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Abstract In this paper, the authors will prove the global existence of solutions to the
three dimensional axially symmetric Prandtl boundary layer equations with small initial
data, which lies in H

1 Sobolev space with respect to the normal variable and is analytical
with respect to the tangential variables. The main novelty of this paper relies on careful
constructions of a tangentially weighted analytic energy functional and a specially designed
good unknown for the reformulated system. The result extends that of Paicu-Zhang in
[Paicu, M. and Zhang, P., Global existence and the decay of solutions to the Prandtl
system with small analytic data, Arch. Ration. Mech. Anal., 241(1), 2021, 403–446].
from the two dimensional case to the three dimensional axially symmetric case, but the
method used here is a direct energy estimates rather than Fourier analysis techniques
applied there.
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1 Introduction

The main purpose of this paper is to study the well-posedness of the initial-boundary value

problem for the three dimensional axially symmetric Prandtl boundary layer equations in the

domain {(t, x, y, z) ∈ R
4 : t > 0, (x, y) ∈ R

2, z > 0}.
The general three dimensional Prandtl boundary layer equations read as follows,






∂tũ+ (ũ∂x + ṽ∂y + w̃∂z)ũ+ ∂xp = ∂2
z ũ,

∂tṽ + (ũ∂x + ṽ∂y + w̃∂z)ṽ + ∂yp = ∂2
z ṽ,

∂xũ+ ∂y ṽ + ∂zw̃ = 0,

(ũ, ṽ, w̃)|z=0 = 0, lim
z→+∞

(ũ, ṽ) = (U(t, x, y), V (t, x, y)),

(1.1)

where (U(t, x, y), V (t, x, y)) and p(t, x, y) are respectively the tangential velocity fields and
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pressure of the Euler flow, satisfying

{
∂tU + U∂xU + V ∂yU + ∂xp = 0,

∂tV + U∂xV + V ∂yV + ∂yp = 0.
(1.2)

Here we write ũ = (ũ, ṽ, w̃) and U = (U(t, x, y), V (t, x, y)).

The Prandtl equations were proposed by Prandtl [26] in 1904 in order to explain the mis-

match between the no slip boundary condition of the Navier-Stokes equations and the corre-

sponding Euler equations when the vanishing viscosity limit ν → 0. Reader can see [23] and

references therein for more introductions on the boundary layer theory and check [10] for some

recent development on this topic.

Since Prandtl equations (1.1) have no tangential diffusion and the advection term will cause

one order tangential derivative loss when we perform finite-order energy estimates, local in time

well-posedness of the Prandtl equations in Sobolev spaces for general data without structure

assumptions is still an open question.

For data in Sobolev spaces, under the monotonic assumption on the tangential velocity of the

outflow, Oleinik and Samokhin [23] proved the local existence and uniqueness by using Crocco

transform for the two dimensional Prandtl equations. Recently, in [2] (see also [22]), the second

author of the present work and their collaborators introduced a nice change of variable such

that the cancellation property of the bad term was discovered and the local well-posedness in

Sobolev spaces was proved by direct weighted energy estimates. Ill-posedness in Sobolev spaces

for the Prandtl equations around non-monotonic outflow can be found in E and Engquist [6],

Gerard-Varet and Dormy [7], and Gerard-Varet and Nguyen [9]. For the three dimensional

Prandtl equations, Liu, Wang and Yang [20] proved the local well-posedness of solutions in

Sobolev spaces under some constraints on the flow structure in addition to the monotonic

assumption. While this flow structure is violated, in [19], they showed the ill-posedness of the

3D Prandtl equations in Sobolev spaces, which indicates that the monotonicity condition on

tangential velocity fields is not sufficient for the well-posedness of the three-dimensional Prandtl

equations.

As for the long time behavior of the Prandtl equations in Sobolev spaces, Oleinik and

Samokhin [23] showed global regular solutions existence when the tangential variable belongs

to a finite interval with the amplitude being small. Xin and Zhang [29] proved the global

existence of weak solutions under an additional favorable sign condition on the pressure p, and

the regularity and uniqueness results are obtained in the recent paper [30]. The second author

of the present paper and Zhang [31] proved that the lifespan of the solution is O(ln 1
ε
) if the

initial datum is a small ε perturbation around the monotonic shear flow in Sobolev spaces. All

the above results are discussed in the two-dimensional spaces.

For data in analytical spaces, Sammartino and Caflisch [27] established the local well-

posedness in both tangential and normal variables by using the abstract Cauchy-Kowalewski

theorem. The analyticity on the normal variable was removed in [21]. Later in [14], Kukavica

and Vicol gave an energy-based proof of the local well-posedness result with data analytical

only with respect to the tangential variable. The above results are both valid for the two and

three dimensional Prandtl equations. To relax the analyticity condition is not easy. In the case

where the data has a single non-degenerate critical point in the normal variable at each fixed
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tangential variable point, Gérard-Varet and Masmoudi [8] proved the local well-posedness of

the two dimensional Prandtl equations in Gevrey class 7
4 with respect to the tangential variable,

which was extended to Gevrey class 2 in [15] for data that are small perturbations of a shear flow

with a single non-degenerate critical point for the three-dimensional Prandtl equations. Note

that this exponent 2 is optimal in view of the instability mechanism of [7]. Recently, Dietert

and Gérard-varet [5] improved the well-posedness to Gevrey class 2 by removing the hypothesis

on the number and order of the critical points for the two-dimensional Prandtl equations, which

was extended to the three-dimensional case in [16].

For the long time existence of the Prandtl equations with analytical data, the first result

appeared in Zhang and Zhang [32] where authors proved that the lifespan of the tangentially

analytical solution is O(ε
−4
3 ) if the datum is an ε size and the outflow is of size ε

5
3 for the two

and three-dimensional Prandtl equations. Later, an almost global existence result was proved

in [12] in two-dimensional case, where a good unknown combining the tangential component

of the velocity and its derivative on the normal variable is introduced to extend the existence

time. This result was extended to the three cases in [17]. Most recently, global existence of

tangentially analytical solutions with small data was proved in [24] for the two dimensional

Prandtl equations. This result was improved to the optimal Gevrey class 2 in [28]. As far as

the authors know, there is not any results concerning on the global existence of tangentially

analytical solutions for the three Prandtl equations.

The main purpose of this paper is to study the global existence of tangentially analytical

solutions for the three-dimensional axially symmetric Prandtl equations. As far as the authors

know, study on the axially symmetric flow has attracted more and more attention recently, such

as pointwise blow-up criteria and Liouville type theorems for the axially symmetric Navier-

Stokes equations in [3-4, 13, 25] and references therein. Most recently, Albritton, Brué and

Colombo obtained the non-uniqueness of Leray solutions of the forced axially symmetric Navier-

Stokes equations in [1]. The novelty of our present work lies in the followings: First, we will

construct an energy functional which involves in a polynomial weight on the tangential variables.

This carefully constructed energy is based on the special structure of the axially symmetric

Prandtl equations and mainly set to overcome the order mismatch between the tangentially

radial velocity ur, and the normal velocity uz, with respect to the distance to the symmetric

axis r, when we use the divergence free condition to connect them each other. Second, the

unknown acted on by the energy functional is specially designed, which is a combination of

the tangentially radial velocity ur, and its primitive one in the normal variable. This quantity

has a sufficiently fast decay-in-time rate for our constructed weighted analytical energy, which

ensures the positive lower bound of the analytical radius for any time. Its two dimensional

originality can be traced to Paicu-Zhang [24].

2 Reformulation of the Problem and the Main Theorem

2.1 Reformulation of the equations

In the following, we give a derivation of the three dimensional axially symmetric Prandlt
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equations in cylindrical coordinates (r, θ, z), i.e., for x = (x, y, z) ∈ R
3,

r =
√
x2 + y2, θ = arctan

y

x
.

A solution of (1.1) and (1.2) are said to be an axisymmetic solution, if and only if

ũ = ũr(t, r, z)er + ũθ(t, r, z)eθ + ũz(t, r, z)ez,

U = U r(t, r, z)er + Uθ(t, r, z)eθ,

p = p(t, r)

satisfy the system (1.1) and (1.2), separately, where the components of ũ and Ũ in cylindrical

coordinates are independent of θ and the basis vectors er, eθ, ez are

er =
(x
r
,
y

r
, 0
)
, eθ =

(
− y

r
,
x

r
, 0
)
, ez = (0, 0, 1).

