7(¢), k(t) € R:

1
Tt I VeE@DlL k) = w(El),b). (2.5)

In summary, to keep track of shock formation, we introduce six time-dependent modulation
variables € = (£1,&2) € R%2,n = (n1,n2) € S}, 7 € R, ¢ € R, and k € R. £ records the location of
the shock; n records the direction of the shock; 7 records the slope of w; ¢ records the curvature
of the “shock front”; k records the value of the w at £(t).

Using modulation variables &, n, ¢, we define the coordinate (x1, 22) which is adapted to the
shock formation. Employing the parameter 7, we then define the self-similar coordinate. s is

used to normalize the value of w at €.
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2.1.1 Tracing the location and direction of the shock

With the time-dependent vector £(t) = (&1(t),£2(t)), and the normal vector

n(t) = (n1(t), na (1),

we define a coordinate transformation 7 = R(¢)T (x — £(t)), where

ny —n2
T2 ni

R(t) = [ } € SO(2) (2.6)

The origin of the Z coordinate coincides with £(¢), which dynamically tracks the spatial location
of the shock formation, and €; aligns with n(t), direction of the shock.

The functions should also be rewritten in the new coordinate:

(U, t) = R(t) u(x 1),
7t) - p(X t)

&

u(z
p(@

—— N
B Y
=
—
[N
N |
~

1o (Z,1) = o(x,1),
(@ 1) = ¢(x.0).
Then (@, o) satisfies
1
( ;O‘atﬂ u+v) V-5 + aFV~ il = 0,
{ 1+ @ (2:8)
("2 Ou Q + (T +7)- V;]’TL—F a&v;& =0,
where Q(t) = YO R(1) = R(t)TR(t), and T(F, ) = 132(QF — RT¢).
The equation of specific vorticity is transformed into
1 - ~
J;aat@r (i +7) - V=C = 0. (2.9)

2.1.2 Tracking the curvature of shock front

In order to track the curvature of the shock, we introduce a time-dependent scalar function
F(31,F,1).

We denote ¢(t) € R as the “curvature” of the “wavefront of the shock formation” at the
origin, and we assume that ]7 satisfies 83 ]7(0 0,t) = ¢(t). In particular, we construct fv as
follows. Let 0 € C’SO( > 4) be a bump functlon such that 6(Z2) = 1 when |Z2| < 1. Then we
define

f($17$27 _% / ¢ 5 GI‘Q)dI‘Q, (210)
where ¢ is a small constant to be specified. Note that f (fl, To,t) = %gbi% when |Z| is small.
This gurantees that in the forcing terms of W, Z, A (to be defined in (2.25)) those related to
the coordinate transformation vanish when y is far from the origin, while not affecting the

computation near the origin.
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Now we introduce the coordinate transformation that adapted to the shock front:

1 =31 — f(T1,79,1),
1 1— [(Z1,22,1) (2.11)
T2 =§2.
Letting f(x1,z2,t) := f~(§1, T, t), then we have
EEl =1+ f(iEl,Q?Q,t),
(2.12)
EEQ = I2.
We define
— — 1+ f2
J(F1,To,t) = |Vaz| =/ (1 — fz,)2 + f2 = L —"2, 2.13
(T1,%2,1) = [Vz21] (1—fa)2 + 3, 57 (2.13)
1— fz,—fz 1
N = J_1V;$1 = ( f~17 f 2}, - 3 (17 _f262)3 (214)
\/(1_f51)2+f§c22 \/1+f962
fon,1— fa 1
T=Nt= Uz, fe)  _ (fuos1). (2.15)

O N e
Note that {N, T} forms an orthonormal basis.

J, N, T can also be viewed as functions of (z1,22,t) and we overload their names for the

sake of convenience. One can verify that

supp, (N 1,7~ 2) € {Jr] < e¥, o] < Sct }. (2.16)
Now the functions are redefined as
(i, ) = U(T, 1),
| p(a,t) = 5@, 1),
{ 5(z,t) = 5(7, 1),
HC(x,t) = (3, 1),
Lo, 1) = 5(3,1),

and the system can be written as

, . 0 . . , .
I{ oy — Qu + [— . _:f[ + 281 (4 v) - JN] Oz, 0+ 261 (i + v2)0py
1 1
{' = —2ﬁ3JN&821j — 20360y,0€3, (2.17)
| as+ {— i o)- JN} D06 -+ 261 (i1 + v2)0, &
1 1
\ = —2036JN « 0y, — 203005, U2,
where ) )
- e
= = = . 2.1
B1 Tra’ B2 Tra’ B3 T a (2.18)
We can also deduce the equation governing the evolution of C :
. B) ) . ) .
Oi¢ + [— T +t§ +2B1(t+v) - JN |0z, ¢+ 261 (2 + v2)05,( = 0. (2.19)
1
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2.1.3 Riemann variables
We define the Riemann variables by
I{w(x,t) = u(z,t) - N + 5(z,t),
{z(x,t) = a(z,t) - N — 6(z, 1), (2.20)
la(z,y) = a(z,t) - T.
Then the system of (i, ) can be rewritten in terms of (w, z,a) as

o f
L+ fa,
+ (281v2 + Now + BaNaoz + 261aT5) 0y, w
= —20360,,aT> + aT - (04) N + aQi;T; N; + 251 (0 - NNy + a1 + va)aT - 0y, N
o
L+ fay

+2B1v - JN + BoJw + Jz)(?wlz

o+ (- + 2800 IN + Jw + B ) O, w0

— 2B30(ady, Ts + 1t - N9y, No) — (

of
1+ fo,
+ (28102 + B2Now + Noz + 231aT5) 0z, w

= 2B360z,aT5 + aT - (O) N + aQijTjNi + 261 (- NNay + aTs + v2)aT - 0, N

280 JN + 261 - N) ady, T+ N, (2.21)

atz—l—(—

+ 2336(ada, Ts + @t - N0y, No) — ( - itji 280 - IN + 261 i - N) ady, T~ N, (2.22)
Ora + ( 1 itj;l +2B1v - JN + BrJw + ﬁlJz)amla

+
=+ 261 (’U2 + %NQ + CLTQ)812CL
= —2ﬁ35’T28r25' + ’& -TN - (8t)zT + ’& . NQWNJT; + 261(1(2 . NN2 + CLTQ + 1}2)’& -NN - 8x2T
_@_&f
1+ fa,

2810 JN+2ﬁ1Ji’L-N)il~N8I1N~T. (2.23)

2.1.4 Self-similar transformation

We introduce self-similar variables as follows

(s(t) = —log(r(t) — t).
P S z102°
{yl T r-pE M (2.24)
Dygg = — 22— zoe?
ty? ’

(r—1)

where 7(t) is a parameter to be determined.

Nf=

Now the original time ¢ is transformed into the self-similar time s, and the space variable
x is transformed into the self-similar space variable y. At each fixed time ¢, y is a dilation of
z. In the y coordinate, we can closely observe the behavior of the solution around the shock

location.
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Now we assume that .
(w(z,t) =e 2W(y,s) + k(t),
1

{ z(z,t) = Z(y, ), (2.25)
La(z,t) = Ay, s),
where k is also a modulation parameter to be determined.

In the self-similar variables, the system becomes

(0.~ )W+ (ot ow) oW + (Gus + b )00 = i,
{ 0.7 + (gyl +92)0n7 + (%y2 +h2)0:7 = Fz, (2.26)

IU?SA"‘ (gyl + QA)alA + (%yz + hA)BgA = Fa.

Here and throughout the papar we use the notation 9; = 9,,, and 3, := ﬁ The transport

terms and and the forcing terms are given by

(o = I o+ e [ = L2042 4 260V V)] = 6.9 + Gur,
{ 92 = B JW + Bred | — < itj; +J(Bor+ 2426V - N)| = oW + G, (227)
(94 = BB IW -+ Bret [~ 29— 4 J(Bint 12 42807 - )] = Bufe W + G

(hw = Bre”"NoW + Bre”2(261Va + Nak + BaNoZ + 281 AT),
{ hz = Bafre *NoW + Bre™2(281Va + BaNok + NoZ + 231 AT), (2.28)
Lha = B1Bre "NoW + Bre™3 (281 Vo + Bi1Nak + B1N2Z + 261 AT,)

and

(Fyy = —2B53,;S0:ATs + Bre” 2 AT - (04). N + Bre” 2Q;; AT N;

+2618-(Va + U - NNy + ATo) AT - 02N

— 2336, S(U - NNy + AdoTy)

i — ﬁres( 1 —?—t]f;l

Fy =2B38-e" 28, ATs + Bre AT - (8;). N + Be *Qy; AT; N;
+2618-e73 (Vo + U - NNa + AT)AT - 9, N

£ 28,V - JN +28,JU - N)A(%T ‘N — Be %k,

% + 25357-9_% (A0xTo + U - NOoNo) (2'29)
1 % 8tf
— Be (— ot 28,V - JN + 28, JU - N)AalT "N,

Fa = —2B33,¢"28T2058 + Bre *U - NN - (0;),T
+ ﬁTe_sQij(U . NNj + AATJ)TZ
+2B1Br¢ 3 (Vo + U - NNy + AT5)U - NN - 0,T

~res (- 1%;9“

£28,V - JN +28,JU - N)U _NON - T,

————
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where U, V, S are the self-similar versions of 4, v, &, for example S(y, s) = 7(z, t).

If we write the transport terms as

(v, — (3 1
iVw (y1+gw, y2+hw),

2 2
3 1
_ (3 1 2.30
{VZ (2y1 +9272y2+hz), (2.30)
H 3 1
(Va= (§y1 +9A7§y2+hA)a

then the equation of (W, Z, A) can be written in a compact form

Lo — S v YW = Fir,

{asz+vz~vzz Fy, (2.31)
(OsA+Va-VA=Fy.

We also deduce the equations of (U, S):

{35Ui — Bre *Qi;Uj +Va - VU = —2B33,¢2 50, SIN; — 23,¢ 2592588, (2.32)
2.32

sS4+ Va - VS = —2858,€380,U - JN — 283,62 S0,Us.

We can see that (U, S) are transported in the same way as A. The transport terms ga, ha in

the equation of A can also be expressed in terms of U, S:

of
L+ fo, 17 (2.33)

{gA = Bre® [261(U +V)-JN —
i ha=2018re"%(Uz + Va).
Here we record the relation between (U, S) and (W, Z, A):

1, .
'rU=§(e_7W+Z+n)N+AT,

{ : (2.34)
S = §(e_§W —Z+ k),

\
and .
(W=cE(U-N+5-r),
{Z:U-N—S, (2.35)
lA=U-T.

Although we introduce the self-similar version of functions like V (y, s) of v(z, t), we overload
the functions f, J, N, T as functions of (y, s). For example, in the self-similar coordinates, we
view N as the map y — N(z(y),t(s)), and 92N (y) = 9y, [N (z(y),t(s))].

2.2 Self-similar 2D Burgers profile

We first introduce the 1D self-similar Burgers profile

U1 1 y% 3\ 3 Y1 1 y% 3\ 3
W) = (-5 +(5+%)) - (5+(5+%))" (2.36)
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which solves the 1D self-similar Burgers equation (see [18]):

1 3
~5Wia + (Eyl + Wia) 0y, Wia = 0. (2.37)

Moreover, we introduce
W (y1,y2) = (y2)Wia((y2) >y1), (2.38)

where (y2) = y/1+y2. One can verify that W is a solution to the 2D self-similar Burgers
equation: ) 3 )

—§W + (§y1 + W) 0y, W + §y26y2W =0. (2.39)
2.2.1 Properties of W

It can be checked via the explicit formula of W7, that

. |y1| . 1
Waa(yn)| < min (Jynl, =2 — ) < min(laa, y2|*), (2.40)
3+ s

Wia)l < (yn) ™5, [Wia(y)] < (y1) 73, (2.41)

Waaly)Wia(n)| < 50 F, 1(WaaW ) ()] < min(ly) ™3, 2l o)), (242)

Define n(y) = 1+ y? + 95, 7i(y) = 1 + |y|> + y$, then the above inequalities imply that

=

W] < (1435 <9, (2.43)
TV <78, (9,77 < g (2.44)
o] <78, [T <207}, [0nTW] < 2nh. (2.45)
At the origin we can check by the expression of W that

W(0)=0, VW(0)= (_01) . VEW(0) = (8 8) , 0/VPW(0) = (g g) : (2.46)

2.3 Evolution of W and higher order derivatives of the unknowns

If we define W = W — W, then W satisfies

(as - % + BTJ&W)W V- VW = By, (2.47)

where
Fw = Fy + [(1 = B, )W — Gw ] W — hy 0, W. (2.48)
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For a multi-index v = (y1,72) satisfying |y| > 1, we have the evolution equation for
(OVW,07Z, 07 A):
-1

|r (68 + 3%% + ﬁ'r(l + ’}/1]].V122J81W))(97W + VW . V@"*W = FISI;Y)a

1

1

3
{ (0 + 22 4 a5y JOW) 007 + VNI = B, (2.49)

t (as + w + ﬁgﬁmmlw) DA+ Vs VOA=F,

where the forcing terms are

By = Fy = 3:00W (07, )W —Brpz2 ) (7) IR0 W
\Bﬁlﬂzhl—l
1=71

— Bl Y <;>87_6(JW)818ﬂW
1<I8|<|y]-1
B<y
- <7)(8V‘ﬂGW8186W+aW-BhWaQaBW), (2.50)

0<B<y

FQ)=0Fz — B S <7> O BIW)9,0°Z
IB1=l]-1
Bi=m

— BoBrliyze Y (”’)m—ﬁ(JW)alaﬂz
0<|BI<]vI-2
By

- > <7> (VPG 20,0°Z + 07 Phy0,0° 7), (2.51)

0<B<y

FO =0 Fa— a8 Y (7) P (IW)5,0° A

[B]=]v|-1
B1=m1

- 6257]]-|'y\22 Z (F)/) 87_[3(JW)818&A

o<|B|< |y -2
B<y

-y <7> (07 PG 010" A+ 07 Pha0,0° A). (2.52)
0<B<y
Similarly we can deduce the equation of W

31+ v2 —

) o . .
[as + 5 +ﬁTJ(61W+v181W)]5”W+Vw-VWW =7, (2.53)

where

Ry =oFy - Y <7> [0 PCw 010°W + 0 Phy 020°W + .07 P (J,W)9° W]
0<B<y
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— Bryada (JW)O o)~ W
—Brlpyze Y <7> P (IW)9,0°W . (2.54)

0<|B|< v -2
By

3 Main Result

In this section, we state the initial conditions and the main shock formation result of the

2D compressible Euler equations. The proof of the main theorem will be given in Section 14.

