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Abstract In this paper, the authors address the existence of global solutions to the
Cauchy problem for the integrable nonlocal modified Korteweg-de Vries (nonlocal mKdV
for short) equation under the initial data u0 ∈ H

3(R)∩H
1,1(R) with the L1(R) small-norm

assumption. A Lipschitz L
2-bijection map between potential and reflection coefficient

is established by using inverse scattering method based on a Riemann-Hilbert problem
associated with the Cauchy problem. The map from initial potential to reflection coefficient
is obtained in direct scattering transform. The inverse scattering transform goes back to
the map from scattering coefficient to potential by applying the reconstruction formula and
Cauchy integral operator. The bijective relation naturally yields the existence of global
solutions in a Sobolev space H

3(R) ∩H
1,1(R) to the Cauchy problem.
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1 Introduction and Main Results

In this paper, we establish the global existence of solutions to the Cauchy problem for the

nonlocal mKdV equation

ut(t, x) + uxxx(t, x) + 6σu(t, x)u(−t,−x)ux(t, x) = 0, (1.1)

u(0, x) = u0(x), (1.2)

where u0 ∈ H3(R)∩H1,1(R) and σ = ±1 denote the focusing and defocusing cases, respectively.

The nonlocal mKdV equation (1.1), introduced in [1–2], can be regarded as the integrable

nonlocal extension of the classical mKdV equation

ut(t, x) + uxxx(t, x) + 6σu2(t, x)ux(t, x) = 0. (1.3)

By replacing u2(t, x) with the PT -symmetric term u(t, x)u(−t,−x) (see [3]). In physical appli-

cation, the nonlocal mKdV equation (1.1) possesses delayed time reversal symmetry, and thus

it can be related to the Alice-Bob system (see [4]). For instance, a special approximate solution

of the nonlocal mKdV was applied to theoretically capture the salient features of two correlated

dipole blocking events in atmospheric dynamical systems (see [5]).
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There is much work on the study of various mathematical properties for the nonlocal mKdV

equation (1.1). The N -soliton solutions to the nonlocal mKdV equation (1.1) with zero bound-

ary conditions were constructed by using the Darboux transformation and the inverse scattering

transform, respectively (see [7–8]). Further the Riemann-Hilbert (RH for short) method was

used to construct N -soliton solutions for the nonlocal mKdV equations (1.1) with nonzero

boundary conditions (see [6]). The long-time asymptotics to the nonlocal mKdV equation (1.1)

with decaying initial data was investigated in [9] via the nonlinear steepest-descent method

developed by Deift and Zhou [10]. Recently, we obtained the long time asymptotic behavior

for the Cauchy problem of the nonlocal mKdV equation (1.1) with nonzero initial data in the

solitonic regions by using the ∂̄-steepest-descent method (see [11–12]). This method, introduced

by McLaughlin and Miller (see [13–14]), has been extensively used in the long-time asymptotic

analysis and the soliton resolution conjecture of some integrable systems (see [15–24]). Howev-

er, the existence of global solutions to the Cauchy problem (1.1)–(1.2) for the nonlocal mKdV

equation is still unknown to our knowledge. A technical difficulty of proving global existence of

the nonlocal mKdV equation (1.1) comes from the fact that the mass and energy conservation

laws to (1.1) do not preserve any reasonable norm and may be negative. As we know, the mass

and energy conservation laws of the classical mKdV equation (1.3) are the key point to obtain

a priory estimates for establishing a unique global solution.

The main purpose in the present paper is to overcome such a difficulty and to establish the

global existence of solutions to the Cauchy problem (1.1)–(1.2) in an appropriate Sobolev space

by applying the inverse scattering theory. Our principal result is now stated as follows.

Theorem 1.1 Let the initial data u0 ∈ H3(R) ∩H1,1(R) with L1(R) small-norm

1 − ‖u‖L1(R)(1 + 2e2‖u‖L1(R)) > 0 (1.4)

such that the spectral problem (2.1) admits no eigenvalues or resonances. Then

• there exists an L2 -bijection map between the potential u and reflection coefficients r1,2,

H3(R) ∩H1,1(R) ∋ u 7→ r1,2 ∈ H1,1(R) ∩ L2,3(R), (1.5)

which is Lipschitz continuous.

• There exists a unique global solution u ∈ C([0,∞), H3(R)∩H1,1(R)) to the Cauchy problem

(1.1)–(1.2). Furthermore, the map

H3(R) ∩H1,1(R) ∋ u0 7→ u ∈ C([0,∞);H3(R) ∩H1,1(R))

is Lipschitz continuous.

A key in proving the above result is to establish a Lipschitz L2-bijection (1.5) between

solution and scattering coefficient by using inverse scattering method (see [25–29]). The L2-

bijection (1.5) implies that global well-posdeness of the Cauchy problem (1.1)–(1.2) in the space

H3(R) ∩H1,1(R).

Remark 1.1 Let’s compare the differences between the nonlocal mKdV case and the local

mKdV case during the proof of global well-posedness to the Cauchy problem. Firstly, the mass
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and energy conservation laws to the nonlocal equation (1.1) do not preserve any reasonable

norm and may be negative, which prevent to obtain a priory estimates for establishing a unique

global solution by using general analytical technique. Secondly, in nonlocal mKdV case, the

L1(R) small-norm condition (1.4) not only ensures that the spectral problem (2.1) admits no

eigenvalues or resonances, but also is used to prove the existence and uniqueness of the RH

problem 3.1 via a vanishing lemma. While in the local mKdV case, the corresponding RH

problem can be directly proved by a vanishing lemma without small norm condition on the

reflection coefficient (see [25–26]).

The structure of the paper is as follows. In Section 2, we focus on the direct scattering

transform to the Cauchy problem (1.1)–(1.2). We especially establish the Lipschitz continuous

maps from the initial data to the Jost function and the reflection coefficient. In Section 3, we

carry out the inverse scattering transform to set up an RH problem associated with the Cauchy

problem (1.1)–(1.2), and the solvability of the RH problem is further shown. In Section 4, we

reconstruct and estimate the potential from the solutions of the RH problem on positive half

line R+ and negative half line R−, respectively. We further establish a Lipschitz continuous

mapping from the reflection coefficients to the potentials. In Section 5, we perform the time

evolution of the reflection coefficients and the RH problem. Then, we prove that there exists a

unique global solution to the initial value problem (1.1)–(1.2) of the nonlocal mKdV equation

in the space H3(R) ∩H1,1(R).

2 Direct Scattering Transforms

In this section, we state some main results on the direct scattering transform associated

with the Cauchy problem (1.1)–(1.2). The details can be found in [1–2].

2.1 Notations

To precisely state our main result, we first fix some notations used in this paper.

• Let I be an interval on the real line R and X be a Banach space. C(I,X) denotes the

space of continuous functions on I taking values in X . It is equipped with the norm

‖f(x)‖C(I,X) = sup
x∈I

‖f(x)‖X .

• For the spatial variable x ∈ R, a weighted space L2,s(R) is specified by

L2,s(R) = {f ∈ L2(R) | 〈·〉sf ∈ L2(R), s ∈ Z
+},

equipped with the norm

‖f‖L2,s(R) = ‖〈·〉sf‖L2(R),

where 〈x〉 = (1 + x2)
1
2 . We further define a weighted Sobolev space by

H1,1(R) := {f | ∂jxf ∈ L2,1(R), j = 0, 1},

equipped with the norm

‖f‖H1,1(R) = (‖f‖2L2,1(R) + ‖fx‖2L2,1(R))
1
2 .



500 A. R. Liu and E. G. Fan

• For the spectral parameter k ∈ R, define the function space

L2,s(R) := {r(k) | ksr(k) ∈ L2(R), s ∈ Z
+},

H1,1(R) := {r(k) | r(k), r′(k) ∈ L2,1
R)},

equipped with the norm

‖r(k)‖H1,1(R) = (‖r(k)‖L2,1(R) + ‖r′(k)‖L2,1(R))
1
2 .

2.2 Lipschitz continuity of the Jost functions

The nonlocal mKdV equation (1.1) admits the Lax pair

ψx − izσ3ψ = Qψ, (2.1)

ψt − 4iz3σ3ψ = (4z2Q− 2iz(Qx −Q2)σ3 + 2Q3 −Qxx)ψ, (2.2)

where

Q =

(
0 u(t, x)

−σu(−t,−x) 0

)
, σ3 =

(
1 0
0 −1

)
.

Define the Jost functions ψ±(x, z) to the spectral problem (2.1) with the following boundary

conditions

ψ±(x, z) ∼ eizxσ3 , x→ ±∞.

Making a transformation

m±(x, z) = ψ±(x, z)e−izxσ3 ,

then

lim
x→±∞

m±(x, z) = I

and m±(x, z) satisfies the Voterra integral equations

m±(x, z) = I +

∫ x

±∞

e−iz(y−x) adσ3Qm±(y, z)dy, (2.3)

where eadσ3A := eσ3Ae−σ3 .

Denote m±(x, z) = [m±
1 (x, z),m±

2 (x, z)] . From symmetry of Lax pair, we can get

m±
1 (x, z) = σΛm∓

2 (−x,−z), m±
2 (x, z) = Λm∓

1 (−x,−z), (2.4)

where

Λ =

(
0 σ

1 0

)
.

It can be further shown that functions m+
1 (x, z) and m−

2 (x, z) are analytic in z ∈ C+, whereas

the functions m+
2 (x, z) and m−

1 (x, z) are analytic in z ∈ C−. Moreover, there is a matrix S(z)

satisfying

m+(x, z) = m−(x, z)eizxadσ3S(z), (2.5)

where

S(z) =

(
a(z) c(z)
b(z) d(z)

)
.
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From (2.5), we deduce

a(z) = det[m+
1 (x, z),m−

2 (x, z)], (2.6)

d(z) = det[m−
1 (x, z),m+

2 (x, z)], (2.7)

b(z) = det[m−
1 (x, z),m+

1 (x, z)]e−2izx. (2.8)

It can be shown that a(z) is analytic in C+ and a(z) → 1 as z → ∞ in C
+

while d(z) is analytic

in C− and d(z) → 1 as z → ∞ in C
−

.

From (2.4) we can get the scattering coefficients satisfying the symmetries

a(z) = a(−z̄), d(z) = d(−z̄), c(z) = −σb(−z̄).

