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1 Introduction

Let D be the open unit disk and ∂D be its boundary. Let L2 denote the Lebesgue space of

square integrable functions on the unit circle ∂D. The Hardy space H2 is the closed subspace

of L2, which is spanned by the space of analytic polynomials. Thus there is an orthogonal

projection P from L2 onto H2. For ϕ in L∞, the space of essentially bounded measurable

functions on ∂D, the Toeplitz operator Tϕ and the Hankel operator Hϕ with symbol ϕ on H2

are defined by

Tϕf = P (ϕf)

and

Hϕf = (I − P )(ϕf)

for f ∈ H2, respectively. Moreover, the dual Toeplitz operator Sϕ on (H2)⊥ is defined by

Sϕh = (I − P )(ϕh), h ∈ (H2)⊥.

For more information on the topics of Toeplitz and Hankel operators we refer to [8, 26].

Let T ∗
z be the adjoint of the forward shift operator Tz. Suppose that u is a nonconstant

inner function. The invariant subspace for T ∗
z ,

K2
u = H2 ⊖ uH2
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is called the model space (see [10]). Let Pu be the orthogonal projection from L2 onto K2
u. For

ϕ ∈ L2, the dual truncated Toeplitz operator Dϕ with symbol ϕ on the orthogonal complement

of K2
u is densely defined by

Dϕf = (I − Pu)(ϕf)

on the subspace (K2
u)

⊥ ∩ L∞ of (K2
u)

⊥ = L2 ⊖ K2
u. Noting that L2 = H2 ⊕ zH2 and K2

u =

H2 ⊖ uH2, we obtain

(K2
u)

⊥ = uH2 ⊕ zH2,

and moreover,

Pu = P −MuPMu

and

I − Pu =MuPMu + (I − P ),

where Mu is the multiplication operator on H2 with symbol u.

Toeplitz operators and Hankel operators have played an especially important role in function

theory and operator theory. There are many fascinating problems about those two classes of

operators. The essentially commuting problem of two bounded linear operators arises from

studying Fredholm theory of operators on a Hilbert space. The answer to the commuting

problem for two Topelitz operators on the Hardy space was obtained by Brown and Halmos

[4] in 1964, which states that two Toeplitz operators are commuting if and only if either both

symbols of these operators are analytic, or both symbols of these operators are co-analytic, or

a nontrivial linear combination of their symbols is constant. Axler and Čučkvoić obtained the

analogous result for Toeplitz operators with bounded harmonic symbols on the Bergman space

of the unit disk (see [2]). Using some techniques in multiple complex-variable functions, Ding,

Sun and Zheng [7] established a necessary and sufficient condition for two Toeplitz operators

to be commuting on the Hardy space over the bidisk.

The problem of when the commutator or semicommutator of two operators is compact on

function spaces has been investigated by many people. The beautiful Axler-Chang-Sarason-

Volberg theorem (see [1, 23]) states that the semicommutator TfTg−Tfg of two Hardy Toeplitz

operators Tf and Tg is compact if and only if either f or g is in H∞ on each support set (which

will be introduced in the next section). An elementary characterization for the compactness of

the semicommutator of two Hardy Toeplitz operators in terms of Hankel operators was obtained

by Zheng [24]. The compactness for the semicommutator of two Toeplitz operators on other

analytic function spaces was studied in [13, 16, 25].

In 1999, Gorkin and Zheng [12] completely characterized the compact commutator TfTg −

TgTf of two Toeplitz operators on the Hardy space in terms of Douglas algebras or support sets.

More precisely, The characterization in [12] can be stated as follows: two Toeplitz operators

are essentially commuting if and only if either the restrictions of their symbols on each support

set S are in H∞|S , or the restrictions of the conjugations of their symbols on each S belong to

H∞|S , or a nontrivial linear combination of the restrictions of their symbols on each support

set S is constant. The essentially commuting problem for Toeplitz operators with bounded

harmonic symbols on the Bergman space was solved by Stroethoff [20] in 1993.
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Dual Toeplitz operators on the orthogonal complement of the Bergman space were studied in

[22]. Dual truncated Toeplitz operator is a new class of operators on the orthogonal complement

of the model space, which was first introduced in [6]. In [5], asymmetric dual truncated Toeplitz

operators acting between the orthogonal complements of two (eventually different) model spaces

were introduced. Although these operators differ in many ways from Toeplitz operators on the

Hardy space, they do have some of the same interesting properties, see [6] and [18] for more

information. In the present paper, we focus on the following problems:

Problem 1.1 When is the commutator [Df , Dg] = DfDg −DgDf of two dual truncated

Toeplitz operators Df and Dg with f and g in L∞ compact?

Problem 1.2 When is the semicommutator [Df , Dg) = DfDg−Dfg of two dual truncated

Toeplitz operators Df and Dg with f and g in L∞ compact?

In order to study the dual truncated Toeplitz operators, we use the useful matrix represen-

tation for the dual truncated Toeplitz operator to establish a connection between the Toeplitz

operator, Hankel operator and dual truncated Toeplitz operator. Then the above essential-

ly commuting (semicommuting) problem can be reduced to the study of the compactness of

products of Toeplitz, Hankel and dual Toeplitz operators. The difficult part in this paper is

characterizing the compactness of the sum of the four products of Toeplitz, Hankel and dual

Toeplitz operators. Our main idea here is to study dual truncated Toeplitz operators via the

characterization for the essentially commuting Hankel and Toeplitz operators (see [14]) and

function algebras. The first main result in this paper is the following theorem.

Theorem 1.1 Let u be a nonconstant inner function and f, g ∈ L∞. The commutator

[Df , Dg] is compact if and only if for each support set S, one of the following holds :

(1) f |S, g|S, ((u − λ)f)|S and ((u− λ)g) |S are in H∞|S for some constant λ;

(2) f |S , g|S, ((u− λ)f) |S and ((u− λ)g) |S are in H∞|S for some constant λ;

(3) there exist constants a, b, not both zero, such that (af + bg)|S is a constant.

The above theorem is analogous to the characterization when two Toeplitz operators are

essentially commuting on the Hardy space (see [12, Theorem 0.8]).

The second main result of our paper is the following characterization on the compactness of

the semicommutator of two dual truncated Toeplitz operators.

Theorem 1.2 Let u be a nonconstant inner function and f, g ∈ L∞. The semicommutator

[Df , Dg) is compact if and only if for each support set S, one of the following holds :

(1) f |S, g|S, ((u− λ)f)|S , ((u− λ)g) |S and
(
(u− λ)fg

)
|S are in H∞|S for some constant

λ;

(2) f |S, g|S, ((u− λ)f) |S , ((u− λ)g) |S and ((u− λ)fg) |S are in H∞|S for some constant

λ;

(3) either f |S or g|S is a constant.

Theorem 1.2 is analogous to the characterization for the compactness of the semicommutator

of two Hardy Toeplitz operators (see [1, 23]).