3.1 Imitial data in physical variables

The initial time is t = —e with € to be determined. For modulation variables, we assume
that
k(—g) = ko, &(—€) =0, na(—e) =0, 7(=¢) =0, ¢(—¢)=¢o=0, (3.1)
where
. B (3.2)
0= 1—InaX(61,62). '
Since no(—e) = 0 and &(—¢) = 0, x-coordinate and Z-coordinate coincide at t = —e, and
T = va17X27 —€),
( ) (3.3)
T2 = Xo.

Now we prescribe the initial data:
uo(x) = u(x, —¢), po(x):=p(x,—¢€), o0g:= %. (3.4)

We choose ug and pg such that the corresponding Riemann varibles satisfy the conditions stated

in this section. The initial data of the Riemann variables are denoted as

Wo(x) : = up(x) - N(x, —¢) + oo(x) =: wo(x),
Zo(x) : = up(x) - N(x, —€) — 00(x) =: z(x), (3.5)
up(x) - T(x, —€) =: wo(x).

ao(x) :

First we assume that
~ - ~ 1 1 1
supp, (Wo — ko, 20, Go) C Xo 1= {|X1| < 5€% [xa| < €% } (3.6)

This implies that
supp,, (wo — ko, 20, ag) C {|z1] < &7, |wa| < 5} (3.7)

The function wy(x) is chosen such that

the minimum negative slope of wy occurs in the x; direction,

Ox, Wo attains its global minimum at x = 0.
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and
Vx0Ox, W0 (0) = 0. (3.9)
We also assume that
~ ~ 1 —
’LU()(O) = Ko, 8X11U0(0) = —g, 8X2w0(0) = 0 (310)
Define
W (z) =2 W(e 21,6 223), (3.11)
and we set

— ~

Do(x) 1= Wo(x) — We(x1 — f(x,1),%2) = wo(z) — We () = e2 W (y, —loge) + ko. (3.12)
We assume that for x such that |(e~%x;,2~2xp)| < 271, the following bounds hold

@0 (x) — Ko| < ™ (® + x2 +x8)3,

|0 o (x)| < 277 (£ + x3F +x§)73, (3.13)
1
Ors Bo(x)] < 5™
For x such that |[(e72xy,¢ 5XQ)| < 1, we assume that
vI=41 5
OFB0(x)] < geFmEOmEe), (3.14)
At x = 0, we assume that
02000 "E" Let-temi - (3.15)

_ 1
0

For x € xq such that |(e~%x;,e73x5)| > 1710, we assume that

|0 (x) — kol < (1+¢T)(e* +xF +x3)3,
|0, To ()] < (1+272)(e* + 37 +x5)75 (3.16)
Buo(9] < 2 + <.
For all x € xp, we assume that
107, @o(x)] < e7#(e° +x] +x§) 75,
Bursao()| < 23 4% 43§74, (3.17)
02, @] < 5+ +x)H.
Also at x = 0 we assume that
102, (0)] < 1. (3.18)
For the initial data of Zg and ag we assume that
Bl <o B <1, (02| < 56t
(3.19)
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and
~ ~ ~ 1. - 1
Gl <o 0o <1, 0ol < 5eb, |BTI<5  (3:20)
For the initial specific vorticity, we assume that
HMH <1 (3.21)
polx) Iz~

Finally for the Sobolev norm of the initial data we assume that for a fixed k£ with k£ > 18 the
following holds .

~ ~ ~ _ —
> loxolF +11077: + 103G07: < 53—, (3.22)

=k

Theorem 3.1 (Main result in physical variables) There exists g > 0 such that if € < &g,
and

e the initial values of the modulation variables satisfy (3.1)—(3.2);

e the initial datum (ug,po) of the Euler equations is smooth, and it gurantees that the
corresponding Riemann variables (wo, 20, a0) satisfies the initial conditions (3.8)—(3.22), then
the corresponding solution (u,p) to (1.1) blows up in finite time —e < T, = O(g?) < +oo.
Moreover, we have the following description of the shock:

(1) Blow-up speed. Fort € [—e,Ty), we have the following inequalities for (u,o):

3 (o) < L2 3.23
T*—t_” xu()||Loo_ﬁ7 (3.23)
L o < (3.24)
T*_ti <0 Lo S T*_t .
(2) Blow-up location. For arbitrary § € (0,1) and t € [—¢,Ty), there holds that
IVxu(®)ll Lo (Bee ) + Vo)l Lo By < C672, (3.25)

where C is a universal constant. And we have the unboundedness of gradient along &(t)

=
SIS

> 2 > 2 : .
Vale®.012 T, Vaolenl = 25 (3.26)
Moreover, the limit of £(t) exists
lim £(¢) = & € R2 (3.27)
t—T
(3) Direction of the shock. The gradient of (u,o) blows up only in one direction
1 E% 1 5%
[RON) - DJu(e). 0] > 2, (RON) - Vaole@, 0] > 2= (3:28)
I(ROT) - ViJu@®) = + [[(ROT) - ViJot) = < 1+e7. (3.29)
Moreover, we have n(t) = R(t)N(0,t), and the limit of n(t) exists
lim n(t) = n. € S". (3.30)

t—T
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(4) % -Hélder continuity. The solution has a uniform-in-time C3 bound. More precisely,

we have
(U, U) € L?o([_aa T*)v ng) (331)

Proof of the main result will be given in Section 14.

3.2 Initial data in self-similar variables

Since 7(—¢&) = 0, we have that the initial self-similar time is s = — loge.
When s = —loge, y1 = xls_%, Yo = 1’28_%, from (3.7) we have that the initial data of
W, Z, A are supported in
Yo={lnl<e™, lpl<et) (3:32)

Now we introduce a large constant M = M(«, ko, k) to absorb universal constants, where

k is the order of the energy estimate that will be established in Section 6. Subsequently, the

choice of the small parameter € will be made in relation to M, such that we ensure the following
hierarchy

1< logM < M < &~ 000, (3.33)

In terms of M and e, we define a small scale [ and a large scale L by

I = (log M)~5, (3.34a)
(3.34D)

=

L=¢"

From (3.13)—(3.15) we know that W (y, —loge) satisfies

1, —~

n_s |VV(y7 — 10g£)|]1|y|§L < e, (3.35a)
n3 |81W(y, —loge)|1<r, < T, (3.35Db)
|82W(y, —loge)|1<r, < etz (3.35¢)
Wy, —loge)| Lzt < <2, (3.35)
|07 (0, — log e)| " s, (3.35¢)
For Wy, —loge), from (3.16), for all y € X € {|y| > L}, we have that
NS Wy, —loge)| < 1+¢7r,
03 |01W (y, —loge)| < 1+e72, (3.36)

3
02 (5~ log )| < °.
and from (3.17) we have that for all y € Xp,

¥ 01 W (y, —loge)| < 1,
0% 612W (y, — loge)| < 1, (3.37)
7% |02 W (y, —loge)| < 1.
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From (3.19)—(3.20), we have that the initial data of Z and A satisfy

3
€z, > 0, =2,
|07 Z(y, —loge)| < { n h (3.38)
& m=0,hl<2,
3
ez, v =(1,0),
|07 A(y, —loge)| < (3.39)
e m=0 <2
Furthermore, from (3.21) we know the specific vorticity satisfies
126, —loge) . < 1. (3.40)
Finally from (3.22) we have
EHW(v - logE)sz + HZ(a - IOgE)”i]k + ”A(a - logE)H?{k <e. (341)

Theorem 3.2 (Main theorem in self-similar coordinate) Suppose that W(y,—loge),
Z(y,—loge), A(y,—loge) € H¥(R?) with integer k large enough, and they satisfy (3.32)~(3.41),
and the initial data of modulation variables (k,&,na, 7, @) satisfy (3.1)—(3.2). Then there exists
a choice of e < 1, such that the system (2.26) coupled with (7.8) — (7.9),(7.15)and (7.17) ad-
mits a global solution, and the solution (W, Z, A, k, ¢, T,&,n) satisfies the bootstrap assumptions

(which are stated in the next section) for all time.

4 Bootstrap Argument

To establish global existence in self-similar coordinate, we set up a bootstrap argument.

4.1 Bootstrap assumption

We first state the bootstrap assumptions.

(1) Assumptions on modulation variables. For the modulation variables, we assume that

{%ﬁogﬁg%o, |5 < M,

i 7| < Me?, |7] < Me™%,

{lel<ate, g <mt, (B)
Ing| < M2c3, ha| < M2e?,

Ulol < M2, 6] < M2

(2) Assumptions on Spatial support bootstrap. We define X (s) := {|y1| < 2e2e2%, |ya| <
2ete3}, and assume
supp(DW,DZ,DA) C X(s). (B-S)

We will show that this assumption together with (2.16) imply that supp(DU, DS) C X(s) in

Lemma 5.1.
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(3) Assumptions on W and W. For |y| < 2, we assume that either 9YW is close to O7W |

or it behaves like 9YW. More precisely, we assume

W< (1+eo)ms, |aW|[<2p73,  |,W|<1, -
onW| < M3y~5, |012W| < M35, |02 W < Mn7s.
oting that by supp C X(s) an =W (0) =0, we have
Noti hat b DW cCcX d W0 W0 0 h
Y1 1 1 s
W< | 2n 3 (y1,0)dys + [[02W [ Loelya] S eve?. (4.1)
For W we assume N L
[ WLy <L <emne,
{1001y <0 < P, (B-1-1)
\ |82W|]l‘y‘§L < 51_13,
where L = £~ 1. And
W1 < < log? MeTo y[= 4 Mei y[P~ vy < 3, B-W-2
ly|<
— 1. . __
"W Lyt < 5 log Me™, Yy =4, (B-W-3)
where [ = (log M)~°, and
07W(0,5)] < &%, V|y| =3, Vs > so. (B-W°)

(4) Assumptions on Z and A. For Z, A and their derivatives up to second order, we assume

that they are small or have decay properties. More precisely, we assume

1Z| < Me, 00Z) < M3e™ 3% |0,Z| < Me?e™ 5, (52
011Z| < M2e™ 25, |07 < Me 3%, |992Z| < Me™*
and .
|A| < Me, |01 A] < Me™2°,
o (B-A)
|82A| S Msie_ﬁ, |822A| S Me™%.

Remark 4.1 While the bootstrap assumptions remain valid, it follows that S > 0. This

assertion is supported by the inequality
1 s
S:§(e_5W+/£—Z)2%—Cs%—M6>O, (4.2)

provided that ¢ is sufficiently small. In particular, since the initial data satisfy the bootstrap

assumptions, it can be deduced that py > 0.
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4.2 Bootstrap procedure

Now we state the improved bootstrap inequality (IB), which supposedly can be deduced

from the bootstrap assumptions and the initial conditions:

3 5 1
{ZKJO <K< 770 |f| < §M7
1 1
<~ Me? < ~Me™*
i |T| —_ 4 € ? |T| —_ 4 € )
1 : 1
1 1
H |TL2|§§M€, |h2|§§M25%7
1 . 1
< ZM? < —M?
ol < sar’e, 19 < o
7
supp(DW,DZ,DA) C gX(s), (IB-S)
( FIN i, 1 )
W< @ +em)npe, [ W] < (L+em)n™s, [0:W] < g,
{ . X ) (IB-W)
1 _ 1 2 _ 1 _1
\|811W|§§M377 5, |512W|§§M377 3, |822W|§§M77 5,
1 1 1
:{|W|]1|y|<L < 5611177éa
1 N 1 N
{ |01 W1y <1 < 56%77_%5 (IB-W-1)
1
— 1 .
It|82vv|]l|u|<L < 55113’
— 1 1 —
|07 W Ly <1 < g log" Memly| =14 2 Mex PP, vy <3, (IB-W-2)
~ 1 3 ~
|07 WLz < Jlog ™ Mews, Viy| =4, (IB-IW-3)
— 1 —
07w (0,5)| < EE%, Vy| =3, Vs> s, (IB-W°)
1 1 : 1 s
-r|Z| < 5Me, 10,2| < 5M%e—%S, 10,2| < §M&:%e_§,
{ ) ] ) (IB-Z)
1 £ £
UOnZ| < gMEe™2*, |07 < gMe™*",  |9nZ| < GMe™,
( 1 s,
||A|§]\4'67 |81A|§§Me 27,
{ | . (IB-A)
1 s
t|62A| S §M858_§, |622A| S §Me_s.

Compare to the 3D case in [13], we carefully close the bootstrap argument of spatial support
in subsection 10.1. To prove that W, Z, A are constant outside %X (s), we define two rectangles
Qvig = {|y1] < M, |y2| < M’} and Quman(s) satisfying

22{(5) C Qsman(s) C gX(S) C Qbig,
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where M’ can be chosen arbitrarily large. Then we consider the quantity

/ E(y, s)dy,
Qbig \Qsmall

where E(y, s) = 3(e *(W — Weo)? + (Z — Zoo) + 2(A — Ax)?). From the equations of W, Z, A
and bootstrap assumptions, we find that

4 / E<C E.

ds Qbig \Qsman Qbig\Qsman

By Gronwall’s inequality and the initial conditions, we can deduce that W, Z, A are constant

outside Qgsmall-

5 Immediate Corollaries of Bootstrap Assumptions

5.1 Blow-up time

By the definition of s, we have t = 7 —e™%.

From the bootstrap assumption of 7 and
s > —loge, we can see that if the bootstrap assumptions hold on the interval [tg,t] = [—e, ],
then t satisfies

[t —to] = [t +| < e+ Me? +¢'°8° < 3e. (5.1)

The blow-up time T is defined to be T, = 7(T%).

5.2 Closure of bootstrap argument for W,W near the origin
From estimates (2.43)—(2.44) of W and bootstrap assumptions (B-W-1), we have
(WL <p < (1+eT)n8,

LWLy < (14 e72)p75, (5.2)
2
t |62W|1\y\§L < g +E%.
Thus we closed the bootstrap argument for W and DW in the region {|y| < L}, and by
D2W (0, s) = 0, the bootstrap argument for D2W in {|y| < I} is automatically closed.
Note that by (5.2) and (B-W), for & small enough, we have
W] < (14T 5L ycp + 20 5Ly sy < 14675 (5.3)

This bound will be used to estimate the damping terms.
Now we prove (IB-W-2) for W
=3

—~ vl —~ —
Wy < |07W(0,5)|+ || Do | 1
Le=(lyl<i)

1
<ei + 3 log? MeT0yl; (5.4)
if |y| < 2, we have that

—~ [v|<2 —
Wiy = ||DW ()| 1yl (5.5)
Le=(l-[<lyl)
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5.3 Spatial support of unknowns

For the support of unknowns, we have the following lemma.

Lemma 5.1 supp (DU, DS) C X(s).

Proof According to the spatial support assumption of (DW, DZ, DA), it suffices to show

supp, (DyN, D,T) C {|z1| < 2¢2,|z5| < 2¢5}. Now by the expression of N, T, we only need
to show that supp, fa, C {|z1] < 27, |22| < 2e5}. Note that fu, = fz, (1 + fi}i ), and

1— Z1

suppjfviz c {7 < %E%, |Za| < %E%}, thus we have supp, (D, N, D,T) C {|x1| < %E%, |x2| <

%E%} by choosing ¢ small enough in terms of M.

