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1 Introduction

Whether the solutions to three-dimensional incompressible Navier-Stokes equations (NSE

for short) can develop finite time singularities from regular initial data remains a question of

central importance in the theory of partial differential equations. This problem is also called the

Millennium Prize problems by Clay Mathematics Institute. The only known coercive a priori

estimate is the Leray-Hopf energy estimate which implies that the three-dimensional Navier-

Stokes equations are supercritical with respect to its natural scalings. The latter may capture

the essence of difficulties of this long standing open problem.

Here, we recall the incompressible Navier-Stokes equations in three dimensions are

{
∂tu+ u · ∇u+∇p = ∆u,

∇ · u = 0,
(t, x) ∈ R+ × R

3, (NSE)

where u is the velocity field of the fluid, p is the scalar pressure. To solve the NSE in R+ ×R3,

one assumes that the initial datum

u(0, x) = u0(x)

is divergence-free and possesses certain regularity.

As well-known, if (u, p) solves NSE, so does (uλ, pλ) for any λ > 0, where

uλ(t, x) = λu(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx). (1.1)
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From above scalings, we usually assign each xi a positive dimension 1, t a positive dimension

2, u a negative dimension −1 and p a negative dimension −2.

In fact, the known a priori Leray-Hopf energy estimate satisfied by classical solutions of

NSE is as follows

sup
t>0

‖u(t, ·)‖L2 ≤ ‖u0‖L2 ,

∫ ∞

0

‖∇u(t, ·)‖L2dt ≤ ‖u0‖2L2 . (1.2)

By the standard dimensional analysis, we show that all energy norms in (1.2) have positive

dimensions, and thus the Navier-Stokes equations are supercritical with respect to the natural

scalings (1.1).

In addition, under the natural scalings (1.1), we know the critical space as follows

Ḣ
1

2

(
R

3
)
→֒ L3

(
R

3
)
→֒ Ḃ

−1+ 3

p

p,∞

(
R

3
)
→֒ BMO−1

(
R

3
)
→֒ Ḃ−1

∞,∞

(
R

3
)
, (1.3)

where p ≥ 3. And the existence of global-in-time smooth solutions arising from small initial

data in this functional spaces has been established up to BMO−1
(
R3

)
(some details can be

seen in [2, 4–7, 10]. All these results are obtained by looking at fixed points of the functional

u = et∆u0 −
∫ t

0

e(t−s)∆
P (u · ∇u) ds, (1.4)

which is an integral reformulation of the differential problem of NSE, where et∆ denotes the heat

kernel and P is the projection on the divergence-free vector field subspace. It is important to

point out that the space BMO−1
(
R3

)
is actually the largest scaling invariant critical space for

the Navier-Stokes equations. However, the Navier-Stokes equations are ill-posed in Ḃ−1
∞,∞

(
R3

)

as shown in [1].

For the three-dimensional incompressible Navier-Stokes equations, the most important quan-

tity is the vorticity

ω := ∇× u. (1.5)

Applying the curl operator for NSE, we can eliminate nonlocal term pressure p to obtain

the equations for vorticity

∂tω + u · ∇ω − ω · ∇u = ∆ω. (1.6)

From (1.2), we know that the energy is supercritical, but we can find a quantity called

helicity

H(u) :=
1

2

∫

R3

u · ωdx+

∫ t

0

∫

R3

∇u · ∇ωdxds

being critical and conserved. Here, we recall some structure of helicity developed in the paper

of [8].

Noting

〈∇ × u, v〉L2(R3) = 〈u,∇× v〉L2(R3), (1.7)
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we know that the curl operator is a symmetric operator. So it spectral is real. If ∇ · u = 0,

its zero spectrum projection is zero. Let u+ be the projection to positive spectrum, u− be the

projection to negative spectrum, then

∇× u+ = Λu+,

∇× u− = −Λu−,

where Λ =
√
−∆ and u = u+ + u−.

To study the regularity of three-dimensional incompressible Navier-Stokes equations, we

define the following energy

Ec (u(t)) :=
1

2
‖Λ 1

2u(t)‖L2(R3) +

∫ t

0

‖∇Λ
1

2u (s) ‖L2(R3)ds, (1.8)

which is dimension 0 respect to Navier-Stokes scalings (1.1). So this energy is also called critical

energy.

Since u+ and u− are strongly orthogonal to each other, we know

Ec (u(t)) = Ec (u+(t)) + Ec (u−(t)) , (1.9)

and from the helicity conservation law, we have

d

dt
Ec(u+) =

d

dt
Ec(u−). (1.10)

For more detials about the helicity structure, we refer the readers to [8].