We define the reflection coefficients

r1(z) =
b(z)

a(z)
, r2(z) =

c(z)

d(z)
= −σ b(−z)

d(z)
, z ∈ R.

The determinant of S(z) is

a(z)d(z) + σb(z)b(−z̄) = 1.

In the follows, we prove the existence of m±(x, z). For

f(·, z) = (f1(·, z), f2(·, z))T ∈ L∞(R),

define

(Kuf)(x, z) := −
∫ ∞

x

diag(1, e2iz(y−x))Q(y)f(y, z)dy, (2.9)

then (2.3) can be written as

(I −Ku)m+
1 (x, z) = e1. (2.10)

Then the operator of Ku has the following property.

Lemma 2.1 Let u ∈ L1(R), for fixed z ∈ C+, I −Ku is an invertible operator in L∞(R).

Proof Notice that z ∈ C+ and

|Kuf(x, z)| ≤ |(Kuf)1(x, z)| + |(Kuf)2(x, z)|

=
∣∣∣
∫ ∞

x

u(−y)f1dy
∣∣∣+
∣∣∣
∫ ∞

x

u(y)e2iz(y−x)f2dy
∣∣∣

≤ ‖u‖L1(R)‖f‖L∞(R),

which implies that Ku is a bounded operator in L∞(R) for any fixed z ∈ C+.

Similar to the analysis described above, we have for n ≥ 1,

|Kn
uf | ≤

( 1

n!

)
‖u‖nL1(R)‖f‖L∞(R). (2.11)

From the above analysis we know that for any fixed z ∈ C+, Kn
u is a bounded operator in

L∞(R) and

‖Kn
u‖L∞(R)→L∞(R) ≤

( 1

n!

)
‖u‖nL1(R),
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which yields 1 −Ku is an invertible operator in L∞(R). Moreover,

‖(1 −Ku)−1‖L∞(R)→L∞(R) ≤ e‖u‖L1(R) .

Next, we study the asymptotics of the Jost functions m±(x, z).

Lemma 2.2 If u ∈ H3(R) ∩H1,1(R), then as |Im z| → ∞, for every x ∈ R,

m±
1 (x; z) =e1 + p±1 (x)(2iz)−1 + q±1 (x)(2iz)−2 + g±1 (x)(2iz)−3 + O(z−4),

m±
2 (x; z) =e2 + p±2 (x)(2iz)−1 + q±2 (x)(2iz)−2 + O(z−3),

where

p±1 (x) =
[
σ

∫ ±∞

x

u(−y)u(y)dy, −σu(−x)
]T
, (2.12)

q±1 (x) =



σ

∫ ±∞

x

∂u(−y)u(y)dy +

∫ ±∞

x

u(−x1)u(x1)

∫ ±∞

x2

u(−x2)u(x2)

−σ∂u(−x) − u(−x)

∫ ±∞

x

u(−y)u(y)dy


 ,

g±1 (x) =




σ

∫ ±∞

x

u(y)∂2u(−y)dy +

∫ ±∞

x

u(x1)∂u(−x1)

∫ ±∞

x1

u(−x2)u(x2)

+

∫ ±∞

x

u(−y)2u(y)2dy

+σ

∫ ±∞

x

u(−x1)u(x1)

∫ ±∞

x1

u(−x2)u(x2)

∫ ±∞

x2

u(−x3)u(x3)

+

∫ ±∞

x

u(−x1)u(x1)

∫ ±∞

x1

u(x2)∂u(−x2)

−∂u(−x)

∫ ±∞

x

u(−y)u(y)dy − σu(−x)

∫ ±∞

x

u(−x1)u(x1)

∫ ±∞

x1

u(−x2)u(x2)

−u(−x)

∫ ±∞

x

∂u(−y)u(y)dy − u2(−x)u(x) − σ∂2u(−x)




,

p±2 (x) =

[
−u(x), σ

∫ ±∞

x

u(y)u(−y)dy

]T
, (2.13)

q±2 (x) =




−σ∂u(−x) − u(−x)

∫ ±∞

x

u(−y)u(y)dy

σ

∫ ±∞

x

∂u(−y)u(y)dy +

∫ ±∞

x

u(−x1)u(x1)

∫ ±∞

x2

u(−x2)u(x2)


 .

Proof We will only to prove the statement for m±
1 (x; z), while the proof of m±

2 (x; z) is

similar. Rewriting (2.3) as the component form

m+
11(x; z) = 1 −

∫ ∞

x

u(y)m+
21(y; z)dy,

m+
21(x; z) = σ

∫ ∞

x

e2iz(y−x)u(−y)m+
11(y; z)dy.
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We have proved that for every x ∈ R, m±
1 (x; z) is analytic in z ∈ C+. Noticing that u ∈

H3(R) ∩ H1,1(R) →֒ L∞ which yields (2.3) is bounded for every z ∈ C+ and the integrand

converges to e1 as |Im z| → ∞. Integrating by part and recalling u ∈ H3(R) ∩H1,1(R), we can

get

m+
11(x; z) = 1 +

1

2iz
σ

∫ ∞

x

u(y)u(−y)m+
11dy +

1

(2iz)2
σ

∫ ∞

x

u(y)∂u(−y)m+
11dy

+
1

(2iz)2
σ

∫ ∞

x

u(y)u(−y)m+
21dy + O(z−3)

and

m+
21(x; z) = −σu(−x)

m+
11

2iz
− σ(∂u(−x)m+

11 − u(x)u(−x)m+
21)

(2iz)2
+ O(z−3).

Letting |z| → ∞ and noticing m+
1 → e1 as |Im z| → ∞, we get the expanding formula of

m±
1 (x; z).

Similar to the above analysis, for a vector function

f(x, z) = (f1(x; z), f2(x; z))T ∈ L∞
x (R) ⊗ L2

z(R),

we define operators Ku and ∂zKu as

Kuf(x; z) := −
∫ ∞

x

diag(1, e2iz(y−x)))Q(y)f(y, z)dy,

(∂zKuf)(x, z) := −
∫ ∞

x

diag(0, 2i(y − x)e2iz(y−x))Q(y)f(y, z)dy,

respectively. Then we can prove the following lemma.

Lemma 2.3 If w ∈ L2(R), then

sup
x∈R

∥∥∥
∫ ∞

x

e−2iz(x−y)w(y)dy
∥∥∥
L2

z(R)
≤

√
π‖w‖L2(R). (2.14)

If w ∈ H3(R), then for every n = 1, 2, 3,

sup
x∈R

∥∥∥(2iz)n
∫ ∞

x

e−2iz(x−y)w(y)dy +

n−1∑

k=0

(−2iz)k+1∂kxw(x)
∥∥∥
L2

z(R)
≤

√
π‖∂nxw‖L2(R). (2.15)

If w ∈ L2,1(R), then for every x0 ∈ R+,

sup
x∈(x0,+∞)

∥∥∥〈x〉
∫ ∞

x

e−2iz(x−y)w(y)dy
∥∥∥
L2

z(R)
≤

√
π‖w‖L2,1(x0,+∞). (2.16)

Furthermore, if w ∈ H1,1(R), then for every x0 ∈ R+,

sup
x∈(x0,+∞)

∥∥∥〈x〉
[
(2iz)

∫ ∞

x

e−2iz(x−y)w(y)dy + w(x)
]∥∥∥

L2
z(R)

≤
√
π‖w‖H1,1(x0,+∞) (2.17)

and for every x0 ∈ R, we have

sup
x∈R

∥∥∥(2iz)

∫ ∞

x

(y − x)e−2iz(x−y)w(y)dy
∥∥∥
L2

z(R)
≤

√
π‖w‖H1,1(R), (2.18)

where 〈x〉 = (1 + x2)
1
2 .
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Proof The bounds (2.14)–(2.15) (for n = 1) and (2.16) were given in [27]. It remains to

prove the estimate (2.15) (for n = 2, 3) and (2.17)–(2.18). For every x ∈ R and z ∈ R, define

f(x; z) =

∫ ∞

x

e−2iz(x−y)w(y)dy =

∫ ∞

0

e2izyw(x + y)dy.

Using the Plancherel’s theorem, we have

‖f(x; z)‖2L2
z

= π

∫ ∞

0

|w(x + y)|2dy = π

∫ ∞

x

|w(y)|2dy.

Furthermore, if x ∈ R+,we have

‖f(x; z)‖2L2
z

= π

∫ ∞

0

|w(x + y)|2dy = π

∫ ∞

x

|w(y)|2dy ≤ π〈x〉−2

∫ ∞

x

〈y〉2|w(y)|2dy,

which yields (2.16).

Integrate by part, we get

2izf(x; z) + w(x) =

∫ x

−∞

e−2iz(x−y)∂yw(y)dy (2.19)

and

(2iz)2f(x; z) + 2izw(x) + ∂xw(x) =

∫ ∞

x

e−2iz(x−y)∂2yw(y)dy.

We then obtain that
∥∥∥2iz

∫ ∞

x

e−2iz(x−y)w(y)dy + w(x)
∥∥∥
2

L2
z

= π

∫ ∞

x

|∂yw(y)|2dy

and
∥∥∥(2iz)2

∫ ∞

x

e−2iz(x−y)wdy + 2izw(x) + ∂xw(x)
∥∥∥
2

L2
z

= π

∫ ∞

x

|∂2yw(y)|2dy.

Finally we get (2.15) for n = 2. The case when n = 3 can be shown in a similar way.

Combine (2.16) with (2.19) we can get (2.17). Replacing w with (y−x)w and repeating the

above process, we can get (2.18).

Proposition 2.1 Let u ∈ H3(R) ∩ H1,1(R). Then 1 − Ku is an invertible operator in

L∞
x (R) ⊗ L2

z(R).

Proof The result is easy to get from Lemma 2.1.

Proposition 2.2 Letting u ∈ H3(R), then for every x ∈ R, we have

m±
1 − e1 ∈ L2

z(R),

(2iz)(m±
1 − e1) − p±1 ∈ L2

z(R),

(2iz)2(m±
1 − e1) − (2iz)p±1 − q±1 ∈ L2

z(R),

(2iz)3(m±
1 − e1) − (2iz)2p±1 − (2iz)q±1 − g±1 ∈ L2

z(R)

(2.20)

and
m±

2 − e2 ∈ L2
z(R),

(2iz)(m±
2 − e2) − p±2 ∈ L2

z(R),

(2iz)2(m±
2 − e2) − (2iz)p±2 − q±2 ∈ L2

z(R).