From (3.7), we know that in the original x coordinate, we have

lim wu(x,—¢) = @el, lim o(x,—¢) = o, (5.6)
[x|—o0 2 |x|—00 2
From the finite propagation speed of the Euler equations, we have that for all ¢ € [—¢,T}),
there hold

lim wu(x,t) = @el, lim o(x,t) = o, (5.7)
|x| =00 2 |x| =00 2

Noting that the coordinate transformation is determined by the modulation variables, and from

bootstrap assumptions we can deduce that

i Z(y,S) - Zoo(S),
y ¢ X(s) implies that { Aly,s) = Ax(s), (5.8)
1 S(y,s) = Se(s),
where ) -
Weo(s) :== 70(77/1 +1)— /i:l e,
K
1 Zoo(s) = 70(711 — 1)7
Ko
% A=y (5.9)
i i e_%Woo—F/Q—ZOO @
Soo(8) 5 -
L Unls) = ° 2WOO;LK+ZOO,51 b Aty = g, 0Ny,

5.4 Estimates related to coordinate transformation

In this section we will estimate the functions f, J, N, T, @, V, which only depend on

modulation variables.
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Lemma 5.2 For any multi-index v € Z2>0, we have
( 4_ v
02| < Oy M3 %,
5 1 2

01(J = 1)| < C,MPes~ =77,

7_7 2

03 (N = )| < €, MPeF -2,

03T )| < O, M8 =3 7%,
j (07(JN - &)| < Oy M2t FF (5.10)
010 f| < Cy M5~ 3,

P 0J0,N| < O M?es— 3,

1_71 2

k |8;8tT| < O»YM2E§_T_ 6 .

Proof From the expression of fNand the bootstrap assumption for ¢ and gi), it is not hard
1 1 2

to see that |8g]7| < CVM%%_WTI_%, |8;8t]7| <C,M?35277%.
Using chain rule, one can see that
I
{ ! _-fi1 (5.11)
Opy = ——2—0z, + Oz,.

(™ 7o

[0,

By Faa di Bruno’s formula, we have

0 .~ Zmﬁ .
8;( 1 )‘%\vl Yo -fal = Bl;[|3§fil|m’3
<y

1—fa
fa > Bma=vy
B<~
<1 - Z mg
TS a7 [Jord-te-w
Y. Bmp=v Ay
B<~
1 2 1 2 Z me 2 5 )1 2
<egTTT Z (1 —e2)M3es)ssr < M2%es7 377, (5.12)
Bmpg=y
B<~
And by Leibniz rule, we have
ﬁz g% 1 4_7 72+l
Hp)le B ol ()| et
L=fa7h 0552y — fi
(5.13)
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Note that

oy, =( f” 8361+8I2)]c

1

= > C(k,yms) ] (35(@))%8;. (5.14)

S mpmmt 3 Bang pi<k L fa
[BI<k [BI<k
Yi+v2+ Z ng|B|=k

[BI<k

Thus, we have

02 (9% )] < |02

> cns) IT (02( ) 2]

Z nﬂ:yl-i- Z BlnB Iﬂ‘gk 1
[BI<k [BI<k
Y1+v2+ Z ng|Bl=k
[BI<k
1e] fiz " oy
Sik > 11 ‘3 7 |03 1]
Z ng+j=vy1+ Z Bing |BI<k+j 1
[BI<k+j [BI<k+j
Ttr2+ Y, nplBl=k+i
|81 <k+j
9 I_P1_ P2, 9 4_ M 72
< Ej H(Msez S )8 M%e3 2 7%
Z nﬂ+j:'71+ Z ﬂlnﬂ Iﬂ‘gk"t‘.]
[BI<k+j [BI<k+j
Titvet Y, nglBl=k+j
|81 <k+j
4 J k Z ne 4 J k
< M?e5737% Z (M2e)ls1<i+i < M2e37376,  (5.15)
Z ng+j=71+ Z Bing
[BI<k+3j [BI<k+3j
Nyt Y, nplBl=k+j
|Bl1<k+j

Finally, we have

of1=] (77) o]

y>1 n n n
<y 3 L ™oy, (— )™ o (— )™ 102 an2
~ 1 1 1 ra T1 1 rs z1 wz
J=1ni+42ne+-+71n4 =11 —J _f — Ja —fa
no+nit+-+ny =1
71
1,_ 5_1 5_M
< E E (1 —e2)7 ™ (M?es72)" ... (M35~ 2)”71|3i13;£f|
J=1n1+2na+-+y1ny =y1—j
no+nit-+ny =71
Y1
1 5 _
N 102,002 f| > [(1—e2)MZes]nmme
j=1 ni+2nz+- Y10, =y1—J
no+nit+-+ny =71
Y1
2 i ____7_2 4_9 D2
Se 2 £2 M2c3 s < M%3 2%, (5.16)
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One can check that the same estimate holds when ~; = 0.

Also from Faa di Bruno’s formula one can see that for « € R and v > 0, we have |07(1 +

2% San M?%5=%-%. This estimate combining with Leibniz rule gives that |[OIN| <
M?Z%e6=2 =% for v > 0. |N —&;| < M%7 can be checked separately. The estimates of N

implies |07 (T — &)| < M2%5~2 ¢ for y > 0 since T = N+. The estimate of JN is similar.
AR o 5
As for J = 1;7”, we use Leibniz rule to deduce that |87J| < M2e8~=2 =% holds for
For

4 > 0, then one can check |J — 1| < M?2e8.

The estimates of 0;f and 1_‘thf are much the same and rely on the facts that |8g8tfv| <
T
2

MZ2e35—% % and (O)af = —(ft;ff.
“Fa

Here we emphasize that C in Lemma 5.2 grows at least exponentially since f is compactly

supported and cannot be analytic.

Lemma 5.3 For e < 1 small enough and M > 1 large enough we have

Q| < M2, (5.17)
Proof Since we have
_ HT _ 0 —Tll’le + thl
@=R1R= anhl +nins 0 ’ (5.18)

the rest is appealing to n; = /1 — n2 and the bootstrap assumptions (B-M) for ns and .

Lemma 5.4 For y € 10X (s) = {|y1]| < 20e2e2%, |ya| < 20e5e3 }, we have
V| < M1, (5.19)

and for Yy € R?, it holds that

I{ |1V < M?2e7e™ 3%,
| |02V < MZc7e™ 5,
P01 V] S Miete™®,

I —2s
|012V] S M*ete? ) (5.20)

|822V| 5 M4E%e_s,

v

07V | g —n+)s

A

[\

vl

3
11
Mi%e
1
M4

gde=(nt)s,

\
L [07V]

A

Proof Note that

V(y,s) = HTa (@ {yley;z_; f] - RTE). (5.21)

By R € SO(2), (B-M) and (5.10), we have the above estimates.
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5.5 Estimates for U, S

Lemma 5.5 For U - N and S, we have

M1, v = (0,0),
e Ey7E, v = (1,0),
e, y=(0,1)
(U - N)|+187S| < 5.22
1 s 1
Mze72n73, 4 =(2,0),
P M3eT3nTs, 4 =(1,1),
| Me 3973 7v=(0,2)

Proof One can express U - N, S in terms of W, Z, A as in (2.34). Then by directly

appealing to the bootstrap assumptions we obtain the desired estimates.

Lemma 5.6 By taking € sufficiently small, we have

02U < e 3, (5.23)
101S] < (14¢)e™ 2,
1 1 s
< | = 2 -2
|825|7(2+£ )e .

————A—

Proof Express U in terms of W, Z, A, then use bootstrap assumptions and the estimates
(5.10) of N, T.

5.6 Transport estimates

Lemma 5.7 Fore < 1 and Vy € 10X(s), we have

10,GA| S M2 85, |0,Ga| < M2%eB
(5.24)

|811GA| SM%Q_S, |612GA|5M6_S, |622GA|5M26_%.
Proof We first deal with 9;G 4. Using the definition (2.27) of G4, the estimates (5.10)

for functions of coordinate transformation, estimates (5.19)—(5.20) for V', and the bootstrap

assumptions, we have by Leibniz rule that

s 0, s s s
016l 5 oF|or |+ eHlouTlino + 12] + V1) + ed0nZ] + ciou(v - )
1
< ef M2~ Be 3% felcie 3 )1 —i—e%(M%e_%s + M%e2e™ 3 + M2+i6e_%s)
< M%7 < M2e™ 85, (5.25)

The other derivatives of G4 are estimated in a similar way.
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Lemma 5.8 Fore < 1 and Yy € X(s), we have

-

lgal S M3e?,

|019a] <3,

|0294] <2,

|D2gal S My~% + M2e™%,
|O1hal Se™7,

U10zhal S e

(5.26)

e —— N —————————

Proof Use the definition (2.27) and the estimates (B-W), (5.10) and (5.24), calculate
similarly as we did in the proof of (5.24) with more care since there is no room of a universal

constant in some of the inequalities.

6 Energy Estimate

To overcome the loss of derivative in L° estimates of W, Z, and A, we will establish an
additional energy estimate to control the H¥(k < 1) norms of W, Z, and A. It is crutial
that in the proof of energy estimate we only use the bootstrap assumptions, not requiring any

information on higher order derivatives.
Proposition 6.1 (Energy estimate for W, Z, A) For an integer k > 18, and a constant
A= Ak),
Iz, s)||qu + || A(, s)||§{,c <22 Fe™ ¢ M*em5(1 — e %) < M*Fes, (6.1)
W, s)||§{,c <2AFeTlems ¢ MAR(1 — e7%e 7). (6.2)
We will prove this by using the H* bound for (U, S), and the fact that the H* norm of

(W, Z, A) can be controlled by the H* norm of (U, S). More precisely, we have the following

lemma.

Lemma 6.1 The following inequalities hold
s k—
1l S o2 (101 + 1S+ MEe2e™50),
120+ 1Al S 10+ 1] e+ MFFe™ 5, (6.3)
Proof We first estimate ||[W{| ;.. Note that by (2.35), supp(DU, DS) C X(s). We have

e_%

"W £2(r2)

lv|=k
Sk 107822 + D 107U - 0PN || L2 x(s)
B<y
1 _
SIS g + 10U Lo |07 N[ 1o | X (8)[2 + 107U 2 + > 072U 12]|0° N[ oo
0<B<y
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.

1S e+ Ul e+ MEME 2R Gt dms s

+ 3 (bt DFU | aha2ed - F - F e (Bt
0<B<y

[vl=3

SISHzn + 10| g + Micte™ 75, (6.4)

The estimates of Z and A are similar.

Definition 6.1 (Modified H* norm) We define

Ei(s):= Y A(|07U(,s)lI72 +1107S(, 9)]1Z2), (6.5)

lvI=k

where A € (0,1) is to be specified below. Clearly we have the norm equivalence:
N O +1S1Fe) < B < MU + 18117 (6.6)

6.1 Evolution of derivatives of (U, S)

Applying 97 to both sides of the (U, S) equation (2.32), we see that

8587Ui — ﬁTe_sQiijj + VA . V@”UZ + D787U1- + ﬁgﬁf(l + ”yl)JNia'YS&W

+ 2858, 5(e2 IN;D1D7S + ¢~ $6,,0,075) = F, (6.7a)
0078 +Va -VI'S+ D,0"S + (61 + Bsn)JN - TUIWW
+ 2858, S(e3 IN - ;07U + e 30,0"Uy) = F{, (6.7b)

where Dy, = 1|y|+ 71 (1+01gv), and the forcing terms are F[(;Y) = F[(,j’U) +F[(,j_1’U) + F,(Jj7s) +
FO W EY) = FOOY 4 ROV 4 B9 4 FOTH9) Here

F[(J’:’U) = — 2ﬁ1ﬁ7(e%JNj8'ij81Ui + e_%a’yU282Ui)

— ¥202940:107?U; — Z <7> D" Ph,p0,0°U;

|Bl=ly]-1
B<y
_ (W U) | p(nU) ()
_FU’:7(1) + FU?,(z) + FUZ7(3)’ (6.8a)
i —— % <7> (07 Pga0,0°U; + 07 Phad,0°Us)
1<IB|< |2
By
268,83 [0, IN]- UOLU, — Bretor 26,V - N - 2 Yoo
L+ fa,
— 26136 297VadoU;
_ (L) | p(=LU) | p(v=1U) | p(r=10)
_FUZ7(1) +FU?,(2) +FU’:7(3) +Fij(4) ) (6.8b)

F) = — 288,755 05(STN;)0107 ™S — B3, (1 + 1 )ed JN,0 Z07S

— 28338,6728;9 Z <7> 9 P83,0°8 — 285,806 2075058

[B]=[v]-1
B<y
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— 283,712 01 (JN;) S0 S

_p(S) | pnS) | p(nS) | p(nS) | p(1,S)
=Fulw + Fule) + Fulley T Pl + Fulgy (6.8¢)
FO75) = _ 98,8, > <;> (€207 P(STN;)910°S + 7262077 50,0°9)
1<18|<|v]-2
B<y
— 2833f,€2[07, JN;]S0, S
-1,8 -1,8
=R+ R (6.8d)
ng’s) = — 2ﬁ357(e%8VSJNj81Uj + e_%mS&QUQ)
— 120294010725 — > <7> D" Ph,0,0°8, (6.8¢)
181=I~1-1
B<y
Fg=— % <7> (07 P ga0,0°8 + 07 Ph40,0°5)
1<18|<|y]-2
B<y
2638, Y <7> (€207 P(SJIN) - 0,0°U + e 20775 80,0°U5)
1<18|<|y]-2
By
— 2B3Bre30,U;[07, JN;]S — Bredd (2511/ i )als
J ’ J 1+frl
— 281,620 V5055, (6.8f)

FOU) = 2858, 756305 (SIN) - 0107 ~U + B, (1 + Bsm1)e2 JN - 97U, Z

— 25357-6_% Z (F)/) 8"‘558285% — 261576_%87[]2828

"B‘ED‘_l
X

— 2B5B,;711€2 SOU;01 (JN;), (6.8¢)
F™H = —28,8.50,5[0", IN,|U;. (6.8h)

6.2 Estimates for forcing terms

Lemma 6.2 Let k> 1 and § € (0,55], A = 0° . Then for e < 1 we have

12k2
(7) ) 2 —s 3 rdk—4
2 ;kAV2 Ag |Fo7Us| < (4+88)Ef + e " M* 4, (6.92)
¥ (V) 57 2 —s 7 r4k—4
2|;kA A IFSV97S) < (4 + 86)E2 + e~ MA—1, (6.9b)

Proof We begin with (6.9a).

