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Abstract In this paper, the authors consider an approximation to the isentropic pla-
nar Magneto-hydrodynamics (MHD for short) equations by a kind of relaxed Euler-type
system. The approximation is based on the generalization of the Maxwell law for non-
Newtonian fluids together with the Maxwell correction for the Ampère law, hence the
approximate system becomes a first-order quasilinear symmetrizable hyperbolic systems
with partial dissipation. They establish the global-in-time smooth solutions to the approx-
imate Euler-type equations in a small neighbourhood of constant equilibrium states and
obtain the global-in-time convergence towards the isentropic planar MHD equations. In
addition, they also establish the global-in-time error estimates of the limit based on stream
function techniques and energy estimates for error variables.
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1 Introduction

Approximations of second-order parabolic equations by first-order hyperbolic equations have

a long time history which dates back to the studies of Maxwell [24] in 1860s. Since then, there

are a lot of studies concerning this topic. These approximations have not only the mathematical

sense but also physical interpretations. The idea of these approximations can be explained by

the following Cattaneo law for the heat equation ∂tθ −∆θ = 0, which can be derived by the

first law of thermodynamics ∂tθ + div q = 0 together with the Fourier law of heat conduction
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q = −∇θ. The Cattaneo law perturbs Fourier law as

ε∂tq + q = −∇θ,

then the heat equation becomes {
∂tθ + div q = 0,

ε∂tq + q = −∇θ,
(1.1)

which is a symmetric first order hyperbolic system with partial dissipation for q. Taking ε→ 0,

we recover the classical heat equation. The parameter ε > 0 is usually called the relaxation

time and the limit ε→ 0 is the relaxation limit in the sense that the Fourier law is regarded as

the stationary state of the system and zero relaxation means the recovery to the equilibrium.

The hyperbolic structure of the relaxed system (1.1) is more physical since it avoids the major

paradox of the heat equation that the heat waves are with infinite propagation speed. We

refer the reader to [2–3] for the Cattaneo law for heat conduction, to [1, 25, 30, 32, 41] for

approximation of the incompressible Navier-Stokes with Oldroyd-type derivatives describing

non-Newtonian fluids, and to [6, 31] for the approximation of the Timoshenko-Fourier system

by the Timoshenko-Cattaneo system.

The main purpose of the present paper is to approximate the planar Magneto-hydrodynamic

(MHD for short) equations with relaxed hyperbolic systems. We start with the three-dimensional

compressible MHD equations of the form (see [4, 16]),






∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = (∇×B)×B+ divΠ,

∂tB−∇×(u×B) = −∇× (ν∇×B), divB = 0,

(1.2)

where x = (x1,x2,x3) ∈ R
3 is the spatial variable and t ≥ 0 is the time variable. The unknown

variables ρ is the density, u ∈ R
3 is the velocity and B ∈ R

3 is the magnetic field. The pressure

p(ρ) is sufficiently smooth and strictly increasing for all ρ > 0. The viscous stress tensor Π is

given by

Π = µ(∇u+∇uT) + λ′(divu)I3, (1.3)

where ∇uT is the transpose of the matrix ∇u, I3 is the 3× 3 identity matrix and the viscosity

coefficients µ and λ′ satisfy

µ > 0, 2µ+ 3λ′ ≥ 0.

The parameter ν > 0 is the magnetic diffusion coefficient.

Now we consider the planar MHD equation by assuming that the fluid moves in the x1

direction and is uniform in the transverse direction (x2,x3). Denote x = x1, then

ρ = ρ(t, x), u = (u,wT)T(t, x), B = (b,bT)T(t, x), (1.4)

where w = (u2, u3)
T is the transverse velocity and b = (b2, b3)

T is the transverse magnetic

field. The first components u and b are the longitudinal velocity and longitudinal magnetic
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field, respectively. Since ∂xb = 0 for all t, we may let b = 1 without loss of generality. After

direct calculations, (1.2) can be reduced to





∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x

(
ρu2 + p(ρ) +

1

2
|b|2

)
= ∂x (λ∂xu) ,

∂t(ρw) + ∂x(ρuw− b) = ∂x(µ∂xw),

∂tb+ ∂x(ub−w) = ∂x(ν∂xb)

(1.5)

with λ = λ
′

+ 2µ > 0. In addition, if we introduce v = ρ−1, define the Lagrangian variables

(y, t′) by
∂

∂t′
=

∂

∂t
+ u

∂

∂x
,

∂

∂y
= v

∂

∂x
,

and still denote t′ by t in the following, (1.5) in Euler coordinates (x, t) can be transformed into

the following planar MHD equations in Lagrangian coordinates (y, t)





∂tv − ∂yu = 0,

∂tu+ ∂y

(
p(v) +

1

2
|b|2

)
= ∂y

(λ∂yu
v

)
,

∂tw − ∂yb = ∂y

(µ∂yw
v

)
,

∂t(vb) − ∂yw = ∂y

(ν∂yb
v

)
,

(1.6)

where p becomes a function of v with p′(v) < 0.

There are rich literatures on the global well-posedness of the planar MHD equations (1.5)

as well as (1.6). When the initial density is strictly positive, the MHD equations are of mixed

hyperbolic-parabolic type in the sense of Shizuta-Kawashima [13, 34], so that the global ex-

istence of smooth solutions near constant equilibrium is guaranteed. For other related well-

posedness results, we refer to [18, 22, 26, 37–38, 40]. For the results of non-isentropic planar

MHD equations, we refer to [5, 7, 14, 17, 21, 33, 36, 39] and the references cited therein.

We now introduce the approximate system. Let

τ =

√
λ∂yu

v
, S =

√
µ∂yw

v
, J =

√
ν∂yb

v
. (1.7)

We approximate the perturbed form of (1.7) by introducing the following constitution laws

ε21(∂tτ + u∂yτ) + τ =

√
λ∂yu

v
, (1.8)

ε22(∂tS+ u∂yS) + S =

√
µ∂yw

v
, (1.9)

ε23(∂tJ+ u∂yJ) + J =

√
ν∂yb

v
, (1.10)
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where εi > 0 (i = 1, 2, 3) are relaxation times. Denote ~ε = (ε1, ε2, ε3)
T and ε =

√
ε21 + ε22 + ε23.

Combining (1.6)–(1.10), we establish the relaxed Euler-type approximations of the planar MHD

equations as follows 



∂tv − ∂yu = 0,

∂tu+ ∂y

(
p(v) +

1

2
|b|2

)
=

√
λ∂yτ,

∂tw − ∂yb =
√
µ∂yS,

∂tb+
∂yu

v
b− 1

v
∂yw =

√
ν∂yJ

v
,

ε21(∂tτ + u∂yτ) + τ =

√
λ∂yu

v
,

ε22(∂tS+ u∂yS) + S =

√
µ∂yw

v
,

ε23(∂tJ+ u∂yJ) + J =

√
ν∂yb

v
,

(1.11)

which is a first-order quasilinear hyperbolic system with initial data

(v, u,w,b, τ,S,J)|t=0 = (v0, u0,w0,b0, τ0,S0,J0)(x). (1.12)

The variables τ,S and J are dissipative variables because there are damping terms in their

corresponding equations. Formally letting ε→ 0 recovers the planar MHD equations (1.6).

It is necessary to show that the approximations (1.8)–(1.10) are physical. Constitutive

laws (1.8)–(1.9) are approximations of the non-Newtonian fluids. In [24], Maxwell combined

Newton’s law of viscosity with Hooke’s law of elasticity, and proposed a modification to the

constitutive law of stress tensor (1.3) as follows

ε2∂tΠ+Π = µ(∇u+∇uT) + λ′(divu)I3.

However, the above law is not invariant under the following Galilean transformation

t′ = t, x′ = x− V t, Π′ = Π, u′ = u− V, ∀ V ∈ R
3,

which may lead to paradoxical evolution of particles in a moving frame. To overcome it, the

material derivative should be considered. The model then reads

ε2 (∂tΠ+ (u · ∇)Π)) + Π = µ(∇u+∇uT) + λ′(div u)I3, (1.13)

which reduces to approximations (1.8)–(1.9) for our case. The constitutive law (1.10) is actually

the combination of the Ampère law together with the Maxwell correction of the Ampère law.