Then in cylindrical coordinates, systems (1.1) and (1.2) satisfy






∂tũ
r + (ũr∂r + ũz∂z)ũ

r − (ũθ)2

r
+ ∂rp = ∂2

z ũ
r,

∂tũ
θ + (ũr∂r + ũz∂z)ũ

θ +
ũθũr

r
= ∂2

z ũ
θ,

∂r(rũ
r)

r
+ ∂zũ

z = 0,

(ũr, ũθ, ũz)
∣∣
z=0

= 0, lim
z→+∞

(ũr, ũθ) = (U r, Uθ)

(2.1)

and





∂tU
r + U r∂rU − U2

θ

r
+ ∂rp = 0,

∂tU
θ + U r∂rU

θ +
U rUθ

r
= 0.

Now we consider that the flow is swirl free, which means uθ = Uθ ≡ 0. Also we consider the

simple case of the outflow U r ≡ 0, which indicates that ∂rp ≡ 0. Then (2.1) is simplified to





∂tũ
r + (ũr∂r + ũz∂z)ũ

r − ∂2
z ũ

r = 0,

∂r(rũ
r)

r
+ ∂zũ

z = 0,

(ũr, ũz)|z=0 = 0, lim
z→+∞

ũr = 0.

(2.2)

This simplified axially symmetric boundary layer equations (2.2) have appeared in [23,

Chapter 4.1]. If the axially symmetric velocity ũ = ũr(t, r, z)er + ũθ(t, r, z)eθ + ũz(t, r, z)ez is

smooth and divergence free, we can deduce that

ũr
∣∣
r=0

= ũθ
∣∣
r=0

≡ 0.

See (reference [18]). Then there is not singularity for the quantity ũr

r
at r = 0.

Set the new unknowns

(ur, uz) :=
( ũr

r
, ũz

)
,
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which satisfy the following new formation of axially symmetric Prandtl boundary layer equations





∂tu
r + (rur∂r + uz∂z)u

r − ∂2
zu

r + (ur)2 = 0,

r∂ru
r + 2ur + ∂zu

z = 0,

(ur, uz)
∣∣
z=0

= 0, lim
z→+∞

ur = 0.

(2.3)

2.2 The linearly good unknown

We assume that ur, uz decay sufficiently fast as z → ∞ and define

φ(t, r, z) := −
∫ +∞

z

ur(t, r, z̄)dz̄, (2.4)

which also decays sufficiently fast at z infinity. By integrating (2.3)1 on [z,+∞] with respect

to z variable, we have






∂tφ− ∂2
zφ− uruz +

∫ ∞

z

(ur)2dz̄ − 2

∫ ∞

z

∂zu
ruzdz̄ = 0,

∂zφ
∣∣
z=0

= 0, lim
z→+∞

φ = 0,

φ
∣∣
t=0

= φ0 =

∫ ∞

z

ur(0, r, z̄)dz̄.

And (ur, uz) is obtained from φ as

ur = ∂zφ, uz = −r∂rφ− 2φ.

Inspired by the good unknown in [24], we define

g := ∂zφ+
z

2〈t〉φ = ur +
z

2〈t〉φ, (2.5)

which satisfies




∂tg + (rur∂r + uz∂z)g − ∂2
zg +

1

〈t〉g + (ur)2 − 1

2〈t〉u
z∂z(zφ) +

z

〈t〉u
rφ

+
z

2〈t〉

∫ ∞

z

(ur)2dz̄ − z

〈t〉

∫ ∞

z

∂zu
ruzdz̄ = 0,

g
∣∣
z=0

= 0, lim
z→+∞

g = 0,

g
∣∣
t=0

= g0 = ur(0, r, z) +
z

2
φ0(r, z).

(2.6)

The introduced g can control the velocity ur and uz nicely with a lower order time weight

which leads to the possibility of closing our energy functional defined below for any t > 0.

2.3 Energy functional spaces and the main result

Set

θ(t, z) := exp
( z2

8〈t〉
)
.
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For λ ∈ R, set

θλ(t, z) = exp
(λz2

8〈t〉
)
.

Then for any λ, µ ∈ R, θλ+µ = θλ · θµ.
Denote

Mn =
(n+ 1)4

n!
, ∂α

h = ∂α1
x ∂α2

y , α = (α1, α2) ∈ N
2

and

〈r〉 = (r2 + 1)
1
2 =

√
x2 + y2 + 1, 〈t〉 = (t+ 1), (x, y) ∈ R

2, t ≥ 0.

For a positive time-dependent function τ := τ(t), we introduce the Sobolev weighted semi-norms

Xn = Xn(g, τ) =
∑

|α|=n

‖θ〈r〉n∂α
h g‖L2τnMn, n ∈ N;

Dn = Dn(g, τ) =
∑

|α|=n

‖θ〈r〉n∂α
h∂zg‖L2τnMn = Xn(∂zg, τ), n ∈ N;

Yn = Yn(g, τ) =
∑

|α|=n

‖θ〈r〉n∂α
h g‖L2τn−1nMn, n ∈ (N/{0}).

(2.7)

We consider the following functional space that is real-analytic in xh = (x, y) and lies in a

weighted L2 space with respect to z,

Xτ = {∀α ∈ N
2, 〈r〉|α|∂α

h g(t, r, z) ∈ L2(R3
+; θ

2dxdydz) : ‖g‖Xτ
< ∞},

where

‖g‖Xτ
=

∑

n≧0

Xn(g, τ).

Remark 2.1 In the first equation of (2.7), there is a weight 〈r〉n for the tangential nth

order derivative, which is set to match and control the term r∂rg appeared in (2.6).

We also define the semi-norm

‖g‖Yτ
=

∑

n≥1

Yn(g, τ),

which encodes the one-derivative gain in the analytic estimates. Note that for β > 1, we have

‖g‖Yτ
≤ τ−1‖g‖Xβτ

sup
n≥1

(
nβ−n

)
≤ Cβτ

−1‖g‖Xβτ
.

The gain of a z derivative shall be encoded in the dissipative semi-norm

‖g‖Dτ
=

∑

n≧0

Dn(g, τ) = ‖∂zg‖Xτ
.

Having introduced the functional spaces in our paper and before presenting the main results,

we give a definition of solution to the reformulated Prandtl equation (2.6).
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Definition 2.1 (Classical in tangential variables and weak in normal variable) For a fixed

time t > 0, let H be the closure of the set of functions

{
f(t, x, y, z) ∈ C∞

c (R2 × [0,+∞)) : f |z=0 = 0
}

under the space norm

‖f(t)‖2H :=
∑

|α|≤3

∫

R
3
+

|∂α
h f(t, x, y, z)|2 exp

( z2

4〈t〉
)
dxdydz.

For T > 0, we say that a function g is classical in x, y and weak in z solution of (2.6) if

‖g(t)‖H ∈ L∞([0, T )) and ‖∂zg(t)‖H ∈ L2([0, T )),

and (2.6) holds when tested by C∞
c ([0, T )× R

2 × [0,+∞)).

Theorem 2.1 Let g0(r, z) be tangentially analytical with radius of analyticity being τ0 > 0.