We first deal with the term F[(,j’U) involving the top order derivatives of U, this term is
decomposed as a sum F[(J'Z(Ulg + F[(J'Z(Uzg + ngg; From (B-M), 0 < 818, < 1, and (5.10), we
have

()
2y A Ag el

lv|=k
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(6.8a)

s

[v|=k

< (4+e%)EL.

y (5.26) and Young’s inequality, we can see that

QZW/ |Fl U |
lyI=k
(6.8a)

[v|=k

2
,y — —e
<2 30 (EXFD U + LoanodX 2 01070 2

lvI=k
2k2 A= 1(25i2
< )\TE,f +20E} < 30FE}

and

2ZM2/ |[F 507U

lvI=k

Z/ S 0 hall0:0°U |07V

lvI=k \BI WI 1

(6. Sa)

e Z (107U 22 + 0:0°U12,) < e} E

[vI=k |B|=]v]-1
B<y

Combining these three estimates, we have

2y w/ IFD0 U] < (4436 + ) E2.

lv|=k
Next we deal with the forcing terms F(7_17U)
decompose its first part as F(V i 1) ) — I + Iip + I;3 where
I = — Z (Fy> 9" Pgad’0,(U - NN;),
1<18|< v -2
B<y
Iip = — Z (;) 0" Pgadl o, (ATy),
1<18|< v -2
B<y
Is=— Y (;) 87 BhA050,U;.
1<18|< v[-2
B<y

<418 3 Xes (14 e[0T + e 00 1)U

< 2> N29[|0agall L (s 101072 Ui 12|07 Ui 2

2

k-
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(6.10)

(6.11)

(6.12)

(6.13)

involving lower order derivatives of U. We

(6.14)

Since D(U - N) is supported in X(s), we introduce a positive cut-off function 6 € C.(5X(0))
such that § = 1 on X(0). Let 6,(y) = 6(y1e~ 2%, yoe~%). Then 0, € C*(5X(s)), 0, =1 on
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X(s), and

o
o
2
o

1070, Lo Se™FFem B F e S om T

By the interpolation inequality (B.3), we have

[ 4i1] L2 (r2)

< ID*(o SgA)||L2(R2 1D?(0s9.4) | ooy |1 XU - NN |2 gy | DXV - NN -

We estimate each factor. The D?g4 term can be bounded by

1D (09.4) | Lo(z2)
(5.26) .
<

Miede Fo(c3e®)i +e7F (e36%)0 + M6 + M™% | Lusaca

~

< -1 % 2 -5 2 2s<
Mn="|®4 + M=e se3aed® M.

In the last inequality we require ¢ > 12 and use the fact that (14 |y1|** +- - -+ |ya|*)

377

(6.15)

(6.16)

(6.17)

e LY(RY

as long as Ya; ! < 1. From estimates (5.22) of U - N and estimates (5.10) of N, we have

|D*(U - NN)||pe < Me™3.

~

Then, as we did in the proof of Lemma 6.1, we have

k—3
|D*(U - IN)|| 225205y SIDFU || p2ggezy + M2e3e™ 5,

e 2| D™ gl L25x(s)
SID™(U - IN)2x(sy) + ID™(V - IN) || L2(5.20(s))

O f )
L+ fa,

+ o

L2(5X(s))

m—3

0
< |ID™U| porey + M2e3e™ "5,

7 _M_ 2 3.4 1
H@’Y(GSQA)‘H(W) S/YE o 626 3718 22S||gA||L°°|5X(S)|2
B B2
b T e  RIe E l
B<y

[v1=3

S eF(|IDVU| 2oy + M2e3e™ "5 %),

(6.18)

(6.19)

(6.20)

(6.21)

For k > 5, we have a4+ b > % Q_Z:g < 2k —4. Hence, by taking M to be large enough in terms

1—
of A and k, we have

2y sz/uﬂmm

lv|=k

< 37 NEDFU | 2 [| DU + (M2t STyt a2
lv|=k

< Z A72(/\_%Ek)l+a+bM2_a_be%s

atb—1
bezs
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a+b a+b a+b+1
+ 30 NN R e ke R\

lv|=k

—a—b) 1+a+b
AT Toa bk

95 E2 4+ Clayb, 6 M
+ 0(5)M10 (a+b)/\ ke —2(a+b)ks+(a+b+1)s

< 25E2 + C(a, b, 8)e™* MAF—8 \~ stk
< 20E7 e M5, (6.22)
Next, we estimate the L? norm of I;s:
k—2 ) )
izl 2 S €2 > | D¥I(U - IN) D01 (AT)| 12
j=1
s 0
+ei > (|m—ﬁ(V-JN)| +|ors 2 D||8581(AT)||L2
1+ fz
1<|BI<lyvI-2
B<y
= 152,1 + I»L'Q)Q. (623)
First, for I;2 1, we have
Holdcr k-2 .
Iigyl e2 ZHDk J- 1D(9 U - JN)H 2(k 1) ||DJ81(AT)|| 2(k—1)
= 7 () L=
(B.2) k—2 k—j 71
S ef Yy |D@.U - JN)IIHk : Ip@.U- JN)IIEOJ ||31(AT)|Hk (AT T
j=1
k=2 1 k-3 k—j—1 j
$eE Y (IDMU| g2 + MPee™5 ) T (Me™3) 7T
j=1
x (||D¥A|| 2 + Mee™ 5" ¥ (Me—3%) T
SMTTe T\ EE, + M2ete 7 °). (6.24)

1

Ii22§e% Z M2€%——w1;[31——w2 B2 3 (y1—p1)s—%(ya— ,32)3( s %)M 18— 1||Dk(AT)||L2

—3

Z MQE%_WIQB1 e_('“_ﬁl)s(HDkAHLz +M%s%e_kTS)

1<1B|<]v[-2
B<y

< Mzgé()\_gEk + M%age_%s).

A

(6.25)

Hence we have

k=7 _k 1 1 g, \_k 9 1 _ k=3
2 E )\72/|1123’YU S AN 2EyMFTe F19(\"2FE, + M%c5e™ "5 ¥)
IvI=F
1\ k2 1 1 6 2 —2(k—3
< (Me)TTNFE2 4 Mrte 1o MOese5(h—3)s
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1
<evE}+es. (6.26)
Like the estimate of I;», we can estimate I;3 as

DY w/|1i3mUi| <eEE?qo. (6.27)
lyI=Fk

Summing up these estimates, we obtain

23" ,\V2/|F[(]1z11)7U)87Ui| < (2046 et )EE e MO, (6.28)
Ivl=k

Now we turn to the estimate of F[(J':zzl)’U). Using the same method in the proof of Lemma 6.1,

we have
I[87, IN]U|| 12 < &% || DU 2 + e~ (ntF=1)s. (6.29)

Thus, upon choosing £ small enough in terms of A and k, we have

L3 [ty
[v|=k
< N e (|07, INIU| 2 [07U]| 2 01U || 1
lv|=k
(5.23) _ .
< eB(e%|DFU| 12 + ee” )| DFU|| 2o~
< /\_’%%Eﬁ + sA_gEke_%s

k—3)

<A FeTED 4+ chem s <eTE} e b (6.30)

From the estimates (5.19)—(5.10) of V' and J, N, we can see that

|07 (V - JN)| + |m%| < M2ese~(nt3)s, (6.31)

Therefore, we have

23\ / P50t S e 30 MPetem (R0 U | e | 07U | 2|2 (5)]
ly|=Fk lyI=k

< M2ciem 50| DAY
< 5| DPU |2, + Miche=5s
< a%Ei +e % (6.32)
The estimate of F[(]'jzéll)U) is much the same. We have
2 30 3 [ o < <t e (6.33)
lv|=k
Combining the above estimates, we arrive at
23 / F 0070, < 206+ e EE + e~ M4, (6.34)

lv|=k
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Now we estimate the terms involving k order derivatives of S.
.S .S
2™ / ‘(Fc(;,(z)) + F)9U;
[v|=F
< (e300 Z|| 1 + e 7|02 )N TFEE < e2 B2 (6.35)

23\ / FoUl S S XNeE S VS [10207S 12 |07U ) 12

lvI=k lvI=k [B1=]v]-1
B<y
<e A FE? <e7E, (6.36)
23 3 IS8 00 S 3 A l|0a(STN)|| e |07T | 1211010742 S| 2 A5
v, Uil 5 Y2l|02(SIN)|| L= 107U 2|02 [l 2
ly|=k lv|=Fk
S e EAET VU F2 + A2 13100072 S| 12)
lv|=Fk
< 5%E27 (6.37)
2 A" / ES 800U < e |00 (IN) |1~ |18 1 A B
lv|=Fk
SQ%MQE%_%Q_%SM%)\_ICE]? SSE}% (638)
Summing up the above inequalities, we get
Y /\72/|F,§j’5>aWUi| < 27 EL. (6.39)

lvI=k

Now we look at the terms involving lower order derivatives of S. We decompose F[(Jvzll)s) =

I + I + I;3, where

Iy =—=2BsB, ) (g>e%m—ﬁ((s — S50)JN;)0.0°8,
1<IBIL v[-2
By

Lo = =200, Z (g)e%SOO@'Y_ﬂ(JNi)&aﬂS,
1<1B|<]v[-2
By

(6.40)

Lis =286, Y. <;>e—%5igm—ﬁsazaﬁs.
1<I8|S -2
B<y

For the first part I;,, we have that

2 Z w/uﬂmw
lv|=k
k—2 . )
S e | DFU| 2 Y 1D UTI((S = Sao) IN)DITI DS 12

Jj=1
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. (6.41)

s

ez
Jj=1
As before, we use Leibniz rule, estimates (5.10) of J,N and the Poincaré inequality in yo

k—2
ID*U 2 Y ID*((S = Sx) IN)II72 D*((S = Soe) IN) | 12 | D* S 721 D2S | 12

direction to deduce that
ID*((S = So0)IN)| 22y S 1 D*S] 2,
(6.42)

ID2(JN)| < eie,

ID?((S = Soo) I N) || aqrz) S Me™ 2.
< 0. Thus we have

In the last inequality we used the fact that ¢ > 4 = ||~ 1||L6 ®2)
2y W/u U]
lv[=k
k—2
S eF DU g2 Y 1D S||5E0 (Mem 2 )27

j=1
l1—a—b
s l+a+b
2 Ek

2

>
|

/\—g(1+a+b)M2—a—be—

N
I

w)—‘

2(2—a—b)
TN < SE? +e S MFS,

2k(14+a+b)
M T=a=b"¢

gz (6E% 4+ C(§)\™ 20=a-b)

pg-mk

I;> is estimated as

Hiolle S > i MBA— T e o (= B)s— (2= B)s

18I v -2

B<y
[v|=k

S M| DS e,

And I;5 is estimated as
2y W/II IUNS Y e IIDkUllezllsll IIDSII}im1 IISII ||325||L
lvI=k lv|=k
5e-5||U||m||anke—% 0

Hence, we have
2y w/|F<7 SO < (6 4+ 263) B} 4 e M

lv|=k
Next, we turn to F[(]'Y (21) 5) From Leibniz rule we have

I[07, IN]S| 12 (x(s)) S 5%||Dk8||L2(R2) +ee~(n+FE-1)s

(eted)F =181 Dk | 2

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)
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and

2 Zw/uﬂ 5 Do)

lv|=k
S Z 7JNi]SHL2(X(S)) H815||L°°|‘DkUiHL2
lv|=k
S e# (| DFS| 2 + ce” O F D)o F | DAY 2 < e B 4070, (6.48)
Thus we have
23 w/ IFOT 900, < (54 2% 4 3) B2 4 oM, (6.49)
lvI=k

Summing all the estimates together leads us to
2 Z w/ b ”>37U| < (4+ CeT +68)E2 + e s M¥* 4, (6.50)
lv|=k

The inequality (6.9b) can be proved in the same way.

Proof of H* estimates of U, S We multiply the equations of 9"U;, 97S by 07U;, 07 S

respectively and sum over to obtain

1 d
HWUHL2
. 1 1
<5 / |07U|?(divVa — 2D,) + 5 (L +71)836: (1 +e1)(|07S]|72 + 107U |32)
—25357/S(e%JNialmS+e_§5i282875)87Ui+/|F[(Jj)87Ui|, (651&)
1d 2
_ Y
Lors2

1 . 1 1
<3 [ 178 Paivva —2D) + 3661 + o)1+ BN SIE + |70)
—2636¢/S(e§8187UjJNj+e_%8287U2)878+/|F§7)87S|. (6.51b)

1

Here we used the fact that |JNOW| < |[JN||[OyW| < (1+€3)(1+e12) < 1+¢135. By summing

up the above two inequalities and integrating by part, we get
%(namnig +075)22) +/(2D7 —divVa — Br(1+271B3) (1 + 7)) ([T + [07S[?)
2/|F[§j>awi| +2/|F§”>675| +4535T/[e%msmU-al(SJN)Jre—%msazUzaQS]
<2 / [0 + 2 / |ES 7S] + 2838, (1 + 263)(|07U122 + (107 S125). (6.52)

In the last inequality we used the facts that |9 (SJN)| < (1 +¢e2)e % and the estimate (5.23)
of S. The first fact can be obtained from (5.23) and the estimates (5.10) of .J, N.

Now we estimate the damping term

2D, — divVa — B (1 + 2718s)(1 +73) — 23353, (1 + 27)
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> [+ 27 (L + B1Br 01 (JW) + 01Ga) =2 = B1B:01(JW) — 01Ga — Daha
= 2838, (1 + W) — [Br(1+ ) + 2658, (1 + 221)]

~ v

<3

(5.3) )
> |yl +27(1 = Bifr — Bsfr) =6 —Ce® >k —T. (6.53)

Multiply (6.52) by A\7? and take the sum with respect to |y| = k. Then using Lemma 6.2, we

find
d

gE,rf + (k—T)E} < (84 160)E7 + e * M3, (6.54)
By taking k > 18 we have q
EE,ﬁ + 2B} <e M3, (6.55)
which results in
E2(s) < e 206750 F2(50) + (1 — e~ (57%0))e s py4kh=3, (6.56)

By Leibniz rule, we have

IWN| g < (1+Ce?)|W| e + CM3e5e= (5725, (657)
AT |y, 12N s < (1+ C=)|[A or Z|| g + CMPeFe 5 |
and
( 1.1, _s 3 5 _ k=3
Ul < (L CeD) [ EIW g + 121 0) + 1Al e | + CMPeFe 5,
(6.58)
1 S —_
ST < 50+ CeDE 3 IW i + 1Z] ) + CMPSe T,
According to the assumption (3.41) of H* norm of W,Z,A, we have
E2(s0) < (24 Ce?)e. (6.59)
Thus we finally obtain that
2+ S|l ge) < E2 < (24 Ce?)ele™ 4 M 3e5(1 — 7 le™). 6.60
N (Ul g + 1S ge) < EE<(2+C

This finishes the proof of energy estimate.

6.3 Higher order estimates for W, Z, A
Using the energy estimate, we can further obtain higher order estimates for W, Z, A.