(2.21)
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If u ∈ H1,1(R), then for every x ∈ R+, we have

(2iz)∂zm
±
1 ∈ L2

z(R). (2.22)

Proof We only prove (2.20) and (2.22), others can be shown in a similar way. Recalling

that

(1 −Ku)[m+
1 − e1] = Kue1

and from Proposition 2.1, we know 1−Ku is an invertible operator in L∞
x (R)⊗L2

z(R). Therefore

m+
1 (x; ·) − e1 ∈ L2(R) if Kue1(x; ·) ∈ L2(R). We write Kue1 in the following form

(Kue1)(x; z) =
[
0, σ

∫ ∞

x

u(−y)e2iz(y−x)dy
]T
.

By Lemma 2.3, we know

sup
x∈R

∥∥∥
∫ ∞

x

e2iz(x−y)σu(−y)dy
∥∥∥
L2

≤
√
π‖u‖L2,

then

‖m+
1 − e1‖L∞

x ⊗L2
z
≤ ‖(1 −Ku)−1‖L∞

x ⊗L2
z→L∞

x ⊗L2
z
‖Kue1‖L∞

x ⊗L2
z
≤ c‖u‖L2.

Similar to the above analysis, we can get

(I −Ku)[(2iz)(m+
1 − e1) − p+1 ] = (2iz)Kue1 − (I −Ku)p+1 ,

where

(I −Ku)p+1 =
[
0,−u(−x) −

∫ ∞

x

e2iz(x1−x2)u(−x1)

∫ ∞

x1

u(−x2)u(x2)dx2dx1

]T
.

Then, we can get

(I −Ku)[(2iz)(m+
1 − e1) − p+1 ] = 2iz

∫ ∞

x

e−2iz(x−y)σu(−y)dy + σu(−x)

+

∫ ∞

x

e2iz(x1−x)u(−x1)

∫ ∞

x1

u(x2)u(−x2)dx2dx1. (2.23)

From Lemma 2.3 again, notice that u ∈ H2(R), then

sup
x∈R

∥∥∥(2iz)σ

∫ ∞

x

e−2iz(x−y)u(−y)dy + σu(−x)
∥∥∥
L2

≤ c‖∂xu‖L2

and

sup
x∈R

∥∥∥
∫ ∞

x

e2iz(x1−x)u(−x1)

∫ ∞

x1

u(−x2)u(x2)dx2dx1

∥∥∥
L2

≤ c‖u‖2L2,

where c is a constant.

Combining with (2.23), we have

sup
x∈R

∥∥∥
∫ ∞

x

(2iz)e2iz(x−y)σu(−y)dy − (I −Ku)p+1 e2

∥∥∥
L2

≤ c(‖∂xu‖L2 + ‖u‖2L2).
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Inserting operator I −Ku on L2
x(R) ⊗ L2

z(R), we get (2.20)–(2.21).

We derive on both side of (2.10),

(1 −Ku)∂zm
+
1 = (∂zKu)m+

1 ,

then, we get

(1 −Ku)∂zm
+
1 = (∂zKu)[m+

1 − e1] + ∂zKue1 (2.24)

and

(I −Ku)(2iz)∂zm
+
1 = ∂zKu[(2iz)(m+

1 − e1) − p+1 ] + (2iz)∂zKue1 + ∂zKup
+
1 . (2.25)

By Lemma 2.3, we can get for every x0 ∈ R+,

sup
x∈(x0,∞)

‖〈x〉(m+
1 − e1)‖L2

≤ c
∥∥∥
∫ ∞

x

e−2iz(x−y)σu(−y)dy
∥∥∥
L2

≤ c‖u‖L2,1, (2.26)

sup
x∈(x0,∞)

‖〈x〉(2iz)[(m+
1 − e1) − p+1 ]‖L2

≤ c
∥∥∥
∫ ∞

x

e−2iz(x−y)∂σu(−y)dy
∥∥∥
L2

≤ c‖u‖H1,1 . (2.27)

Combining (2.24) with (2.26), using Lemma 2.3, we can get

‖(I −Ku)∂zm
+
1 ‖L2 ≤

∥∥∥
∫ ∞

x

2i(y − x)σu(−y)e−2iz(x−y)(m+
11 − 1)dy

∥∥∥
L2

+
∥∥∥
∫ ∞

x

2i(y − x)e−2iz(x−y)σu(−y)dy
∥∥∥
L2

≤ c‖u‖L1 sup
x∈(x0,∞)

‖〈x〉(m+
1 − e1)‖L2 + c‖u‖L2,1 ≤ c‖u‖H1,1 .

It follows that from (2.25), (2.27) and Lemma 2.3

‖(I −Ku)(2iz)∂zm
+
1 ‖L2 ≤

∥∥∥
∫ ∞

x

2i(y − x)e−2iz(x−y)σu(−y)[(2iz)(m+
11 − 1) − p+11]dy

∥∥∥
L2

+
∥∥∥(2iz)

∫ ∞

x

2i(y − x)e−2iz(x−y)σu(−y)dy
∥∥∥
L2

+
∥∥∥
∫ ∞

x

2i(y − x)e−2iz(x−y)σu(−y)p+11dy
∥∥∥
L2

≤ c‖u‖L1 sup
x∈(x0,∞)

‖〈x〉[(2iz)(m+
1 − e1) − p+1 ]‖L2 ≤ c‖u‖H1,1 .

Inserting operator I −Ku on L2
x(R) ⊗ L2

z(R), we get (2.22). We finally complete the proof of

the lemma.
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We have constructed the following maps

H1,1 ∋ u→ z∂zm
±
1 (x; ·) ∈ L2,

H1,1 ∋ u→ z∂zm
±
2 (x; ·) ∈ L2,

H3 ∋ u→ z3(m±
1 (x; ·) − e1) − z2p±1 − zq±1 − g±1 ∈  L2,

H3 ∋ u→ z3(m±
2 (x; ·) − e2) − z2p±2 − zq±2 − g±2 ∈  L2.

Next, we will show this maps and remainder of the Jost function in function space L∞
x (R) ⊗

L2
z(R) is Lipschitz continuous.

Corollary 2.1 Let u, ũ ∈ H1,1(R) satisfy ‖u‖H1,1(R) ≤ U and ‖ũ‖H1,1(R) ≤ U for some

U > 0, then there is a positive U-dependent on constant C(U) such that for every x ∈ R,

‖m̌±
1 (x; ·) − ˇ̃m

±

1 (x; ·)‖L2 + ‖m̌±
2 (x; ·) − ˇ̃m

±

2 (x; ·)‖L2 ≤ C(U)‖u− ũ‖H1,1 ,

where

m̌±
1 (x; ·) := (2iz)∂zm

±
1 (x; ·),

m̌±
2 (x; ·) := (2iz)∂zm

±
2 (x; ·).

Moreover, if u, ũ ∈ H3(R) satisfy ‖u‖H3(R) ≤ U and ‖ũ‖H3(R) ≤ U for some U > 0 then there

is a positive U-dependent on constant C(U) such that for every x ∈ R,

∥∥m̂±
1 (x; ·) − ̂̃m

±

1 (x; ·)
∥∥
L2 +

∥∥m̂±
2 (x; ·) − ̂̃m

±

2 (x; ·)
∥∥
L2 ≤ C(U)‖u− ũ‖H3 ,

where

m̂±
1 (x; ·) := (2iz)3(m±

1 (x; ·) − e1) − (2iz)2p±1 − (2iz)q±1 − g±1 ,

m̂±
2 (x; ·) := (2iz)3(m±

2 (x; ·) − e2) − (2iz)2p±2 − (2iz)q±2 − g±2 .

Proof From (2.10), we can get

m+
1 − m̃+

1 = (I −Ku)−1[Kue1 − K̃ue1] + ((I −Ku)−1 − (I − K̃u)−1)K̃ue1

= (I −Ku)−1[Kue1 − K̃ue1] + (I −Ku)−1(K̃u −Ku)(I − K̃u)−1K̃ue1,

where

sup
x∈R

‖Kue1 − K̃ue1‖L2 = sup
x∈R

∥∥∥
∫ ∞

x

e2iz(y−x)(u− ũ)dy
∥∥∥
L2
.

Using Lemma 2.3 we can get

sup
x∈R

‖Kue1 − K̃ue1‖L2 ≤ c sup
x∈R

‖u− ũ‖L2 .

Furthermore, for every f ∈ L2
z(R) ⊗ L∞

x (R),

‖(Ku − K̃u)f‖L∞

x ⊗L2
z
≤ C2(U)e‖u−ũ‖

L1‖f‖L∞

x ⊗L2
z
. (2.28)

Then, we can get

sup
x∈R

‖m+
1 − m̃+

1 ‖L2 ≤ c‖u− ũ‖L2 .
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Using Lemma 2.3 again, we obtain that

sup
x∈(x0,∞)

‖〈x〉(m+
1 − m̃+

1 )‖L2 ≤ c‖u− ũ‖L2,1 . (2.29)

Direct calculation yields

∂zm
+
1 − ∂zm̃

+
1 = (I −Ku)−1∂zKu(m+

1 − e1) − (I − K̃u)−1∂zK̃u(m̃+
1 − e1)

− [(I −Ku)−1∂zKue1 − (I − K̃u)−1∂zK̃ue1]

= (I −Ku)−1[∂zKu(m+
1 − e1) − ∂zK̃u(m̃+

1 − e1)]

+ (I −Ku)−1(K̃u −Ku)(I − K̃u)−1∂zK̃um̃
+
1

− (I −Ku)−1(∂zKue1 − ∂zK̃ue1)

+ (I −Ku)−1(K̃u −Ku)(I − K̃u)−1∂zK̃ue1. (2.30)

Using Lemma 2.3 and (2.29), we get

‖(2iz)∂zKum
+
1 − (2iz)∂zK̃um̃

+
1 ‖L2 ≤ C1(U)‖u− ũ‖H1,1 , (2.31)

where C1(U) is a U-dependent on positive constant. Noticing that 1 − Ku is an invertible

operator in L∞
x (R)⊗L2

z(R) and (2.28), we get the bound (2.28). The others follow by repeating

the same analysis as that above.