As the proof of Theorem 1.1 is long, it is divided into the necessary part in Section 3 and
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the sufficient part in Section 4. We will present the details for the proof of the necessary part

and the sufficient part of Theorem 1.2 in Sections 5 and 6, respectively.

2 Notations and Preliminaries

In this section, we introduce some notations and include some important lemmas. Let us

begin with the following matrix representation for the dual truncated Toeplitz operator on the

space (K2
u)

⊥, see [19, Lemma 2] for the details.

Lemma 2.1 Suppose that ϕ ∈ L∞. The dual truncated Toeplitz operator Dϕ on (K2
u)

⊥ is

unitarily equivalent to the following (2× 2) operator matrix

(
Tϕ H∗

uϕ

Huϕ Sϕ

)

on the space L2 = H2 ⊕ zH2. Moreover, the unitary operator here is given by

U =

(
Mu 0
0 I

)
.

In view of the matrix representation in the above lemma, the essentially commuting problem

for two dual truncated Toeplitz operators can be easily transformed into the compactness of

the following four classical operators.

Lemma 2.2 Suppose that u is a nonconstant inner function and f, g ∈ L∞. Then the

commutator DfDg −DgDf is compact if and only if

TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf ,

TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf ,

HufTg + SfHug −HugTf − SgHuf

and

HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf

are compact.

Proof Let

T1 = TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf ,

T2 = TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf ,

T3 = HufTg + SfHug −HugTf − SgHuf

and

T4 = HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf .

Then we have by Lemma 2.1 that

U∗(DfDg −DgDf )U

=

(
Tf H∗

uf

Huf Sf

)(
Tg H∗

ug

Hug Sg

)
−

(
Tg H∗

ug

Hug Sg

)(
Tf H∗

uf

Huf Sf

)
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=

(
T1 T2
T3 T4

)
.

Denote the above operator matrix by T . According to the fact that T is compact if and only if

T1, T2, T3 and T4 are all compact, we finish the proof of this lemma.

Using the same method as that in the proof of Lemma 2.2, we obtain a similar conclusion

for the compactness of the semicommutator [Df , Dg).

Lemma 2.3 Suppose that u is a nonconstant inner function and f, g ∈ L∞. Then the

semicommutator DfDg −Dfg is compact if and only if

TfTg +H∗
uf
Hug − Tfg,

TfH
∗
ug +H∗

uf
Sg −H∗

ufg
,

HufTg + SfHug −Hufg

and

HufH
∗
ug + SfSg − Sfg

are compact.

To study the compactness of products of Hankel and Toeplitz operators on the Hardy space,

the following operator V is very useful. Define the operator V : L2 → L2 by

V f(z) = zf(z), f ∈ L2, z ∈ ∂D.

It is easy to check that V is anti-unitary and moreover,

V = V −1 = V ∗

on L2. For a general anti-linear operator V , V ∗ is the anti-linear operator defined via the

property

〈V f, g〉 = 〈f, V ∗g〉

for f and g in L2.

We will show in the next lemma that the operator V and the Hardy projection P satisfy

the following equation.

Lemma 2.4 For f ∈ L2, then

V P (f) = (I − P )V (f).

Proof For any f in L2, we write f = f+ + f−, where f+ = Pf and f− = (I − P )f . Then

we have

V P (f)(w) = V f+(w)

= wf+(w)

= wf+(w) + (I − P )(wf−(w))
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= (I − P )(wf+(w) + wf−(w))

= (I − P )(wf(w))

= (I − P )V (f)(w)

for each w ∈ ∂D, to complete the proof.

Remark 2.1 Observe that Lemma 2.4 easily leads to the following two relations:

V Hϕ = H∗
ϕV and SϕV = V Tϕ,

which will be used repeatedly later on.

For x and y in L2, we use x⊗ y to denote the following rank-one operator: For f ∈ L2,

(x⊗ y)(f) = 〈f, y〉x.

It is well-known that the operator norm of the above rank-one operator is given by ‖x ⊗

y‖ = ‖x‖2 · ‖y‖2. The following two lemmas about the Toeplitz and Hankel operators on H2

established in [24, Lemmas 1–2] are useful tools to study the compactness of the product of

Hankel operators and compact operators in the Toeplitz algebra.

Lemma 2.5 Let f and g be in L2 and z ∈ D. Then

H∗
fHg − T ∗

φz
H∗
fHgTφz

= V [(Hfkz)⊗ (Hgkz)]V
∗.

Here

kz(e
iθ) =

√
1− |z|2

1− zeiθ

is the normalized reproducing kernel for the Hardy space, and φz denotes the Möbius map

φz(w) =
z − w

1− zw
, z, w ∈ D.

Lemma 2.6 Let K be a compact operator on H2. Then we have

lim
|z|→1−

‖K − T ∗
φz
KTφz

‖ = 0.

As in [11], a Douglas algebra is, by definition, a closed subalgebra of L∞ which containsH∞.

As Douglas algebras play a prominent role in various problems on Toeplitz and Hankel operators,

we need to review some important properties of them. Observe that H∞ is a commutative

Banach algebra, we can identify the maximal ideal space M(H∞) as the set of multiplicative

linear functionals on H∞. Endowed with the weak star topology it inherits as a subset of the

dual space of H∞, M(H∞) is a compact Hausdorff space. Identifying a point in the open unit

disk D with the functional of evaluation at this point, we may regard the disk D as a subset of

M(H∞). Using the Gelfand transform we regard every function in H∞ as a continuous function

on M(H∞). The deepest result concerning M(H∞) is the famous corona theorem of Carleson,

stating that D is dense in M(H∞) under the weak star topology (for details, see [9, 11]).

It is a consequence of the Gleason-Whitney theorem that the maximal ideal space of a

Douglas algebra B is a naturally imbedded in M(H∞). Thus we may identify the maximal
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ideal space M(H∞ + C) of the Sarason algebra H∞ + C with a subset of M(H∞), where C is

the algebra of continuous functions on ∂D. A subset of M(L∞) will be a support set if it is the

(closed) support of the representing measure for a functional in M(H∞ + C), see [11, 17] for

more details. Let m be in M(H∞ + C) and let dµm denote the unique representing measure

for m with support Sm, i.e.,

(1) for all f and g in H∞,

m(fg) =

∫

Sm

fg dµm =
( ∫

Sm

fdµm

)( ∫

Sm

gdµm

)
;

(2) if h ≥ 0 a.e. in L1(dµm) such that
∫

Sm

fh dµm =

∫

Sm

fdµm

for all f ∈ H∞, then we have h = 1 a.e. dµm.

Suppose that m ∈ M(H∞ + C) and z 7→ ξz is a mapping from the unit disk D into some

topological space X . Let η be in X . We use the notation

lim
z→m

ξz = η

to denote that for each open set U(η) ⊂ X containing η, there exists an open subset O(m) of

M(H∞ + C) containing m such that ξz ∈ U for all z ∈ O(m) ∩ D.