Lemma 6.3 For k> 1, we have that

oW < NTseTE 1 =0, [v[=3, (6.61a)
Ty e, 71 >0, |v]=3,

{e_(%_mi‘”)s, n>1, |v=3,

972| < i (6.61D)

lyl—1
e~ |y =3,4,5,
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[o-(3-#5)s L >1 =23
1

974 < i (6.61c)

)%, hl=3,4,5.

Proof The proof is similar to the interpolation in [13], still for the reader’s convinience we
recap the proof here.

First we deal with A. For v1 > 1, |y| = 2,3, we have

07 Al S A FZ 101 AILET S (M2 5) S (apem o)1=
< Mo~ (3-F5) <o (3-7%)0, (6.62)
For |y| = 3,4, 5, we have
A S IDFAIES IDPALT < (MPhe5) B (Mpem) -5
< Mo (1ot )0 < o (1t (6.63)

Next we estimate Z. For y1 > 1, |y| = 3, we have

1

072) S 1V 2157 10 V2] 5 S (MPFem#) i (M)

Hk 2
< Mo (3-m)s < o= (3-mw) (6.64)

For |y| = 3,4, 5, the estimates for Z are the same as A.
Now we turn to W. Since |y| = 3, we can split v as v = v’ + 7", where |7/| = 1 and
v/ = min(y1,2), then n*o"W = 87’ (n”BV//W) — " (M)W =1, + I. Let

{k

Note that |81 (n*)] < n#~2, |82(n*)| < n*~ 5. Thus when v = 0 we have |I5| < pt= 8|8 W| <
M; when 1 > 0 we have |I3]| < Mn_é < M. By interpolation and bootstrap assumptions for

;o m=
(6.65)

wl»—tosl»—‘

, otherwise.

W, we have

L] S 1D W) < o7 WIED, o7 W, < Mlyo7 W%
H

~

.. (6.66)

We estimate the H*~2 norm as follows

k-2
107" Wl s S | D0 W D27t
m=0
k—2
Z ||Dm3'y WH 201 ||Dk 2=m ‘u|| 20-1)

m=0

™ (X(s))

Z ||W|| S IW T DR
Lk—2-m (X(S))
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k—2
< M2R)ET || ph=2=mpu . . 6.67
NmZ::O( ) | Ui ”foisz& ) ( )

E

Simple calculation yields |D¥(n*)| < n#~%, thus we have that

[ DF2 | 201
LF=2=m (X(s))
k

—2—m k—2—m
Sl | 2en Sl lleeepln™ " || 20-1
L¥=2=m (X(s)) LE=2=m (X(s))

( 1, m==k—2,

< eedrs x 1
(2l Y , m<k—2
L73 (X(s))

k>3
< etedns, (6.68)

1 3us 3us 3us
Consequently, we obtain |I| < M (M2 eteds)%5 < 75, and [ptd"W| < eF5 + M < eF5,

~

7 Constraints and Evolution of Modulation Variables

In this section we close the bootstrap argument for the modulation variables &,n, ¢, 7, k.

The equation of these variables are deduced from the constraints that we impose on W.

7.1 Constraints

We impose constraints on W and its derivatives up to second order at the origin, i.e.

W(0,s) = W(0) =0,
VW (0,s) = VIV (0) = (—1,0)", (7.1)
V2W(0,s) = VW (0) = (8 8) :
It is possible to impose these constraints. In fact, as long as the initial datum W (y, —loge)
satisfies these constraints, we can choose 6 modulation variables £, ns, ¢, 7, k£ in a continuous
manner with respect to time in terms of w(z,t), ensuring that W(y,s) still satisfies these

constraints.

7.2 The functions Gw, hw, Fiw and their derivatives, evaluated at y = 0

In a neighborhood of the origin, f reduces to f(Z,t) = %qﬁ%, and as a consequence in a
neighborhood of 0, f(z,t) = $¢a3. Note that any derivatives with respect to z; or Z; of those
function vanish at the origin. We can conveniently evaluated the f-related functions at the

origin:
=0, 05,f°=0, 02,7°=0; (7.2a)

(0):f° =0, 95,(0):f° =0, 92,(3):f° = (7.2b)
fO=0, 0,f°=0, 32 f°=0; (7.2¢)
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JO=0, 9,,J°=0, 92,J°=¢>, 9 J°=0; (7.2d)
N° :(1 0)F, 9, N°=(0,—¢)T, 92 N°=(-¢*0)", 92 N°=(0,2¢*)"; (7.2¢)

= (0,17, 0,7 =(6,0)", 92,7°=(0,¢")", 9;,T° = (-2¢°,0)"; (7.2f)
<8t>xf0=0, 0 (00)a f0 = 0, 02, (002t = & (7.28)
O J° =0, 9,,0,J° =0, 92,0,J° = 2¢¢; (7.2h)
OHN® = (0,0)", 0,,0,N° =(0,—¢)", 02,0,N° = (-2¢¢,0)"; (7.2i)
T = (0,007, 8,,0,T° = (6,0)", 92,0,1° = (0,—2¢9)". (7.2))

By the definition of V', we have

1—|—a

V;O = jlé:ji (733)
Vo= ”To‘e-%S(o,Qm)T, 0oV = e 5 (Qu,0)", (7.3b)
o_ld+a 3 T 0 0
onV' = T¢€ (0,Q21)", 012V" =0, 02V° =0. (7.3c)
From the definition of Gy and (7.2)—(7.3), we have

ﬁ_GO —e? [KJ + ﬁQZO (1 + Oé)ﬁlelf.j], (74&)
ﬁ_alGW = 52658120, (74b)
B—aZGW = $2020:2° + (1 + a)B1Qr2 + S1(1 + a)R;a¢;, (7.4c)
ﬁ_allG?/V = Bre? 011 2", (7.4d)

1 s
5—3120%/ = B2e39122° — (1 + a)Bre” 2°¢Qun, (7.4e)

1 0 -z 2 —sGly —z 0 2 -2 :

5—322GW =—¢e 2 +¢%e 3. +e725209027" — (14 a)pr1o"e™ 2 R;1&;. (7.4f)

Similarly for hy , we have
L po =B 2(24° — (1 + a)Rj2&;). (7.5)

ﬁ w —
And for the forcing terms, we also plug the above evaluation into the definition (2.29) to see
that
FYy = — B3, (k — Z°) 02 A° + Bre " 2Q12A°
_ s 1 + « 0 0 0
— 201 Bre (= - Rydy + A0) A0+ - ¢ﬁgﬁfe Sk+2%(2°— k),  (T.6a)
N EFYy = B3Br0,A° (01 Z° + &7 7)) — B3, 012A% (K — ZO) + BreF Q1201 A”
— DAYy, — ¢BafreF A ((1 4 @) Qe 2° + 28, A%)
1 S S 1 S S
- §¢ﬁ3ﬁr€_§(e_7 +012%)(k+2°) + §¢ﬁ3576_7(/€ - Z2%)(0:2° — %), (7.6b)
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0o FYy = —B3Br (k5 — Z°)022A° + B3B8, 0 2°0, A° — $B-e A" + Bre”2Q120,A°
— ¢B3Bre 20,2°Z° + ¢?B3Bre A (k — Z°)
— §B1Bre 3 A% (20,A° — e (5 + 2°)) — 402 A°hYy, (7.6¢)
O EY = 2838, (€72 + 0122°)012A° — BaBr(k — Z°)0112A° + Bre”2Q12011 A°
20 Be 10 A (24° — TEYRE)

S—i—alAO)

_3

~ 461 Bre 30, A0 (A Qe

— $B3Bre" 3 ((012°)° — e + 2°0112°) + B3, 0112°9, A, (7.6d)
012FYy = —2B38-(k — Z°)0122A° + B36,0122° 02 A° + 3,0 Z2°012 A°

+ B3Br(e72 + 1 2°)022 A° — Brde 201 A® + Bre” 3 Q12012 A°

— ¢B38,e7%(0122°Z° + 01 2°0:2°) + $*B3Bre* ((k — Z°)1 A® — (™2 + 0, 2°)A°)

201 Bre [81A082A0 + (1 J; L Qare 3 4 61A0)62A0 4 A%9,,A°

— ¢19A Ky + $2B1 Bre 1 A%k + Z0) + A%(0,2° — e 2)), (7.6¢)
092 FY = B3Br[0222°05 A% — (5 — Z°)Bap A® + 8,2°820 A°] + ¢ B3Bre 5 (k — Z°)0, A°

— 208,670, A" — B3¢ 720,205 Z° 4 BreT2059A°Q 10

+2¢°B3Bre5[(k — Z2°)9,A° — A°0,2°) — ¢?BsBre 2% (k — Z°)(k + Z2°)

— 20180 5 [20,A°05 A0 + A%9ay A°] + 20351 Bre 55 (A0)?

— 202818, 0| AU - N)|° — ¢ph%y 090 A° + ¢PehY, A°

— (1+)¢?B1Bre” 2 Qo A® — ¢BsBre™5 2002, 2°. (7.6f)

Also note that if |y] = 1,2, we have
FP =7 F + 0°GYy. (7.7)

7.3 Evolution of modulation variables

Setting y = 0 in the equation of W, we can see that

1 S
o= ﬁ—ef(FSV +GY9). (7.8)
Setting y = 0 in the equation of 91 W, we have
1

Setting y = 0 in the equation of 9;W, we have
0= 02 F) + Gl (7.10)

Combining this with (7.4c), we obtain

1

_m(82FI9V + ﬁ?ﬁfe%82Z0 —+ 6167-(1 —+ Oé)e%(bR]Qéj)- (711)

Ql? =
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Setting y = 0 in the equation of 011 W and 912W, we have

(3111W0 3112W0) (G%) _ (811F19V —|—311G3V> (7.12)
0112WO0  012oW°) \ A, O Fy, + 012GY, ) - :
Denote the matrix 9, V2ZW? by H(s), then we have

G|+ [y S [(H) (00 V Eyyr | + (01 VG ), (7.13)

which shall be used to establish an upper bound for |GY,| and |A{},|. Since R € SO(2), we have
& = RjiRiil, = Rj1 Ria&y + Rja Ryl (7.14)

Combining this with (7.4a)(7.5), we have

P (n+ﬁQZO——e__GO) B2 (2A0 c? ho) (7.15)

(1+a)B Br 1+a B1B-
Setting y = 0 in the equation of 911 W and 012W, we have
G?,V8122W0 + h?/VaQQQWO = 822F19V + 822G3V. (716)
Then from (7.4f), we have
ﬁ (3122W GOy + O222WOLYy, — D02 FY) + Boe® 020 Z°
¢2

+¢2(n+6220 GO) + e 3G (7.17)

¢ =

By

=X
2

8 Closure of Bootstrap Argument for the Modulation Variables
From (2.46) and (B-W°), we can see that
H = 0, V2W° = 9, V2" + 01 VAW = diag(6,2) + O(e 7). (8.1)

As a consequence, we have
(H)™H <1, (8.2)

Next we estimate |01 VF},|. From (7.6d)-(7.6e), bootstrap assumptions and (6.61c), we have
|01 FY | S e and 012 FY,| < e + £2|hd,|. Then by invoking (7.13), one can see that

G|+ Wy S e (8.3)

Now we give a new estimate for Vo = HTO‘ [le (yle_%S +)+ mhg‘, +1a 2 AO] Recall
that in (5.19) we already have a bound |Va| < M7, but now with the help of (8.3) one can see
that for all y € X(s), there holds that

Va| S Me?2. (8.4)
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8.1 The £ estimate

From (7.15) we have

: . 1
€] =Ko + Me+e 3 Me™® < EM%. (8.5)

From (5.1) and &(—¢) = 0, we have
i 1.
01 < [ 161 < Garte (5.6)

8.2 The Kk estimate

From (7.6a) and bootstrap assumptions, we have |Fj,| < eie~3. Thus according to (7.8),

(8.3), we have that
|| S e3(Me™ +ete3) < =M (8.7)

and .
1
|k — kol < §M|t+s| < Me < 110 (8.8)

8.3 The ¢ estimate

From (7.6f), bootstrap assumptions and (6.61c), we have |92 F3,| < e~ 3. Thus via (7.17),

w
we obtain
9| < e%(E%Me_S +eiMe s + e %)+ e Me™*
+ M452(/$0 + Me + e_%Me_S) + M*%e 3 M™*

1
<M < —M?. 8.9
SM< 45 (8.9)

Since |¢(—¢)| = |po| < €, we can further obtain that
; 1
o] <e+ollt +ef < §M25. (8.10)

8.4 The T estimate

Also from (7.6b) and (7.4b) and bootstrap assumptions, we have |91 [, | < e7* and [01GY,| <
Mze~*, thus by (7.9), we have

[# S e+ M7e™® < =Me ™. (8.11)

B~ =

Since 7(—¢) = 0, we get
b1 1
IT(t)] < JMedt < ZM&? (8.12)

—€
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8.5 The n, estimate

We first estimate Q12. From (7.6¢) and (8.3) and bootstrap assumptions, |02 F},| < Mkge™*.
Thus via (7.11), we can bound Q12 by

N|=

|Q12] < Mrge™® +e? MeZe 3 < 2Me3. (8.13)

From the definition of @), we have
) n3no
Q2 = —nz\/1 —nj — —=2 = (8.14)

thus by bootstrap assumption of ng, we finally can see that

. n3 \1 1 1 1
o] = 1Qul (VI—md+ —=2=) < (1+e})|Qu| < FM%H. (8.15)

1 —n2

By na(—¢) = 0, we improve the assumption of ns by a factor %

9 Estimates for Transport and Forcing Terms

To close the bootstrap argument of the Riemann variables W, Z, A, we estimate each term

in the transport-type equations of W, Z, A.