Then, for any 0 < δ ≤ 1
4 , there exists a ε0, depending only on δ and τ0, such that for any

ε ≤ ε0, if
∫∞

0
ur(0, r, z)dz = 0 and

‖g0‖Xτ0
≤ ε,

then (2.6) has a globally in-time solution g, which is tangentially analytical with the radius of

analyticity τ(t) ≥ 1
2τ0 and for any t > 0, it satisfies

〈t〉 5
4−δ‖g(t)‖Xτ(t)

+
δ

12

∫ t

0

(〈s〉 1
4−δ‖g(s)‖Xτ(s)

+ 〈s〉 3
4−δ‖g(s)‖Dτ(s)

)ds

+ C0

∫ t

0

〈s〉 5
4−δ

τ2(s)
(‖g(s)‖Xτ(s)

+ 〈s〉 1
4 ‖g(s)‖Dτ(s)

)‖g(s)‖Yτ(s)
ds ≤ ‖g0‖Xτ0

≤ ε0. (2.8)

Remark 2.2 It follows from the estimates in Lemma (3.1) and Lemma (3.2) below that

bounds on g, ∂zg in (2.8) in Xτ imply similar estimates on ur and uz. So global existence

and uniqueness of tangentially analytical solutions in Theorem 2.1 indicates global existence

and uniqueness of tangentially analytical solutions for the original system (2.3) and (2.2). The

proof of Theorem 2.1 mainly consists of a priori estimates (cf. Section 3) and the local well-

posedness. Since the local existence and uniqueness of the tangentially analytical solutions has

already shown in many references, e. g. [14, 32], here we only present the a priori estimate

(2.8).

Remark 2.3 In the model (2.2), we only consider the case that the outflow U r ≡ 0.

Actually the proof can be also applied to the case that U r = rεf(t), where ε > 0 is sufficiently

small and f(t) decays sufficiently fast as t → +∞. The computation will be more elaborated

and complicated. For simplicity and convenience of presenting the main idea, we omit this

extension and leave it to the interested reader.

Remark 2.4 Here we only consider the the axially symmetric Prandtl equation, and ex-

tensions of Theorem 2.1 to the axially symmetric MHD boundary layer system and in the

tangential Gevrey spaces will be considered in our future work.



580 X. H. Pan and C. J. Xu

For a function f(t, x, y, z) and 1 ≤ p, q ≤ +∞, define

‖f(t)‖Lp

h
L

q
z
:=

(∫ +∞

0

( ∫

R2

|f(t, x, y, z)|pdxdy
) q

p

dz
) 1

q

.

If p = q, we simply write it as ‖f‖Lp and besides, if p = q = 2, we will simply denote it as

‖f‖. Throughout the paper, Ca,b,c,··· denotes a positive constant depending on a, b, c, · · · which
may be different from line to line. We also apply A .a,b,c,··· B to denote A ≤ Ca,b,c,···B. For a

two dimensional multi-index α = (α1, α2) ∈ N
2, we write ∂α

h = ∂α1
x ∂α2

y and ∂k
h = {∂α

h ; |α| = k}.
For a norm ‖ · · · ‖, we use ‖(f, g, · · · )‖ to denote ‖f‖+ ‖g‖+ · · · .

3 A Priori Estimates and Proof of the Main Theorem

First, we state a simple version of the local well-posedness result on the three dimensional

Prandtl equations in tangentially analytical spaces (see [14, Theorem 3.1, Remark 3.3]).

Theorem 3.1 (see [14, Theorem 3.1] with the outflow being zero in three dimensional

spaces) Fix the constant ν > 1
2 , denote 〈z〉 := 1 + z. For a function f(t, x, y, z) and τ(t) > 0,

define

‖f(t)‖2
X̃τ(t)

:=
∑

n≥0

∑

|α|=n

‖〈z〉ν∂α
x,yf(t, x, y, z)‖2L2(R3

+)τ
2n(t)M2

n.

Then, for τ0 > 0, if the solution to (1.1) with the outflow U being zero satisfies

(ũ, ṽ)|t=0 := (ũ0, ṽ0) ∈ X̃τ0 ,

then there exists a T∗ = T∗(ν, τ0, ‖(ũ0, ṽ0)‖X̃τ0
) > 0, such that the three dimensional Prandtl

equations (1.1) have a unique real-analytical solution in [0, T∗) satisfying for any t ∈ [0, T∗),

τ(t) > 0 and

‖(ũ, ṽ)(t)‖X̃τ(t)
< +∞.

Based on the above local well-posedness result of the three dimensional Prandtl equations,

The proof of Theorem 2.1 is simplified to continuity argument and the following a prior estimate,

stated as Proposition 3.1.

Proposition 3.1 For T > 0, let g be the tangentially analytical solution of (2.6) and g0(r, z)

be tangentially analytical with radius of analyticity being τ0 > 0. Then, for any 0 < δ ≤ 1
4 ,

there exists a ε0, depending only on δ and τ0 such that for any ε ≤ ε0, if
∫∞

0
ur(0, r, z)dz = 0

and

‖g0‖Xτ0
≤ ε,

then for any 0 < t < T , the solution g satisfies

〈t〉 5
4−δ‖g(t)‖Xτ(t)

+
δ

12

∫ t

0

(〈s〉 1
4−δ‖g(s)‖Xτ(s)

+ 〈s〉 3
4−δ‖g(s)‖Dτ(s)

)ds

+ C0

∫ t

0

〈s〉 5
4−δ

τ2(s)
(‖g(s)‖Xτ(s)

+ 〈s〉 1
4 ‖g(s)‖Dτ(s)

)‖g(s)‖Yτ(s)
ds ≤ ‖g0‖Xτ0

≤ ε0,

and the tangentially analytical radius τ(t) ≥ 1
2τ0.
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Before proving Proposition 3.1, we give two lemmas which concern on bounds of ur, uz, φ

in terms of g.

3.1 Bounds of ur, uz, φ in terms of g

Lemma 3.1 Let (ur, uz) be the solution of (2.3), φ and g be respectively the functions

defined in (2.4) and (2.5). For any n ∈ N, |α| = n and 0 ≤ λ < 1, we have

|θλ〈r〉n∂α
hφ| .λ θλ−1〈t〉

1
4 ‖θ〈r〉n∂α

h g‖L2
z
, (3.1)

|θλ〈r〉n∂α
hu

r| .λ |θλ〈r〉n∂α
h g|+

z

〈t〉 3
4

θλ−1‖θ〈r〉n∂α
h g‖L2

z (3.2)

and

|θλ〈r〉n∂α
h∂zu

r| .λ

z

〈t〉 |θλ〈r〉
n∂α

h g(z)|+ |θλ〈r〉n∂α
h∂zg|

+
( 1

〈t〉 +
z2

〈t〉2
)
θλ−1〈t〉

1
4 ‖θ〈r〉n∂α

h g‖L2
z
. (3.3)

Proof We only show the proof of that n = 0 since the case n > 0 follows the same line.

From the second equation of (2.3), we have

r∂r

∫ ∞

0

urdz + 2

∫ ∞

0

urdz = −
∫ ∞

0

∂zuzdz = uz(t, r, 0) = 0,

which indicates that

r

∫ ∞

0

urdz = 0.

Since when r > 0, the above equality implies that
∫∞

0
urdz = 0 for r > 0, then continuity of ur

indicates that
∫ ∞

0

urdz ≡ 0.

By the definitions of φ and g in (2.4)–(2.5), we have





∂zφ+

z

2〈t〉φ = g,

φ
∣∣
z=0

= 0.
(3.4)

Solving the ODE, we get

φ(t, r, z) = exp
(
− z2

4〈t〉
)∫ z

0

g(t, r, z̄) exp
( z̄2

4〈t〉
)
dz̄. (3.5)

For any 0 ≤ λ < 1, by multiplying the above equality with θλ, we have

θλφ = θλ−1(z)

∫ z

0

θ(z̄)g(z̄) exp
( 1

8〈t〉 (z̄
2 − z2)

)
dz̄. (3.6)
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Differentiating (3.5) on z gives that

ur(t, r, z) = ∂zφ = − z

2〈t〉 exp
(
− z2

4〈t〉
)∫ z

0

g(t, r, z̄) exp
( z̄2

4〈t〉
)
dz̄ + g. (3.7)

Multiplying (3.7) by θλ gives that

θλu
r =θλg −

z

2〈t〉θλ−1(z)

∫ z

0

θ(z̄)g(z̄) exp
( 1

8〈t〉 (z̄
2 − z2)

)
dz̄. (3.8)

Differentiating (3.7) on z and multiplying the resulted equation by θλ give that

θλ∂zu
r = θλ∂zg −

z

2〈t〉θλg

−
( 1

2〈t〉 −
z2

4〈t〉2
)
θλ−1

∫ z

0

θ(z̄)g(z̄) exp
( 1

8〈t〉 (z̄
2 − z2)

)
dz̄. (3.9)

Using the fact that for any β ≥ 0,

sup
ζ≧0

ζβe−ζ2 ≤ Cβ ,

we have
∣∣∣
( z√

〈t〉

)β

θλ−1

∣∣∣ ≤ Cλ,β .