Indeed, by the Ampère law with Maxwell correction, we have

ε∂tE −∇×B = J,
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where E is the electric field and J is the current density. We combine the above with the Ohm’s

law yielding

ε∂tJ+ J = ∇×B + l.o.t,

which reduces to approximation (1.10) in our case. For more details, we refer to [1, 25, 30, 32]

and references cited therein for more details.

System (1.11) can be regarded as symmetrizable hyperbolic (see Section 2 below) and con-

sequently the local existence of smooth solutions is guaranteed by classical theories (see [12,

15, 23]). The global existence of smooth solutions and its convergence to the classical isentrop-

ic planar MHD equations (1.6) remain open as far as we know. However, for the isentropic

Navier-Stokes equations with revised Maxwell constitutive laws, which is also called hyperbol-

ic Navier-Stokes equations, there are rich literatures. In 2014, Yong [41] obtained the local

existence and the local convergence to the classical isentropic Navier-Stokes equations under

condition tr(Π) = 0, where tr(Π) means the trace of matrix Π. In 2021, Peng [27] constructed

approximate systems with vector variables instead of tensor variables by using Hurwitz-Radon

matrices in both compressible and incompressible cases, and established the uniform estimates

with respect to ε1 and ε2 of the global smooth solutions near constant equilibrium state and

the global-in-time convergence of the systems towards classical isentropic Navier-Stokes equa-

tions. He also obtained similar results for the isentropic Navier-Stokes equations with Maxwell

constitutive law without condition tr(Π) = 0. For the results of non-isentropic Navier-Stokes

equations with related Maxwell and Cattaneo constitutive law, we refer to [8–11, 30] and the

references cited therein.

The main purposes of this paper is to prove the global existence of smooth solutions to

Cauchy problem (1.11)–(1.12) near constant equilibrium states and establish the global-in-time

convergence rates towards the classical isentropic planar MHD equations. The existence of the

global-in-time smooth solutions is based on the uniform estimates of the local-in-time smooth

solutions with respect to time and small parameters ~ε = (ε1, ε2, ε3)
T together with the classical

bootstrap arguments. The global-in-time convergence of solutions under the limit ε → 0 is

based on the uniform estimates and some compactness arguments. Remark that our system

can not be included in the studies of [19, 28–29, 42] in that the structure of our limiting system is

different from those of systems in these mentioned results. More precisely, our limiting system is

a mixed hyperbolic-parabolic type in the sense of Shizuta-Kawashima rather than a parabolic

system and violates the condition (e.g., [19, (A3)) needed for deriving a parabolic limiting

system. It is worth mentioning that the choice of ε1, ε2 and ε3 can be made independently,

hence our results indeed include some partial limits result, for example if we let ε3 → 0 with ε1

and ε2 fixed, we can get the MHD equations for non-Newtonian fluids.

The major difficulty of this paper is to obtain the global-in-time convergence rates, i.e., to

establish the global-in-time error estimates between the smooth solution to the relaxed time

system and those to the planar MHD limiting system. The proof is based on the stream

function techniques together with the energy estimates of the error variables. We first use

energy methods to obtain directly the error estimates for dissipative variables τ,S,J. For the
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non-dissipative variables v, u,w,b, we have to adopt the stream function techniques to establish

the error estimates. It is worth emphasizing that our treatments are different from those in [19–

20, 42] in that the energy estimates of the error variables for dissipative variables τ,S,J can not

be decoupled from the stream function estimates for non-dissipative variables. Consequently,

careful combinations of estimates are needed.

This paper is organized as follows. In Section 2, we introduce preliminaries and state our

main results. In Section 3, we establish the uniform estimate of smooth solutions near the

equilibrium state with respect to the time and small parameters ~ε = (ε1, ε2, ε3)
T and prove the

convergence of the relaxed system towards the planar MHD system. Section 4 is devoted to the

proof of the global-in-time convergence rate.

2 Preliminaries and Main Results

2.1 Notations and inequalities

For later purpose, we introduce the following notations. We denote ‖ ·‖, ‖ ·‖∞ and ‖ ·‖s the
generic norms of L2 def

= L2 (K), L∞ def
= L∞ (K) and Hs def

= Hs (K), respectively, with K = R for

Cauchy problem and K = T for periodic problem. Moreover, 〈·, ·〉 stands for the inner product

of L2. In the following, we require that s ≥ 2 is a positive integer and C > 0 is a generic

constant independent of εi(i = 1, 2, 3) and any time.

Next, we introduce the Moser-type calculus inequalities, which will be frequently used in

later proof.

Lemma 2.1 (Moser-type calculus inequalities, see [23]) Let s ≥ 2 be an integer and 1 ≤
l ≤ s. Then it holds

‖∂ly(uv)− u∂lyv‖ ≤ C‖∂yu‖s−1‖v‖l−1, ‖∂ly(uv)‖ ≤ C‖u‖s‖v‖l.

For periodic problems, we need to introduce the following notation. For a given scalar or

vector function, we denote its mean value over the torus as

M(g(t, x))(t) =

∫

T

g(t, x)dx.

2.2 Symmetrizable hyperbolicity

System (1.11) can be rewritten into the following

D0(ε)∂tW +A(W )∂yW = −Q(W ), (2.1)

where

W =(v − 1, u,wT,bT, τ,ST,JT)T, D0(ε)=diag(I6, ε
2
1, ε

2
2I2, ε

2
3I2), Q(W )=(01×6, τ,S

T,JT)T,
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where Id is the d× d unit matrix, T is the transpose of a vector or a matrix and

A(W ) =




0 −1 0 0 0 0 0

p′(v) 0 0 bT −
√
λ 0 0

0 0 0 −I2 0 −√
µI2 0

0
b

v
−1

v
I2 0 0 0 −

√
ν

v
I2

0 −
√
λ

v
0 0 ε21u 0 0

0 0 −
√
µ

v
I2 0 0 ε22uI2 0

0 0 0 −
√
ν

v
I2 0 0 ε23uI2




.

Now if we introduce the following symmetrizer

A0(W ) = diag(−p′(v), 1, I2, vI2, v, vI2, vI2),

such that

Ã0(W ) := A0(W )D0(ε) = diag(−p′(v), 1, I2, vI2, ε21v, ε22vI2, ε23vI2)

and

Ã(W ) := A0(W )A(W ) =




0 p′(v) 0 0 0 0 0

p′(v) 0 0 bT −
√
λ 0 0

0 0 0 −I2 0 −√
µI2 0

0 b −I2 0 0 0 −√
νI2

0 −
√
λ 0 0 ε21vu 0 0

0 0 −√
µI2 0 0 ε22vuI2 0

0 0 0 −√
νI2 0 0 ε23vuI2




.

It is clear that A0(W ) is symmetric and positive definite and Ã(W ) is symmetric, so that the

relaxed system (1.11) is a first-order quasi-linear symmetrizable hyperbolic system, to which

the local existence of smooth solutions is guaranteed by classical theories (see [12, 15, 23]).

For later purpose, we need to split the giant matrix A(W ) into several partitioned matrices.

Let W = (WT
1 ,W

T
2 )T with

W1 = (v − 1, u,wT,bT)T and W2 = (τ,ST,JT)T. (2.2)

We call W1 non-dissipative variables and W2 dissipative variables in that it admits damping

structures in Q(W ). In addition, we introduce the partitioned matrices defined by

A0(W ) := diag(A11
0 (W ), A22

0 (W )), A(W ) :=

(
A11(W ) A12(W )
A21(W ) A22(W )

)

with

A11
0 (W ) = diag (−p′(v), 1, I2, vI2) , A22

0 (W ) = diag (v, vI2, vI2) ,

A11(W ) :=




0 −1 0 0
p′(v) 0 0 bT

0 0 0 −I2

0
b

v
−1

v
I2 0


 , A12(W ) :=




0 0 0

−
√
λ 0 0

0 −√
µI2 0

0 0 −
√
ν

v
I2
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and

A21(W ) :=




0 −
√
λ

v
0 0

0 0 −
√
µ

v
I2 0

0 0 0 −
√
ν

v
I2



, A22(W ) :=




ε21u 0 0
0 ε22uI2 0
0 0 ε23uI2



 .