2.3 Lipschitz continuity of scattering data

In this section, we prove the Lipschitz continuity from initial value to scattering data.

Lemma 2.4 If u ∈ H1,1(R), then the function a(z) is continued analytically in C+. In

addition, we have

a(z) − 1, d(z) − 1, b(z) ∈ H1,1(R).

Moreover, if u ∈ H3(R), then

b(z) ∈ L2,3(R).

Proof From (2.3), (2.6) and (2.8), we get

b(z) = σ

∫

R

e2izyu(−y)m+
11dy, (2.32)

∂zb(z) = σ

∫

R

e2izyu(−y)∂zm
+
11dy + σ

∫

R

2iye2izyu(−y)m+
11dy, (2.33)

a(z) − 1 = −
∫

R

u(y)m+
21dy,

d(z) − 1 = σ

∫

R

u(−y)m+
12dy,

(2.34)

∂za(z) = −
∫

R

u(y)∂zm
+
21dy,

∂zd(z) = σ

∫

R

u(−y)∂zm
+
21dy.

(2.35)
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We can easily obtain the following limit for the scattering coefficient a(z) along a contour

in C+ extended to

a(z) → 1, Im z → ∞.

In order to prove b(z) ∈ L2,3
z (R), we rewrite (2.8) as the following form

(2iz)3b(z) = σ

∫

R

e2izyu[(2iz)3(m+
11 − 1) − (2iz)2p+11 − (2iz)q+11 − g+11]dy

+ (2iz)3σ

∫

R

e2izyudy + (2iz)2σ

∫

R

e2izyup+11dy + (2iz)σ

∫

R

e2izyuq+11dy

+ σ

∫

R

e2izyug+11dy.

Using Lemma 2.3, we get

∥∥∥σ
∫

R

e2izyu[(2iz)3(m+
11 − 1) − (2iz)2p+11 − (2iz)q+11 − g+11]dy

∥∥∥
L2

≤ c‖u‖L1 sup
x∈R

‖(2iz)3(m+
11 − 1) − (2iz)2p+11 − (2iz)q+11 − g+11‖L2

≤ c‖u‖L1‖u‖H3 .

We proved that the first term of (2.36) is bounded in L2 space. For the other terms of

(2.36), using Plancherel’s formula, we can get

∥∥∥(2iz)3
∫

R

e2izyudy
∥∥∥
L2

≤ c‖u‖H3,

∥∥∥(2iz)2
∫

R

e2izyup+11dy
∥∥∥
L2

≤ c‖u‖H3 ,

∥∥∥(2iz)

∫

R

e2izyuq+11dy
∥∥∥
L2

≤ c‖u‖H3 ,

∥∥∥
∫

R

e2izyug+11dy
∥∥∥
L2

≤ c‖u‖H3 .

Then we get b(z) ∈ L2,3(R).

In order to prove ∂zb(z) ∈ L2,1
z (R), we rewrite (2.33) as the following form

(2iz)∂zb(z) = σ

∫

R

e2izyu(2iz)∂zm
+
11 + σ

∫

R

(2iy)e2izyu[(2iz)(m+
11 − 1) − p+11]dy

+ (2iz)σ

∫

R

(2iy)e2izyudy + σ

∫

R

(2iy)e2izyup+11dy. (2.36)

Using Lemma 2.3 again, we get

∥∥∥
∫

R

e2izyu(2iz)∂zm
+
11dy

∥∥∥
L2

≤ c‖u‖L1 sup
x∈R

‖(2iz)∂zm
+
11‖L2

≤ c‖u‖L1‖u‖H1,1 .

We proved that the first term of (2.36) is bounded in L2 space. For the other terms of (2.36),

using Plancherel’s formula, we can get

∥∥∥(2iz)

∫

R

e2izy(2iy)udy
∥∥∥
L2

≤ c‖u‖H1,1 ,
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∥∥∥
∫

R

e2izy(2iy)up+11dy
∥∥∥
L2

≤ c‖u‖H1,1 .

We get ∂zb(z) ∈ L2,1(R). Then we have proved the bounds of b(z). The conclusion of a(z), d(z)

can be proved in the similar way.

Lemma 2.4 establishes the following two maps

H1,1(R) ∋ u→ a(z) − 1, d(z) − 1, b(z) ∈ H1,1(R)

and

H3(R) ∋ u→ b(z) ∈ L2,3(R).

We will show that the two maps are Lipschitz continuous.

Corollary 2.2 Let u ∈ H1,1(R) ∩H3(R), then

H1,1(R) ∋ u→ a(z) − 1, d(z) − 1, b(z) ∈ H1,1
z (R)

and

H3(R) ∋ u→ b(z) ∈ L2,3
z (R)

are Lipschitz continuous.

Proof From the representations (2.32)–(2.35) and the Lipschitz continuity of the Jost

function m±
1 and m±

2 , we can obtain the Lipschitz continuity of the scattering coefficients.

For the reflection coefficients r(z), we have the following results.

Lemma 2.5 If u ∈ H1,1(R) ∩H3(R), then we have

r1,2(z) ∈ H1,1(R) ∩ L2,3(R).

As well, the mapping

H1,1(R) ∩H3(R) ∋ u 7→ r1,2 ∈ H1,1(R) ∩ L2,3(R)

is Lipschitz continuous.

Proof Let r1 and r̃1 denote the reflection coefficients corresponding to u and ũ, respectively.

Owing to

r1 − r̃1 =
b− b̃

a
+
b̃((ã− 1) − (a− 1))

aã
,

the Lipschitz continuity of r1 follows from the Lipschitz continuity of a− 1 and b, and we can

get similar conclusion of r2 .

Lemma 2.6 If u ∈ H1,1 ∩H3 with L1-norm such that ‖u‖L1e2‖u‖L1 < 1, then the spectral

problem admits no eigenvalues or resonances, and the scattering data a(z) and d(z) admit no

zeros in C+ ∪ R and C− ∪ R, respectively.
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Proof The small-norm condition implies that ‖u‖L1(R) < 1. Recall that m+
1 = e1 +Kum

+
1

in Lemma 2.1 and the operator I − Ku is invertible and bounded from L∞
x to L∞

x , then we

reach that for every z ∈ C+,

‖m+
1 (·; z) − e1‖L∞ = ‖(I −Ku)−1‖‖Kue1(·; z)‖L∞ ≤ ‖u‖L1e2‖u‖L1 .

We derive for every z ∈ C+,

|a(z)| ≥ 1 −
∣∣∣
∫

R

u(y)m+
21(y; z)dy

∣∣∣ > 1 − ‖u‖L1e2‖u‖L1 .

Due to the continuity of a(z), we also obtain that

|a(z)| ≥ 1 − ‖u‖L1(R)e
2‖u‖

L1 > 0, z ∈ R,

then a(z) admits no zeros in C+ ∪R. Carrying out a similar manipulation for d(z), we see that

d(z) admits no zeros in C− ∪ R.

Lemma 2.7 If u ∈ L2,1(R) with L1(R) small-norm such that

1 − ‖u‖L1(R)(1 + 2e2‖u‖L1(R)) > 0, (2.37)

then for every z ∈ R, we have |r1,2(z)| < 1.

Proof Rewrite (2.32) for b(z) as

b(z) = σ

∫

R

e2izyu(−y)m+
11dy, (2.38)

under the condition (2.37). For every z ∈ R, we obtain

|b(z)| ≤ ‖m+
11(·; z) − 1‖L∞‖u‖L1 + ‖u‖L1 ≤ ‖u‖L1(R) + ‖u‖L1(R)e

2‖u‖
L1(R)

< 1 − ‖u‖L1(R)e
2‖u‖

L1(R) ≤ |a(z)|,

which yields

|r1(z)| =
|b(z)|
|a(z)| < 1.

Similarly, we get |r2(z)| < 1.

3 Inverse Scattering Transform

In this section, we will set up an RH problem and show the existence and uniqueness of its

solution for the given data r(z) ∈ H1,1(R) ∩ L2,3(R) .

3.1 Set-up of an RH problem

Define

M(x; z) =





(
m

(+)
1 m

(−)
2

)
(
a−1 0

0 1

)
, Im z > 0,

(
m

(−)
1 m

(+)
2

)
(

1 0

0 d−1

)
, Im z < 0,
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then M(x; z) satisfies the following RH-problem.

Problem 3.1 Find a matrix function M(x; z) satisfying

(i) M(x; z) → I + O
(
z−1

)
as z → ∞.

(ii) For M(x; z) admits the following jump condition

M+(x; z) = M−(x; z)Vx(z), (3.1)

where

Vx(z) :=

(
1 + σr1r2 σr2(z)e2ixz

r1(z)e−2ixz 1

)
, z ∈ R. (3.2)

The reconstruction formula is given by

u(x) := 2i lim
z→∞

zM12(x, z), u(−x) := 2iσ lim
z→∞

zM21(x, z). (3.3)

We write (5.7) in the form

M+(x; z) −M−(x; z) = M−(x; z)S(x; z), z ∈ R,

where

S(x; z) =

(
σr1r2 σr2(z)e2ixz

r1(z)e−2ixz 0

)
.

Introduce a transformation

Ψ±(x; z) = M±(x; z) − I,

then we obtain a new RH problem for Ψ(x; z),

Ψ+(x; z) − Ψ−(x; z) = Ψ−(x; z)S(x; z) + S(x; z), z ∈ R,

Ψ±(x; z) → 0, |z| → ∞, z ∈ C\R.

3.2 Solvability of the RH problem

We introduce the Cauchy operator

C(f)(z) =
1

2πi

∫

R

f(ζ)

ζ − z
dζ, z ∈ C\R

and Plemelj projection operator

P±(f)(x; z) := lim
ε→0+

1

2πi

∫

R

f(ζ)

ζ − (z ± iε)
dζ, z ∈ R, (3.4)

where f(z) ∈ L2(R).