For a function F on the disk D and m in M(H∞ + C), we say

lim
z→m

F (z) = 0

if for every net {zα} ⊂ D converging to m,

lim
zα→m

F (zα) = 0.

We shall emphasize here that we deal with nets rather than sequences since the the topology

of M(H∞ + C) is not metrizable.

With the above notations and concepts about H2 theory on a support set, we quote the

following lemma obtained in [12, Lemmas 2.5–2.6].

Lemma 2.7 Let f be in L∞ and m ∈ M(H∞ + C). Denote the support set for m by Sm.

Then the following three conditions are equivalent :

(1) f |Sm
∈ H∞|Sm

;

(2) lim
z→m

‖Hfkz‖2 = 0;

(3) lim
z→m

‖Hfkz‖2 = 0.

3 The Necessary Part of Theorem 1.1

In this section, we assume that DfDg −DgDf is a compact operator. Recall that the four

operators in Lemma 2.2 are compact. Now we are going to derive the necessary condition for

the compactness of these four operators in terms of the boundary properties of the symbols f

and g.

In the following proposition, we establish a necessary condition for the compactness of the

first operator TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf given in Lemma 2.2.
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Proposition 3.1 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞ +C).

Suppose that the operator

TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf

is compact. Then for the support set Sm of m, one of following conditions holds :

(1) Both f |Sm
and g|Sm

are in H∞|Sm
;

(2) both f |Sm
and g|Sm

are in H∞|Sm
;

(3) there exist constants a, b, not both zero, such that (af + bg)|Sm
is a constant.

Proof Suppose that

TfTg +H∗
uf
Hug = TgTf +H∗

ugHuf +K,

where K is compact. Since TfTg − TgTf = H∗
gHf −H∗

f
Hg, we have

H∗
gHf −H∗

f
Hg = H∗

ugHuf −H∗
uf
Hug +K.

By Lemmas 2.5–2.6, we have

K − T ∗
φz
KTφz

= V (Hgkz ⊗Hfkz −Hfkz ⊗Hgkz −Hugkz ⊗Hufkz +Hufkz ⊗Hugkz)V
∗

and

Hgkz ⊗Hfkz −Hfkz ⊗Hgkz = Hugkz ⊗Hufkz −Hufkz ⊗Hugkz + ε(z), (3.1)

where the operator ε(z) satisfies lim
z→m

‖ε(z)‖ = 0.

In the following, we still use the same notation ε(z) to denote the various terms such that

‖ε(z)‖ → 0, z → m

for simplicity.

For m ∈ M(H∞ + C), we use [f |Sm
] denote to the coset {f |Sm

+ h|Sm
: h|Sm

∈ H∞|Sm
}.

As (L∞|Sm
)/(H∞|Sm

) is a Banach space, we consider the following three cases:

(1) dim(span{[f |Sm
], [g|Sm

]}) = 0;

(2) dim(span{[f |Sm
], [g|Sm

]}) = 1;

(3) dim(span{[f |Sm
], [g|Sm

]}) = 2.

Case 1 If dim(span{[f |Sm
], [g|Sm

]}) = 0, then [f |Sm
] = [g|Sm

] = 0, which implies that

f |Sm
, g|Sm

∈ H∞|Sm
.

Case 2 If dim(span{[f |Sm
], [g|Sm

]}) = 1, we may assume that [g|Sm
] 6= 0. Then there is a

constant c such that [f |Sm
] = c[g|Sm

]. By Lemma 2.7, now (3.1) can be rewritten as follows:

Hgkz ⊗Hcgkz −Hfkz ⊗Hgkz

= Hugkz ⊗Hcugkz −Hufkz ⊗Hugkz + ε(z)

to obtain

Hcg−fkz ⊗Hgkz = Hu(cg−f)kz ⊗Hugkz + ε(z), (3.2)
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where ε(z) satisfies ‖ε(z)‖ → 0 as z → m.

To derive the desired conclusions, we are going to discuss two cases. First, if

lim
z→m

‖Hcg−fkz‖2 = 0,

then (cg − f)|Sm
∈ H∞|Sm

. Since [(f − cg)|Sm
] = 0 and that the support set is a set of

antisymmetry for H∞ + C (see [11] or [17]), we obtain that (f − cg)|Sm
must be a constant.

Now we need to analyse the case of

lim
z→m

‖Hcg−fkz‖2 > 0.

By (3.2), we have

〈Hcg−fkz , Hcg−fkz〉Hgkz = 〈Hu(cg−f)kz, Hcg−fkz〉Hugkz + ε(z).

Thus there exists a constant a(z) depending on z such that

Hgkz = a(z)Hugkz + ε(z),

where a(z) satisfies that

|a(z)| =
∣∣∣
〈Hu(cg−f)kz, Hcg−fkz〉

‖Hcg−fkz‖
2
2

∣∣∣ ≤ 1

for all z ∈ O(m) ∩ D, so |a(z)| is bounded for z ∈ O(m) ∩ D. For m ∈ M(H∞ + C), O(m)

denotes a neighborhood of it in M(H∞).

By the boundedness of a(z) and by the corona theorem, there exists a net {zβ} and a

constant a ∈ C such that

lim
β
zβ = m and lim

β
a(zβ) = a.

Therefore, by the the equivalence between conditions (2)–(3) in Lemma 2.7, we obtain

Hgkz = aHugkz + ε(z).

Hence we have that

lim
z→m

‖H(1−au)gkz‖2 = 0.

Making a change of variables yields

lim
z→m

‖(I − P )[(1− au ◦ φz)(g ◦ φz)]‖2 = 0.

Since |a| ≤ 1 and that u is not a constant on Sm, we have by [15, Lemma 1] that (1 − au)

is an outer function on the support set Sm. Therefore, for any ε > 0 there exists a function

p ∈ H∞ such that ∫

Sm

|p(1− au)− 1|2dµm < ε.
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For such ε > 0, there also exists a neighborhood O(m) of m such that

∣∣∣
∫

Sm

|p(1− au)− 1|2dµm −

∫

Sm

|p(1 − au)− 1|2 · |kz|
2 dθ

2π

∣∣∣ < ε

for z ∈ O(m) ∩ D. Changing of variable gives
∫

Sm

|p ◦ φz(1− au ◦ φz)− 1|2
dθ

2π
< 2ε.

Applying the Hölder inequality, we obtain that

‖(I − P ){(g ◦ φz) · [p ◦ φz(1− au ◦ φz)− 1]}‖ 4

3

≤ C1‖g ◦ φz‖4 · ‖p ◦ φz(1 − au ◦ φz)− 1‖2 ≤ C1‖g‖∞ε
1

2

for some constant C1 > 0. Combining the above inequality with the identity

(I − P ){(g ◦ φz)(p ◦ φz)(1− au ◦ φz)} = Sp◦φz
Hg◦φz

(1− au ◦ φz)

gives us

‖(I − P )(g ◦ φz)‖ 4

3

≤ C1‖g‖∞ε
1

2 + ‖(I − P ){(g ◦ φz)(p ◦ φz)(1− au ◦ φz)}‖ 4

3

≤ C1‖g‖∞ε
1

2 + ‖p‖∞ · ‖(I − P )[(1− au ◦ φz)(g ◦ φz)]‖2.