Clearly, Ã(W ) = A0(W )A(W ) =

(
Ã11(W ) Ã12(W )

Ã21(W ) Ã22(W )

)
with

Ã11(W ) := A11
0 (W )A11(W ), Ã12(W ) = Ã21(W )T = A11

0 (W )A12(W )

and

Ã22(W ) = A22
0 (W )A22(W ).

2.3 Main results

The main results of this paper are as follows.

Theorem 2.1 (Global existence and uniform estimates) Let s ≥ 2 be an integer and

(v0−1, u0,w0,b0, τ0,S0,J0) ∈ Hs. Then there exist two positive constants δ and C independent

of ε, such that if

‖v0 − 1‖s + ‖u0‖s + ‖w0‖s + ‖b0‖s + ε1‖τ0‖s + ε2‖S0‖s + ε3‖J0‖s < δ,

then for all ε1, ε2, ε3 ∈ (0, 1], the Cauchy problem (1.11)–(1.12) admits a unique global smooth

solution (v, u,w,b, τ,S,J) satisfying

‖W1(t)‖2s + ε21‖τ(t)‖2s + ε22‖S(t)‖2s + ε23‖J(t)‖2s +
∫ t

0

(‖∂yW1(t
′)‖2s−1 + ‖W2(t

′)‖2s)dt′

≤ C(‖v0 − 1‖2s + ‖u0‖2s + ‖w0‖2s + ‖b0‖2s + ε21‖τ0‖2s + ε22‖S0‖2s + ε23‖J0‖2s), (2.3)

where W1 and W2 are defined in (2.2).

Theorem 2.2 (The relaxation limits) Let (v, u,w,b, τ,S,J) be the global solution obtained

in Theorem theorem 2.1. If there exist functions (v0, u0,w0,b0) ∈ Hs satisfying

(v0 − 1, u0,w0,b0)⇀ (v0 − 1, u0,w0,b0) weakly in Hs,

then there exist functions (v − 1, u,w,b) ∈ L∞(R+;Hs) and (τ ,S,J) ∈ L2(R+;Hs), such that

as ε→ 0, up to subsequences,

(v − 1, u,w,b)⇀ (v − 1, u,w,b) weakly − ∗ in L∞(R+;Hs), (2.4)

(τ,S,J)⇀ (τ ,S,J) weakly in L2(R+;Hs), (2.5)

where

τ =

√
λ∂yu

v
, S =

√
µ∂yw

v
, J =

√
ν∂yb

v

and (v, u,w,b) is the solution to the planar MHD system in Lagrangian coordinate (1.6).
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Theorem 2.3 (Global convergence rates) Under the conditions in Theorems 2.1–2.2, let

(v, u,w,b, τ,S,J) be the unique smooth solution to (1.11)–(1.12) and (v, u,w,b) be the unique

solution to (1.6). Then there exists a constant δ > 0, independent of ε, such that if

‖v0 − 1‖s + ‖u0‖s + ‖w0‖s + ‖b0‖s + ε1‖τ0‖s + ε2‖S0‖s + ε3‖J0‖s < δ,

and for any given positive constants α and C1 independent of ε satisfying

‖(v0 − v0, u0 − u0,w0 −w0,b0 − b0)‖s−1 + ‖(ε1τ0, ε2S0, ε3J0)‖s−1 < C1ε
α,

then for all ε ∈ (0, 1], there exists a positive constant C2 independent of ε, such that

‖(v − v, u− u,w −w,b− b, ε1(τ − τ ), ε2(S− S), ε3(J− J))(t)‖2s−1

+

∫ t

0

‖(v − v, u− u,w −w,b− b, τ − τ ,S− S,J− J)(t′)‖2s−1dt
′ ≤ C2ε

2α1 ,

where α1 = min(1, α).

3 Global Existence and Convergence

In this section, we establish the global uniform estimate of the smooth solutions with respect

to small parameters. Let T > 0 and (v, u,w,b, τ,S,J) be the unique local smooth solution

defined on the time interval [0, T ]. Recall the definitions of W1 and W2 in (2.2). We introduce

the total energy as

E (t) = ‖W1(t)‖2s + ε21‖τ(t)‖2s + ε22‖S(t)‖2s + ε23‖J(t)‖2s,

which we assume to be sufficiently small for all 0 ≤ t ≤ T . We also introduce the dissipative

energy

D(t) = ‖∂yW1(t)‖2s−1 + ‖W2(t)‖2s.

In this section, we tend to establish estimates of the following type

E (t) +

∫ t

0

D(t′)dt′ ≤ E (0).

The smallness of E (t) leads to the fact that

1

2
≤ v ≤ 3

2
, p′(v) ≤ −p1 (3.1)

for p1 > 0 a positive constant.

We first give the L2-estimate.

Lemma 3.1 (L2−estimate) It holds

‖v(t)− 1‖2 + ‖u(t)‖2 + ‖w(t)‖2 + ‖b(t)‖2 + ε21‖τ(t)‖2 + ε22‖S(t)‖2 + ε23‖J(t)‖2

+

∫ t

0

(‖τ(t′)‖2 + ‖S(t′)‖2 + ‖J(t′)‖2)dt′

≤ C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0). (3.2)
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Proof Let η(W ) be denoted by

η(W ) = −P (v) + 1

2
u2 +

1

2
|w|2 + 1

2
v|b|2 + 1

2
ε21vτ

2 +
1

2
ε22v|S|2 +

1

2
ε23v|J|2,

where P ′(v) = p(v). Then according to the system (1.11), direct calculations give

∂tη(W ) = −p(v)∂tv + u∂tu+w · ∂tw +
1

2
∂tv|b|2 + vb · ∂tb+

1

2
ε21τ

2∂tv + ε21vτ∂tτ

+
1

2
ε22∂tv|S|2 + ε22vS · ∂tS+

1

2
ε23∂tv|J|2 + ε23vJ · ∂tJ

= −p(v)∂yu− u∂y(p(v))−
1

2
u∂y(|b|2) +

√
λu∂yτ +w · ∂yb+

√
µw · ∂yS

+
1

2
∂yu|b|2 − ∂yu|b|2 + b · ∂yw +

√
νb · ∂yJ+

1

2
ε21τ

2∂yu

− ε21vuτ∂yτ − vτ2 +
√
λτ∂yu+

1

2
ε22∂yu|S|2 − ε22vuS · ∂yS− v|S|2

+
√
µS · ∂yw +

1

2
ε23∂yu|J|2 − ε23vuJ · ∂yJ− v|J|2 +

√
ν∂yb · J.

Then, if we denote

ψ(W ) = −p(v)u− 1

2
u|b|2 +

√
λuτ +w · b+

√
µw · S+

√
νb · J

and the remaining terms

R(W ) =
1

2
ε21τ

2∂yu− ε21vuτ∂yτ +
1

2
ε22∂yu|S|2 − ε22vuS · ∂yS+

1

2
ε23∂yu|J|2 − ε23vuJ · ∂yJ,

we obtain

∂tη(W ) + vτ2 + v|S|2 + v|J|2 = ∂yψ(W ) + R(W ).

Since v is close to 1, so that by the Taylor expansion of p(v) at v = 1, we obtain

∂tP (v) = ∂t(P (v) − P (1)) = ∂t

(
p(1)v +

1

2
p′(ṽ)(v − 1)2

)

= ∂y(p(1)u) + ∂t

(1
2
p′(ṽ)(v − 1)2

)
,

where ṽ is between v and 1. This yields

∂tη̃(W ) + ∂y(−p(1)u− ψ(W )) + vτ2 + v|S|2 + v|J|2 = R(W ), (3.3)

where by (3.1), there exists a constant c0 > 0, such that

η̃(W )
def
= η(W ) + P (v)− 1

2
p′(ṽ)(v − 1)2

≥ c0(|v − 1|2 + u2 + |w|2 + |b|2 + ε21τ
2 + ε22|S|2 + ε23|J|2).