Proposition 3.1 (see [27]) For every f ∈ Lp(R) with 1 ≤ p < ∞, the Cauchy operator

C(f) is analytic off the real line, decays to zero as |z| → ∞, and approaches to P±(f) almost

everywhere when a point z ∈ C± approaches to a point on the real axis by any non-tangential

contour from C±. If 1 < p <∞, then there exists a positive constant Cp such that

‖P±(f)‖Lp ≤ Cp‖f‖Lp . (3.5)

If f ∈ L1(R), then the Cauchy operator admits the asymptotic

lim
|z|→∞

zC(f)(z) = − 1

2πi

∫

R

f(s)ds. (3.6)
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Lemma 3.1 Let r1,2(z) ∈ H1(R) satisfying |r1,2(z)| ≤ 1. Then there exist positive constants

c− and c+ such that for every x ∈ R and every column-vector g ∈ C2, we have that

Re g∗(I + S(x; z))g ≥ c−g
∗g, z ∈ R (3.7)

and

‖(I + S(x; z))g‖ ≤ c+‖g‖, z ∈ R, (3.8)

where the asterisk denotes the Hermite conjugate.

Proof The original scattering matrix S(x; z) is not Hermitian due to the fact that there is

no relationship between a(z) and d(z). Therefore, we define Hermitian part of S(x; z) by

SH(x; z) =
1

2
(S(x; z) + S∗(x; z))

=
(

σRe(r1r2) 1
2 (r̄1 + σr2)e2izx

1
2 (r1 + σr̄2)e−2izx 0

)
. (3.9)

Since |r1,2(z)| < 1, the 2-order principle minor of the matrix I + SH ,

1 + σRe(r1r2) − 1

4
|r1 + σr̄2|2 = 1 − 1

4
|r1 − σr̄2|2 > 0,

which indicates that the 1-order principle minor 1 + σRe(r1r2) > 0. Thus the matrix I + SH is

positive definite.

In view of the algebra theory, for a Hermitian matrix, there exists a unitary matrix A such

that

A∗(I + SH)A = diag(µ+, µ−), (3.10)

where µ± are the eigenvalues of the matrix I + SH ,

µ±(z) =
2 + σRe(r1r2) ±

√
Re2(r1r2) + |r1 + σr̄2|2

2
.

Noting µ+(z) > µ−(z) > 0 as I + SH is positive definite. And it follows from r1,2(z) → 0 that

µ−(z) → 1 as |z| → ∞, z ∈ R. Together with r1,2(z) ∈ H1(R), there exists a positive constant

c− such that µ− > c−.

Consequently, for every g ∈ C2, utilizing (3.10), we have

c−g
∗g < µ−g

∗g ≤ Re g∗(I + S(x; z))g = g∗(I + SH)g,

which completes the proof of the bound (3.7).

Calculating (I + S(x; z))g componentwise and utilizing |r1,2(z)| < 1 give that

‖(I + S(x; z))g‖2 ≤ 2(1 + |r1| + |r2|)2‖g‖2

+ 2Re{((σ + r1r2)r̄2 + r1)e−2izxg(1)g(2)}
≤ ((|r1| + 1)2 + (|r2| + 1)2 + (|r1| + |r2|)2)‖g‖2, (3.11)

here the norm for a 2-component vector f is ‖f‖2 = |f (1)|2 + |f (2)|2. Therefore, we take

c+ = sup
z∈R

√
(|r1| + 1)2 + (|r2| + 1)2 + (|r1| + |r2|)2 < +∞,

then one obtain the bound (3.8).
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Lemma 3.2 Let r1,2(z) ∈ H1(R) satisfying |r1,2(z)| ≤ 1. Then for every F (z) ∈ L2
z(R),

there exists a unique solution Ψ(z) ∈ L2
z(R) of the equation

(I − P−
S )Ψ(z) = F (z), z ∈ R, (3.12)

where P−
S Ψ = P−(ΨS).

Proof Since I − P−
S is a Fredholm operator of the index zero, by Fredholm’s alternative

theorem, there exists a unique solution of (3.12) if and only if the homogeneous equation

(I − P−
S )g = 0, z ∈ R (3.13)

admits zero solution in L2
z(R).

Assume that g(z) ∈ L2
z(R) and g(z) 6= 0 is a solution of (3.13). Define two analytic functions

in C\R,

g1(z) = C(gS)(z), g2(z) = C(gS)∗(z).

The functions g1(z) and g2(z) are well-defined due to S(z) ∈ L2
z(R) ∩ L∞

z (R).

We integrate the function g1(z)g2(z) along the semi-circle of radius R centered at zero in

C+. It follows from Cauchy theorem that

∮
g1(z)g2(z)dz = 0.

From g(z)S(z) ∈ L1
z(R), we have

g1(z), g2(z) = O(z−1), |z| → ∞.

Hence, the integral on the arc approaches to zero as the radius approaches to infinity. Therefore,

we obtain

0 =

∫

R

g1(z)g2(z)dz =

∫

R

P+(gS)[P−(gS)]∗dz

=

∫

R

[P−(gS) + gS][P−(gS)]∗dz. (3.14)

Utilizing the assumption P−(gS) = g, we have

∫

R

g(I + S)g∗dz = 0.

We get Re g(I + S)g∗ > c−g
∗g with c− being a positive constant. Thus the function g(z) has

to be zero. This contradicts to the assumption g 6= 0. Therefore, g = 0 is a unique solution to

the equation (I − P−
S )g = 0 in L2

z(R). Finally there exists a unique solution to (3.12).

Lemma 3.3 Let r1,2(z) ∈ H1(R) satisfy |r1,2(z)| ≤ 1. Then for every x ∈ R, there exist

unique solutions Ψ±(x; z) ∈ L2
z(R) satisfying

Ψ+(x; z) − Ψ−(x; z) = Ψ−S(x; z) + S(x; z), z ∈ R.
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Proof Owing to S(x; z) ∈ L2
z(R), we have PS

−(z) ∈ L2
z(R) by (3.5). Then for every x ∈ R,

there exists a unique solution Ψ−(x; z) ∈ L2
z(R) satisfying

Ψ−(x; z) = P−(Ψ−(x; z)S(x; z) + S(x; z)), z ∈ R. (3.15)

Based on the existence of Ψ−(x; z), we define

Ψ+(x; z) = P+(Ψ−(x; z)S(x; z) + S(x; z)), z ∈ R. (3.16)

Besides, analytic extensions of Ψ±(x; z) to z ∈ C± are defined by Cauchy operator

Ψ±(x; z) = C(Ψ−(x; z)S(x; z) + S(x; z)), z ∈ C
±. (3.17)

Finally we obtain the solution Ψ±(x; z) ∈ L2
z(R). Moreover, given the property of the

Cauchy operator and the Plemelj projection operator, the solutions Ψ±(x; z) are analytic func-

tions for z ∈ C±.

Lemma 3.4 Let r1,2 ∈ H1(R) satisfying |r1,2(z)| ≤ 1. Then the operator (I − P−
S )−1 :

L2
z(R) → L2

z(R) is bounded, that is, there exists a constant c that only depends on ‖r(z)‖L∞

z

such that

‖(I − P−
S )−1f‖L2

z
≤ c‖f‖L2

z
.

Proof For every f(z) ∈ L2
z(R), there exists a solution Ψ(z) ∈ L2

z(R) to the equation

(I − P−
S )Ψ(z) = f(z).

Note that P+ − P− = I, then we decompose the function into Ψ = Ψ+ − Ψ− with

Ψ− − P−(Ψ−S) = P−(f), Ψ+ − P−(Ψ+S) = P+(f). (3.18)

Since P±(f) ∈ L2
z(R), there exist unique solutions Ψ±(z) ∈ L2

z(R) to (3.15) which implies the

decomposition is unique. Therefore, we only need the estimates of Ψ± in L2
z(R).

To deal with Ψ−, define two analytic functions in C\R,

g1(z) = C(Ψ−S)(z), g2(z) = C(Ψ−S + f)∗(z).

Analogous manipulation, we integrate on the semi-circle in the upper half-plane and have

∮
g1(z)g2(z)dz = 0.

Since g1(z) = O(z−1) and g2(z) → 0 as |z| → ∞, we have

0 =

∫

R

P+(Ψ−S)[P−(Ψ−S + f)]∗dz

=

∫

R

(P−(Ψ−S) + Ψ−S)[P−(Ψ−S + f)]∗dz

=

∫

R

(Ψ− − P−(f) + Ψ−S)Ψ∗
−dz. (3.19)
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Using the bounds (3.7)–(3.8) and the Hölder inequality, there exists a positive constant c− such

that

c−‖Ψ−‖2L2 ≤ Re

∫

R

Ψ−(I + S)Ψ∗
−dz = Re

∫

R

P−(f)Ψ∗
−dz ≤ ‖f‖L2‖Ψ−‖L2 ,

which completes the estimates of Ψ−,

‖(I − P−
S )−1P−f‖L2

z
≤ c−1

− ‖f‖L2
z
. (3.20)

To deal with Ψ+, define two functions in C\R,

g1(z) = C(Ψ+S)(z), g2(z) = C(Ψ+S + f)∗(z).

Performing the similar procedure as that above leads to

0 =

∮
g1(z)g2(z)dz

=

∫

R

P−(Ψ+S)[P+(Ψ+S + f)]∗dz

=

∫

R

[Ψ+ − P+(f)][Ψ+(I + S)]∗dz, (3.21)

where we have used (3.15). Using the bounds (3.7)–(3.8), there are positive constants c− and

c+ such that

c−‖Ψ+‖2L2 ≤ Re

∫

R

Ψ+(I + S)∗Ψ∗
+dz = Re

∫

R

P+(f)(I + S)∗Ψ∗
+dz ≤ c+‖f‖L2‖Ψ+‖L2 ,

which means

‖(I − P−
S )−1P+f‖L2

z
≤ c−1

− c+‖f‖L2
z
. (3.22)

Combining (3.20) and (3.22), we obtain

‖(I − P−
S )−1f‖L2

z
≤ c‖f‖L2

z
,

where c is a constant that only depends on ‖r(z)‖L∞

z
.

3.3 Estimate on solutions to the RH problem

Next, we see solutions to the RH problem for M(x; z). Denote the functions M±(x; z)

column-wise

M±(x; z) = [µ±(x; z), ν±(x; z)],

then the functions Ψ± can be written as

Ψ±(x; z) = [µ±(x; z) − e1, ν±(x; z) − e2].

We have

µ±(x; z) − e1 = P±(M−S)(1)(x; z), z ∈ R (3.23)

and

ν±(x; z) − e2 = P±(M−S)(2)(x; z), z ∈ R. (3.24)
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Combining (3.23) with (3.24), we obtain

M±(x; z) = I + P±(M−(x; ·)S(x; ·))(z), z ∈ R.