Moreover, by considering 0 ≤ ζ ≤ 1 and ζ > 1, it is not hard to check that

e−ζ2

∫ ζ

0

eζ̄
2

dζ̄ ≤ 2

1 + ζ
.

Then a change of variable indicates that

∫ z

0

exp
( 1

4〈t〉 (z̄
2 − z2)

)
dz̄ ≤ C

1 + ζ

√
〈t〉. (3.10)

Here ζ = z√
〈t〉

. In (3.6), by using Hölder inequality on z, we have

|θλφ| ≥θλ−1(z)‖θg‖L2
z

(∫ z

0

exp
( 1

4〈t〉 (z̄
2 − z2)

)
dz̄

) 1
2

.θλ−1‖θg‖L2
z
〈t〉 1

4 (1 + ζ)−
1
4

.θλ−1‖θg‖L2
z
〈t〉 1

4 , (3.11)

which is (3.1) for n = 0.

In (3.8), by using Hölder inequality and (3.10), we have

|θλur| ≥ |θλg|+
z

〈t〉θλ−1‖θg‖L2
z

( ∫ z

0

exp
( 1

4〈t〉 (z̄
2 − z2)

)
dz̄

) 1
2

. |θλg|+
z

〈t〉 3
4

θλ−1‖θg‖L2
z
,

which is (3.2) for n = 0.
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In (3.9), by using Hölder inequality and (3.10), we have

|θλ∂zur| .λ

z

〈t〉 |θλg|+ |θλ∂zg|

+
( 1

〈t〉 +
z2

〈t〉2
)
θλ−1〈t〉

1
4 ‖θg‖L2

z
(1 + ζ)−

1
2

.λ

z

〈t〉 |θλg|+ |θλ∂zg|+
( 1

〈t〉 +
z2

〈t〉2
)
θλ−1〈t〉

1
4 ‖θg‖L2

z
,

which is (3.3) for n = 0.

By applying 〈r〉n∂α
h to (3.6) and (3.8)–(3.9), the above derivation from (3.11) also stands

by replacing φ, ur, ∂zu
r and g by 〈r〉n∂α

hφ, 〈r〉n∂α
hu

r, 〈r〉n∂α
h∂zu

r and 〈r〉n∂α
h g, respectively.

Based on the rough estimates in Lemma 3.1, we have the following much more subtle

integration controls of ur, uz and φ in terms of the weighted L2 norm of g.

Lemma 3.2 (Bounds of ur, uz, φ in terms of g) For any n ∈ N, |α| = n and 0 ≤ λ < 1,

we have the following estimates

‖θλ〈r〉n∂α
hφ‖L2

z
.λ 〈t〉 1

2 ‖θ〈r〉n∂α
h g‖L2

z
, (3.12)

‖θλ〈r〉n∂α
hu

r‖L2 .λ ‖θ〈r〉n∂α
h g‖L2, (3.13)

∑

|α|=n

‖θλ〈r〉n∂α
hu

r‖L∞
h

L2
z
.λ (n+ 1)2

n+2∑

|α|=n

‖θ〈r〉|α|∂α
h g‖L2, (3.14)

‖θλ〈r〉n∂α
hu

r‖L2
h
L∞

z
.λ ‖θ〈r〉n∂α

h (g, ∂zg)‖L2, (3.15)

∑

|α|=n

‖θλ〈r〉n∂α
hu

r‖L∞
h

L∞
z

.λ (n+ 1)2
n+2∑

|α|=n

‖θ〈r〉|α|∂α
h (g, ∂zg)‖L2 , (3.16)

‖θλ〈r〉n∂α
hu

z‖L2
h
L∞

z
.λ 〈t〉 1

4 ‖θ〈r〉n∂α
h (r∂rg, g)‖L2, (3.17)

∑

|α|=n

‖θλ〈r〉n∂α
hu

z‖L∞
h

L∞
z

.λ (n+ 1)2〈t〉 1
4

n+2∑

|α|=n

‖θ〈r〉|α|∂α
h (r∂rg, g)‖L2, (3.18)

‖θλ〈r〉n∂α
h∂zu

r‖L2 .λ 〈t〉− 1
2 ‖θ〈r〉n∂α

h g‖L2 + ‖θ〈r〉n∂α
h∂zg‖L2, (3.19)

∑

|α|=n

‖θλ〈r〉n∂α
h∂zu

r‖L∞
h

L2
z

.λ (n+ 1)2
n+2∑

|α|=n

(〈t〉− 1
2 ‖θ〈r〉|α|∂α

h g‖L2 + ‖θ〈r〉|α|∂α
h∂zg‖L2). (3.20)

Proof From (3.1), we have

‖θλ〈r〉n∂α
hφ‖L2

z
.λ ‖θλ−1‖L2

z
〈t〉

1
4 ‖θ〈r〉n∂α

h g‖L2
z

.λ 〈t〉
1
2 ‖θ〈r〉n∂α

h g‖L2
z
,

where we have used the fact that when λ− 1 < 0,

‖θλ−1‖L2
z
.λ 〈t〉 1

4 .
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Hence, we have obtained (3.12).

From (3.2), we have

‖θλ〈r〉n∂α
hu

r‖L2 .λ ‖θλ〈r〉n∂α
h g‖L2 + ‖ z

〈t〉 3
4

θλ−1‖L2
z
‖θ〈r〉n∂α

h g‖L2

.λ ‖θ〈r〉n∂α
h g‖L2, (3.21)

which is (3.13).

Using the two-dimensional Sobolev inequality

‖f‖L∞
h

. ‖f‖L2
h
+ ‖∂2

hf‖L2
h
,

we have

‖θλ〈r〉n∂α
hu

r‖L∞
h

L2
z
. ‖θλ〈r〉n∂α

hu
r‖L2

h
L2

z
+ ‖θλ∂2

h [〈r〉n∂α
hu

r] ‖L2
h
L2

z
. (3.22)

It is easy to show that for n ∈ N/{0},

∣∣∂2
h [〈r〉n∂α

hu
r]
∣∣ . (n+ 1)2

〈r〉2
2∑

|γ|=0

|〈r〉n+|γ|∂α+γ
h ur|. (3.23)

Inserting (3.23) into (3.22) and summing over |α| = n, we have

∑

|α|=n

‖θλ〈r〉n∂α
hu

r‖L∞
h

L2
z
. (n+ 1)2

n+2∑

|α|=n

‖θλ〈r〉|α|∂α
hu

r‖L2 . (3.24)

Inserting (3.21) into (3.24), we obtain (3.14).

Also from (3.2), we have

‖θλ〈r〉n∂α
hu

r‖L∞
z

. ‖θλ〈r〉n∂α
h g‖L∞

z
+ ‖ z

〈t〉 3
4

θλ−1‖L∞
z
‖θ〈r〉n∂α

h g‖L2

.λ ‖θλ〈r〉n∂α
h g‖L∞

z
+ 〈t〉− 1

4 ‖θ〈r〉n∂α
h g‖L2. (3.25)

Using one-dimensional Sobolev embedding

‖θλ〈r〉n∂α
h g‖L∞

z
. ‖θλ〈r〉n∂α

h g‖
1
2

L2
z
‖∂z(θλ〈r〉n∂α

h g)‖
1
2

L2
z

. ‖θλ〈r〉n∂α
h g‖

1
2

L2
z

[
‖θλ〈r〉n∂α

h∂zg‖L2
z
+
∥∥∥
z

〈t〉θλ〈r〉
n∂α

h g
∥∥∥
L2

z

] 1
2

.λ ‖θ〈r〉n∂α
h g‖L2

z
+ ‖θ〈r〉n∂α

h∂zg‖L2
z
.

Inserting the above inequality into (3.25), we can have

‖θλ〈r〉n∂α
hu

r‖L∞
z

.λ ‖θ〈r〉n∂α
h (g, ∂zg)‖L2

z
. (3.26)

The bound (3.15) follows from taking L2 norms in x, y variables of the above inequality

(3.26).