Noticing that by the Cauchy-Schwarz inequality and the Moser-type calculus inequalities,

∣∣∣
∫

K

R(W )dy
∣∣∣ ≤ CE (t)

1

2 D(t)

integrating (3.3) over [0, t]×K with t ∈ (0, T ] ends the proof.

We then have the following higher order estimates.
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Lemma 3.2 (Higher order estimates) It holds

E (t) +

∫ t

0

‖W2(t
′)‖2sdt′ ≤ C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0). (3.4)

Proof For all integers l with 1 ≤ l ≤ s, applying ∂ly to both sides of (2.1), making the

inner product of the resulting equation with 2A0(W )∂lyW yields

d

dt
〈Ã0(W )∂lyW,∂

l
yW 〉 = 〈∂tÃ0(W )∂lyW,∂

l
yW 〉+ 〈∂yÃ(W )∂lyW,∂

l
yW 〉

− 〈2A0(W )∂lyW,∂
l
yQ(W )〉+ 〈2A0(W )∂lyW,J

l〉, (3.5)

where the commutator J l is defined as

J l = −∂ly(A(W )∂yW ) +A(W )∂l+1
y W.

First, noticing that

‖∂tv‖∞ ≤ C‖u‖s,

then from the definitions of the D0(ε), A0(W ) and Ã0(W ), we get

|〈∂tÃ0(W )∂lyW,∂
l
yW 〉| ≤ C‖∂tv‖∞‖∂lyW‖2 ≤ CE (t)

1

2 D(t).

Next, noticing that

‖∂yÃ(W )‖∞ ≤ C‖∂yW1‖∞ ≤ C‖∂yW1‖s−1,

then

|〈∂yÃ(W )∂lyW,∂
l
yW 〉| ≤ C‖∂yÃ(W )‖∞‖∂lyW‖2 ≤ CE (t)

1

2 D(t).

Afterwards, according to the definition of Q(W ), we conclude from (3.1) that

〈2A0(W )∂lyW,∂
l
yQ(W )〉 = 〈2v∂lyτ, ∂lyτ〉+ 〈2v∂lyS, ∂lyS〉+ 〈2v∂lyJ, ∂lyJ〉 ≥ ‖∂lyW2‖2.

Finally, we estimate the term in (3.5) containing commutator J l. By the Moser-type calculus

inequalities, we have

‖J l‖ ≤ C‖∂yA(W )‖s−1‖∂yW‖l−1 ≤ C‖∂yW1‖s−1‖∂yW‖l−1,

hence

|〈2A0(W )∂lyW,J
l〉| ≤ C‖∂yW1‖s−1‖∂yW‖s−1‖∂lyW‖ ≤ CE (t)

1

2 D(t).

Combining all these estimates, we obtain

d

dt
〈A0(W )D0(ε)∂

l
yW,∂

l
yW 〉+ ‖∂lyτ‖2 + ‖∂lyS‖2 + ‖∂lyJ‖2 ≤ CE (t)

1

2 D(t). (3.6)

Notice that there exists a constant c1 > 0, such that

c1‖∂lyV ‖2 ≤ 〈A0(W )D0(ε)∂
l
yW,∂

l
yW 〉 ≤ C‖∂lyV ‖2,



424 Y. C. Li, Z. Y. Shang, C. M. Wang and L. Zhao

where

V = (v, u,wT,bT, ε1τ, ε2S
T, ε3J

T)T.

Integrating (3.6) over [0, t] with t ∈ (0, T ], summing for all 1 ≤ l ≤ s and combining (3.2) yield

(3.4).

Next, we obtain the dissipative estimates for ∂yW1. In the following, we denote κ > 0 a

sufficiently small positive constant, of which the value is determined in (3.11).

Lemma 3.3 (Dissipative estimates for ∂yu, ∂yw and ∂yb) It holds

∫ t

0

‖∂y(u,w,b)(t′)‖2s−1dt
′ ≤ Cκ

∫ t

0

‖∂yW1(t
′)‖2s−1dt

′ + C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0). (3.7)

Proof Let Z = (
√
λu,

√
µwT,

√
νbT)T. The last three equations in (1.11) can be rewritten

into the following

D1(ε)v(∂tW2 + u∂yW2) + vW2 = ∂yZ, where D1(ε) = diag(ε21, ε
2
2I2, ε

2
3I2).

Let m be an integer with 0 ≤ m ≤ s− 1. Applying ∂my to the above equation, and taking inner

product with ∂m+1
y Z in L2, we have after certain integration by parts,

‖∂m+1
y Z‖2 =

d

dt
〈D1(ε)∂

m
y (vW2), ∂

m+1
y Z〉 − 〈D1(ε)∂

m
y (∂yuW2), ∂

m+1
y Z〉

+ 〈D1(ε)∂
m+1
y (vW2), ∂

m
y ∂tZ〉+ 〈D1(ε)∂

m
y (vu∂yW2), ∂

m+1
y Z〉

+ 〈∂my (vW2), ∂
m+1
y Z〉.

By the Moser-type calculus inequalities, we have

|〈D1(ε)∂
m
y (∂yuW2), ∂

m+1
y Z〉| ≤ CE (t)

1

2 D(t),

and further by using the Young inequality,

|〈D1(ε)∂
m
y (vu∂yW2), ∂

m+1
y Z〉+ 〈∂my (vW2), ∂

m+1
y Z〉| ≤ 1

2
‖∂m+1

y Z‖2 + C‖W2‖2s.

By using system (1.11), we obtain that

‖∂my ∂tZ‖ ≤ C‖∂yW‖s−1,

then we have

|〈D1(ε)∂
m+1
y (vW2), ∂

m
y ∂tZ〉| ≤ κ‖∂yW‖2s−1 + C‖W2‖2s.

Combining all these estimates, we obtain

− d

dt
〈D1(ε)∂

m
y (vW2), ∂

m+1
y Z〉+ 1

2
‖∂m+1

y Z‖2

≤ CE (t)
1

2 D(t) + C‖W2‖2s + κ‖∂yW‖2s−1. (3.8)

Noticing that

|〈D1(ε)∂
m
y (vW2), ∂

m+1
y Z〉| ≤ CE (t), ∀ t ≥ 0,

integrating (3.8) over [0, t] for any t ∈ (0, T ], summing the resulting equation for all 0 ≤ m ≤
s− 1 and using (3.4) yield (3.7).
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Lemma 3.4 (Dissipative estimates for ∂yv) It holds

∫ t

0

‖∂yv(t′)‖s−1dt
′ ≤ Cκ

∫ t

0

‖∂yW1(t
′)‖2s−1dt

′ + C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0). (3.9)

Proof Let m be an integer with 0 ≤ m ≤ s − 1. Applying ∂my to the second equation in

(1.11), and taking inner product with ∂m+1
y v in L2, we have

〈−p′(v)∂m+1
y v, ∂m+1

y v〉 = d

dt
〈∂my u, ∂m+1

y v〉+ 〈∂m+1
y u, ∂my ∂tv〉+ 〈∂my (b · ∂yb), ∂m+1

y v〉

− 〈
√
λ∂m+1

y τ, ∂m+1
y v〉+ 〈∂my (p′(v)∂yv)− p′(v)∂m+1

y v, ∂m+1
y v〉.

It is clear that by (3.1),

〈−p′(v)∂m+1
y v, ∂m+1

y v〉 ≥ p1‖∂m+1
y v‖2.

From the Moser-type calculus inequalities, we have

|〈∂my (b · ∂yb), ∂m+1
y v〉+ 〈∂my (p′(v)∂yv)− p′(v)∂m+1

y v, ∂m+1
y v〉| ≤ CE (t)

1

2 D(t),

and further by using (1.11) and the Young inequality,

|〈∂m+1
y u, ∂my ∂tv〉+ 〈

√
λ∂m+1

y τ, ∂m+1
y v〉| ≤ C‖∂yu‖2s−1 +

p1
2
‖∂m+1

y v‖2 + C‖τ‖2s.