Recalling that

lim
z→m

‖(I − P )[(1− au ◦ φz)(g ◦ φz)]‖2 = 0,

we get

lim
z→m

‖(I − P )(g ◦ φz)‖ 4

3

≤ C1‖g‖∞ε
1

2 .

Note that the projection P is bounded on L4, there exists an absolute constant C > 0 such that

‖(I − P )(g ◦ φz)‖4 ≤ C‖g‖∞.

In addition, since

‖(I − P )(g ◦ φz)‖
2
2 ≤ ‖(I − P )(g ◦ φz)‖ 4

3

· ‖(I − P )(g ◦ φz)‖4,

it follows that

lim
z→m

‖Hgkz‖2 = lim
z→m

‖(I − P )(g ◦ φz)‖2 = 0.

Thus we conclude by Lemma 2.7 that g|Sm
∈ H∞|Sm

, which contradicts our assumption.

Case 3 Suppose that dim (span{[f |Sm
], [g|Sm

]}) = 2. In this case, we need to further

consider the dimension of span{[f |Sm
], [g|Sm

]}.

Subcase 3(i) If dim (span{[f |Sm
], [g|Sm

]}) = 0, then we have f |Sm
, g|Sm

∈ H∞|Sm
.

Subcase 3(ii) Suppose that dim (span{[f |Sm
], [g|Sm

]}) = 1. Without loss of generality,

we may assume that [g|Sm
] 6= 0 and [f |Sm

] = d[g|Sm
] for some constant d. Then (f − dg)|Sm

∈

H∞|Sm
, we have by Lemma 2.7 that

Hfkz = dHgkz + ε(z) and Hufkz = dHugkz + ε(z),



Essentially Commuting Dual Truncated Toeplitz Operators 607

where the second equation follows from that Huϕ = SuHϕ for all ϕ ∈ L∞. Thus we can rewrite

(3.1) as follows

Hgkz ⊗Hf−dgkz = Hugkz ⊗Hu(f−dg)kz + ε(z).

Using the same arguments as the one in Case 2, we conclude that (f − dg)|Sm
∈ H∞|Sm

. So

we have that (f − dg)|Sm
is a constant, as desired.

Subcase 3(iii) Finally, we consider the case that dim (span{[f |Sm
], [g|Sm

]}) = 2. In

this subcase, lim
z→m

‖Hfkz‖2, lim
z→m

‖Hgkz‖2, lim
z→m

‖Hfkz‖2 and lim
z→m

‖Hgkz‖2 are all positive. By

(3.1), we have

〈Hugkz , Hgkz〉Hfkz − 〈Hugkz , Hfkz〉Hgkz

= 〈Hugkz , Hugkz〉Hufkz − 〈Hugkz, Hufkz〉Hugkz + ε(z) (3.3)

and

〈Hufkz, Hgkz〉Hfkz − 〈Hufkz , Hfkz〉Hgkz

= 〈Hufkz, Hugkz〉Hufkz − 〈Hufkz, Hufkz〉Hugkz + ε(z). (3.4)

In order to complete the discussion of Subcase 3(iii), the following claim is required.

Claim 3.1 lim
z→m

(‖Hufkz‖
2
2 · ‖Hugkz‖

2
2 − |〈Hufkz , Hugkz〉|

2) = δ > 0 for some δ.

As the proof of the above claim is long, let us assume that the Claim 3.1 holds for the

moment and we will give its proof later.

Based on Claim 3.1, we have by (3.3)–(3.4) that there are a11(z), a12(z), a21(z) and a22(z)

such that




Hufkz = a11(z)Hfkz + a12(z)Hgkz + ε(z),

Hugkz = a21(z)Hfkz + a22(z)Hgkz + ε(z),
(3.5)

where z ∈ O(m)∩D. Furthermore, observe that the functions {aij(z)}
2
i,j=1 are all bounded for

z ∈ O(m) ∩ D.

Applying the same technique as the one used in Case 2, we conclude that there exist con-

stants
{
a11, a12, a21, a22

}
which are independent of z such that for z ∈ O(m) ∩ D:




Hufkz = a11Hfkz + a12Hgkz + ε(z),

Hugkz = a21Hfkz + a22Hgkz + ε(z).
(3.6)

Without loss of generality, we may assume that the coefficient matrix of (3.6) has the

following form:
(
λ1 1
0 λ1

)
or

(
λ1 0
0 λ2

)
,

where the above two matrices are the Jordan canonical forms for (aij). In fact, there is an

invertible matrix

B =

(
b11 b12
b21 b22

)
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such that

B

(
Hufkz
Hugkz

)
=

(
λ1 0
0 λ2

)
B

(
Hfkz
Hgkz

)
+ ε(z)

or

B

(
Hufkz
Hugkz

)
=

(
λ1 1
0 λ1

)
B

(
Hfkz
Hgkz

)
+ ε(z).

This gives that

(
Hu(b11f+b12g)kz
Hu(b21f+b22g)kz

)
=

(
λ1 0
0 λ2

)(
H(b11f+b12g)kz
H(b21f+b22g)kz

)
+ ε(z)

or
(
Hu(b11f+b12g)kz
Hu(b21f+b22g)kz

)
=

(
λ1 1
0 λ1

)(
H(b11f+b12g)kz
H(b21f+b22g)kz

)
+ ε(z).

Now define F = b11f + b12g and G = b21f + b22g. Then we have that f |Sm
, g|Sm

∈ H∞|Sm
if

and only if F |Sm
, G|Sm

∈ H∞|Sm
, since the matrix (bij) is invertible.

If the above coefficient matrix for (3.6) is

(
λ1 0
0 λ2

)
,

then we have




Hufkz = λ1Hfkz + ε(z),

Hugkz = λ2Hgkz + ε(z).

Solving the above system gives

|λ1| =
|〈SuHfkz , Hfkz〉|

‖Hfkz‖22
+ ε(z)

and

|λ2| =
|〈SuHgkz , Hgkz〉|

‖Hgkz‖22
+ ε(z)

for all z ∈ O(m)∩D. Since u is an inner function, we conclude that |λ1| ≤ 1 and |λ2| ≤ 1. Thus

we have

Hgkz ⊗Hfkz −Hfkz ⊗Hgkz = Hugkz ⊗ λ1Hfkz −Hufkz ⊗ λ2Hgkz + ε(z)

to obtain

H(1−λ1u)g
kz ⊗Hfkz = H(1−λ2u)f

kz ⊗Hgkz + ε(z)

for z ∈ O(m) ∩ D. This gives that




〈Hfkz, Hfkz〉H(1−λ1u)g

kz = 〈Hfkz , Hgkz〉H(1−λ2u)f
kz + ε(z),

〈Hgkz, Hfkz〉H(1−λ1u)g
kz = 〈Hgkz , Hgkz〉H(1−λ2u)f

kz + ε(z),
(3.7)
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where z ∈ O(m) ∩ D.