9.1 Transport estimates

Lemma 9.1 For the transport terms in the equations of W, Z, A, we have the following

inequalities:
[ Me™ 4+ MEe™*|ys| + M2eH o Seded, 7= (0,0),
: 2 —5g
M e 6 b) /7 = 170 b)
|0"Gw| < { . (1,0) (9.1)
| M?es, v =(0,1),
| M2, =2,
rE%e%a 7_(070)7
1
. . ; M2e= 88 v =(1,0),
107(Ga + (1= Br)roe?)| +|07(Gz + (1 — Bo)roe)| S { 1 (9.2)
! M?Zes, ~v=(0,1),
tM2e_%7 |7|_27
[ Me2e™8, ¥ =(0,0),
{ MeSe 3,y =(1,0),
| cte 7 =(0,1),
0 hw | + |07 hz] +07hal S (9.3)
gse "8, v =(2,0),
bete TS, y=(1,1),
GG v =1(0,2).
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Furthermore, for |y| = 3,4, it holds that

{ _(1_ _lyl=t
NG < (2 2(k73))5
07CGw| S e (9.4)
[07hw| S e™".
Proof For v > 0, from the definition of Gy in (2.27), we have
|07Gw| < e? mﬂ +e? Y 100 T|(kolp=ry + 072 Z| + |07 P(V - N))). (9.5)
~ L+ fo -

B<y
Then appealing to bootstrap assumptions and (5.10), (5.19), (6.61¢c) and (6.61b), we obtain the
desired estimates for Gy . For the case v = 0, we have that

|Gw| < ‘ (GW + Bret l itj;l

+ Hﬁz (GW + Bre? 1 f_tj;l ) HLm|y2| +

) |+ s (@ + seet )]

s O]
Bre T+ o

<|G% |+ M3eze 5|y, | + M3e3es
< Me™? + M3ef + M2c5e? < edel. (9.6)

Once we have the bounds for Gy and its derivatives, the estimates of Gz and G4 follow from

the identities
Gz + (1 — B2)koe = Gw + (1 — Ba)e? [(ko — k) + (1 — B )k + B-J]

9.7
Ga+ (1= pB1)e?rg = Gw + (1 — Br)e? [(ko — k) + (1 — BrJ)k] + (B2 — B1)Bre? J Z. O

Nl

The estimates of hyy, hz, ha can be deduced by their definitions, the bootstrap assumptions
and the inequalities (5.10), (5.19), (6.61a)—(6.61c).

9.2 Forcing estimates
Now we deal with the forcing terms that appear in the equations of W, Z, A.

Lemma 9.2 For derivatives of the forcing terms, we have the following bounds:

(e 3, 7= (0,0),
Py Sy = (1,0),
1
. ' MPe", v =1(0,1),
07 Fyyr| + €307 Fy| < { ) (9.8)
| e=*p~5 ™= v =(2,0),
1
Lo =),
( Mie (m3)s, 4= (0,2),
e”2, |y =3,
|07 Fw| < i (9.9)
€s, =4, |yl <1,
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(Mo, )= (0,0),
07 Fa| < { Mie, v =(0,1), (9.10)
\ M%e_(l_ﬁ)sn_é, v=1(0,2),
(Mt 3, y=(0,0), <L,
_dewy iR, 4= (L,0), |yl<L,
107 Fiy| < { o (9.11)
| M2esns, v=(0,1), |yl <L,
L, h <4, <
and
(@ Fw)| S o) (9.12)

Proof The proof of (9.8)—(9.11) is just taking derivatives of the forcing terms, then using
the bootstrap assumptions and the estimates (5.10), (5.17), (5.19)—(5.20), (6.61a)—(6.61¢) and
(9.1)—(9.4) to estimate each term therein. Finally we prove (9.12). Since &"W' = 0 when |v] is

even, and 2GY, + . F, = 0, we have

3
(@ Fw)°] S e % +[(1=B:0)°[ 4+ D |V + VG| + V2G| + VAl | + [V2hiy |
m=1

1

< Me % 4 M2e 85 + e (37 73)8 < o~ (3m 735, (9.13)

Lemma 9.3 For the forcing terms of YW, 077,07 A, we have that

(72, v =(0,0),
1
i g%n_%+3(k2—2)7 v = (1’0)7
BYEE IS v =(0,1),
A EE T (9.14)
I 2""&727 7:(2’0)7
RUAUNS 7=(L1),
(MEy 5505, 5 =(0,2),
(e, v =(0,0),
oo tsn, v =(1,0),
MQe_%S, v =1(0,1),
FENS Y ey s aped (5-18)
le™2°(1 4+ Mn~3), v =1(2,0),
e_%S(M%—i—MQn_%), v=(1,1),
(Mie (G ¥ =1(0,2),
(Mie™, 7= (0,0),
P15 {drte, 7= (0.1), (9.16)
lem (=75, 5 =(0,2),
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[N

Ifé‘%ﬂ_ ) Y= (170)7 |y| <L,
FPIS { e, y=(0,1), lyl<L, (9.17)
Le? +61_10(10gM)72_1, vl <4, |yl <L
And for y =0 and |y| = 3, we have

FPO gebmmm) ) =s. (0.18)
Proof Firstly, we have
FG0 = |Fw| S o5 (9.19)
For the case 1 < |y| < 2, we decompose the estimate for forcing term as
1<]y|<2
BP ST 0 e+ Y (107 Gw 010 W + [0 Py ||0:0° W)
0<B<y
Ly a2l (JW)][07 03 W + 107, )W LW |
=07 Fy | + I + 17 4+ 1{7. (9.20)

Then one can check that each term do not exceed the proposed bound. F! é'Y), FXY) and F‘EJ)

can be estimated in a similar fashion.

10 Bounds on Lagrangian Trajectories

Given a point yo and an initial time so > —loge, we define the Lagrangian trajectory ®
by
((dDY(s)
ds
Py (s0) = Yo-

Similarly we define % and ®% using the transport terms in the equations of Z and A, respec-

= VW o (I)%(S) (10'1)

tively.
We now discuss the upper bound and the lower bound of these Lagrangian trajectories, and

close the bootstrap argument for the spatial support of W, Z, A.
10.1 Upper bound of the trajectories

Lemma 10.1 Let ® denote either @}, % or ®%. For any yo € Xy, we have that

(10.2)

d, . s (10.3)
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Then the estimates are direct consequences of |gy| < e? and |hw| < e2. We omit the detail,

which is the same as that in [13]. The estimates for ®; and ®4 are similar.

Now we close the bootstrap bound for spatial support. We attempt to show that
7 T 1 3, 7 1
supp(DW, DZ, DA) € £X(s) = {|y1| < gefed, | < Zseez}. (10.4)

Since supp, (D, N, D,T) C 3X(s) = {|x1| < %E%, |ze| < %6% }, in (%X(s))c, there hold

(ow = oW 4 0t [ = 1 T4 87+ 200
{ 9z = Bafr JW + Bre? [— 1 ?_tj;l + J(Bak + Z + 251V1)] (10.5)
(94 = B8, TW + .63 = 25—+ TP+ 12 + 280V
hw = hyz = ha = 26182 (Vo + A), (10.6)
.{ Fyy = 238,50, A + Bre 2 Q124,
{ Fy = 2358, S02A + Bre 5 Qua A, (10.7)

\ Fu = —2858,90:5 — Bre 2Q12U - N.
We also define

{Woo(t): [%(nwrl)—n e?,
b Zo(t) = %(nl — 1),

10.8
1 Aoo(t):—%ng, ( )
i _e_%Woo—i—/i—Zoo_@
(=)= 2 27

Then W — W, Z — Z4, A — Ay satisfy transport-type equations:

(8 — 5) (W = Wet) 4 Vi - V(W — Wex) = Faraw.
02 — Zoo) + V7 -V(Z — Zoo) = Fy_y._, (10.9)
Os(A—Ax)+Va V(A= As) = Fa_a__.
where
Fw_w., = —B3Bre 2 (W — Woo)2 A + B35 (Z — Zoo)D2 A
+ Bre”FQua(A — Ax) — 2838, 550024,
Fy_g. =B3B:e (W — Wa)0aA — B3fre 2(Z — Zoo) 02 A
+2B38r6” 255002 A + Bre *Qra(A — As),
Fa—a, = —Bsfre (W = Wao)D2S + Bsfre™ 3 (Z — Zoo)02S — 2B3B-€7 % 50055
— Bre” Qua(W — W) = Bre™*Q1a(Z — Zoo).

(10.10)
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For yo ¢ TX(s), let M’ > |yo| be a large enough constant. Define

Qbig = {ly1] <M, |y2] < M}, Qeman(s) = {|y1] < 2511 (s), |ya| < e pa(s)}, (10.11)

where 5
() = Tomet —20Mte,
(10.12)
3
iug(s): ;EE%—2CM%6_S

One can verify that %X(s) C Qsman C %X(s) C Quig if we take ¢ small enough and M’ large
enough. Define

1
E(y,s) = 5(e-S(W ~Woo)? +(Z — Zoo) +2(A — Ax)?), (10.13)
then we have 1
— / E<C E. (10.14)
ds Qbig \Qsmall Qbig \Qsmall
From the initial condition, we can see that when s = —loge, beig\Qsmu E =0, thus

/ E=0
Qbig\Qsmall

at any time according to Gronwall’s inequality. This tells us as long as yo ¢ £X(s), W (yo,s) =
Weo, Z(Y0,8) = Zoo, A(Yo, ) = Aco and finishes the proof of (IB-S).

10.2 Lower bounds for lagrangian trajectories

Lemma 10.2 Suppose |yo| > 1, so > —loge. Then we have

|@%(s)] > lyole™"  for all s > so. (10.15)

Proof It suffices to prove that y - Vi > %|y|2 Note that by definition of Vy,, we can see
that
1
y-Ywl(y) = §|y|2 + i = Brlyn JW| = [ Gw| — [y2hw|. (10.16)

We split the estimate of W into two cases: |y| < L and |y| > L. If |y| < L, by (B—W—l) and
(2.44) we have

W ()| < W (y1,y2) — W(0,2)| + [W(0,y2) — W(0,y2)| + [W(0,2)]
—_————
=0
< (1+6%)|y1| +6%|y2|. (10.17)

If |y| > L, from the bootstrap assumption of W we have
W)l < (L+em)ns(y) < (L+e)y. (10.18)

Then appealing to (9.1) and (9.3) we have the desired result.
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Lemma 10.3 Let ® denote either % or ®%. If
3

Kg > —————————. 10.19
°Z T max(Br, o) (10-18)
then for any 0 < o1 < % and 201 < o9, we have the bound
/ ¥ (1 4 @4 (s)])~°2ds’ < C(o1, 02). (10.20)
—loge
Proof The proof is the same as that in [13].
Lemma 10.4 Let ®¥° denote either ®% or &%, then
sup / |01 W | o ®¥0(s")ds” < 1. (10.21)
YoE€Xp J —loge

Proof Using Lemma 10.3 and the bootstrap assumption of 01 W, we can deduce the above

inequality.

11 Closure of Bootstrap Argument for 9; A

Since the vorticity is purely transported by w, the bootstrap of 0; A is easy to close from the

bound of the vorticity and bootstrap assumptions, in no need of the evolution equation of 01 A.
Lemma 11.1 (Relating A and ) We have the following identity

eSS W + K + Z)
2
— Nope 2591 A+ U - (N28,, T — To8,, N + JO,,T). (11.1)

JegsalA = — (OéS)éQ — T263582(

Proof Note that curl w = 0ra - N — Oru - T. We compute each term as follows:

. . . 1 . fas . .
%”:ﬂ%#”4%@”:ﬂfIﬁfhu+B(_1+hfhu+@w)
- 1 . - 1 . O, .
_ e By — T2 Opi+ —222  _ ., (11.2)

= %1+f321+f$1 2 /—1+f§21+wa 1+ f2,

| | fo o o oa
Ot = N o+ Nods it = Opyit = — 22 (= 220, i+ 0,0
1 2 /1+fr221+fw1 ’/1+f121 L+ fa,
VARS A!
- : i T, = 0, i+ Nadyi (11.3)

Op, U —
L+ fay 1+ fa, ! «/1+fw22

Thus, we have

curl & = Tody, it N — (JOy, 1 + Nody,@t) - T
= T30y, (it N) — Ty, N — JOy, (it T) + Jy, T — NoBy, (it - T) + Nott - 95, T
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= Ty, (WTH) Ty, N — JOy,a + Jide, T — NoBuya + Noidy, T
— Tyd,, (w—”) Oy a— Nodpya + it - (Nody,T — Todo,N + J0,,T). (11.4)

On the other hand, curl @ = p¢ = (aS)=Q, thus we get the desired result.
With the help of this identity, we have

3 L s, _s 1 _s 1 s _1 s 1,19 2 9 2
e2’|0hA| Sk§ +e3(e72 4+ Me2e™2) +e2e2Me™ 2e? + M1(e2M=c — M“c + M~¢5%)
1
< 5M. (11.5)

This improves the bootstrap bound for 0; A.

12 Closure of Bootstrap Argument for Z and A

In this section we improve the bootstrap bound of Z and A.

Lemma 12.1 (Close Z bootstrap) For the Riemann variable Z, we have the improved
bootstrap bound:
|Z o @ (s)| < =Me,

— Do =

2|0, Z 0 @Y (s)| < M3,

N

oEIT o B < M (12.1)

N

SR PP (s)| < M3,

N

250197 o PP (s)| < =M,

N

e*|092Z 0 P (s)| < =

[\

Proof Since e**07Z obeys
05 ("7 Z) + DY (07 Z) + (Vg - V) (et Z) = et FJV, (12.2)
by Gronwall’s inequality we can see that
N2 o W (0)] S N o, g exp (= [ DY o wp(v)av)
+ /Sl e |[FJ) 0 ®¥ (') exp ( - / DY o @?g(s”)ds”)ds’, (12.3)
—loge s

where

3 1
DG" = DY) — p= Sy + 50 + BaBrn JOW — pi. (12.4)

If we require that %71 + %'72 > i, then we have

vI<2
<

\
DM < BabnlJOW| < 2000 W], (12.5)



398

Thus the damping term is bound by

exp ( - / D(Z'y’”) o ®% (s")ds”)

< e (=) oy / 210, 0 B3 (s")ds")

s/

3v1+t72

(10.21) ,
< o (PR (e=s)

And finally we have

107 Z o @Y ()]

S 02—l + [ F o ap(s)len (S

—loge

Next, for different multi-index -y, we choose different © in the above inequality.

Case 1 v =(0,0). We set . =0. From (3.38) and (9.15), we have
s , 1
|Zo®?§’(s)|§5+/ e_sds'§5§§ME.
loge
Case 2 v = (1,0). We set yn = 3. Also from (3.38) and (9.15), we have

S
+ / e
—loge
(10.20)

1+/ (1+|01(s)P) Fomds < 1<
—loge

leo
wlo

e%|Z 0 0 (s)] S e de edn 815 0 0 (5)ds'

Nl=

A

M=,

N~

Case 3 v =(2,0). We set 11 = 2 and deduce that

%°|011Z 0 DY (s)|

S
<e et 4 / e e 2% (14 My~ 3 0 ®(s'))e 207 )ds’
loge

S 1+M/ =1 4 @ (s')]) "3 ds’
loge

(10.20) .

< 1+ Me s < Mz,

1

-2

Case 4 v = (1,1). We set = 3 to see that
¢*(012Z 0 ®Y ()]

- g%+/ 2% e 2 (M3 + M273 0 ®(s'))e 20 )ds’
loge

[V

<e

<14 M4 M2/ e~ E6=) (1 4 [y (s7))) RS’
—loge

(10.20)

< M24+M?*e 5 <

I

M.

N —

)y

W. Z. Su

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

(12.11)
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Case 5 v=(0,2). We set =1 to obtain
oF02 0 05 (5)] 5 6‘%s+/ o Mie (=77 g
M. (12.12)

Next we close the bootstrap argument of A by proving (IB-A).