These estimates imply that

− d

dt
〈∂my u, ∂m+1

y v〉+ p1
2
‖∂m+1

y v‖2 ≤ C‖∂yu‖2s−1 + C‖τ‖2s + CE (t)
1

2 D(t). (3.10)

Noticing that

|〈∂my u, ∂m+1
y v〉| ≤ CE (t), ∀ t ≥ 0,

integrating (3.10) over [0, t] for any t ∈ (0, T ], summing the resulting equation for all 0 ≤ m ≤
s− 1 and using (3.4) yield

∫ t

0

‖∂yv(t′)‖s−1dt
′

≤ Cκ

∫ t

0

‖∂yW1(t
′)‖2s−1dt

′ + C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0) + C

∫ t

0

‖∂yu(t′)‖2s−1dt
′,

which yields (3.9) by noticing (3.7).

Proof of Theorem 2.1 Combining (3.7) and (3.9), we conclude that there exists a positive

constant c2 > 0, such that

∫ t

0

‖∂yW1(t
′)‖s−1dt

′ ≤ c2κ

∫ t

0

‖∂yW1(t
′)‖2s−1dt

′ + C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0).

We then choose κ small enough such that

c2κ < 1, (3.11)
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then ∫ t

0

‖∂yW1(t
′)‖s−1dt

′ ≤ C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0).

Combining the above estimate with (3.4), we have

E (t) +

∫ t

0

D(t′)dt′ ≤ C

∫ t

0

E (t′)
1

2 D(t′)dt′ + CE (0),

this yields (2.3) by noticing that E (t) is sufficiently small. By the bootstrap principle, it also

implies the global-in-time existence of solution to system (1.11).

Proof of Theorem 2.2 The uniform estimate (2.3) implies that for any ε ∈ (0, 1], se-

quences {(vε − 1, uε,wε,bε)}ε>0 are bounded in L∞(R+;Hs) and sequences {(τε,Sε,Jε)}ε>0

are bounded in L2(R+;Hs). It follows that there exist functions (v− 1, u,w,b) ∈ L∞(R+;Hs)

and (τ ,S,J) ∈ L2(R+;Hs), such that (2.4)–(2.5) hold. In addition, as ε→ 0,

ε21(∂tτ
ε + uε∂yτ

ε)⇀ 0 in D′(R+ ×K),

ε22(∂tS
ε + uε∂yS

ε)⇀ 0 in D′(R+ ×K),

ε23(∂tJ
ε + uε∂yJ

ε)⇀ 0 in D′(R+ ×K).

Moreover, from the first four equations in (1.11), it is easy to see that {∂tvε}ε>0, {∂tuε}ε>0,

{∂twε}ε>0 and {∂tbε}ε are bounded in L2(R+;Hs−1). Hence, by a classical compactness

theorem (see [35]), for all T > 0, {vε}ε>0, {uε}ε>0, {wε}ε>0 and {bε}ε>0 are relatively compact

in C([0, T ];Hs−1

loc
(K)). As a consequence, as ε→ 0, up to subsequences,

(vε − 1, uε,wε,bε) → (v − 1, u,w,b), strongly in C([0, T ];Hs−1

loc
(K)).

This is sufficient to pass the limit ε→ 0 in (1.11) in the sense of distributions to obtain that





∂tv − ∂yu = 0,

∂tu+ ∂y

(
p(v) +

1

2
|b|2

)
=

√
λ∂yτ ,

∂tw − ∂yb =
√
µ∂yS,

∂tb+
∂yu

v
b− 1

v
∂yw =

√
ν

v
∂yJ

(3.12)

with

τ =

√
λ∂yu

v
, S =

√
µ∂yw

v
, J =

√
ν∂yb

v
. (3.13)

Substituting (3.13) into (3.12) ends the proof.

4 Global Convergence Rates

In this section, we tend to establish the global-in-time convergence rate problems between

the relaxed system and the original planar MHD system in periodic domains. Let x ∈ T with

T = R/[−π, π] be a torus over R. For simplicity, we denote W = (W 1,W 2)
T with

W 1 = (v − 1, u,wT,b
T
)T, W 2 = (τ ,S

T
,J

T
)T
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and

U =W −W, U1 =W1 −W 1, U2 =W2 −W 2.

In addition, we denote

E(t) = ‖U1(t)‖2s−1 + ε21‖τ(t)− τ(t)‖2s−1 + ε22‖S(t)− S(t)‖2s−1 + ε23‖J(t)− J(t)‖2s−1

and

D(t) = ‖U(t)‖2s−1.

In this section, we will establish the estimates of the following type

E(t) +
∫ t

0

D(t′)dt′ ≤ Cε2α1 ,

where α1 is defined in Theorem 2.3. We recall here the total energy

E (t) = ‖v(t)− 1‖2s + ‖u(t)‖2s + ‖w(t)‖2s + ‖b(t)‖2s + ε21‖τ(t)‖2s + ε22‖S(t)‖2s + ε23‖J(t)‖2s

as well as the dissipative energy

D(t) = ‖∂yv(t)‖2s−1 + ‖∂yu(t)‖2s−1 + ‖∂yw(t)‖2s−1 + ‖∂yb(t)‖2s−1 + ‖τ(t)‖2s + ‖S(t)‖2s + ‖J(t)‖2s.

For convenience, we also denote

E (t) = ‖v(t)− 1‖2s + ‖u(t)‖2s + ‖w(t)‖2s + ‖b(t)‖2s

as well as

D(t) = ‖∂yW 1(t)‖2s + ‖W 2(t)‖2s + ‖∂tW 2(t)‖s−2.

We first give an estimate on the limiting system, which is a direct consequence of the weak

convergence of solutions together with the lower semi-continuity of norms.

Lemma 4.1 Let (v0, u0,w0,b0) be the weak limit of (v0, u0,w0,b0) in Hs. Then the lim-

iting solutions (v, u,w,b, τ ,S,J) satisfy

E (t) +

∫ t

0

D(t′)dt′ ≤ C‖(v0 − 1, u0,w0,b0)‖2s.

4.1 Error estimates of dissipative variables

The formal limit of (2.1) is the following

D0(0)∂tW +A(W )∂yW = −Q(W ). (4.1)

Subtracting the above equation from (2.1), we have

D0(ε)∂tU +A(W )∂yU +Q(W )−Q(W ) = −f, (4.2)

where

f = (D0(ε)−D0(0))∂tW + (A(W ) −A(W ))∂yW.
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For integers l ≤ s− 1, applying ∂ly to both sides of (4.2), and making the inner product of the

resulting equation with 2A0(W )∂lyU in L2 yield that

d

dt
〈D0(ε)A0(W )∂lyU, ∂

l
yU〉+ 〈2A0(W )∂lyU, ∂

l
y(Q(W )−Q(W ))〉

= 〈(∂tÃ0(W ) + ∂yÃ(W ))∂lyU, ∂
l
yU〉 − 〈2A0(W )∂lyU, ∂

l
yf〉 − 〈2A0(W )∂lyU, ∂

l
yG

l〉
def
= K l

1 +K l
2 +K l

3 (4.3)

with the natural correspondence of K l
1, K

l
2 and K l

3, and the commutator is defined as

Gl := ∂ly(A(W )∂yU)−A(W )∂l+1
y U.

We then treat the terms K l
1, K

l
2 and K l

3 one by one in a series of lemmas as follows.

Lemma 4.2 (Estimates of K l
1) It holds

|K l
1| ≤ CE (t)

1

2D(t).

Proof Notice that ‖∂tv‖∞ is bounded by ‖u‖s, then it is clear that

|〈∂tÃ0(W )∂lyU, ∂
l
yU〉| ≤ CE (t)

1

2D(t).