We focus on the Ḣ
1

2

(
R3

)
-regularity for the NSE. The aim of this paper is to gain a suitable

improvement of this classical result. We construct a class of initial data, such that critical norm

can be arbitrary large, and we can obtain the solutions with global regularity.

We now claim our main theorem.

Theorem 1.1 Consider the Cauchy problem of NSE. Suppose that

‖u0‖
Ḣ

1

2 (R3)
≤M, (1.11)

where M can be arbitrarily large. There exists a small constant ε0(M) such that, if

ε = ‖Λ− 1

2ω0‖2L2(R3) −
〈Λ−1ω0, u0〉2L2(R3)

‖Λ− 1

2u0‖2L2(R3)

< ε0(M), (1.12)

then there exists a global regular solution of NSE, where ω0 = ∇× u0 and Λ =
√
−∆.

Remark 1.1 Particularly, in the case

u0 =Mv0,

‖Λ 1

2 v0‖L2 ≤ 1, supp v̂0 ⊆ {x| 1− δ ≤ |x| ≤ 1 + δ},
∇× v0 = Λv0,

we have

ε =
‖Λ− 1

2u0‖2L2(R3)‖Λ
1

2u0‖2L2(R3) − ‖u0‖4L2(R3)

‖Λ− 1

2 u0‖2L2(R3)
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=M2
‖Λ− 1

2 v0‖2L2(R3)‖Λ
1

2 v0‖2L2(R3) − ‖v0‖4L2(R3)

‖Λ− 1

2 v0‖2L2(R3)

≤M2[(1 − δ)−1 − (1 + δ)−2]‖Λ 1

2 v0‖2L2(R3)

.M2 δ(3 + δ)

(1 − δ)(1 + δ)
.

Now choose δ sufficiently small such that ε ≤ ε0(M), then there exists a global regular solution

by Theorem 1.1. This give a simple and directly proof of the similar result of [8] and also of [9].

2 Preliminaries

We conclude the introduction by giving some notations which will be used throughout this

paper. We always use X . Y to denote X ≤ CY for some constant C > 0. Similarly, X .u Y

indicates that there exists a constant C := C(u) depending on u such that X ≤ C(u)Y . We

also use the notation X ∼ Y to denote X . Y . X .

Let ψ(ξ) be a radial smooth function supported in the ball {ξ ∈ R3 : |ξ| ≤ 11
10} and equal to

1 on the ball {ξ ∈ R3 : |ξ| ≤ 1}. For each number N > 0, we define the Fourier multipliers

P̂≤Ng
¯
(ξ) : = ψ

( ξ
N

)
ĝ
¯
(ξ),

P̂>Ng
¯
(ξ) : =

(
1− ψ

( ξ
N

))
ĝ
¯
(ξ),

P̂Ng
¯
(ξ) : =

(
ψ
( ξ

N

)
− ψ

(2ξ
N

))
ĝ
¯
(ξ)

and similarly define P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We usually use this multipliers when M and N are dyadic numbers.

As some applications of the Littlewood-Paley theory, we have the following lemma.

Lemma 2.1 Suppose that a(D) is s-order pseudo-differential operator satisfying â (µ·) =
µsâ (·). Then we have

‖[a (D) , u]f‖L2 . ‖∇u‖L3‖Λsf‖L2, (2.1)

where Λ =
√
−∆.

Proof By Littlewood-Paley theory, we know

‖[a (D) , u]f‖2L2 .
∑

µ

‖[a (D) , P≤C−1µu]Pµf‖2L2 +
∑

C−1µ≤σ,σ∼σ
′

‖[a (D) , Pσ
′u]Pσf‖2L2

+
∑

µ

‖[a (D) , Pµu]P≤C−1µf‖2L2

=: I1 + I2 + I3, (2.2)

where C is a large fixed constant. We only estimate I1, the rest terms can be estimated similarly.
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From the frequency support property, we see

[a (D) , P≤C−1µu]Pµf ∼ [P≤Cµa (D) , P≤C−1µu]Pµf.

We use the notation χ to denote the kernel of P≤Cµa (D), and â (ξ)χ1

(
ξ
µ

)
to denote the

Fourier transform of P≤Cµa (D).