Lemma 12.2 (Close A bootstrap) For the Riemann variable A, we have the improved

bootstrap bound:

A0 @(s)] < S Me,
e5 |9y A 0 DY ()| < %Ms%, (12.13)
e®|0224 0 Y (s)| < %M
Proof As in the closure of Z bootstrap, if 4 = 3’”%, we have
DT A 0 B (s)| S e H07 A(yo, —loge)| + /_ Slogs e [P0 o 9% (s')|ds. (12.14)
For different multi-index ~y, we choose different values of y in the above inequality.
Case 1 7= (0,0). We set = 0. From (3.39) and (9.16), we have
|Ao0d%(s)| S e+ /Sl Mie™¥ds' < Mie < %Ms. (12.15)
—loge
Case 2 v = (0,1). We set = 1 and deduce that
e3 [0y A0 D% (s)| S e e+ /Sl ¥ Mie—"ds < Mk < %Ma%. (12.16)
—loge
Case 3 v =(0,2). We set =1 and deduce that
e®|0a2 A0 Y (s)| Sele+ /Sl et (1m7) =5 o Y (s")ds’
. —Sogs . . (10.20) 1
<14 Mi /_logsems G+t £ 1M (1217)

13 Closure of Bootstrap Argument for W and w

In this section, we prove the improved bootstrap bounds (IB-W), (IB—WO), (IB—W—l)7 (IB-
W-2) and (IB-W-3) for W and W.

13.1 Closure of bootstrap argument for high order derivatives of w
As stated in (2.53), YW satisfies the equation

aSmWJrD%)mWJr Vw - V)OW = F), (13.1)
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where the damping term has a lower bound according to (5.10), (2.43) and (5.3):
311 +72—1

D(V%) = 5 + Br J(OUW + 101 W)
3 1 1 3 L1
>5+m=(+e?)(l+n(l+e?) > 5 —1+m—m-Ce™ > 2. (13.2)
From the equation of 8'@7& we have
—|mw 0 ®Y%| + (D ” 0 BY0) W 0 Y| < |F() o Y. (13.3)
If |y = 4 and |y| <, from (9.17) and (13.2), we have
e3|07W o P (s)] < e73eR 4 Ce%(E% %(logM)V2 b, (13.4)
Thus for |y| =4 and |y| < I, we have
07T 0 @10 (5)] < i % (log M2 (13.5)
Now we consider the case |y| = 3, y = 0. Letting y = 0 in (2.53), we have
10,00W°) = |Fi° — Ghon WO — 10,07 WO — (1 — B,)(1 + 71) 0" W
< e~ (378 4 e (log M)* + Me et < e (3-w3)s, (13.6)
Thus from (3.35), one can see that
07T (s)] < 0777 (— log e)| + Ce(3=7)5 < %Og%. (13.7)

Next, we consider the case |y| < 3, |y| <. For |'y| =3, by (13.5) and (13.7), we have

—_

|0"W| <7 + =1 (log M)t y| < = (logM) e |y + = M£4 (13.8)

\]

Now by induction and WO = 0 for |v] < 2, we can close the bootstrap argument of W as
in the case |y| = 3.

13.2 A general discusion of weighted estimates

In order to close the bootstrap argument for W and w fully, let us consider the evolution

of ¢ = n* R, where R satisfies a transport-type equation:
OsR+ DrR+Vw - R = Fg. (13.9)
We assume |p| < 3. One can deduce that g satisfies
954+ Dyq — Vw - Vq = "' Fg, (13.10)
where
Dy =Dr—pn "Vw - Va=Dr—3u+3un" —2un"" (yrgw + 3yshw)

. 2 (13.11)
D,




Shock Formation for 2D Isentropic Euler Equations with Self-similar Variables 401
By (5.10), (9.1), (9.3) and the bootstrap assumption for W, one can see that |D,| < 3075,
1

Thus Dy > Dg — 3p+ 3un~" — 6|uln~3.

By composing ¢ with the trajectory of Vi, we have
S
lg o @3 (s)] < la(yo, so)| exp ( - / Dy o @%{}(s')ds’)
50

+ / [F{) 0 @Y0(s)| exp ( — / D,o @%(s”)ds”)ds’, (13.12)

0
where (yo, so) is the starting position and starting time of the trajectory. Note that sg need
not to be —loge.
If |yo| > I, we have that

s lul<g s
24 /, D, o % (s")ds" < ’ / 3075 o oY (s")ds

0

< 3-2%/ (1+ 12e3( =50 =344 < —301og]. (13.13)

0

Consequently, we can bound ¢ by

lq o @]

< 17q(yo, s0)| exp [—/

s0

+l_30/ |Fq(7)o<b%(s’)|exp[—/
s0

s’/

S

(DR —3p+3un~") o <I>‘€8(8')d8’]

S

R — +3un ")o s )ds s'. .
Dp —3u+3un~") o @ (s")ds” |ds’ 13.14
We remark that as long as |yo| > 1 and p > 0, one can verify that

/ 7P 0 8% (s)ds <, — logl (13.15)

0

If |yo| > L, we have another inequality

1
[u|<3

2u // Dy o @Y (s")ds” < / 373 o oY (s")ds’
S S0

< 3-2%/ (14 L2306 —0))"3d¢ < CL~ % (13.16)

0

In this case, ¢ is bounded by

S

g0 D] < e%la(yo, s0)|exp | - / (D = 3+ 3un ") 0 O (s')s |

s0
+ es/ |F{ 0 ®%(s")] exp [ — / (Dgr —3u+3un ") o @%(s”)ds”} ds’. (13.17)
S0 ’

S

13.3 Closure of bootstrap argument for w

For different multi-index v, we choose different values of i, and we will use (13.14) or (13.17),

depending on the location of y. We establish the estimates case by case.
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Case 1 |y| =0, < |y| < L. In this case we set 4 = —%. Thus we have ¢ = n~5W and
Dr—3p+3un~' = -3~ + B, JO,W. We estimate the damping term and the forcing term.

s — 1
- / (BrJOHLW — —77_1) o @Y (s")ds"

1
1+€% / |31W0¢y0( ”)|d //+2/ U_IO‘I)%(SI/)C{S”

0

< 2/ n=3 0 ®Y(s")ds" < —20logl, (13.18)
S0
/ (0% Fy) 0 ®Y)(s")|ds’ 5/ Mesn™3 0 @Y (s')ds' < —&% logl. (13.19)
S0
According to Lemma 10.2, it is possible to require that either |yo| = I or s = —loge, thus

we can use the initial condition or bootstrap assumptions to bound |q(yo, so)|. From (13.14),
(3.35) and (B-W-1), we have

5 W 0 @Y (s)] < 17| W (yo, s0) |0~ % (yo)l 2 + 173172 (—¢ %) log1

L

<1778 (yo) max(e 7975 (yo), 2(log M) e 1)

1
— 1705 1ogl < = 5 et (13.20)

Case 2 v = (1,0), I < |y| < L. Let p = %. Then we have Dr — 3u + 3un~' >
BTJ(81W+ 81W), and

oo

_/ (D — 31+ 3um1) 0 B0(s")ds" < 4/ nd o ®(s")ds” < —40logl,  (13.21)

’ S0

IF, 0 ®Y(s")|ds" gsﬁ/ (30 ) 0 31 (s')ds’ < —e™ logl. (13.22)
S0 S0
Now we can bound ¢ by

[ W 0 @4 ()| < 11 (o, s0)In® (yo)l ~* + 1717 (—e 1) log
< 17700 (yo) max(e 7T~ (yo), 2(log M)*e™13) — 70T log

ml"‘

< (13.23)

[\D|)—‘

Case 3 v=(0,1),1 <|y| < L. Let p = 0. Then we have Dr — 3u + 3un~! = B, JO1W,
1
3,

and |Fy| S e1277 3. The rest is almost the same as Case 2.

13.4 Closure of bootstrap for W

Similarly, for different v we choose different values of u, and we will use (13.14) or (13.17),
depending on the location of .
Case 1 |y|=2, |y| > 1. Now let R = "W, and

I (2a0)7(171)7
(13.24)

=

I
/__/\_'“
= W=

I (072)'
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The damping term becomes

1
Nt 5 =B+ Nly22) JAW, m =1,
— B JOLW, "=

34— Dp = i (13.25)

When v; = 0, we have

o0

/ (3 — DR) o @ (s")ds” < 2/ |\ W | o @Y (s")ds” < —201ogl, (13.26)

/ s0

and the forcing term is bound by

ol

/S IS F02 | 0 %0 (s))ds' < M /S(nén—%wk—im) 0 B (s')ds’ < — M logl. (13.27)
s0
Thus, we have that
|77%822Wo Y9 (S)|
< 17305 ()| @22 W (o, 50) 1720 — 1730 M & log
< 170 (go) mavx (17 (o) 277 30) + 208 MY'<T0 2 o) ¥ <1121 )
— 70\ % logl
T g s0prE gl 2 %M. (13.28)
When ~; > 0, we have that

exp (/S(3u — Dgr)o fb%(s")ds")

{3 / 16, 0 B (s ”)ds”—i—/S/ (%—1)015”}
exp {1 ],

1
n 0 B (s")ds" — 5(s—s’)} |=80e—$(s=5") (13.29)
and |Fy| = |17%FIS{,Y | < %M% n~% < M372+5. Thus, we have the bound for &YW

< exp

|77%87W| o ®¥(s)
<720 1(y0)|6”W(yo so)|l™ 80— 3(s=s0) 4 =20 M35 —800—3(s—5") 44

50

< 17195 (yo) max(n ™ (yo), O~ % (yo) + 2(log M)*e 0175 (yo) 10 || oo 1y < )e ™
+l—101M§’Yz+g
< |~1too max(1,C + 3(log M)4£1_1012) + [~101 372+

b (5_50)

1
FE(OMTE 170 ) < 2M””2 (13.30)

<% when M large

1 1 _ -1

Case 2 |y| =0and |y| > L. Let u = —%. Now we have 3u — Dy — 3un~t = In
F, = 7= (Fy — e~ 28,i). And we bound the damping term and the forcing term by

/ %77_1 o & (s")ds" S/ (1+ L2 —s0))~1qg"
s’ s0

and
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<M [ e Fds' <es. (13.32)
Thus, we have that
=S W] 0 @Y (s)

1
0

1
W (yo, s0)|e ™ + eCeiet’t

|~

_1
< e n 5 (yo)

1
e 10 — L

ee= ™" 7% (yo) max(n® (yo) (1 + €77), 7% (yo) + T2~ 5 (yo)) + e Te

1

ol

IN

ok

IN

1+eTs. (13.33)

Case 3 v = (1,0) and |y| > L. In this case, we can see that ¢ = n3 0, W, 3u— Dr—3un~t =

—BrJOW — 7t < =3, J0,W, and
/ (3u— Dr —3un~") o Y (s")ds” < 2/ |01W ] o @ (s")ds”

5/ (1+ L23¢ —0) =34’ < L-% <c. (13.34)
So
The forcing term is bound by
| 1F o alplas' s [ et o af ()
S0 S

0

|~

<t /Sn—% 0 BV (s')ds' < e, (13.35)
s0
Thus we have the bound
FECAGEX )
< e (o) LW (o, s0)[e° + Ceete?
< %% (yo) max(y” ¥ (yo) (1 + 782,15 (yo) + 775 (yo)) + Cee
<14eTs. (13.36)

Case 4 v=(0,1) and |y| > L. Let u=0. We have ¢ = R = W, and 3u— Dr—3un~! =
—BrJO1W. Thus we have the bound for damping term

/ (3 — Dr —3un~") o ®Y0(s")ds” < e. (13.37)

The forcing term is bound by
/ IF, 0 ®% (s')|ds’ < / M2eby3 0 310 (s')ds’ < eb. (13.38)
S0 S0
Finally we have that

3 2
02 | 0 ®Y)(s5) < e|8,W (yo, 50)|e° + €% e < €*° max (1, 3+ 513) +e¥es < (13.39)



Shock Formation for 2D Isentropic Euler Equations with Self-similar Variables 405

14 Proof of the Main Theorem

In this section we prove the main theorem, discuss the Holder regularity of w and deduce a

lower bound of the vorticity.

Proof of the main theorem The local well-posedness of (u,o) in physical variables
implies the local well-posedness of (W, Z, A, k, 7,&,n, ¢) in self-similar variables, and the global
existence of (W, Z, A, k,7,&,n, ¢) in self-similar variables is obtained via the bootstrap bound.

Now we prove the solution has the desired blow-up behavior. From the bootstrap assump-
tions and 7(t) —t = [, " (1 —7(t'))dt' we can see that c¢(Ti —t) < 7—t =e"* < C(T\ —t). Since
R(t) € SO(2 ), using (5.10) and (5.23), we have that

(RE)N) - ViJu| = [N - V=il| = ‘(721:;23 \/%a )u‘

1—1—65
T, —t

<A +ed)(1+el)e’+e< (14.1)

Similarly, we can see that the directional derivative of v along the shock front is bounded:

1

1
In a same way, we can prove that [[(R(t)N) - Vi]o| < #=% and [[(R(t)T) - Vi]o| < 1+ ez,

(ROT) - ViJu| = |T - V~il| = ‘ yet, (14.2)

Consequently, we have that

Vau)] < [(RON) - Tudul +[[(ROT) - VJul < 7= (14.3
Vao(®)] < [[(RON) - Tlol + [(ROT) - Voo < . (14.4)

From the bootstrap assumptions || < M7 and |fy] < M2e2, we know that both ¢ and n have
limits as t — 7.
Next, by the definition of n and N, and the coordinate transformations, we have n(t) =

R(t)N(0,t). Furthermore, we can see that

1+ 12, foa

[REN) - VuJu(e). 0] = | (Y0 - mam)am,t)\
—‘wel+3mla0teg‘> (——52)e (14.5)

Similarly, we have
. —e® — 0,,2(0,1) s

(RON) - Voo (e, 0] = 0,00,0] = | 22005 (2 ) 1)

Thus, we can conclude that ||Vyul/ze > [[(R(t)N) - Vi]u((t),1)| > 7=

Z T, and ||vx0'||Loo 2
[[(R(E)N) - Vo (€(2), 1)

c
— Ty—t"
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Next, we prove (3.25). It suffices to prove that [|0x, w| 1~ (Bc(0,5)) < C(d). From (IB-W),
we have that

1
O, W|| 1,00 <(1+ed)es||———
19wl a2 0.0 < ( ) (1+ 42 + 8) ¥ lLge (femsoy2 +esy3<o2)e)
_9 1 e’ _92
<2071 +e13 7(14-(335)% <3077, (14.7)

Now we have completed the proof of the main shock formation result and (3.23)—(3.30).
The Hoélder bound is left to the next subsection.