Similarly,

|〈∂yÃ(W )∂lyU, ∂
l
yU〉| ≤ ‖∂yW1‖∞‖∂lyU‖2 ≤ CE (t)

1

2D(t).

This ends the proof.

Lemma 4.3 (Estimates of K l
2) It holds

|K l
2| ≤ Cε2(D(t) + D(t)) + CE (t)

1

2D(t). (4.4)

Proof We first treat the term in f containing (D0(ε)−D0(0))∂tW . Recall that

(D0(ε)−D0(0))∂tW = (01×6, ε
2
1∂tτ, ε

2
2∂tS

T
, ε23∂tJ

T
)T.

Consequently, we deduce that for l = 0,

|〈2A0(W )U, (D0(ε)−D0(0))∂tW 〉| ≤ Cε2D(t) + Cε2D(t),

and for 1 ≤ l ≤ s− 1,

|〈2A0(W )∂lyU, (D0(ε)−D0(0))∂t∂
l
yW 〉|

≤ |〈2∂yA0(W )∂lyU, (D0(ε)−D0(0))∂t∂
l−1
y W 〉|

+ |〈2A0(W )∂l+1
y U, (D0(ε)−D0(0))∂t∂

l−1
y W 〉|

≤ Cε2‖∂yv‖∞‖U‖s−1‖∂tW 2‖s−2 + Cε2‖∂yU‖s−1‖∂tW 2‖s−2

≤ Cε2(D(t) + D(t)).
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For the term containing (A(W ) − A(W ))∂yW , by the Moser-type calculus inequalities, we

deduce

‖∂ly((A(W )−A(W ))∂yW )‖ ≤ C‖(A(W )−A(W )‖s−1‖∂yW‖s−1.

Notice that for B = A11(W ), A12(W ) and A21(W ), we have

‖(B(W )−B(W )‖s−1 ≤ C‖U‖s−1 ≤ CD(t)
1

2 ,

as a result, we obtain that

|〈2A0(W )∂lyU, ∂
l
y((A(W )− A(W ))∂yW )〉|

≤ CE (t)
1

2D(t) + |〈2v∂lyU2, ∂
l
y(A

22(W )−A22(W )∂yW 2)〉|
≤ CE (t)

1

2D(t) + Cε2(D(t) + D(t)).

Combining all these estimates yields (4.4).

Lemma 4.4 (Estimates of K l
3) It holds

|K l
3| ≤ CE (t)

1

2D(t).

Proof The classical Moser-type calculus inequalities yield

‖Gl‖ ≤ C‖∇A(W )‖s−1‖U‖s−1 ≤ CE (t)
1

2D 1

2 (t).

This implies that

|K l
3| ≤ C‖Gl‖‖∂lyU‖ ≤ CE (t)

1

2D(t),

which ends the proof.

Combining all these estimates, we have

d

dt
〈D0(ε)A0(W )∂lyU, ∂

l
yU〉+ 〈2A0(W )∂lyU, ∂

l
y(Q(W )−Q(W ))〉

≤ C(E (t)
1

2 + E (t)
1

2 )D(t) + Cε2(D(t) + D(t)). (4.5)

Notice that there exists a constant C1 > 0, such that

C1E(t) ≤ 〈D0(ε)A0(W )∂lyU, ∂
l
yU〉 ≤ CE(t),

and there exists a C2 > 0, such that

〈2A0(W )∂lyU, ∂
l
y(Q(W )−Q(W ))〉 ≥ C2‖∂lyU2‖2.

Integrating (4.5) over [0, t] and summing up for all l ≤ s− 1 yield

E(t) +
∫ t

0

‖U2(t
′)‖2s−1dt

′ ≤ C

∫ t

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 . (4.6)
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4.2 Error estimates for non-dissipative variables

We now use the stream function to study the dissipative estimates for W1 −W 1. We first

introduce the method of constructing stream functions over 1-D torus, the idea of which is

initialized in [42].

Lemma 4.5 (Existence of stream function over 1-D torus) Consider the following conser-

vation law over 1-D torus

∂tz + ∂xh = 0, x ∈ T

with M(z) = 0. Then there exists a stream function Φ satisfying




∂tΦ = −h+
1

2π
M(h),

∂xΦ = z,

M(Φ) = 0.

Proof Let Φ be the unique solution to the following problem

∂xΦ = z, M(Φ) = 0 for t ≥ 0.

To this end, applying time derivative to both sides of the equation above yields

∂x(∂tΦ) = ∂tz = −∂xh,

which yields that there exists a function κ(t) independent of x, such that

∂tΦ = −h+ κ(t).

Noticing that M(∂tΦ) = 0, we deduce that

κ(t) =
1

2π
M(h),

which ends the proof.

Noticing that the fourth equation in (1.11) is equivalent to the last equation in (1.6) by

using the first equation in (1.11), we construct the error equation for b− b with

∂t(vb− vb)− ∂y[(w −w) +
√
ν(J− J)] = 0,

In addition, we subtract (3.12)–(3.13) excluding the equation for b from system (1.11) excluding

the equation for b, which leads to the error system




∂t(v − v)− ∂y(u− u) = 0,

∂t(u− u) + ∂y

[
p(v)− p(v) +

1

2
|b|2 − 1

2
|b|2 −

√
λ(τ − τ)

]
= 0,

∂t(w −w)− ∂y[(b− b)−√
µ(S− S)] = 0,

∂t(vb− vb)− ∂y[(w −w)−√
ν(J− J)] = 0,

ε21∂tτ + ε21u∂yτ + (τ − τ ) =
√
λ
(∂yu
v

− ∂yu

v

)
,

ε22∂tS+ ε22u∂yS+ (S− S) =
√
µ
(∂yw

v
− ∂yw

v

)
,

ε23∂tJ+ ε23u∂yJ+ (J− J) =
√
ν
(∂yb
v

− ∂yb

v

)
.

(4.7)
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Noticing that the first four equations of the above system are conservative. We immediately

have

M((v − v, u− u,w −w, vb− vb)) = M((v0 − v0, u0 − u0,w0 −w0, v0b0 − v0b0)).

Without loss of generality, we may assume thatM((v0−v0, u0−u0,w0−w0, v0b0−v0b0)
T) = 0.

Otherwise, we may introduce new variables removing the average from the variables. According

to Lemma 4.5, we have immediately the following existence of four stream functions φ1, φ2, φ3

and φ4, in which the conditions for φ1 are

∂tφ1 = u− u, ∂yφ1 = v − v, M(φ1) = 0.

The conditions for φ2 are






∂tφ2 = −
[
p(v)− p(v) +

1

2
|b|2 − 1

2
|b|2 −

√
λ(τ − τ)

]

+
1

2π
M
(
p(v)− p(v) +

1

2
|b|2 − 1

2
|b|2 −

√
λ(τ − τ )

)
,

∂yφ2 = u− u,

M(φ2) = 0.

The conditions for φ3 are

∂tφ3 = (b− b)−√
µ(S− S) +M(

√
µ(S− S))−M(b− b), ∂yφ3 = w−w, M(φ3) = 0.

The conditions for φ4 are

∂tφ4 = (w −w)−
√
ν(J− J) +

√
νM(J− J), ∂yφ4 = vb− vb, M(φ4) = 0.

In the following, we denote µ > 0 a sufficiently small constant to be determined in (4.21).

Lemma 4.6 (Dissipative estimates for u− u) It holds

∫ T

0

‖u− u‖2s−1dt ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.8)

Proof Letting 0 ≤ l ≤ s− 1, applying ∂ly to the fifth equation in (4.7), we have

ε21∂t∂
l
yτ + ε21∂

l
y(u∂yτ) + ∂ly(τ − τ)−

√
λ∂ly

(∂yu
v

− ∂yu

v

)
= 0.