Since [f |Sm
] and [g|Sm

] are linearly independent, we first show that

lim
z→m

(‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz, Hgkz〉|

2) = µ > 0. (3.8)

Otherwise, there is a net {zβ} ⊂ D such that

lim
zβ→m

(‖Hfkzβ‖
2
2 · ‖Hgkzβ‖

2
2 − |〈Hfkzβ , Hgkzβ 〉|

2) = 0.

For z ∈ O(m) ∩ D, we let

λz =
〈Hfkz, Hgkz〉

‖Hgkz‖22
.

Clearly, λz is bounded for z ∈ O(m) ∩D, since lim
z→m

‖Hgkz‖2 > 0. Then

‖Hfkz − λzHgkz‖
2
2 =

‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz , Hgkz〉|

2

‖Hgkz‖22

for each z in the neighborhood O(m) ∩ D. On the other hand, we can choose a subnet {zβ,γ}

of {zβ} such that lim
zβ,γ→m

λzβ,γ
= λ for some λ, and we also have

lim
zβ,γ→m

‖Hfkzβ,γ
− λHgkzβ,γ

‖2 = 0.

Now Lemma 2.7 gives

lim
z→m

‖Hfkz − λHgkz‖2 = 0

to obtain that (f − λg) |Sm
∈ H∞|Sm

, which is impossible since our assumption is

dim (span{[f |Sm
], [g|Sm

]}) = 2.

The contradiction implies that µ > 0.

By (3.7), we have

(‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz, Hgkz〉|

2)H(1−λ1u)g
kz = ε(z)

and

(‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz , Hgkz〉|

2)H(1−λ2u)f
kz + ε(z) = 0.

Thus we conclude by (3.8) that

lim
z→m

‖H(1−λ1u)g
kz‖2 = 0

and

lim
z→m

‖H(1−λ2u)f
kz‖2 = 0.

Repeating the arguments in the last two paragraphs of Case 2, we have f |Sm
, g|Sm

∈ H∞|Sm
,

which is a contradiction.

In order to finish the proof, it remains to consider the case that the coefficient matrix of

(3.6) is
(
λ1 1
0 λ1

)
.
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In this case, we have that for z ∈ O(m) ∩ D:





Hufkz = λ1Hfkz +Hgkz + ε(z),

Hugkz = λ1Hgkz + ε(z).

Using the same arguments as the above, we also have |λ1| ≤ 1 and

Hgkz ⊗Hfkz −Hfkz ⊗Hgkz

= Hugkz ⊗ (λ1Hfkz +Hgkz)−Hufkz ⊗ λ1Hgkz + ε(z),

which is equivalent to

H(1−λ1u)g
kz ⊗Hfkz = Hug+(1−λ1u)f

kz ⊗Hgkz + ε(z).

Since [f |Sm
] and [g|Sm

] are linearly independent, we deduce from the (2 × 2) determinant

argument that




((1− λ1u)g)|Sm

∈ H∞|Sm
,

((1− λ1u)f + (ug))|Sm
∈ H∞|Sm

.
(3.9)

Then by the condition ((1 − λ1u)g)|Sm
∈ H∞|Sm

and the last two two paragraphs of Case 2,

we have

g|Sm
∈ H∞|Sm

.

This contradicts our assumption that dim (span{[f |Sm
], [g|Sm

]}) = 2.

To complete the whole proof of Proposition 3.1, we need to show that the following result

holds under the assumption that lim
z→m

‖Hfkz‖2, lim
z→m

‖Hgkz‖2, lim
z→m

‖Hfkz‖2 and lim
z→m

‖Hgkz‖2

are all positive:

lim
z→m

(‖Hufkz‖
2
2 · ‖Hugkz‖

2
2 − |〈Hufkz, Hugkz〉|

2) = δ > 0.

Proof of Claim 3.1 By the Cauchy-Schwarz inequality, we have

lim
z→m

(‖Hufkz‖
2
2 · ‖Hugkz‖

2
2 − |〈Hufkz , Hugkz〉|

2) ≥ 0.

If the above conclusion does not hold, we can find a net {zα} ⊂ D such that zα → m and

lim
zα→m

(‖Hufkzα‖
2
2 · ‖Hugkzα‖

2
2 − |〈Hufkzα , Hugkzα〉|

2) = 0.

We first show that lim
z→m

‖Hugkz‖2 > 0. If this was not the case, then Lemma 2.7 gives

lim
z→m

‖Hugkz‖2 = 0.

Thus we can rewrite (3.1) as follows

Hfkz ⊗Hgkz −Hgkz ⊗Hfkz
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= Hufkz ⊗Hugkz + ε(z). (3.10)

This implies that

〈Hgkz , Hgkz〉Hfkz − 〈Hgkz , Hfkz〉Hgkz

= −〈Hgkz , Hufkz〉Hugkz + ε(z) (3.11)

and

〈Hfkz , Hgkz〉Hfkz − 〈Hfkz, Hfkz〉Hgkz

= −〈Hfkz , Hufkz〉Hugkz + ε(z). (3.12)

Using the method as the one in the proof of (3.8), we obtain

lim
z→m

(‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz , Hgkz〉|

2) > 0,

since
[
f |Sm

]
and [g|Sm

] are also linearly independent. Therefore, we have by (3.11)–(3.12) that

there exists b(z) such that

Hgkz = b(z)Hugkz + ε(z)

for all z ∈ O(m) ∩ D. Moreover, b(z) is bounded for z ∈ O(m) ∩ D. Thus we can choose a net

{zζ} such that lim
ζ
zζ = m and lim

ζ
b(zζ) = b. Using Lemma 2.7 again, we obtain that

Hgkz = bHugkz + ε(z) (3.13)

for all z ∈ O(m) ∩ D. As lim
z→m

‖Hgkz‖2 > 0 and

‖Hgkz‖2 = ‖bHugkz + ε(z)‖2 ≤ |b| · ‖Hgkz‖2 + ‖ε(z)‖2,

we conclude that |b| ≥ 1.

Using (3.10), we have

Hgkz ⊗Hfkz = H(b−u)fkz ⊗Hugkz + ε(z)

and

Hfkz = c(z)Hugkz + ε(z),

where

c(z) =
〈Hgkz, H(b−u)fkz〉

‖Hgkz‖22

is bounded for z ∈ O(m) ∩ D. So there is a constant c (which is independent of z) such that

Hfkz = cHugkz + ε(z).

As we have shown

Hgkz = bHugkz + ε(z)

for all z ∈ O(m) ∩ D, it follows that

Hfkz =
c

b
Hgkz + ε(z).
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This implies (f − c
b
g)|Sm

∈ H∞|Sm
. But this contradicts our assumption that

dim (span{[f |Sm
], [g|Sm

]}) = 2.