14.1 Holder regularity for w

We now prove that Riemann invariant w posseses a uniform %-Hélder bound up to the

blow-up time.
Proposition 14.1 For the Riemann variable w, we have that w € L>([—¢, T}); C%).

Proof The proof of this proposition is the same as that in [13], and for the reader’s
convenience we outline the proof here.

Using the bootstrap assumptions we directly compute the C'% norm

|’UJ($1,ZE2,t> B w($/1,$/2,t)|

o — /|5
e Wy, s) —W(y',s)|
[e=35 (g1 —45)% + e~ (y2 — 5)?]5
< Wry2.8) =Wy, o)l | s W1, 92,8) = Wk, 45, 9)|

Iyl—y’1|% |y2—y’2|%
f;’f(l + 22)"3dz . |5 VEX()
S = |y Y, |% tes |y2 - y2|3 S L (14'8)
1= Y9

Now we have proved that w is uniformly Hélder—% continuous with respect to . And one can

check that the transformation Z — z, x — T do not affect the Hélder—% continuity of w.

14.2 Discussion of the vorticity

From (2.9), we know that in Z-coordinate, the specific vorticity E is purely transported by
% +7. From (5.19), (5.23) and the estimate (5.10) of |f|, we can deduce that |@ + 3| < M7 on
{|Z1] < 10, |T5| < 10e8} D B3(0,e%). Note that |T. —to| = [T, +¢| < e. Hence if ((F, to) > co
for some ¢y > 0 on Bz(0, 6%), then E(f, t) > % on B; (0, %), upon taking € to be sufficiently
small.

From the bootstrap assumptions and (8.8) we have that

|5 = 52| S Ik — ol + e 5 IW| +12] S Me+ et S et

Rl=

Thus the sound speed & > 22, and |@] = [¢]|p] = I¢|(a)o]) s > Q. (%)

m
Nl neo
~

on Bj; (O,
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The initial conditions stated in subsection 3.1 can not rule out the possibility that (Z, to)
have a positive lower bound on Bj; (0, a%), thus there do exist solutions satisfying the listed

initial condition and present non-zero vorticity at the blow-up point.

Data availability statement Data sharing is not applicable to this article as no new data

were created or analyzed in this study.

A Toy model of 1D Burgers profile

Consider the following Cauchy problem for the 1D Burgers equation:

{ut—l—uum:()

u(x,()) = U()(:ZZ) = —xe ? (Al)

—X

It is well-known for the Burgers equation that the blow-up time is

1

T=—— =1
inf Oyug ’
zeR
the blow-up point is (x,t) = (0,1), and
1
[0z t)||Lee < —. (A.2)

—1-t

Now we claim that \/%u((l — t)2y,t) converges uniformly to a profile (a fixed stationary

function) U(y) on any compact set as t — 1. This fact characterizes the blow-up behavior of

u. We can formally write this fact as
w(z,t) ~ (1 —)20((1 —t)"22) ast— 1. (A.3)

To closely investigate this fact, we use the “self-similar transformation” y = (1 — t)_%x. y is
a “zoom-in” version of z in the sense that any compact set of y corresponds to a set of x that
converging to 0. Thus in y-coordinate we can observe the behavior of u near the blow-up point
in detail as ¢t — 1.

For the sake of convenience we introduce the self-similar time s = —log(1 —t), thus 1 — ¢ =

e~ ®. This “self-similar time” has the advantage that t — 1 is equivalent to s — co. Now the

self-similar transformation becomes y = e2%z and we can rewrite \/%u((l —t)2y,t) in the

self-similar coordinate as

Uly,s) = u((1— t)%y, t) = e%u(e_%sy, 1—e™"). (A.4)

1
v1i-1

In this coordinate, the proposition we claimed becomes

S5—00

Uly,s) = Uly) y € K for all compact K. (A.5)

The following figures show the graphs of U and how U converges to U:
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. u(@,0) u(z,0.5) u(z,0.9)
Uly,s) = U(y)
Uwol Uly,—log05)] _ Uly,—log0.1)]
T U), T Uy) T U)
i Y i Yy ‘ y

We now prove the convergence. Firstly, from (A.2) and the self-similar transformation we
have that
10yU (-5 8)l[Le < 1. (A.6)

From chain rule we can deduce that U(s,y) satisfies

{(as - %)U + (gy +U)0,U =0, "
U(y,0) = Us(y) = uoly) = —ye ™",

Ignoring the time-dependent term in the above equation, we have

—%W+ (§y+w)aywz 0, (A8)

which is called the self-similar Burgers equation. Using ODE techniques we can find a first
integral of this equation: y = —We(y) — CWe(y)3. If we impose the constraint W2/ (0) = 6 =
uf’(0), then C must be 1. We select U to be the function that implicitly determined by the
identity y = —U(y) — U(y)?3, the solution of this cubic equation is

2

- by 2\ by 3
0 (51 G5 -GG D) oo

7 /1!

One can verify that U(0) = Uy(0), U/(O) = U}(0), U (0) = Uy (0), and U (0) = U} (0). Thus
we can check by the above explicit expression of U that

U(y) — Uo(y)| = |U(y) + ye ¥ | < My* (A.10)

holds for some M >0 and —1 < U, < 0.
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Now we are ready to prove (A.5). Define ﬁ(y) = U(y) —U(y). Then subtracting (A.8) from
(A.7), we have

0,U — DU + (gy+U)5y =0,

~ 1 —_
h-1-T, (A.11)

1 —~ —~ J—
LU (,0) = Uo(y) := uo(y) — Uly).
Notice that (A.7) is a transport equation. We define its Lagrange trajectories by

—_—— i ———

(d (3
fizoto= ) oute o
Dy, (0) = yo-
From (A.6) we have |U(y)| < |y|, and (%y—i— U) -y > 1y?. Thus
1d d 3 1
ST (5)2 = By () -y () = [(FU+U) 9] 0 @y (9) 2 510 (). (A13)
If ®,,(s) = y, from the above inequality we have e*|y|? > |yo|*>. Rewriting (A.11) along the
Lagrange trajectories, we have
d~ 1 — ~
&U 0 Dy, (s) = (5 - Uy) 0 By, (s) - U oDy, (s). (A.14)
From —1 < _y < 0, we have
d 3 =
T 0y (5)] < 51T 0 By, (5)]. (A15)

Thus we can conclude that

< Me 2yt (A.16)

From this inequality we know that U converge to 0 uniformly on any compact set, or equivalently
it holds that U = U on any compact set.

Though we prove the convergence in the case of a specific initial datum, the proof can be
modified to apply to almost all initial data. In fact, take any up € C2°, there exists a point z¢ €
R and an integer k > 1, such that u((zg) = wlrelufg%(x)’ and uéj)(xo) = 0 holds for 2 < j < 2k,

while ué%ﬂ)(xo) > 0. In this case, a rescaled version of the solution u will eventually converge

to a solution U of the self-similar Burgers equation — U (y) + [(1 + %)y +U(y)]Uy(y) =0.In
this sense, the self-similar Burgers equation plays a universal role in the blow-up of the Burgers

equation.
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B Interpolation

Here we state the interpolation inequalities that are used in this paper.

Lemma B.1 (Gagliardo-Nirenberg inequalities) Suppose that 1 < q,r < 0o, 1 < p < o0,
Jj < m are non-negative integers, 6 € [0,1], and they satisfy the relations
1 ' 1 1-46 '
_:l+9(__@)+_, J<p<i. (B.1)
p n roon q m
Then || Diu||po@ny < CHDmuHHT(Rn)||u||Lq(Rn holds for any w € LI(R™) such that D™u €
L"(R™), with two exceptional cases:
(1) If j = 0, ¢ = 00 and rm < n, then an additional assumption is needed: Fither u tends
to 0 at infinity, or u € L*(R™) for some finite value of s.
2) If r > 1 and m — j — % is a non-negative integer, then the additional assumption

(
L < 0 < 1 is needed.

J
m

A frequently used special case in this paper is that

g 1—L
1076l 2 S Nl g o) (B.2)

L _7 (Rn
holds for any u € H™(R™) N L>(R").
Lemma B.2 Suppose that k > 4, 0 <1 < k — 3 are integers, q € (4,2(k —1)], then

|1 D7HOD* 0| sy S D013y 1Dl bt | D ol ey | D% by (B3)

holds for any ¢, € H*(R?) N W24(R?), where a, b are given by
11,1 1_ 1 k—3—1
1141 1141y
_ 9 p 1 _ 9 2
S b= E.1_3 (B.4)
2 q 2 2 q 2
and
_ 2q(k — 3)
C(g—3)+2(k-3)
Moreover, we have that
1 _ 1
a+b=1- 22 €(0,1)
= Tg

is independent of I.

Acknowledgements The author thanks for the warm host of the department of mathe-
matics of the National University of Singapore. The author is grateful to Prof. Xinliang An
and Dr. Haoyang Chen for valuable instruction, discussions and suggestions, and would also

like to thank Prof. Lifeng Zhao and Yiya Qiu for helpful correspondence.
Declarations

Conflicts of interest The authors declare no conflicts of interest.



Shock Formation for 2D Isentropic Euler Equations with Self-similar Variables 411

References

]
2
3
4]
5]
6]
7
8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

25]

Abbrescia, L. and Speck, J., The emergence of the singular boundary from the crease in 3D compressible
Euler flow, arXiv:2207.07107, 2022.

Alinhac, S., Blowup of small data solutions for a quasilinear wave equation in two space dimensions, Ann.
of Math. (2), 149(1), 1999, 97-127.

Alinhac, S., Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions.
I, Acta Math., 182(1), 1999, 1-23.

An, X. L., Chen, H. Y. and Yin, S. L., Low regularity ill-posedness and shock formation for 3D ideal
compressible MHD, arXiv:2110.10647, 2021.

An, X. L., Chen, H. Y. and Yin, S. L., The Cauchy problems for the 2D compressible Euler equations and
ideal MHD system are ill-posed in HT (R2), 2022, arXiv:2206.14003.

An, X. L., Chen, H. Y. and Yin, S. L., H% (R?) ill-posedness for 2D Elastic Wave system, arXiv:2206.14012,
2022.

An, X. L., Chen, H. Y. and Yin, S. L., Low regularity ill-posedness for non-strictly hyperbolic systems in
three dimensions, J. Math. Phys., 63(5), 2022, 051503.

An, X. L., Chen, H. Y. and Yin, S. L., Low regularity ill-posedness for elastic waves driven by shock
formation, Amer. J. Math., 145(4), 2023, 1111-1181.

Buckmaster, T., Drivas, T. D., Shkoller, S. and Vicol, V., Simultaneous development of shocks and cusps
for 2D Euler with azimuthal symmetry from smooth data, Ann. PDE, 8(2), 2022, 26.

Buckmaster, T. and Iyer, S., Formation of unstable shocks for 2D isentropic compressible Euler, Comm.
Math. Phys., 389(1), 2022, 197-271.

Buckmaster, T., Shkoller, S. and Vicol, V., Formation of shocks for 2D isentropic compressible Euler,
Comm. Pure Appl. Math., 75(9), 2022, 2069-2120.

Buckmaster, T., Shkoller, S. and Vicol, V., Shock formation and vorticity creation for 3D, Comm. Pure
Appl. Math., 76(9), 2023, 1965-2072.

Buckmaster, T., Shkoller, S. and Vicol, V., Formation of point shocks for 3D compressible Euler, Comm.
Pure Appl. Math., 76(9), 2023, 2073-2191.

Christodoulou, D., The formation of shocks in 3-dimensional fluids, EMS Monographs in Mathematics,
European Mathematical Society (EMS), Ziirich, 2007.

Christodoulou, D., The shock development problem, EMS Monographs in Mathematics, European Math-
ematical Society (EMS), Ziirich, 2019.

Christodoulou, D. and Lisibach, A., Shock development in spherical symmetry, Ann. PDE, 2(1), 2016,
Art. 3.

Christodoulou, D. and Miao, S., Compressible Flow and Euler’s Equations, volume 9 of Surveys of Modern
Mathematics, International Press, Somerville, MA; Higher Education Press, Beijing, 2014.

Collot, C., Ghoul, T. and Masmoudi, N., Singularity formation for Burgers’ equation with transverse
viscosity, Ann. Sci. Ec. Norm. Supér. (4), 55(4), 2022, 1047-1133.

Eggers, J. and Fontelos, M. A., The role of self-similarity in singularities of partial differential equations,
Nonlinearity, 22(1), 2009, 1-44.

John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl.
Math., 27, 1974, 377-405.

Liu, T. P., Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential
equations, J. Differential Equations, 33(1), 1979, 92-111.

Luk, J. and Speck, J., Shock formation in solutions to the 2D compressible Euler equations in the presence
of non-zero vorticity, Invent. Math., 214(1), 2018, 1-169.

Luk, J. and Speck, J., The stability of simple plane-symmetric shock formation for 3D compressible Euler
flow with vorticity and entropy, arXiv:2107.03426, 2021.

Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, volume 53
of Applied Mathematical Sciences, Springer-Verlag, New York, 1984.

Merle, F., Asymptotics for L2 minimal blow-up solutions of critical nonlinear Schrédinger equation, Ann.
Inst. H. Poincaré C Anal. Non Linéaire, 13(5), 1996, 553-565.



412
[26]
[27]
28]
[29]
[30]
[31]
[32]
133
[34]
[35]

(36]

W. Z. Su

Merle, F. and Raphaél, P., The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear
Schrédinger equation, Ann. of Math. (2), 161(1), 2005, 157-222.

Merle, F., Raphaél, P. and Szeftel, J., On strongly anisotropic type I blowup, Int. Math. Res. Not. IMRN,
2020(2), 2020, 541-606.

Merle, F. and Zaag, H., Stability of the blow-up profile for equations of the type u; = Au+|u|P~ u, Duke
Maith. J., 86(1), 1997, 143-195.

Miao, S. and Yu, P., On the formation of shocks for quasilinear wave equations, Invent. Math., 207(2),
2017, 697-831.

Oh, S.-J. and Pasqualotto, F., Gradient blow-up for dispersive and dissipative perturbations of the Burgers
equation, arXiv:2107.07172, 2021.

Qiu, Y. Y. and Zhao, L. F., Shock Formation of 3D Euler-Poisson System for Electron Fluid with Steady
Ton Background, arXiv:2108.09972, 2021.

Riemann, B., Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen
der Koniglichen Gesellschaft der Wissenschaften in Géttingen, 8, 1860, 43—66.

Sideris, T., Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys.,
101(4), 1985, 475-485.

Speck, J., Shock formation in small-data solutions to 3D quasilinear wave equations, volume 214 of
Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2016.

Speck, J., Holzegel, G., Luk, J. and Wong, W., Stable shock formation for nearly simple outgoing plane
symmetric waves, Ann. PDE, 2(2), 2016, Art. 10.

Yang, R. X., Shock formation of the Burgers-Hilbert equation, SIAM J. Math. Anal., 53(5), 2021,
5756-5802.