Similar to (3.24), we can have

∑

|α|=n

‖θλ〈r〉n∂α
hu

r‖L∞
h

L∞
z

. (n+ 1)2
n+2∑

|α|=n

∥∥∥θλ〈r〉|α|∂α
hu

r
∥∥∥
L2

h
L∞

z

. (3.27)
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Integrating (3.26) on the tangential variables and inserting the resulted inequality into (3.27),

we can get (3.16).

From the incompressible condition, i.e., the second equation of (2.3), we have

uz(z) = −
∫ ∞

z

∂zu
z(z̄)dz̄ =

∫ ∞

z

(r∂ru
r + 2ur)(z̄)dz̄,

then we can get

‖θλ〈r〉n∂α
hu

z‖L∞
z

≤ ‖θλ〈r〉n∂α
h (r∂ru

r + 2ur)‖L1
z

.λ ‖θ〈r〉n∂α
h (r∂ru

r + 2ur)‖L2
z
‖θλ−1‖L2

z

.λ 〈t〉 1
4 ‖θ〈r〉n∂α

h (r∂ru
r + 2ur)‖L2

z
. (3.28)

From (3.2), we have

‖θλ〈r〉n∂α
h (r∂ru

r + 2ur)‖L2
z

.λ ‖θλ〈r〉n∂α
h (r∂r + 2)g‖L2

z
+
∥∥∥

z

〈t〉 3
4

θλ−1

∥∥∥
L2

z

‖θ〈r〉n∂α
h (r∂r + 2)g‖L2

z

.λ ‖θ〈r〉n∂α
h (r∂r + 2)g‖L2

z
.

Similar to (3.24), we can have

∑

|α|=n

‖θλ〈r〉n∂α
hu

z‖L∞
h

L∞
z

.λ (n+ 1)2
n+2∑

|α|=n

‖θλ〈r〉|α|∂α
hu

z‖L2
h
L∞

z
. (3.29)

Inserting (3.17) into (3.29), we can get (3.18).

Inserting the above inequality into (3.28) and then integrating the resulted equation in the

tangential variables imply that

‖θλ〈r〉n∂α
hu

z‖L2
h
L∞

z
.λ 〈t〉 1

4 ‖θ〈r〉n∂α
h (r∂r + 2)g‖L2,

which corresponds to (3.17).

Similar to (3.24), using the estimate (3.17), we can get (3.18).

From (3.3), we can get

‖θλ〈r〉n∂α
h∂zu

r‖L2 .λ ‖ z

〈t〉θλ−1‖L∞
z
‖θ〈r〉n∂α

h g‖L2 + ‖θ〈r〉n∂α
h∂zg‖L2

+
∥∥∥
( 1

〈t〉 +
z2

〈t〉2
)
θλ−1

∥∥∥
L2

z

〈t〉
1
4 ‖θ〈r〉n∂α

h g‖L2

.λ 〈t〉− 1
2 ‖θ〈r〉n∂α

h g‖L2 + ‖θ〈r〉n∂α
h∂zg‖L2,

which is (3.19).

Then almost in the same as (3.24), we can get

∑

|α|=n

‖θλ〈r〉n∂n
h∂zu

r‖L∞
h

L2
z
.λ (n+ 1)2

n+2∑

|α|=n

‖θλ〈r〉|α|∂α
h∂zu

r‖L2
h
L2

z

.λ (n+ 1)2
n+2∑

|α|=n

(〈t〉− 1
2 ‖θ〈r〉|α|∂α

h g‖L2 + ‖θ〈r〉|α|∂α
h∂zg‖L2),

which is (3.20).
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3.2 Weighted energy estimates for the good unknown g

Now we perform the weighted energy estimates for the good unknown g. Rewrite the first

equation of (2.6) as

∂tg − ∂2
zg +

1

〈t〉g = −(rur∂r + uz∂z)g − (ur)2 +
1

2〈t〉u
z∂z(zφ)−

z

〈t〉u
rφ

− z

2〈t〉

∫ ∞

z

(ur)2dz̄ +
z

〈t〉

∫ ∞

z

∂zu
ruzdz̄. (3.30)

Let n ≥ 0 and |α| = n. Applying 〈r〉n∂α
h to (3.30) and multiplying the resulted equation with

θ2〈r〉n∂α
h g, and then integrating over R3

+, we give

1

2

d

dt
‖θ〈r〉n∂α

h g‖2L2 + ‖θ〈r〉n∂α
h∂zg‖2L2 +

3

4〈t〉‖θ〈r〉
n∂α

h g‖2L2

= −
∫

θ〈r〉n∂α
h (u

rr∂rg)θ〈r〉n∂α
h g −

∫
θ〈r〉n∂α

h (u
z∂zg)θ〈r〉n∂α

h g

−
∫

θ〈r〉n∂α
h (u

r)2θ〈r〉n∂α
h g +

1

2〈t〉

∫
θ〈r〉n∂α

h (u
z∂z(zφ))θ〈r〉n∂α

h g

− 1

〈t〉

∫
zθ〈r〉n∂α

h (u
rφ)θ〈r〉n∂α

h g −
1

2〈t〉

∫
zθ

∫ ∞

z

〈r〉n∂α
h (u

r)2dz̄θ〈r〉n∂α
h g

+
1

〈t〉

∫
zθ

∫ ∞

z

〈r〉n∂α
h (∂zu

ruz)dz̄θ〈r〉n∂α
h g

: =
7∑

j=1

Iαj .

Here for a function f(t, x, y, z), we have denoted
∫
R

3
+
f(t, x, y, z)dxdydz simply by

∫
f if no

confusion is caused.

Dividing the above equality by ‖θ〈r〉n∂α
h g‖L2 and multiplying the resulted equation by

τn(t)Mn, then by summing for |α| = n, we can get that for n ≥ 0,

d

dt
Xn +

∑

|α|=n

‖θ〈r〉n∂α
h∂zg‖2L2

‖θ〈r〉n∂α
h g‖L2

+
3

4〈t〉Xn = τ̇ (t)Yn +
∑

|α|=n

τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

7∑

j=1

Iαj , (3.31)

where when n = 0, we set Y0 = 0.

Here we present a lemma to characterize the quantitative relation between ‖θ〈r〉n∂α
h g‖2L2

and ‖θ〈r〉n∂α
h∂zg‖2L2.

Lemma 3.3 Let g be a smooth enough function in x, y variables and belong to H1 in z

variable, which decays to zero sufficiently fast as z → +∞. Then we have

1

2〈t〉‖θ〈r〉
n∂α

h g‖2L2 ≤ ‖θ〈r〉n∂α
h∂zg‖2L2 . (3.32)

Inequality (3.32) is a special case of Treves inequality that can be found in [11]. Proof of

Lemma 3.3 can be found in [24, Lemma 3.1] (see also [12, Lemma 3.3]). Here, we omit the

details.

Using (3.32), from (3.31) we can obtain

d

dt
Xn +

1√
2〈t〉

Dn +
3

4〈t〉Xn ≤ τ̇ (t)Yn +
∑

|α|=n

τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

7∑

j=1

Iαj . (3.33)
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3.3 Proof of Proposition 3.1 and the main theorem

First, we state a proposition concerning on the estimates of the nonlinear terms in (3.33).

Proposition 3.2 (Estimates of the nonlinear terms) For the nonlinear terms in (3.33), we

have the following estimate

∑

n≧0

∑

|α|=n

τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

7∑

j=1

Iαj

≤ Cτ−2(t)(‖g‖Xτ
+ 〈t〉 1

4 ‖g‖Dτ
)‖g‖Yτ

+ Cτ−2(t)(‖g‖Xτ
+ 〈t〉 1

4 ‖g‖Dτ
)‖g‖Xτ

.

We postpone the proof of Proposition 3.2 till Section 4 and continue to prove the a priori

estimate in Proposition 3.1.