Further, analytic extensions of M±(x; z) to z ∈ C± are

M±(x; z) = I + C(M−(x; ·)S(x; ·))(z), z ∈ C
±. (3.25)

Lemma 3.5 Let r1,2(z) ∈ H1(R) satisfying |r1,2(z)| ≤ 1. Then there exists a constant c

only depending on ‖r(z)‖L∞ such that for every x ∈ R,

‖M±(x; ·) − I‖L2 ≤ c(‖r1‖L2 + ‖r1‖L2). (3.26)

Proof Due to r1,2 ∈ H1(R), we get r1,2 ∈ L2(R) ∩ L∞(R) and S(x; ·) ∈ L2(k). Moreover,

there exists a constant c only depending on ‖r1,2‖L∞ such that

‖S(x; ·)‖L2
z
≤ c(‖r1‖L2 + ‖r1‖L2),

we obtain

‖M± − I‖L2 = ‖ψ±‖L2 ≤ c(‖r1‖L2 + ‖r1‖L2),

where we have used the equation (I−P−
S )Ψ± = P−S, and c is another constant only depending

on ‖r1,2(z)‖L∞ .

Proposition 3.2 For every x0 ∈ R− and every r1,2(z) ∈ H1,1(R), we have

sup
x∈(−∞,x0)

‖〈x〉P+(r2e2izx)‖L2
z
≤ c‖r2‖H1 , (3.27)

sup
x∈(−∞,x0)

‖〈x〉P−(r1e−2izx)‖L2
z
≤ c‖r1‖H1 , (3.28)

sup
x∈(−∞,x0)

‖〈x〉P+(zr2e2izx)‖L2
z
≤ c‖r2‖H1,1 ,

sup
x∈(−∞,x0)

‖〈x〉P−(zr1e−2izx)‖L2
z
≤ c‖r1‖H1,1 ,

where 〈x〉 = (1 + x2)
1
2 . Moreover, if r1,2 ∈ L2,3(R), then we have

sup
x∈R

‖zjP+(zkr2e2izx)‖L2
z
≤ ‖zj+kr2‖L2

z
, (3.29)

sup
x∈R

‖zjP−(zkr1e−2izx)‖L2
z
≤ ‖zj+kr1‖L2

z
, (3.30)

where j, k = 0, 1, 2, 3, j + k ≤ 3 and c is a constant that depends on ‖r1,2‖L∞ .

Proof The proof can be completed by an analogous analysis as that in [27].

In order to obtain estimates on the vector columns µ−(x; z)− e1 and ν+(x; z)− e2 that will

be needed in the subsequent section, we rewrite functions µ−(x; z) − e1 and ν+(x; z) − e2 by

(3.25) as

µ−(x; z) − e1 = P−(r1e−2izxν+(x; z))(z), z ∈ R (3.31)
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and

ν+(x; z) − e2 = P+(σr2e2izxµ−(x; z))(z), z ∈ R,

where we have used the fact

M−S =[µ−, ν−]

(
σr1r2 σr2e2izx

r1e−2izx 0

)
= [r1e−2izxν+, σr2e2izxµ−]. (3.32)

Define a function

N(x; z) = [µ−(x; z) − e1, ν+(x; z) − e2],

which satisfies

N − P+(NS+) − P−(NS−) = F, (3.33)

where

F (x; z) = [P−(r1e−2izx)e2,P+(σr2e2izx)e1],

S+(x; z) =

(
0 σr2e2izx

0 0

)
, S−(x; z) =

(
0 0

r1e−2izx 0

)
.

Lemma 3.6 Let r1,2 ∈ H1,1(R), then for every x0 ∈ R−, we have

sup
x∈(−∞,x0)

‖〈x〉µ(2)
− (x; z)‖L2

z
≤ c‖r1‖H1 , (3.34)

sup
x∈(−∞,x0)

‖〈x〉ν(1)+ (x; z)‖L2
z
≤ c‖r2‖H1 , (3.35)

sup
x∈(−∞,x0)

‖〈x〉∂xµ(2)
− (x; z)‖L2

z
≤ c‖r1‖H1,1 , (3.36)

sup
x∈(−∞,x0)

‖〈x〉∂xν(1)+ (x; z)‖L2
z
≤ c‖r2‖H1,1 , (3.37)

where c is a constant that only depends on ‖r1,2‖L∞. In addition, if r ∈ L2,3, then we have

sup
x∈R

‖zk∂jxµ
(2)
− (x; z)‖L2

z
≤ c‖r1‖L2,j+k , (3.38)

sup
x∈R

‖zk∂jxν
(1)
+ (x; z)‖L2

z
≤ c‖r2‖L2,j+k , (3.39)

where j, k = 0, 1, 2, 3, j + k ≤ 3 and c is a constant that depends on ‖r1,2‖L∞ .

Proof Note P+ − P− = I and S+ + S− = (I − S+)S, then (3.33) can be rewritten as

G− P−(GS) = F, (3.40)

with G = N(I − S+). And the matrix G(x; z) is written component-wise as

G(x; z) =

(
µ
(1)
− (x; z) − 1 ν

(1)
+ − σr2e2izx(µ

(1)
− (x; z) − 1)

µ
(2)
− (x; z) ν

(2)
+ − 1 − σr2e2izxµ

(2)
− (x; z)

)
.

Comparing the second row of F (x; z) with G(x; z) and utilizing the bound (3.28), we have

sup
x∈(−∞,x0)

‖〈x〉µ(2)
− ‖L2

z
≤ c sup

x∈(−∞,x0)

‖〈x〉P−(r1e−2izx)‖L2
z
,

‖ν(2)+ − 1 − r1e−2izxµ
(2)
− (x; z)‖L2

z
≤ c‖P−(r1e−2izx)‖L2

z
,

(3.41)
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where c is a constant that depends on ‖r‖L∞ . Substituting the bound (3.28) into (3.41), we

obtain the estimate (3.34).

Similarly, comparing the first row of F (x; z) and G(x; z) yields

‖µ(1)
− (x; z) − 1‖L2

z
≤ c‖P+(σr2e2izx)‖L2

z
,

‖ν(1)+ (x; z) − σr2e2izx(µ
(1)
− (x; z) − 1)‖L2

z
≤ c‖P+(σr2e2izx)‖L2

z
.

(3.42)

Taking derivative in x of (3.33), we obtain

∂xN − P+(∂xN)S+ − P−(∂xN)S− = F1 (3.43)

with

F1 =∂xF + P+N∂xS+ + P−N∂xS−

=2i[e2P−(−zr1e−2izx), e1P+(zσr2e2izx)]

+ 2i

(
P−(−zr1(z)e−2izxν

(1)
+ (x; z)) P+(zσr2e2izx(µ

(1)
− (x; z) − 1))

P−(−zr1e−2izx(ν
(2)
+ (x; z) − 1)) P+(zσr2e2izxµ

(2)
− (x; z))

)
.

Using the estimates (3.29)–(3.30), we obtain

z(µ−(x; z) − e1) ∈ L∞
x ((−∞, x0);L2

z(R)),

z(ν+(x; z) − e2) ∈ L∞
x ((−∞, x0);L2

z(R)).

On account of the bounds (3.27)–(3.28) and r1,2(z) ∈ L∞(R), we conclude that F1 belongs to

L∞
x ((−∞, x0);L2

z(R)). By (3.34)–(3.35) and r1,2(z) ∈ L∞(R), we conclude that

F1 ∈ L∞
x ((−∞, x0);L2

z(R)),

which gives (3.36)–(3.37).

Taking j-order derivative of (3.33), we obtain

∂jxN − P+(∂jxN)S+ − P−(∂jxN)S− = Fj (3.44)

with

Fj = ∂xFj−1 + P+∂j−1
x Nx∂xS+ + P−∂j−1

x Nx∂xS−, j = 2, 3.

Repeating the analysis for (3.40) and using (3.29)–(3.30), we derive the estimates (3.38)–(3.39).

4 Reconstruction and Estimates of the Potential

We shall now recover the potential u from the matrices M±(x; z), which satisfy the integral

equations (3.25). This will give us the map

H1,1(R) ∩ L2,3(R) ∋ r1,2 7→ u ∈ H1,1(R) ∩H3(R).
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4.1 Estimates on the negative half-line

It follows from (3.3) that

u(x) = 2i lim
z→∞

(zM±(x; z))12, (4.1)

which can be used to get estimates of u on the negative half-line. Further from (3.25) and (3.3),

we have

u(x) = 2i lim
|z|→∞

zC((M−S)12). (4.2)

Since r ∈ H1,1(R) ∩ L2,3(R), we have S(x; ·) ∈ L1(R) ∩ L2(R). Besides, the estimate (3.28)

implies that

M−(x; ·) − I ∈ L2(R).

Therefore, we arrive at L1(R). Subsequently, applying (3.6) to (4.2), we obtain

u(x) =
1

π

∫

R

σr2e2izxµ
(1)
− (x; z)dz

=
1

π

∫

R

σr2e2izxP−(re−2izxν
(1)
+ )σr2e2izxdz +

1

π

∫

R

σr2e2izxdz, (4.3)

where we have used the identity

µ
(1)
− (x; z) − 1 = P−(r1e−2izxν

(1)
+ ).

Lemma 4.1 Let r1,2(z) ∈ H1,1(R) ∩ L2,3(R). Then u ∈ H1,1(R) ∩H3(R), moreover,

‖u‖H1,1(R−)∩H3(R−) ≤ c(‖r1‖H1,1(R)∩L2,3(R) + ‖r2‖H1,1(R)∩L2,3(R)), (4.4)

where c is a constant that depends on ‖r1,2‖L∞ and ‖zr1,2‖L∞.

Proof For a function r1,2(z) ∈ L2(R), by Parseval’s equation,

‖r1,2‖L2 = ‖r̂1,2‖L2 ,

where the function r̂1,2 denotes the Fourier transform. Since L2,3(R) ∩ H1,1(R), the second

term of (4.3) belongs to H1,1(R) ∩H3(R) due to the property ̂∂zr1,2(z) = xr̂1,2(x).