Then, we have

[P≤Cµa (D) , P≤C−1µu]Pµf = P≤Cµa (D) (P≤C−1µuPµf)− P≤C−1µuP≤Cµa (D)Pµf

=

∫

R3

χ (x− y)P≤C−1µu (y)Pµf (y) dy −
∫

R3

P≤C−1µu (x)χ (x− y)Pµf (y) dy

=

∫ 1

0

∫

R3

χ (x− y) (x− y) · P≤C−1µ∇u (sx+ (1− s)y)Pµf (y) dyds

.

∫ 1

0

∫

R3

|zχ (z)||P≤C−1µ∇u (x+ (s− 1)z)||Pµf (x− z)|dzds. (2.3)

By Minkowski inequality, we have

‖[a (D) , P≤C−1µu]Pµf‖2L2 . ‖zχ(z)‖2L1‖|P≤C−1µ∇u‖2L3‖|Pµf‖2L6

. ‖zχ(z)‖2L1‖|P≤C−1µ∇u‖2L3‖|Pµ∇f‖2L2 . (2.4)

In fact,

χ(z) = F−1
(
â (ξ)χ1

( ξ
µ

))
= µsF−1

(
â
( ξ
µ

)
χ1

( ξ
µ

))
:= µsµ3χ̃ (µz) .

Therefore,

‖zχ(z)‖L1 = µs−1µ3‖µzχ̃ (µz) ‖L1 . µs−1. (2.5)

Combining above, we obtain

I1 . ‖∇u‖2L3‖Λsf‖2L2. (2.6)

3 Proof of the Main Results

Proof Let λ be a constant depending only on the initial data which is to be determined.

We will use a bootstrap argument to prove (1.1).

We first assume that

‖ω − λu‖2
Ḣ

−
1

2 (R3)
+

∫ t

0

‖ω − λu‖2
Ḣ

1

2 (R3)
dτ ≤ ε

1

2 , where ω = ∇× u. (3.1)

If the bootstrap assumption holds, we can prove the theorem as follows. From the identity

u · ∇u = ω × u+∇|u|2
2
,

we have

∂tu+ ω × u+∇
(
p+

|u|2
2

)
−∆u = 0, (3.2)
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which leads to

∂tu+ (ω − λu)× u+∇
(
p+

|u|2
2

)
−∆u = 0.

Thus, we obtain

〈Λu, ∂tu+ (ω − λu)× u−∆u〉L2(R3) = 0.

Making direct energy estimate, we get

1

2

d

dt
‖Λ 1

2 u‖2L2(R3) + ‖∇Λ
1

2u‖2L2(R3)

≤ ‖Λu‖L3(R3)‖u‖L3(R3)‖ω − λu‖L3(R3)

. ‖Λu‖
Ḣ

1

2 (R3)
‖Λ 1

2 u‖L2(R3)‖Λ
1

2 (ω − λu)‖L2(R3)

≤ 1

2
‖Λu‖2

Ḣ
1

2 (R3)
+ C‖Λ 1

2u‖2L2(R3)‖∇Λ
1

2 (ω − λu)‖2L2(R3)

≤ 1

2
‖Λu‖2L2(R3) + C‖Λ 1

2 u‖2L2(R3)‖Λ
1

2 (ω − λu)‖2L2(R3).

Integrating in t and using the Young inequality, we get

‖Λ 1

2u‖2L2(R3) +

∫ t

0

‖∇Λ
1

2 u‖2L2(R3)dτ

. ‖Λ 1

2u0‖2L2(R3) + C

∫ t

0

‖Λ 1

2 u‖2L2(R3)‖Λ
1

2 (ω − λu)‖2L2(R3)dτ. (3.3)

Thus, by bootstrap assumption (3.1) and Gronwall’s inequality,

‖Λ 1

2 u‖2L2(R3) +

∫ t

0

‖Λ 3

2u‖2L2(R3)dτ ≤ eCε
1

2

M ≤ 2M, (3.4)

if ε < ln2 2
C2 .

Now, we prove the bootstrap assumption. We recall the equations for vorticity ω and

velocity u

∂tω + u · ∇ω − ω · ∇u = ∆ω,

∂tu+ u · ∇u +∇p = ∆u.

So

∂t(ω − λu) + u · ∇(ω − λu)−∆(ω − λu)

= ω · ∇u− λ∇p
= (ω − λu) · ∇u+ λu · ∇u− λ∇p

= (ω − λu) · ∇u+ ω × λu+ λ∇
( |u|2

2
− p

)

= (ω − λu) · ∇u+ ω × (λu − ω) + λ∇
( |u|2

2
− p

)
.