Proof of Proposition 3.1 From (3.33), by summing on n ≥ 0, we get for a uniform

constant C0,

d

dt
‖g‖Xτ

+
1√
2〈t〉

‖g‖Dτ
+

3

4〈t〉‖g‖Xτ

≤ (τ̇ + C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

))‖g‖Yτ

+ C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

)‖g‖Xτ
. (3.34)

By using (3.32), for any small δ1 > 0, we have

1√
2〈t〉

‖g‖Dτ
=

δ1√
2〈t〉

‖g‖Dτ
+

(1− δ1)√
2〈t〉

‖g‖Dτ

≥ δ1√
2〈t〉

‖g‖Dτ
+

(1− δ1)

2〈t〉 ‖g‖Xτ

≥ δ1√
2〈t〉

‖g‖Dτ
+

δ1
〈t〉‖g‖Xτ

+
1− 3δ1
2〈t〉 ‖g‖Xτ

.

Inserting the above inequality into (3.34), we obtain that

d

dt
‖g‖Xτ

+
5
4 − 3

2δ1

〈t〉 ‖g‖Xτ
+
( δ1
〈t〉‖g‖Xτ

+
δ1√
2〈t〉

‖g‖Dτ

)

≤ (τ̇ + C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

))‖g‖Yτ
+ C0τ

−2(t)(‖g‖Xτ
+ 〈t〉 1

4 ‖g‖Dτ
)‖g‖Xτ

.

For δ ∈
(
0, 14

]
, by choosing δ1 = δ

3 , we have

d

dt
‖g‖Xτ

+
5
4 − 1

2δ

〈t〉 ‖g‖Xτ
+

δ

6
(
1

〈t〉‖g‖Xτ
+

1√
〈t〉

‖g‖Dτ
)

≤ (τ̇ + C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

))‖g‖Yτ

+ C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

)‖g‖Xτ
. (3.35)

Now, we assume the a prior assumption that for any t > 0,

〈t〉 5
4−δ‖g‖Xτ

≤ 2ε0, τ(t) ≥ 1

4
τ0. (3.36)
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Using this a priori assumption (3.36) and by choosing suitable τ(t) and sufficiently small ε0,

depending on τ0 and δ, we will show that

〈t〉 5
4−δ‖g‖Xτ

≤ ε0, τ(t) ≥ 1

2
τ0. (3.37)

Then continuity argument insures that (3.37) stands for any t > 0.

First, inserting (3.36) into (3.35), we have

d

dt
‖g‖Xτ

+
5
4 − 1

2δ

〈t〉 ‖g‖Xτ
+

δ

6

( 1

〈t〉‖g‖Xτ
+

1√
〈t〉

‖g‖Dτ

)

≤ (τ̇ + C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

))‖g‖Yτ
+

32ε0C0

τ20 〈t〉
5
4−δ

(‖g‖Xτ
+ 〈t〉 1

4 ‖g‖Dτ
).

By choosing ε0 such that 32ε0C0

τ2
0

< δ
12 , then we can have

d

dt
‖g‖Xτ

+
5
4 − δ

〈t〉 ‖g‖Xτ
+

δ

12

( 1

〈t〉‖g‖Xτ
+

1√
〈t〉

‖g‖Dτ

)

≤ (τ̇ + C0τ
−2(t)(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

))‖g‖Yτ
. (3.38)

We choose τ(t) such that

τ̇ +
2C0

τ2(t)
(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

) = 0. (3.39)

Then (3.38) indicates that

d

dt
(〈t〉 5

4−δ‖g‖Xτ
) +

δ

12
(〈t〉 1

4−δ‖g‖Xτ
+ 〈t〉 3

4−δ‖g‖Dτ
)

+
C0〈t〉

5
4−δ

τ2(t)
(‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

)‖g‖Yτ
≤ 0. (3.40)

Integrating (3.40), we can have

〈t〉 5
4−δ‖g‖Xτ

+
δ

12

∫ t

0

(〈s〉 1
4−δ‖g‖Xτ

+ 〈s〉 3
4−δ‖g‖Dτ

)ds

+ C0

∫ t

0

〈s〉 5
4−δ

τ2(s)
(‖g‖Xτ

+ 〈s〉 1
4 ‖g‖Dτ

)‖g‖Yτ
ds ≤ ‖g0‖Xτ0

≤ ε0, (3.41)

which implies that ∫ t

0

(〈s〉 1
4−δ‖g‖Xτ

+ 〈s〉 3
4−δ‖g‖Dτ

)ds ≤ 12

δ
ε0.

Then from (3.39), we see that

τ3(t) = τ30 − 6C0

∫ t

0

(‖g‖Xτ
+ 〈s〉 1

4 ‖g‖Dτ
)ds

≥ τ30 − 72C0ε0
δ

≥
(1
2
τ0

)3

,

by choosing small ε0. Then by choosing small ε0, depending on τ0 and δ, we obtain (3.37) and

(3.41), which finishes the proof of Proposition 3.1.

End Proof of Theorem 2.1 Combining the local existence and uniqueness of the tangen-

tially analytical solutions in Theorem 3.1 and continuity argument, we can obtain the validity

of Theorem 2.1.
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4 Technical Estimates of the Nonlinear Terms

In this section, we give the technical estimates for the nonlinear terms on the righthand of

(3.33). When summing over n ≥ 0, we can get the following tangentially analytical estimates

for the nonlinear terms.

Lemma 4.1 (Estimates of the nonlinear terms separately) We have the following estimates

for the the nonlinear terms on the righthand of (3.33).

∑

n≥0

∑

|α|=n

|Iα1 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2(‖g‖Xτ
+ ‖g‖Dτ

)‖g‖Yτ
, (4.1)

∑

n≥0

∑

|α|=n

|Iα2 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2〈t〉 1
4 (‖g‖Xτ

+ ‖g‖Yτ
)‖g‖Dτ

, (4.2)

∑

n≥0

∑

|α|=n

|Iα3 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

+
∑

n≥0

∑

|α|=n

|Iα6 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2(‖g‖Xτ
+ ‖g‖Dτ

)‖g‖Xτ
, (4.3)

∑

n≥0

∑

|α|=n

|Iα4 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2〈t〉− 1
4 (|g‖Xτ

+ ‖g‖Yτ
)‖g‖Xτ

, (4.4)

∑

n≥0

∑

|α|=n

|Iα5 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2(‖g‖Xτ
+ ‖g‖Dτ

)‖g‖Xτ
, (4.5)

∑

n≥0

∑

|α|=n

|Iα7 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2(〈t〉− 1
4 ‖g‖Xτ

+ 〈t〉 1
4 ‖g‖Dτ

)(‖g‖Xτ
+ ‖g‖Yτ

). (4.6)

Proof Before the proof, we give the following simple claim.

Claim For any k ∈ N, 1 ≤ p, q ≤ +∞,

∑

|α|=k

‖θ〈r〉k∂α
h (r∂rg)‖Lp

h
L

q
z
.

∑

|α|=k+1

‖θ〈r〉k+1∂α
h g‖Lp

h
L

q
z
+ k

∑

|α|=k

‖θ〈r〉k∂α
h g‖Lp

h
L

q
z
. (4.7)

Proof of the Claim Without loss of generality, we assume k ≥ 1, since the claim is

obvious for k = 0. We write r∂r = x∂x + y∂y := xh∂h. Then using Leibniz formula, we have

∣∣〈r〉k∂α
h (r∂rg)

∣∣ =
∣∣〈r〉k∂α

h (xh∂hg)
∣∣

=
∣∣∣〈r〉kxh∂

α
h∂hg +

∑

β≤α,|β|=1

〈r〉k
(
α
β

)
∂α−β
h ∂hg∂

β
hxh

∣∣∣

≤ 〈r〉k+1|∂α
h∂hg|+ 2k〈r〉k|∂α

h g|. (4.8)

Then from (4.8), we can easily obtain (4.7).

In later calculations, for multi-indices α, β with β ≤ α, we will frequently use

(
α
β

)
≤

(|α|
|β|

)
,

∑

|α|=n

∑

|β|=k,β≤α

aβbα−β =
( ∑

|β|=k

aβ

)( ∑

|γ|=n−k

bγ

)
(4.9)

for all sequences {aβ} and {bγ}.
Now we are ready to prove Lemma 4.1.
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Estimate for term I1 For the term I1, by using (4.9), we have

∑

|α|=n

|In1 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤ τn(t)Mn

[n2 ]∑

k=0

(n
k

)( ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

r‖L2
h
L∞

z

)( ∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L∞

h
L2

z

)

+ τn(t)Mn

n∑

k=[ n2 ]+1

(
n
k

)( ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

r‖L∞

)( ∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L2

)
.