So we have lim
z→m

‖Hugkz‖2 > 0.

Recall that our assumption is

lim
z→m

(‖Hufkz‖
2
2 · ‖Hugkz‖

2
2 − |〈Hufkz , Hugkz〉|

2) = 0.

Using the same method as the one in the proof of (3.8), there exists a constant λ′ such that

lim
z→m

‖Hufkz − λ′Hugkz‖2 = 0.

Combining the above limit with (3.1) gives that

Hgkz ⊗Hfkz −Hfkz ⊗Hgkz = Hugkz ⊗Hu(f−λ′g)kz + ε(z).

Rewrite the above formula as the following

Hgkz ⊗H(f−λ′g)kz −H(f−λ′g)kz ⊗Hgkz = Hugkz ⊗Hu(f−λ′g)kz + ε(z). (3.14)

Since

dim (span{[f |Sm
], [g|Sm

]}) = dim (span{[f |Sm
], [g|Sm

]}) = 2,

we have

dim (span{[(f − λ′g)|Sm
], [g|Sm

]}) = dim (span{[(f − λ′g)|Sm
], [g|Sm

]}) = 2.

Comparing (3.14) with (3.10) and then repeating the same arguments as used in (3.13), we

have

H(f−λ′g)kz = b′Hu(f−λ′g)kz + ε(z)

and

Hgkz = c′Hu(f−λ′g)kz + ε(z),

where b′, c′ are independent of z and moreover, |b′| ≥ 1 and c′ 6= 0, since [g|Sm
] 6= 0. Thus we

have

lim
z→m

‖H(g− c′

b′
(f−λ′g))kz‖2 = 0.

This yields that (
g −

c′

b′
(f − λ′g)

)∣∣∣
Sm

∈ H∞|Sm
.

But it is a contradiction, since dim (span{[f |Sm
], [g|Sm

]}) = 2. This completes the proof of

Claim 3.1 and hence the proof of Proposition 3.1.

Combining the preceding proposition with the two relations in Remark 2.1, we obtain the fol-

lowing proposition which gives a necessary condition for the compactness of the fourth operator

HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf in Lemma 2.2.
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Proposition 3.2 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞ +C).

Suppose that the operator

HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf

is compact. Then for the support set Sm of m, one of the following conditions holds :

(1) Both f |Sm
and g|Sm

are in H∞|Sm
;

(2) both f |Sm
and g|Sm

are in H∞|Sm
;

(3) there exist constants a, b, not both zero, such that (af + bg)|Sm
is a constant.

Next, we will obtain a necessary condition for the compactness of the second operator

TfH
∗
ug +H∗

uf
Sg −TgH

∗
uf

−H∗
ugSf in Lemma 2.2. To do so, we need the following two lemmas.

Lemma 3.1 Let f and g be in L2. Then

HfTgTφz
− Sφz

HfTg = Hfkz ⊗ Tgφz
kz = −(Hfkz)⊗ (V Hgkz)

for all z ∈ D.

Proof Using the identity (see [24, Page 480])

I = kz ⊗ kz + Tφz
Tφz

,

we obtain

HfTgTφz
= Hf (kz ⊗ kz + Tφz

Tφz
)TgTφz

= (Hfkz ⊗ kz)Tgφz
+HfTφz

Tφzgφz

= (Hfkz)⊗ (Tgφz
kz) +HfTφz

Tg.

Using Identity (4.6) of [21], we have

Sφz
Hf = HfTφz

.

It follows that

HfTgTφz
− Sφz

HfTg = (Hfkz)⊗ (Tgφz
kz).

To obtain the last equality, we recall that V 2 = I and observe that

V Tgφz
kz = V P (gφzkz)

= (I − P )V (gφzkz)

= (I − P )(wg(w)φz(w)kz(w))

= (I − P )
(
wg(w)

z − w

1− zw

√
1− |z|2

1− zw

)

= −(I − P )
(
g(w)

√
1− |z|2

1− zw

)

= −Hgkz,

which gives the desired result.
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Lemma 3.2 Let K : H2 → zH2 be a compact operator. Then

lim
|z|→1−

‖Sφz
K −KTφz

‖ = 0.

Proof Since each compact operator can be approximated by finite rank operator in norm,

we need only to consider the case that K is a rank-one operator.

Suppose that K = f ⊗ g, where f ∈ zH2 and g ∈ H2. Then

Sφz
K −KTφz

= Sφz
(f ⊗ g)− (f ⊗ g)Tφz

= (Sφz
f)⊗ g − f ⊗ (T ∗

φz
g).

For every w on ∂D, letting |z| → 1−, we have

z − φz(w) =
1− |z|2

1− zw
w → 0.

So we have by the dominated convergence theorem that

‖zf − φzf‖2 → 0 and ‖zg − φzg‖2 → 0

as |z| → 1−. It follows that ‖ξf − φzf‖2 → 0 and ‖ξg − φzg‖2 → 0 if z → ξ ∈ ∂D.

Using the assumption that f ∈ zH2 and g ∈ H2, we obtain

‖ξf − Sφz
f‖2 = ‖ξf − (I − P )(φzf)‖2 → 0

and

‖ξg − T ∗
φz
g‖2 = ‖ξg − P (φzg)‖2 → 0

as z → ξ. Then we obtain that

‖(Sφz
f)⊗ g − f ⊗ (T ∗

φz
g)‖

= ‖(Sφz
f)⊗ g − ξf ⊗ g + f ⊗ ξg − f ⊗ T ∗

φz
g‖

≤ ‖(Sφz
f)⊗ g − ξf ⊗ g‖+ ‖f ⊗ (ξg)− f ⊗ (T ∗

φz
g)‖

= ‖(Sφz
f − ξf)⊗ g‖+ ‖f ⊗ (ξg − T ∗

φz
g)‖

= ‖Sφz
f − ξf‖2 · ‖g‖2 + ‖f‖2 · ‖ξg − T ∗

φz
g‖2

to get

lim
|z|→1−

‖Sφz
f ⊗ g − f ⊗ T ∗

φz
g‖ = 0,

which completes the proof.

Remark 3.1 The Carleson-Corona theorem (see [11]) tells us that the conclusions of Lem-

mas 2.6 and 3.2 are equivalent to the condition that for each m ∈ M(H∞ + C),

lim
z→m

‖K − T ∗
φz
KTφz

‖ = 0 and lim
z→m

‖Sφz
K −KTφz

‖ = 0

for z in the unit disk D.
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Combining Lemmas 3.1–3.2, we obtain the following necessary condition for the compactness

of the operator TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf .

Proposition 3.3 Suppose that u is a nonconstant inner function and f, g ∈ L∞. Let

m ∈ M(H∞ + C) and Sm be its support set. Suppose that the operator

TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf

is compact and f |Sm
, g|Sm

∈ H∞|Sm
. Then either

(1) ((u− λ)f )|Sm
and ((u− λ)g)|Sm

are in H∞|Sm
for some constant λ; or

(2) there exist constants a, b, not both zero, such that (af + bg)|Sm
is a constant.

Proof Suppose that

TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf = K (3.15)

for some compact operator K. Taking adjoint of (3.15), we have

HugTf + SgHuf −HufTg − SfHug = K∗.

By identity (4.5) of [21]

Hϕψ = HϕTψ + SϕHψ = HψTϕ + SψHϕ

for any ϕ, ψ ∈ L∞, we also have

HugTf −HgTuf −HufTg +HfTug = K∗.

From Lemma 3.1, we have

K∗Tφz
− Sφz

K∗ = Hugkz ⊗ Tfφz
kz −Hgkz ⊗ Tufφz

kz

−Hufkz ⊗ Tgφz
kz +Hfkz ⊗ Tugφz

kz.

By Lemma 3.2, the norm of the left hand side in the above equality tends to 0 as z → m. Thus

we obtain

Hufkz ⊗ Tgφz
kz −Hugkz ⊗ Tfφz

kz

= Hfkz ⊗ Tugφz
kz −Hgkz ⊗ Tufφz

kz + ε(z). (3.16)

By Lemma 3.1 and (3.16), we have

Hugkz ⊗ V Hfkz −Hufkz ⊗ V Hgkz

= Hgkz ⊗ V Hufkz −Hfkz ⊗ V Hugkz + ε(z). (3.17)

For [f |Sm
], [g|Sm

] ∈ (L∞|Sm
)/(H∞|Sm

), the dimension of span{[f |Sm
], [g|Sm

]} should be 0, 1,

or 2. Let us analyse these three cases in the following.

Case 1 If dim(span{[f |Sm
], [g|Sm

]}) = 0, then [f |Sm
] = [g|Sm

] = 0, which implies that

f |Sm
, g|Sm

∈ H∞|Sm
. This gives that f |Sm

and g|Sm
are constants, and (f + g)|Sm

is also a

constant.
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Case 2 If dim(span{[f |Sm
], [g|Sm

]}) = 1, we assume that [g|Sm
] 6= 0. Then there is a

constant λ such that [(f + λg)|Sm
] = 0, i.e.,

(f + λg)|Sm
∈ H∞|Sm

.

On the other hand, since f |Sm
, g|Sm

∈ H∞|Sm
, we get that (f + λg)|Sm

is a constant.

Case 3 If dim(span{[f |Sm
], [g|Sm

]}) = 2, Lemma 2.7 gives that

lim
z→m

‖Hfkz‖2 ≥ d1 > 0 and lim
z→m

‖Hgkz‖2 ≥ d2 > 0

for some constants d1 and d2. By (3.17), we have

〈V Hfkz, V Hfkz〉Hugkz − 〈V Hfkz, V Hgkz〉Hufkz

= 〈V Hfkz, V Hufkz〉Hgkz − 〈V Hfkz, V Hugkz〉Hfkz + ε(z) (3.18)

and

〈V Hgkz , V Hfkz〉Hugkz − 〈V Hgkz, V Hgkz〉Hufkz

= 〈V Hgkz , V Hufkz〉Hgkz − 〈V Hgkz , V Hugkz〉Hfkz + ε(z). (3.19)

Since V is anti-unitary, we also have

‖Hfkz‖
2
2Hugkz − 〈Hgkz, Hfkz〉Hufkz

= 〈Hufkz, Hfkz〉Hgkz − 〈Hugkz, Hfkz〉Hfkz + ε(z) (3.20)

and

〈Hfkz, Hgkz〉Hugkz − ‖Hgkz‖
2
2Hufkz

= 〈Hufkz, Hgkz〉Hgkz − 〈Hugkz , Hgkz〉Hfkz + ε(z). (3.21)

Using the same arguments as the one in the proof of Claim 3.1, we conclude that

lim
z→m

(‖Hfkz‖
2
2 · ‖Hgkz‖

2
2 − |〈Hfkz, Hgkz〉|

2) = ρ

for some constant ρ > 0. By (3.20)–(3.21), we can find {aij(z)}
2
i,j=1 such that

(
Hufkz
Hugkz

)
=

(
a11(z) a12(z)
a21(z) a22(z)

)(
Hfkz
Hgkz

)
+ ε(z)

for z ∈ O(m)∩D, where {aij(z)}
2
i,j=1 are bounded for z in O(m)∩D. By Lemma 2.7, there are

constants {aij}
2
i,j=1 (independent of z) such that

(
Hufkz

Hugkz

)
=

(
a11 a12
a21 a22

)(
Hfkz

Hgkz

)
+ ε(z)

for z ∈ O(m) ∩ D, to obtain

{
Hufkz = a11Hfkz + a12Hgkz + ε(z),

Hugkz = a21Hfkz + a22Hgkz + ε(z).
(3.22)
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Combining (3.17) and (3.22), we have

Hgkz ⊗ V (a22Hfkz − a12Hgkz)−Hfkz ⊗ V (−a21Hfkz + a11Hgkz)

= Hgkz ⊗ V Hufkz −Hfkz ⊗ V Hugkz + ε(z).

Since
[
f |Sm

]
and [g|Sm

] are linearly independent, we obtain




Hufkz = a22Hfkz − a12Hgkz + ε(z),

Hugkz = −a21Hfkz + a11Hgkz + ε(z),
(3.23)

where z ∈ O(m) ∩ D. (3.22)–(3.23) imply that a11 = a22 and a12 = a21 = 0. Thus there is a

constant λ such that




Hufkz = λHfkz + ε(z),

Hugkz = λHgkz + ε(z).
(3.24)

Therefore,

lim
z→m

‖H(u−λ)fkz‖2 = ‖H(u−λ)gkz‖2 = 0,

which implies that ((u−λ)f)|Sm
, ((u−λ)g)|Sm

∈ H∞|Sm
, to complete the proof of Proposition

3.3.

Proposition 3.3 yields the following necessary condition for the compactness of the third

operator HufTg + SfHug −HugTf − SgHuf given in Lemma 2.2.

Proposition 3.4 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞ +C).

Suppose that f |Sm
, g|Sm

∈ H∞|Sm
and the operator

HufTg + SfHug −HugTf − SgHuf

is compact. Then either

(1) ((u− λ)f)|Sm
and ((u− λ)g)|Sm

are in H∞|Sm
for some constant λ; or

(2) there exist constants a, b, not both zero, such that (af + bg)|Sm
is a constant.

Combining Propositions 3.1–3.4, we obtain the following necessary condition for the com-

pactness of the commutators of Df and Dg.