Taking inner product with Λ−1(ω−λu) and making an intergration by parts, we have energy

estimate as follows:

1

2

d

dt
‖Λ− 1

2 (ω − λu)‖2L2(R3) + ‖Λ 1

2 (ω − λu)‖2L2(R3)
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= −〈Λ−1(ω − λu), u · ∇(ω − λu)〉L2(R3) + 〈Λ−1(ω − λu), (ω − λu) · ∇u〉L2(R3)

+ 〈Λ−1(ω − λu), ω × (λu − ω)〉L2(R3).

Noting that

〈Λ−1(ω − λu), u · ∇(ω − λu)〉L2(R3) = 〈Λ− 1

2 (ω − λu), [Λ− 1

2 , u · ∇](ω − λu)〉L2(R3) (3.5)

by Hölder inequality, Sobolev embedding and Lemma 2.1, we have

〈Λ− 1

2 (ω − λu), [Λ− 1

2 , u · ∇](ω − λu)〉L2(R3)

. ‖Λ− 1

2 (ω − λu)‖L2(R3)‖[Λ− 1

2 , u · ∇](ω − λu)‖L2(R3)

. ‖Λ− 1

2 (ω − λu)‖L2(R3)‖Λ
1

2ω‖L2(R3)‖Λ
1

2 (ω − λu)‖L2(R3). (3.6)

Similarly, we also obtain

〈Λ−1(ω − λu), (ω − λu) · ∇u〉L2(R3)

. ‖Λ−1(ω − λu)‖L3(R3)‖(ω − λu)‖L3(R3)‖∇u‖L3(R3)

. ‖Λ− 1

2 (ω − λu)‖L2(R3)‖Λ
1

2 (ω − λu)‖L2(R3)‖Λ
1

2ω‖L2(R3) (3.7)

and

〈Λ−1(ω − λu), ω × (λu − ω)〉L2(R3)

. ‖Λ−1(ω − λu)‖L3(R3)‖ω‖L3(R3)‖(ω − λu)‖L3(R3)

. ‖Λ− 1

2 (ω − λu)‖L2(R3)‖Λ
1

2ω‖L2(R3)‖Λ
1

2 (ω − λu)‖L2(R3). (3.8)

Combining (3.6)–(3.8) and using Hölder inequality and Young inequality, we obtain the

energy estimates as follows:

‖Λ− 1

2 (ω − λu)‖2L2(R3) +

∫ t

0

‖Λ 1

2 (ω − λu)‖2L2(R3)dτ

. ‖Λ− 1

2 (ω0 − λu0)‖2L2(R3)

+
( ∫ t

0

‖Λ 1

2ω‖2L2(R3)dτ‖Λ− 1

2 (ω − λu)‖2L2(R3)dτ
) 1

2

( ∫ t

0

‖Λ 1

2 (ω − λu)‖2L2(R3)dτ
) 1

2

. ‖Λ− 1

2 (ω0 − λu0)‖2L2(R3)

+
1

2

∫ t

0

‖Λ 1

2ω‖2L2(R3)‖Λ− 1

2 (ω − λu)‖2L2(R3)dτ +
1

2

∫ t

0

‖Λ 1

2 (ω − λu)‖2L2(R3)dτ.

Noting the fact

‖Λ− 1

2 (ω0 − λu0)‖2L2(R3) = ‖Λ− 1

2ω0‖2L2(R3) − 2λ〈Λ− 1

2ω0,Λ
− 1

2u0〉L2(R3)

+ λ2‖Λ− 1

2 u0‖2L2(R3), (3.9)

we choose λ to minimize (3.9), which is

λ =
〈Λ−1ω0, u0〉L2(R3)

‖Λ− 1

2 u0‖2L2(R3)

.
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Therefore,

‖Λ− 1

2 (ω0 − λu0)‖2L2(R3) = ‖Λ− 1

2ω0‖2L2(R3) −
〈Λ−1ω0, u0〉2L2(R3)

‖Λ− 1

2u0‖2L2(R3)

.

Thus, by Gronwall’s inequality, we get

‖Λ− 1

2 (ω − λu)‖2L2(R3) +

∫ t

0

‖Λ 1

2 (ω − λu)‖2L2(R3)dτ . ε exp
( ∫ t

0

‖Λ 1

2ω‖2L2(R3)dτ
)

. eCMε. (3.10)

Now, we take ε0(M) = min
{
ln2 2
C2 ,

1
4e

−4CM
}
, then (3.10) improves (3.1). By continuous

induction we finish our proof.
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