Then by using (3.15)–(3.16), and noting that Mn

(
n

k

)
= (n+1)4

(n−k)!k! , we have

∑

|α|=n

|In1 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

.

[n2 ]∑

k=0

(Xn−k +Dn−k)
τk

k!

∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L∞

h
L2

z

+ τ−2
n∑

k=[n2 ]+1

2∑

i=0

(Xn−k+i +Dn−k+i)
τk(k + 1)4

k!

∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L2 . (4.10)

Then by the same Sobolev embedding estimate as that in (3.24) and using (4.7), we can get

∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L∞

h
L2

z

.(k + 1)2
k+2∑

|β|=k

‖θ〈r〉|β|∂β
h (r∂rg)‖L2

.(k + 1)2
k+3∑

|β|=k+1

‖θ〈r〉|β|∂β
hg‖L2 + (k + 1)2|β|

k+2∑

|β|=k

‖θ〈r〉|β|∂β
hg‖L2.

Then it is not hard to check that

τk

k!

∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L∞

h
L2

z
. τ−2

3∑

i=0

Yk+i, (4.11)

where, when k = i = 0, we have set Y0 = 0.

Also by using (4.7), we can obtain

τk(k + 1)4

k!

∑

|β|=k

‖θ〈r〉k∂β
h (r∂rg)‖L2 . Yk + Yk+1, (4.12)

where we used that τ ≤ τ0 since later we will chosen τ(t) to be a decreased function of t .

Inserting (4.11)–(4.12) into (4.10), we can get

∑

|α|=n

|Iα1 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤τ−2
n∑

k=0

2∑

i=0

(Xn−k+i +Dn−k+i)

3∑

i=0

Yk+i. (4.13)
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Then by using the following inequality

∑

n≥0

n∑

k=0

an−kbk ≤
∑

k≥0

ak
∑

j≥0

bj , (4.14)

we can get from (4.13),

∑

n≥0

∑

|α|=n

|Iα1 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2
∑

k≥0

(
Xk +Dk

)∑

k≥0

Yk = τ−2
(
‖g‖Xτ

+ ‖g‖Dτ

)
‖g‖Yτ

,

which is (4.1) for term I1.

Estimate for term I2 Now we come to estimate term I2. By using (4.9), we have

∑

|α|=n

|Iα2 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤ τn(t)Mn

[n2 ]∑

k=0

(n
k

) ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

z‖L2
h
L∞

z

∑

|β|=k

‖θ〈r〉k∂β
h∂zg‖L∞

h
L2

z

+ τn(t)Mn

n∑

k=[n2 ]+1

(
n
k

) ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

z‖L∞

∑

|β|=k

‖θ〈r〉k∂β
h∂zg‖L2. (4.15)

Then by using (3.17)–(3.18), and noting that Mn

(
n

k

)
= (n+1)4

(n−k)!k! , we have

∑

|α|=n

|Iα2 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

.〈t〉 1
4 τn(t)

{ [n2 ]∑

k=0

(n− k + 1)4

(n− k)!k!

∑

|γ|=n−k

‖〈r〉n−k∂γ
h(r∂rg, g)‖L2

∑

|β|=k

‖θ〈r〉k∂β
h∂zg‖L∞

h
L2

z

+
n∑

k=[ n2 ]+1

(k + 1)4(n− k + 1)2

(n− k)!k!

n−k+2∑

|γ|=n−k

‖〈r〉|γ|∂γ
h(r∂rg, g)‖L2

∑

|β|=k

‖θ〈r〉k∂β
h∂zg‖L2

}
.

By using Sobolev embedding, we have

1

k!
‖θ〈r〉k∂β

h∂zg‖L∞
h

L2
z
.
(k + 1)2

k!

k+2∑

|β|=k

‖θ〈r〉|β|∂β
h∂zg‖L2 . τ−2

2∑

i=0

Dk+i.

Combining the above two inequalities, we obtain

∑

|α|=n

|Iα2 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. 〈t〉 1
4 τ−2

[n2 ]∑

k=0

τn−k(n− k + 1)4

(n− k)!

∑

|γ|=n−k

‖〈r〉n−k∂γ
h(r∂rg, g)‖L2

2∑

i=0

Dk+i

+ 〈t〉 1
4

n∑

k=[n2 ]+1

τn−k(n− k + 1)2

(n− k)!

n−k+2∑

|γ|=n−k

‖〈r〉|γ|∂γ
h(r∂rg, g)‖L2Dk. (4.16)
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We have that

τn−k(n− k + 1)4

(n− k)!

∑

|γ|=n−k

‖〈r〉n−k∂γ
h(r∂rg, g)‖L2 . Xn−k + Yn−k+1 + Yn−k, (4.17)

τn−k(n− k + 1)2

(n− k)!

n−k+2∑

|γ|=n−k

‖〈r〉|γ|∂γ
h(r∂rg, g)‖L2 ≤ Xn−k + τ−2

3∑

i=0

Yn−k+i. (4.18)

Inserting the above two inequalities into (4.16), we can obtain

∑

|α|=n

|Iα2 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

.〈t〉 1
4 τ−2

n∑

k=0

(
Xn−k +

3∑

i=0

Yn−k+i

) 2∑

i=0

Dk+i. (4.19)

Summing (4.19) over n ≥ 0 and using (4.14), we can obtain (4.2).

Estimate for term I3 Now we come to estimate term I3. By using (4.9), we have

∑

|α|=n

|Iα3 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤ τn(t)Mn

[n2 ]∑

k=0

(n
k

) ∑

|γ|=n−k

‖θ 1
2
〈r〉n−k∂γ

hu
r‖L2

h
L∞

z

∑

|β|=k

‖θ 1
2
〈r〉k∂β

hu
r‖L∞

h
L2

z

+ τn(t)Mn

n∑

k=[ n2 ]+1

(n
k

) ∑

|γ|=n−k

‖θ 1
2
〈r〉n−k∂γ

hu
r‖L∞

∑

|β|=k

‖θ 1
2
〈r〉k∂β

hu
r‖L2. (4.20)

Then by using (3.13)–(3.16), and noting that Mn

(
n

k

)
= (n+1)4

(n−k)!k! , we have

∑

|α|=n

|Iα3 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τ−2

[n2 ]∑

k=0

(Xn−k +Dn−k)

2∑

i=0

Xk+i + τ−2
n∑

i=[n2 ]+1

2∑

i=0

(Xn−k+i +Dn−k+i)Xk

. τ−2
n∑

k=0

2∑

i=0

(Xn−k+i +Dn−k+i)

2∑

i=0

Xk+i.

(4.21)

Summing (4.21) over n ≥ 0 and using (4.14), we can obtain (4.3) for term I3.

Estimate for term I4 For the terms In4 , from the first equation of (3.4), we first have

∂z(zφ) =
(
1− z2

2〈t〉
)
φ+ zg.

Then from (3.12), we have, for |α| = k,

‖θλ〈r〉k∂α
h∂z(zφ)‖L2

z

≤‖θλ〈r〉k∂α
hφ‖L2

z
+
∥∥∥θλ

z2

〈t〉 〈r〉
k∂α

hφ
∥∥∥
L2

z

+ ‖θλz〈r〉k∂α
h g‖L2

z

≤
√
〈t〉‖θλ〈r〉k∂α

h g‖L2
z
+ ‖θ 1+λ

2 α〈r〉k∂α
hφ‖L2

z
+
√
〈t〉‖θ 1+λ

2
〈r〉k∂α

h g‖L2
z
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≤
√
〈t〉‖θ〈r〉k∂α

h g‖L2
z
. (4.22)

Now we come to estimate term I4. By using (4.9) and (4.22), we have

∑

|α|=n

|Iα4 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤ 〈t〉− 1
2 τn(t)Mn

∑

|α|=n

∑

β≤α

|β|≤[n
2

]

(α
β

)
‖θ 1

2
〈r〉n−|β|∂α−βuz‖L2

h
L∞

z
‖θ〈r〉|β|∂β

hg‖L∞
h

L2
z

+ 〈t〉− 1
2 τn(t)Mn

∑

|α|=n

∑

β≤α

|β|>[n
2

]

(
α
β

)
‖θ 1

2
〈r〉n−|β|∂α−βuz‖L∞‖θ〈r〉|β|∂β

hg‖L2.