Let

I(x) =

∫

R

σr2e2izx(µ
(1)
− (x; z) − 1)dz. (4.5)

Substituting (3.32) into (4.5) and applying the Fubini’s theorem yields

I(x) =

∫

R

σr2e2izx lim
ε→0

1

2πi

∫

R

r1(s)e−2isxν
(1)
+ (s)

s− (z − iε)
dsdz

= −
∫

R

r1(s)e−2isxν
(1)
+ (s) lim

ε→0

1

2πi

∫

R

σr2e2izx

z − (s+ iε)
dzds

= −
∫

R

r1(z)e−2izxν
(1)
+ (z)P+(σr2e2isx)(z)dz.
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Therefore, for every x0 ∈ R−, utilizing the Hölder’s inequality and the estimates (3.27) and

(3.35), we find

sup
x∈(−∞,x0)

|〈x〉2I(x)| ≤ ‖r1‖L∞ sup
x∈(−∞,x0)

‖〈x〉ν(1)+ ‖L2

× sup
x∈(−∞,x0)

‖〈x〉P+(σr2e2isx)‖L2 ≤ c‖r1‖H1‖r2‖H1 , (4.6)

where c is a constant that only depends on ‖r‖L∞ . Further, we obtain

‖〈x〉I(x)‖L2(R−) ≤ c‖r1‖H1‖r2‖H1 ,

where c is another constant that only depends on ‖r‖L∞ . Combining the results of the two

terms of (4.1) leads to

‖u(x)‖L2,1(R−) ≤ c(1 + ‖r1‖H1 + ‖r2‖H1)(‖r1‖H1 + ‖r2‖H1). (4.7)

This completes the proof of u ∈ L2,1(R−).

By the Fourier theory, the derivative of the second term of (4.1) belongs to L2(R). For the

second term I(x), we differentiate I(x) in x and obtain

I ′(x) = ∂

∫

R

σr2e2izx(µ
(1)
− (x; z) − 1)dz

= −2i

∫

R

r1(z)e−2izxν
(1)
+ (x; z)P+(sσr2e2isx)(z)dz

− 2i

∫

R

zr1(z)e−2izxν
(1)
+ (x; z)P+(σr2e2isx)(z)dz

−
∫

R

r1(z)e−2izx∂xν
(1)
+ (x; z)P+(σr2e2isx)(z)dz,

where we have used (3.31) and the Fubini’s theorem.

Utilizing the estimates (3.27) and (3.35), we find that for every x0 ∈ R−,

sup
x∈(−∞,x0)

|〈x〉2I ′(x)| ≤ ‖r‖L∞ sup
x∈(x0,+∞)

(2‖〈x〉ν(1)+ ‖L2‖〈x〉P+(zre2izx)‖L2

+ ‖〈x〉ν(1)+ ‖L2‖〈x〉P+(zσr2e2izx)‖L2

+ ‖〈x〉∂xν(1)+ ‖L2‖〈x〉P+(σr2e2izx)‖L2)

≤ c‖r1‖H1,1∩L2,3‖r2‖H1,1∩L2,3 ,

which implies that

‖〈x〉I ′(x)‖L2(R−) ≤c‖r1‖H1,1∩L2,3‖r2‖H1,1∩L2,3 , (4.8)

where c is another constant that depends on ‖r‖L∞ . Subsequently, we obtain I ′(x) ∈ L2,1(R−).

We conclude that u ∈ H1,1(R−). The estimate (4.4) can be obtained from (4.7)–(4.8) with

another constant c depending on ‖r‖L∞ .

For I ′′(x), we get

sup
x∈(−∞,x0)

|〈x〉I ′′(x)|
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≤ ‖r1‖L∞ sup
x∈(x0,+∞)

(4‖〈x〉ν(1)+ ‖L2‖z2P+(σr2e2izx)‖L2

+ ‖〈x〉ν(1)+ ‖L2‖〈x〉P+(z2σr2e2izx)‖L2 + ‖∂2xν
(1)
+ ‖L2‖〈x〉P+(σr2e2izx)‖L2

+ 2‖zν(1)+ ‖L2‖〈x〉P+(zσr2e2izx)‖L2 + ‖〈x〉∂xν(1)+ ‖L2‖zP+(σr2e2izx)‖L2

+ 2‖∂xν(1)+ ‖L2‖〈x〉P+(sσr2e2izx)‖L2) ≤ c‖r1‖H1,1∩L2,3‖r2‖H1,1∩L2,3 .

For I ′′′(x), similar to the above analysis, we get

sup
x∈(−∞,x0)

|〈x〉I ′′′(x)|

≤ ‖r1‖L∞ sup
x∈(x0,+∞)

(8‖〈x〉ν(1)+ ‖L2‖P+(z3σr2e2izx)‖L2

+ ‖〈x〉ν(1)+ ‖L2‖z3P+(σr2e2izx)‖L2 + ‖∂3xν
(1)
+ ‖L2‖〈x〉P+(σr2e2izx)‖L2

+ 4‖〈x〉∂xν(1)+ ‖L2‖P+(s2σr2e2izx)‖L2 + 2‖〈x〉∂2xν
(1)
+ ‖L2‖P+(z2σr2e2izx)‖L2

+ 2‖〈x〉ν(1)+ ‖L2‖z2P+(sσr2e2izx)‖L2 + 4‖〈x〉ν(1)+ ‖L2‖zP+(z2σr2e2izx)‖L2

+ ‖∂xν(1)+ ‖L2‖〈x〉s2P+(σr2e2izx)‖L2 + ‖z∂2xν
(1)
+ ‖L2‖〈x〉P+(σr2e2izx)‖L2

+ 4‖〈x〉ν(1)+ ‖L2
z
‖P+(s2σr2e2izx)‖L2 + 2‖z∂xν(1)+ ‖L2‖〈x〉P+(zre2izx)‖L2)

≤ c‖r1‖H1,1∩L2,3‖r2‖H1,1∩L2,3 .

Then we conclude that u ∈ H3(R−). Finally we prove the conclusion.

We actually get the following map through the above analysis:

H1,1(R) ∩ L2,3(R) ∋ r1,2 7→ u ∈ H3(R−) ∩H1,1(R−).

We will prove that the map is Lipschitz continuous.

Lemma 4.2 Let r ∈ H1,1(R) ∩ L2,3(R), then the mapping

H1,1(R) ∩ L2,3(R) ∋ r1,2 7→ u ∈ H3(R−) ∩H1,1(R−)

is Lipschitz continuous.

Proof Let r1,2, r̃1,2 ∈ H1,1(R) ∩ L2,3(R). Let the functions u and ũ are the corresponding

potentials respectively. We will show that there exists a constant c that depends on ‖r1,2‖L∞

such that

‖u− ũ‖H3(R−)∩H1,1(R−) ≤ c(‖r1 − r̃1‖H1,1(R)∩L2,3(R) + ‖r2 − r̃2‖H1,1(R)∩L2,3(R)). (4.9)

From (4.1), we have

u− ũ =
1

π

∫

R

(σr2 − σr̃2)e2izxdz +
1

π

∫

R

(σr2 − σr̃2)e2izx(µ
(1)
− (x; z) − 1)dz

+
1

π

∫

R

σr2e2izx(µ
(1)
− (x; z) − µ̃

(1)
− (x; z))dz.

Repeating the analysis in the proof of Lemma 4.1, we obtain the Lipschitz continuity of u.
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4.2 Estimates on the positive half-line

Recalling (3.3) again, we can get

u(−x) = 2izσ lim
z→∞

(M±(x; z))21. (4.10)

Performing the same manipulation for (4.1) yields

u(−x) = −σ
π

∫

R

r1(z)e−2izx(ν
(2)
− (x; z) + σr2(z)e2ikxµ

(2)
− (x; z))dz

= −σ
π

∫

R

r1(z)e−2izxν
(2)
+ (x; z)dz, (4.11)

where we have used the identity ν
(2)
+ = σr2(z)e2izxµ

(2)
− + ν

(2)
− .

Similar to condition x0 ∈ R−, we summarize the above analysis as the following lemma.

Lemma 4.3 Let r1,2(z) ∈ H3(R) ∩ H1,1(R) satisfy |r1,2(z)| < 1, then u ∈ H1,1(R+) ∩
L2,3(R+) with the following estimate

‖u‖H1,1(R+)∩L2,3(R+) ≤ c(‖r1‖H3(R)∩H1,1(R) + ‖r2‖H3(R)∩H1,1(R)), (4.12)

where c is a constant that depends on ‖r1,2‖L∞ and ‖zr1,2‖L∞.

Proof We rewrite (4.2) as

u(−x) = −σ
π

∫

R

r1(z)e−2izxdz − σ

π

∫

R

r1(z)e−2izx(ν
(2)
+ (x; z) − 1)dz.

Let

r̂1(−x) =

∫

R

r1(z)e−2iz(−x)dz. (4.13)

According to the Fourier theory, we have −xr̂1(−x) = ∂̂zr1(z)(x) and ‖xr̂1(−x)‖L2(R) =

‖∂zr1(z)‖L2(R). Let

I2(x) = −σ
π

∫

R

r1(z)e−2izx(ν
(2)
+ (x; z) − 1)dz.

Repeating the analysis in the proof of Lemma 4.1, we obtain u ∈ H1,1(R+) ∩ L2,3(R+) and

‖u‖H1,1(R+)∩L2,3(R+ ≤ c(‖r1‖H3(R)∩H1,1(R) + ‖r2‖H3(R)∩H1,1(R)), (4.14)

where c is a constant that depends on ‖r1,2‖L∞ and ‖zr1,2‖L∞ .

Lemma 4.4 Let r1,2(z) ∈ H1,1(R) ∩ L2,3(R), then the following map

H1,1(R) ∩ L2,3(R) ∋ r1,2 7→ u ∈ H3(R+) ∩H1,1(R+)

is Lipschitz continuous.

Summarize the results from Lemmas 4.2–4.4, we have the following proposition.

Proposition 4.1 Let r1,2(z) ∈ H1,1(R) ∩ L2,3(R), then we have u ∈ H3(R) ∩H1,1(R) and

‖u‖H3(R)∩H1,1(R) ≤ c(‖r1‖H1,1(R)∩L2,3(R) + ‖r2‖H1,1(R)∩L2,3(R)).