Taking the inner product of this equality with ∂lyφ2 in L2, and integrating over [0, T ], we get

0 =

∫ T

0

〈
∂lyφ2, ε

2
1∂t∂

l
yτ + ε21∂

l
y(u∂yτ) + ∂ly(τ − τ )−

√
λ∂ly

(∂yu
v

− ∂yu

v

)〉
dt

:= L1
φ2

+ L2
φ2

+ L3
φ2

+ L4
φ2

with the natural correspondence of L1
φ2
, L2

φ2
, L3

φ2
and L4

φ2
, of which the terms are treated one

by one as follows. For L1
φ2
, we have

L1
φ2

= ε21

∫ T

0

〈∂lyφ2, ∂t∂lyτ〉dt
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= ε21

∫ T

0

d

dt
〈∂lyφ2, ∂lyτ〉dt− ε21

∫ T

0

〈∂t∂lyφ2, ∂lyτ〉dt.

For all ε ∈ (0, 1], we use (2.3) to obtain

∣∣∣ε21
∫ T

0

d

dt
〈∂lyφ2, ∂lyτ〉dt

∣∣∣ = ε21|〈∂lyφ2(T ), ∂lyτ(T )〉 − 〈∂lyφ2(0), ∂lyτ(0)〉|

≤ C‖∂lyφ2(T )‖2 + C‖∂lyφ2(0)‖2 + Cε21

≤ C‖∂ly(u− u)(T )‖2 + Cε2α1

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 ,

in which we have used (4.6) and the Poincaré inequality. In addition,

ε21

∣∣∣
∫ T

0

〈∂t∂lyφ2, ∂lyτ〉
∣∣∣

≤ ε21

∫ T

0

∣∣∣
〈
∂ly(−p(v) + p(v)− 1

2
|b|2 + 1

2
|b|2 +

√
λ(τ − τ )), ∂lyτ

〉∣∣∣dt

+ Cε21

∫ T

0

∣∣∣
〈
M(−p(v) + p(v)− 1

2
|b|2 + 1

2
|b|2 +

√
λ(τ − τ )), ∂lyτ

〉∣∣∣dt

≤ µ

∫ T

0

D(t′)dt′ + Cε21.

These estimates imply that

|L1
φ2
| ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.9)

For L2
φ2
, by using Poincaré inequality, we have

|L2
φ2
| =

∣∣∣
∫ T

0

〈∂lyφ2, ε21∂ly(u∂yτ)〉dt
∣∣∣

≤ Cε21

∫ T

0

‖∂ly(u− u)‖‖u‖s−1‖∂yτ‖s−1dt

≤ µ

∫ T

0

D(t′)dt′ + Cε21. (4.10)

For L3
φ2
, we have

|L3
φ2
| =

∣∣∣
∫ T

0

〈∂lyφ2, ∂ly(τ − τ )〉dt
∣∣∣

≤
∫ T

0

‖∂ly(u− u)‖‖∂ly(τ − τ )‖dt

≤ µ

∫ T

0

‖∂ly(u− u)‖2dt+ C

∫ T

0

‖∂ly(τ − τ )‖2dt

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.11)
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For L4
φ2
, we treat as follows. Notice that

∂yu

v
− ∂yu

v
=
∂yu− ∂yu

v
− ∂yu

v − v

vv
= ∂y

(u− u

v

)
+
∂yv(u − u)

v2
− ∂yu

v − v

vv
.

Based on this, we have

〈
∂lyφ2, ∂

l+1
y

(u− u

v

)〉

= −
〈
∂ly(u − u), ∂ly

(u− u

v

)〉

= −
〈
∂ly(u − u),

∂ly(u− u)

v

〉
−
〈
∂ly(u− u), ∂ly

(u− u

v

)
−
∂ly(u− u)

v

〉
,

where 〈
∂ly(u − u),

∂ly(u − u)

v

〉
≥ 2

3
‖∂ly(u− u)‖2,

and by the Moser-type calculus inequalities,

∣∣∣
〈
∂ly(u− u), ∂ly

(u− u

v

)
−
∂ly(u− u)

v

〉∣∣∣ ≤ C‖∂yv‖s−1‖u− u‖2s−1 ≤ C

∫ T

0

E (t′)
1

2D(t′)dt′.

In addition, by the Moser-type calculus inequalities,

∣∣∣
〈
∂lyφ2, ∂

l
y

(∂yv(u − u)

v2
− ∂yu

v − v

vv

)〉∣∣∣ ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

These imply

L4
φ2

≥ 2

3

∫ T

0

‖∂ly(u − u)‖2dt− C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′. (4.12)

Combining all these estimates and summing for all l ≤ s− 1 yield (4.8).

Lemma 4.7 (Dissipative estimates for w −w) It holds

∫ T

0

‖w −w‖2s−1dt ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.13)

Proof Letting 0 ≤ l ≤ s− 1, applying ∂ly to the sixth equation in (4.7), we have

ε22∂
l
y∂tS+ ε22∂

l
y(u∂yS) + ∂ly(S− S)−√

µ∂ly

(∂yw
v

− ∂yw

v

)
= 0.

Taking the inner product of this equality with ∂lyφ3 in L2, and integrating over [0, T ], we get

0 =

∫ T

0

〈
∂lyφ3, ε

2
2∂

l
y∂tS+ ε22∂

l
y(u∂yS) + ∂ly(S− S)−√

µ∂ly

(∂yw
v

− ∂yw

v

)〉
dt

:= L1
φ3

+ L2
φ3

+ L3
φ3

+ L4
φ3

(4.14)

with the natural correspondence of L1
φ3
, L2

φ3
, L3

φ3
and L4

φ3
, of which the treatments are similar

to those in the above lemma. In fact, similar to (4.9)–(4.12), we have

|L1
φ3
| ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 ,
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|L2
φ3
| ≤ µ

∫ T

0

D(t′)dt′ + Cε22,

|L3
φ3
| ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 ,

L4
φ3

≥ 2

3

∫ T

0

‖∂ly(w −w)‖2dt− C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

These estimates are enough for us to obtain (4.13).

Lemma 4.8 (Dissipative estimates for b− b) It holds

∫ T

0

‖b− b‖2s−1dt ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.15)

Proof Letting 0 ≤ l ≤ s− 1, applying ∂ly to the last equation in (4.7), we have

ε23∂
l
y∂tJ+ ε23∂

l
y(u∂yJ) + ∂ly(J− J)−

√
ν∂ly

(∂yb
v

− ∂yb

v

)
= 0.

Taking the inner product of this equality with ∂lyφ4 in L2, and integrating over [0, T ], we get

0 =

∫ T

0

〈
∂lyφ4, ε

2
3∂

l
y∂tJ+ ε23∂

l
y(u∂yJ) + ∂ly(J− J)−

√
ν∂ly

(∂yb
v

− ∂yb

v

)〉
dt

:= L1
φ4

+ L2
φ4

+ L3
φ4

+ L4
φ4

(4.16)

with the natural correspondence of L1
φ4
, L2

φ4
, L3

φ4
and L4

φ4
, which are treated term by term as

follows. For L1
φ4
, we have

L1
φ4

= ε23

∫ T

0

〈∂lyφ4, ∂ly∂tJ〉dt

= ε23

∫ T

0

d

dt
〈∂lyφ4, ∂lyJ〉dt− ε23

∫ T

0

〈∂ly∂tφ4, ∂lyJ〉dt,

in which similarly

∣∣∣ε23
∫ T

0

d

dt
〈∂lyφ4, ∂lyJ〉dt

∣∣∣ = ε23|〈∂lyφ4(T ), ∂lyJ(T )〉 − 〈∂lyφ4(0), ∂lyJ(0)〉|

≤ C‖∂ly(vb− vb)(T )‖2 + Cε2α1

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1

and

ε23

∣∣∣
∫ T

0

〈∂ly∂tφ4, ∂lyJ〉dt
∣∣∣ ≤ ε23

∫ T

0

|〈∂ly((w −w)−
√
ν(J− J) +

√
νM(J− J)), ∂lyJ〉|dt

≤ µ

∫ T

0

D(t′)dt′ + Cε23.

These estimates imply that

|L1
φ4
| ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 .
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For L2
φ4
, similarly to (4.10), we have

|L2
φ4
| ≤ Cε23

∫ T

0

‖∂ly(vb− vb)‖‖∂ly(u∂yJ)‖dt

≤ Cε23

∫ T

0

‖∂ly((v − v)b) + ∂ly(v(b− b))‖‖∂ly(u∂yJ)‖dt

≤ µ

∫ T

0

D(t′)dt′ + Cε23.