Then almost in the same estimate as that in (4.15) by replacing ∂zg with g indicates a similar

estimate as (4.19) as follows:

∑

|α|=n

|Iα4 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

.〈t〉− 1
4 τ−2

n∑

k=0

(
Xn−k +

3∑

i=0

Yn−k+i

) 2∑

i=0

Xk+i. (4.23)

Summing (4.23) over n ≥ 0 and using (4.14), we can obtain (4.4).

Estimate for term I5 It is easy to see that, from (3.12),

‖θλ〈r〉k∂α
h (zφ)‖L2

z
.λ

√
〈t〉‖θ 1+λ

2
〈r〉k∂α

hφ‖L2
z
.λ 〈t〉‖θ〈r〉k∂α

h g‖L2
z
. (4.24)

By using (4.9) and (4.24), we have

∑

|α|=n

|Iα5 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. τn(t)Mn

[n2 ]∑

k=0

(n
k

) ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

r‖L2
h
L∞

z

∑

|β|=k

‖θ〈r〉k∂β
hg‖L∞

h
L2

z

+ τn(t)Mn

n∑

k=[n2 ]+1

(n
k

) ∑

|γ|=n−k

‖〈r〉n−k∂γ
hu

r‖L∞

∑

|β|=k

‖θ〈r〉k∂β
hg‖L2.

Then by using (3.15)–(3.16), and noting that Mn

(
n

k

)
= (n+1)4

(n−k)!k! , we have

∑

|α|=n

|Iα5 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

.

[n2 ]∑

k=0

(Xn−k +Dn−k)
τk

k!

∑

|β|=k

‖θ〈r〉k∂β
hg‖L∞

h
L2

z

+ τ−2
n∑

k=[ n2 ]+1

2∑

i=0

(Xn−k+i +Dn−k+i)Xk. (4.25)

By using Sobolev embedding, it is easy to check that

τk

k!

∑

|β|=k

‖θ〈r〉k∂β
hg‖L∞

h
L2

z
. τ−2

2∑

i=0

Xk+i.
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Inserting the above inequality into (4.25), we can obtain

∑

|α|=n

|Iα5 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. 〈t〉− 1
2 τ−2

n∑

k=0

2∑

i=0

(Xn−k+i +Dn−k+i)

2∑

i=0

Xk+i. (4.26)

Summing (4.26) over n ≥ 0 and using (4.14), we can obtain (4.5).

Estimate for term I6 First, we have

|Iα6 |
‖θ〈r〉n∂α

h g‖L2

≤ 1

〈t〉‖zθ(z)
∫ ∞

z

〈r〉n∂α
h (u

r)2(z̄)dz̄‖L2

=
1

〈t〉‖zθ− 1
2
(z)θ 3

2
(z)

∫ ∞

z

〈r〉n∂α
h (u

r)2(z̄)dz̄‖L2

≤ 1

〈t〉‖zθ− 1
2
(z)‖L∞

h
L2

z
‖θ 3

2
(z)

∫ ∞

z

〈r〉n∂α
h (u

r)2(z̄)dz̄‖L2
h
L∞

z

. 〈t〉− 1
4 ‖θ 3

2
(z)

∫ ∞

z

〈r〉n∂α
h (u

r)2(z̄)dz̄‖L2
h
L∞

z
,

while

∥∥∥θ 3
2
(z)

∫ ∞

z

〈r〉n∂α
h (u

r)2(z̄)dz̄
∥∥∥
L∞

z

≤ sup
z≥0

{
θ 3

2
(z)

(∫ ∞

z

θ− 7
2
(z̄)dz̄

) 1
2
}
‖θ 7

4
(z)〈r〉n∂α

h (u
r)2‖L2

z

≤〈t〉 1
4 ‖θ 7

4
(z)〈r〉n∂α

h (u
r)2‖L2

z
.

Then

∑

|α|=n

|Iα6 |τ(t)Mn

‖θ(〈r〉∂r)ng‖L2

≤τ(t)Mn

∑

|α|=n

‖θ 7
4
(z)〈r〉n∂α

h (u
r)2‖L2 . (4.27)

The rest is the same as Iα3 in (4.20) by replacing 1
2 with 7

8 which indicates (4.3) for term Iα6 .

Estimate for term I7 Repeating the proof for (4.27), we can get

∑

|α|=n

|Iα7 |τ(t)Mn

‖θ(〈r〉∂r)ng‖L2

≤τ(t)Mn

∑

|α|=n

‖θ 7
4
(z)〈r〉n∂α

h (u
z∂zu

r)‖L2 .

By using (4.9), we have

∑

|α|=n

|Iα7 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

≤ τn(t)Mn

[n2 ]∑

k=0

(
n
k

) ∑

|γ|=n−k

‖θ 7
8
〈r〉n−k∂γ

hu
z‖L2

h
L∞

z

∑

|β|=k

‖θ 7
8
〈r〉k∂β

h∂zu
r‖L∞

h
L2

z

+ τn(t)Mn

n∑

k=[n2 ]+1

(
n
k

) ∑

|γ|=n−k

‖θ 7
8
〈r〉n−k∂γ

hu
z‖L∞

∑

|β|=k

‖θ 7
8
〈r〉k∂β

h∂zu
r‖L2.
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Then by using (3.17)–(3.20), and noting that Mn

(n
k

)
= (n+1)4

(n−k)!k! , we have

∑

|α|=n

|Iα7 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. 〈t〉 1
4 τ−2

[n2 ]∑

k=0

(n− k + 1)4τn−k

(n− k)!

∑

|γ|=n−k

‖〈r〉n−k∂γ
h(r∂rg, g)‖L2

2∑

i=0

(〈t〉− 1
2Xk+i +Dk+i)

+ 〈t〉 1
4

n∑

k=[n2 ]+1

(n− k + 1)2τn−k

(n− k)!

n−k+2∑

|γ|=n−k

‖〈r〉|γ|∂γ
h(r∂rg, g)‖L2(〈t〉− 1

2Xk +Dk).

Then using (4.17)–(4.18), we obtain

∑

|α|=n

|Iα7 |τn(t)Mn

‖θ〈r〉n∂α
h g‖L2

. 〈t〉 1
4 τ−2

n∑

k=0

(
Xn−k +

3∑

i=0

Yn−k+i

) 2∑

i=0

(〈t〉− 1
2Xk+i +Dk+i). (4.28)

Summing (4.28) over n ≥ 0 and using (4.14), we can obtain (4.6).
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[26] Prandtl, L., Über Flüssigleitsbewegung bei sehr kleiner Reibung, Verhandlung des III Intern. Math. Kon-
gresses, Heidelberg, 1904, 484–491.

[27] Sammartino, M. and Caflisch, R. E., Zero viscosity limit for analytic solutions, of the Navier-Stokes
equation on a half-space I, Existence for Euler and Prandtl equations, Comm. Math. Phys., 192(2), 1998,
433–461.

[28] Wang, C., Wang, Y. and Zhang, P., On the global small solution of 2-D Prandtl system with initial data
in the optimal Gevrey class, arXiv: 2103.00681

[29] Xin, Z. and Zhang, L., On the global existence of solutions to the Prandtl’s system. Adv. Math., 181(1),
2004, 88–133.

[30] Xin, Z., Zhang, L. and Zhao, J., Global Well-posedness and Regularity of Weak Solutions to the Prandtl’s
System, arXiv: 2203.08988.

[31] Xu, C. J. and Zhang, X., Long time well-posedness of Prandtl equations in Sobolev space. J. Differential

Equations, 263(12), 2017, 8749–8803.

[32] Zhang, P. and Zhang, Z., Long time well-posedness of Prandtl system with small and analytic initial data,
J. Funct. Anal., 270(7), 2016, 2591–2615.