Moreover, the mapping

H1,1(R) ∩ L2,3(R) ∋ r1,2 7→ u ∈ H3(R) ∩H1,1(R)

is Lipschitz continuous.
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5 Global Existence and Lipschitz Continuity

5.1 Time evolution of scattering data

From Sections 2–4, for the initial data u0 ∈ H3(R) ∩H1,1(R), we only consider the spatial

spectral problem (2.1) and obtain its unique normalized solution

m±
1 (x, 0; z) → e1, m±

2 (x, 0; z) → e2, x→ ±∞, (5.1)

which cannot satisfy the time spectral problem (2.2) since they are short of a function about

the time t. For every t ∈ [0, T ], we define the normalized Jost functions of the Lax pair (2.1)

and (2.2):

m±
1 (x, t; z) = m±

1 (x, 0; z)e4iz
3t, (5.2)

m±
2 (x, t; z) = m±

2 (x, 0; z)e−4iz3t (5.3)

with the potential u(·, 0) ∈ H3(R) ∩H1,1(R). It follows that for every t ∈ [0, T ], we have

m±
1 (x, t; z) → e4iz

3te1, x→ ±∞,

m±
2 (x, t; z) → e−4iz3te2, x→ ±∞.

Repeating the analysis as the proof of Lemma2.1, we prove that there exist unique solution

of the Volttera’s integral equations for Jost functions m±
1 (x, t; z) and m±

2 (x, t; z), where the

Jost functions m±
1 (x, t; z) and m±

2 (x, t; z) admit the same analytic property as m±
1 (x, 0; z) and

m±
2 (x, 0; z). As well, for every (x, t) ∈ R× R+ and every z ∈ R, the Jost functions m±

1 (x, t; z)

and m±
2 (x, t; z) are supposed to satisfy the scattering relation

m+
1 (x, t; z) = a(t; z)m−

1 (t, x; z) + b(t; z)e−2izxm−
2 (t, x; z),

m+
2 (x, t; z) = c(t; z)e2izxm−

1 (t, x; z) + d(t; z)m−
2 (t, x; z).

By the Crammer’s law and the evolution relation (5.2)–(5.3), we obtain the evolution of the

scattering coefficients

a(t; z) = W (m+
1 (0, 0; z)e4iz

3t,m−
2 (0, 0; z)e−4iz3t) = a(0; z),

d(t; z) = W (m−
1 (0, 0; z)e4iz

3t,m+
2 (0, 0; z)e−4iz3t) = d(0; z),

b(t; z) = W (m−
1 (0, 0; z)e−4iz3t,m+

1 (0, 0; z)e−4iz3t) = b(0; z)e8iz
3t.

Direct calculation shows that the reflection coefficients are given by

r1(t; z) =
b(t; z)

a(t; z)
=
b(0; z)

a(0; z)
e8iz

3t = r1(0; z)e8iz
3t, (5.4)

r2(t; z) =
b̄(t;−z)

d(t; z)
=
b̄(0;−z)

d(0; z)
e8iz

3t = r2(0; z)e−8iz3t, (5.5)

where r1,2(0; z) are initial reflection data founded from the initial data u(x, 0).

Proposition 5.1 If r1,2(0; z) ∈ H1,1(R) ∩ L2,3(R), then for any fixed T > 0 and t ∈ [0, T ],

we have r(·; z) ∈ H1,1(R) ∩ L2,3(R).
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Proof By (5.5), we obtain

‖r1(t; ·)‖L2,3(R) = ‖r1(0; ·)‖L2,3(R).

For every t ∈ [0, T ], we have

‖z∂zr1(t; ·)‖L2(R) =‖z∂zr1(0; ·) + 24iz3tr1(t; z)‖L2(R)

≤‖z∂zr1(0; ·)‖L2(R) + 24T ‖r1(0; ·)‖L2,3(R). (5.6)

Therefore, we infer that r1(t; ·) ∈ H1,1(R) ∩ L2,3(R) for every t ∈ [0, T ] as r1(0; ·) ∈ H1,1(R) ∩
L2,3(R). We can get similar conclusion for t ∈ [−T, 0] and r2.

Using the time-dependent data r1,2(t; z) we can construct a time-dependent RH-problem

Problem 5.1 Find a matrix function M(t, x; z) satisfying

(i) M(t, x; z) → I + O
(
z−1
)

as z → ∞.

(ii) For M(t, x; z), we have the following jump condition

M+(t, x; z) = M−(t, x; z)Vx,t(z), (5.7)

where

Vx,t(z) :=

(
1 + σr1r2 σr2e2iθ(x,t;z)

r1e−2iθ(x,t;z) 1

)
, z ∈ R (5.8)

and θ(t, x; z) = zx+ 4z3t.

Proposition 5.2 Assume thatM(t, x; z) is the solution of RH Problem 5.1. ThenM(t, x; z)

satisfies the following system of linear differential equations :

Mx(t, x; z) = iz[σ3,M ] +QM,

Mt(t, x; z) = 4iz3[σ3,M ] + (4z2Q− 2iz(Qx −Q2)σ3 + 2Q3 −Qxx)M,

where

Q(t, x) =

[
0 u(t, x)

−σu(−t,−x) 0

]

and

u(t, x) = 2i lim
z→∞

zM12(t, x; z). (5.9)

Proof Define

LM := Mx − iz[σ3,M ] −QM, (5.10)

NM := Mt − 4iz3[σ3,M ] − (4z2Q− 2iz(Qx −Q2)σ3 + 2Q3 −Qxx)M, (5.11)

then direct calculation shows that

(LM)+ = (LM)−Vx,t, (NM)+ = (NM)−Vx,t. (5.12)

Substituting the asymptotic expansion

M(x, t; z) = I +
M1

z
+
M2

z2
+ · · · +

Mn

zn
+ · · ·
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into (5.10)–(5.11) and using (5.9), we obtain

LM ∼ O(z−1), NM ∼ O(z−1). (5.13)

The equations (5.12)–(5.13) imply that both LM andNM satisfy the homogeneous RH Problem

5.1. The uniqueness of solution of the RH Problem yields LM = NM = 0.

So under the time evolution of the scattering data r(t; z) in (5.5), the function reconstructed

from the Problem 3.1 through the reconstruction formula (4.1) under time-dependent scattering

data r(t; z) is still a solution of the the nonlocal mkdV equation (1.1).

5.2 The proof of main results

In this section, we will prove the existence of the local and global solutions to the Cauchy

problem. The scheme behind the proof can be described as below.

Lemma 5.1 Let the initial data u0(x) ∈ H3(R) ∩H1,1(R), then there exists a unique local

solution to the Cauchy problem (1.1)–(1.2),

u ∈ C([0, T ], H3(R) ∩H1,1(R)).

Furthermore, the map

H3(R) ∩H1,1(R) ∋ u0 7→ u ∈ C([0, T ],∈ H3(R) ∩H1,1(R))

is Lipschitz continuous.

Proof Performing a similar analysis as that in Lemmas 4.2 and 4.4, we can establish an RH

problem for r(t; z) for every t ∈ [0, T ] and address the existence and uniqueness of a solution to

the RH problem. Further, the potential u(t, x) can be recovered from the reflection coefficients

r(t; z). Moreover, the potential u(t, ·) ∈ H3(R) ∩ H1,1(R) for every t ∈ [0, T ] and is Lipschitz

continuous of r(t; z). Thus we have

‖u(t; ·)‖H1,1∩H3 ≤ c1‖r(t; ·)‖H1,1∩L2,3

≤ c2r(0; ·)‖H1,1∩L2,3 ≤ c3‖u0‖H1,1∩H3 , (5.14)

where the positive constant c1,c2 and c3 depend on ‖r‖L∞ , ‖zr‖L∞ and (T, ‖u0‖H1,1(R)∩H3(R)),

respectively.

Next we show that u(x, t) is continuous with respect to t ∈ [0, T ] under the H1,1(R)∩H3(R)

norm. Let t ∈ [0, T ] and |∆t| < 1 such that t+ ∆t ∈ [0, T ], then with the Lipschitz continuity

from u(t, x) to r(t; z) in Proposition 4.1, we have

‖u(t+ ∆t, x) − u(t, x)‖H1,1(R)∩H3(R)

≤ c(‖r1(t+ ∆t; z) − r1(t; z)‖H1,1(R)∩L2,3(R) + ‖r2(t+ ∆t; z) − r2(t; z)‖H1,1(R)∩L2,3(R))

≤ c|∆t|(‖r1(0; z)‖H1,1(R)∩L2,3(R) + ‖r2(0; z)‖H1,1(R)∩L2,3(R)) ≤ c|∆t| → 0, ∆t→ 0,

which together with the estimate (5.14) implies that there exists a unique local solution u(x, t) ∈
C([0, T ], H3(R) ∩H1,1(R)) to the Cauchy problem (1.1)–(1.2) and the map

H1,1(R) ∩H3(R) ∋ u0(x) 7→ u(t, x) ∈ C([0, T ], H1,1(R) ∩H3(R))
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is Lipschitz continuous.

Finally we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Suppose that the maximal time in which the local solution in

Lemma 5.1 exists is Tmax.

If Tmax = ∞, then the local solution is global one.

If the local solution exists in the closed interval [0, Tmax], we can use u(Tmax, ·) ∈ H3(R) ∩
H1,1(R) as a new initial data. By a similar analysis as that in the previous sections, there exists

a positive constant T1 such that the solution u ∈ C([Tmax, Tmax +T1], H1,1(R)∩H3(R)) exists.

This contradicts with the maximal time assumption.

If the local solution exists in the open interval [0, Tmax). According to (5.14), we have

‖u(t, x)‖H1,1(R)∩H3(R) ≤ c3(Tmax)‖u0‖H1,1(R)∩H3(R), t ∈ [0, Tmax).

Due to the continuity of u(t, x) to the time t, the limit of u(t, x) as t approaches to Tmax exists.

Let umax(x) := lim
t→Tmax

u(t, x). Taking the limit by t→ Tmax in (5.14), we have

‖umax‖H1,1(R)∩H3(R) ≤ c3(Tmax)‖u0‖H1,1(R)∩H3(R),

which implies that we can extend the local solution u ∈ C([0, Tmax), H1,1(R) ∩H3(R)) to u ∈
C([0, Tmax], H1,1(R) ∩H3(R)), this contradicts with the premise that [0, Tmax) is the maximal

open interval.
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