Similarly to (4.11), for L3
φ4
, we have

|L3
φ4
| ≤ C

∫ T

0

‖∂ly(vb− vb)‖‖∂ly(J − J)‖dt

≤ C

∫ T

0

‖∂ly((v − v)b) + ∂ly(v(b− b))‖‖∂ly(J− J)‖dt

≤ µ

∫ T

0

‖∂lyU1‖2dt+ C

∫ T

0

‖∂ly(J− J)‖2dt

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 .

For L4
φ4
, the treatments are similar to that for (4.12). We first have

∂yb

v
− ∂yb

v
=
∂yb− ∂yb

v
− ∂yb

v − v

vv
= ∂y

(b− b

v

)
+
∂yv(b− b)

v2
− ∂yb

v − v

vv
.

Notice also

vb− vb = (v − v)b+ v(b− b).

We have

L4
φ4

= −
√
ν

∫ T

0

〈
∂lyφ4, ∂

l+1
y

(b− b

v

)〉
dt

−
√
ν

∫ T

0

〈
∂lyφ4, ∂

l
y

(∂yv(b− b)

v2
− ∂yb

v − v

vv

)〉
dt

=
√
ν

∫ T

0

〈
∂ly((v − v)b+ v(b− b)), ∂ly

(b− b

v

)〉
dt

−
√
ν

∫ T

0

〈
∂lyφ4, ∂

l
y

(∂yv(b− b)

v2
− ∂yb

v − v

vv

)〉
dt

=
√
ν

∫ T

0

〈
∂ly((v − v)b), ∂ly

(b− b

v

)〉
dt

+
√
ν

∫ T

0

〈
v∂ly((b− b)),

1

v
∂ly(b− b)

〉
dt

+
√
ν

∫ T

0

〈
v∂ly((b− b)), ∂ly

(b− b

v

)
− 1

v
∂ly(b− b)

〉
dt

+
√
ν

∫ T

0

〈
∂ly(v(b− b))− v∂ly((b− b)), ∂ly

(b− b

v

)〉
dt

−
√
ν

∫ T

0

〈
∂lyφ4, ∂

l
y

(∂yv(b− b)

v2
− ∂yb

v − v

vv

)〉
dt
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= L4,1
φ4

+ L4,2
φ4

+ L4,3
φ4

+ L4,4
φ4

+ L4,5
φ4

with the natural correspondence. Making use of the Moser-type calculus inequalities, it is clear

that

|L4,1
φ4

|+ |L4,3
φ4

|+ |L4,4
φ4

| ≤ C

∫ T

0

E (t′)
1

2D(t′)dt′

and

|L4,5
φ4

| ≤ C

∫ T

0

‖∂ly(vb− vb)‖
∥∥∥∂ly
(∂yv(b− b)

v2
− ∂yb

v − v

vv

)∥∥∥dt

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′. (4.17)

In addition, we have for L4,2
φ4

,

L4,2
φ4

≥ 1

3
‖∂ly(b− b)‖2.

These estimates imply

L4
φ4

≥ 1

3

∫ T

0

‖∂ly(b− b)‖2dt− C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

Combining all these estimates and summing for all l ≤ s− 1 yield (4.15).

Lemma 4.9 (Dissipative estimates for v − v) It holds

∫ T

0

‖v − v‖2s−1dt ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + µ

∫ T

0

D(t′)dt′ + Cε2α1 . (4.18)

Proof Letting 0 ≤ l ≤ s− 1, applying ∂ly to the second equation in (4.7), taking the inner

product of the resulting equation with ∂lyφ1 in L2, and integrating over [0, T ], we get

0 =

∫ T

0

〈
∂lyφ1, ∂t∂

l
y(u− u) + ∂l+1

y (p(v)− p(v)) +
1

2
∂l+1
y (|b|2 − |b|2)−

√
λ∂l+1

y (τ − τ)
〉
dt

:= L1
φ1

+ L2
φ1

+ L3
φ1

+ L4
φ1

(4.19)

with the natural correspondence of L1
φ1
, L2

φ1
, L3

φ1
and L4

φ1
, which are treated term by term as

follows. For L1
φ1
, we have that

L1
φ1

=

∫ T

0

d

dt
〈∂lyφ1, ∂ly(u− u)〉dt−

∫ T

0

〈∂t∂lyφ1, ∂ly(u− u)〉dt,

in which

∣∣∣
∫ T

0

d

dt
〈∂lyφ1, ∂ly(u− u)〉dt

∣∣∣ ≤ C‖∂ly(v − v)(T )‖2 + C‖∂ly(u − u)(T )‖2 + Cε2α1

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 ,
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and by using (4.8),

∣∣∣
∫ T

0

〈∂t∂lyφ1, ∂ly(u− u)〉dt
∣∣∣

≤ µ

∫ T

0

‖∂ly(v − v)‖2dt+ C

∫ T

0

‖∂ly(u− u)‖2dt

≤ µ

∫ T

0

D(t′)dt′ + C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 . (4.20)

These imply

|L1
φ1
| ≤ µ

∫ T

0

D(t′)dt′ + C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 .

For L2
φ1
, we first notice that

p(v)− p(v) =

∫ 1

0

p′(ṽ)(v − v)ds,

where ṽ = v + s(v − v) is between v and v. Then we have

L2
φ1

= −
∫ T

0

〈∂l+1
y φ1, ∂

l
y(p(v)− p(v))〉dt

= −
∫ T

0

〈
∂ly(v − v),

∫ 1

0

p′(ṽ)∂ly(v − v)ds
〉
dt

−
∫ T

0

〈
∂ly(v − v), ∂ly

(∫ 1

0

p′(ṽ)(v − v)ds
)
−
∫ 1

0

p′(ṽ)∂ly(v − v)ds
〉
dt,

in which

−
∫ T

0

〈
∂ly(v − v),

∫ 1

0

p′(ṽ)∂ly(v − v)ds
〉
dt ≥ p1

∫ T

0

‖∂ly(v − v)‖2dt

and

∣∣∣
∫ T

0

〈
∂ly(v − v), ∂ly

(∫ 1

0

p′(ṽ)(v − v)ds
)
−
∫ 1

0

p′(ṽ)∂ly(v − v)ds
〉
dt
∣∣∣

≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

These imply

L2
φ1

≥ p1

∫ T

0

‖∂ly(v − v)‖2dt− C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

For L3
φ1
, we have by using the conditions of the stream function,

|L3
φ1
| =

∣∣∣
∫ T

0

〈∂ly(v − v),
1

2
∂ly((b + b) · (b− b))〉dt

∣∣∣ ≤ C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′.

Now the last term is treated as follows

|L4
φ1
| =

∣∣∣
∫ T

0

〈∂ly(v − v), ∂ly(τ − τ )〉dt
∣∣∣
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≤ µ

∫ T

0

‖v − v‖2s−1dt+ C

∫ T

0

‖τ − τ‖2s−1dt

≤ µ

∫ T

0

D(t′)dt′ + C

∫ T

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 .

Combining all these estimates and summing for all l ≤ s− 1 yield (4.18).

Proof of Theorem 2.3 Combining all these lemmas and (4.6), we conclude that there

exists a constant C3 > 0, such that

E(t) +
∫ t

0

D(t′)dt′ ≤ C

∫ t

0

(E (t′)
1

2 + E (t′)
1

2 )D(t′)dt′ + Cε2α1 + C3µ

∫ T

0

D(t′)dt′.

Notice that E (t) and E (t) are both sufficiently small for all t ≥ 0. Then there exists a constant

C4 > 0, such that

E(t) + C4

∫ t

0

D(t′)dt′ ≤ Cε2α1 + C3µ

∫ T

0

D(t′)dt′.

We then choose µ > 0 small enough such that

C3µ < C4. (4.21)

This ends the proof.
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