Theorem 3.1 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞ + C). If

[Df , Dg] is compact, then for the support set Sm of m, one of the following holds :

(1) f |Sm
, g|Sm

, ((u − λ)f)|Sm
and ((u− λ)g) |Sm

are in H∞|Sm
for some constant λ;

(2) f |Sm
, g|Sm

, ((u− λ)f) |Sm
and ((u − λ)g) |Sm

are in H∞|Sm
for some constant λ;

(3) there exist constants a, b, not both zero, such that (af + bg)|Sm
is a constant.

4 The Sufficient Part of Theorem 1.1

In this section, we will complete the proof of the sufficient part of Theorem 1.1. To do so,

we need two lemmas.
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Lemma 4.1 Let f, g ∈ L∞ and

Fz = Hgkz ⊗ V Hufkz −Hugkz ⊗ VHfkz

−Hfkz ⊗ V Hugkz +Hufkz ⊗ V Hgkz ,

where z ∈ D. For each support set S, suppose that f and g satisfy one of the following condi-

tions :

(1) f |S, g|S, ((u − λ)f)|S and ((u− λ)g) |S are in H∞|S for some constant λ;

(2) f |S , g|S, ((u− λ)f) |S and ((u− λ)g) |S are in H∞|S for some constant λ;

(3) there exist constants a, b, not both zero, such that (af + bg)|S is a constant.

Then we have

lim
|z|→1−

‖Fz‖ = 0.

Proof For each m ∈ M(H∞+C), let Sm be the support set of m. By the Carleson-Corona

theorem, we need only to show

lim
z→m

‖Fz‖ = 0.

If f and g satisfy Condition (2), then we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 = 0 and lim
z→m

‖Hgkz‖2 = 0.

It follows that

lim
z→m

‖Fz‖ = 0.

Assume that Condition (1) holds for f and g, i.e.,

f |Sm
, g|Sm

, ((u − λ)f)|Sm
and ((u − λ)g)|Sm

∈ H∞|Sm
.

According to Lemma 2.7, we have

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0,

and moreover,

lim
z→m

‖H(u−λ)fkz‖2 = lim
z→m

‖H(u−λ)gkz‖2 = 0.

Since

Fz = Hgkz ⊗ V H[(u−λ)f+λf ]kz −Hugkz ⊗ V Hfkz

−Hfkz ⊗ V H[(u−λ)g+λg]kz +Hufkz ⊗ V Hgkz

= Hgkz ⊗ V H(u−λ)fkz + λHgkz ⊗ V Hfkz −Hugkz ⊗ V Hfkz

−Hfkz ⊗ V H(u−λ)gkz − λHfkz ⊗ VHgkz +Hufkz ⊗ V Hgkz

= Hgkz ⊗ V H(u−λ)fkz +H(λ−u)gkz ⊗ V Hfkz

−Hfkz ⊗ V H(u−λ)gkz −H(λ−u)fkz ⊗ VHgkz ,

we have

‖Fz‖ ≤ ‖Hgkz ⊗ V H(u−λ)fkz‖+ ‖H(λ−u)gkz ⊗ V Hfkz‖
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+ ‖Hfkz ⊗ V H(u−λ)gkz‖+ ‖H(λ−u)fkz ⊗ V Hgkz‖

= ‖Hgkz‖2 · ‖V H(u−λ)fkz‖2 + ‖H(λ−u)gkz‖2 · ‖V Hfkz‖2

+ ‖Hfkz‖2 · ‖V H(u−λ)gkz‖2 + ‖H(λ−u)fkz‖2 · ‖VHgkz‖2

= ‖Hgkz‖2 · ‖H(u−λ)fkz‖2 + ‖H(λ−u)gkz‖2 · ‖Hfkz‖2

+ ‖Hfkz‖2 · ‖H(u−λ)gkz‖2 + ‖H(λ−u)fkz‖2 · ‖Hgkz‖2.

This gives us that

lim
z→m

‖Fz‖ = 0.

To finish our proof, we suppose that f and g satisfy Condition (3). Without loss of generality,

we may assume that (f − ag)|Sm
= c for some constant c. Then we get that

(f − ag)|Sm
, (f − ag)|Sm

∈ H∞|Sm

and

(u(f − ag))|Sm
, (u(f − ag))|Sm

∈ H∞|Sm
.

Noting that

Fz = Hgkz ⊗ V H[u(f−ag)+uag]kz −Hugkz ⊗ V H(f−ag+ag)kz

−Hfkz ⊗ V Hugkz +Hufkz ⊗ V Hgkz

= Hgkz ⊗ V Hu(f−ag)kz +Hagkz ⊗ V Hugkz

−Hugkz ⊗ V H(f−ag)kz −Haugkz ⊗ V Hgkz

−Hfkz ⊗ V Hugkz +Hufkz ⊗ V Hgkz

= Hgkz ⊗ V Hu(f−ag)kz +H(ag−f)kz ⊗ V Hugkz

−Hugkz ⊗ V H(f−ag)kz −Hu(ag−f)kz ⊗ VHgkz ,

we obtain

‖Fz‖ ≤ ‖Hgkz ⊗ V Hu(f−ag)kz‖+ ‖H(ag−f)kz ⊗ V Hugkz‖

+ ‖Hugkz ⊗ V H(f−ag)kz‖+ ‖Hu(ag−f)kz ⊗ V Hgkz‖

= 2(‖Hgkz‖2 · ‖VHu(f−ag)kz‖2 + ‖Hugkz‖2 · ‖VH(f−ag)kz‖2)

= 2(‖Hgkz‖2 · ‖Hu(f−ag)kz‖2 + ‖Hugkz‖2 · ‖H(f−ag)kz‖2).

By Lemma 2.7 again, now we conclude that

lim
z→m

‖Fz‖ = 0

to complete the proof of Lemma 4.1.

The following lemma will be needed in the proof of Theorem 1.1, which was established in

[14, Lemma 17].
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Lemma 4.2 Suppose that ϕ and ψ are in L∞. Let m ∈ M(H∞ + C). If

lim
z→m

‖Hϕkz‖2 = 0,

then we have

lim
z→m

‖HϕTψkz‖2 = 0.

Now we are ready to complete the proof of Theorem 1.1.

Proof of the Sufficient Part of Theorem 1.1 Let m be in M(H∞ + C). We suppose

that one of Conditions (1), (2) and (3) in Theorem 1.1 holds on the support set Sm. By Lemma

2.2, we need to show that

TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf ,

TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf ,

HufTg + SfHug −HugTf − SgHuf

and

HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf

are compact.

Letting

K1 = TfTg +H∗
uf
Hug − TgTf −H∗

ugHuf

= (Tfg −H∗
f
Hg) +H∗

uf
Hug − (Tfg −H∗

gHf )−H∗
ugHuf

= (H∗
gHf −H∗

f
Hg)− (H∗

ugHuf −H∗
uf
Hug),

we are going to show that K1 is compact first.

In order to show that K1 is compact, we first check that each condition of Theorem 1.1 can

imply (3.1). Indeed, if Condition (1) holds, then we have

f |Sm
, g|Sm

∈ H∞|Sm
.

Using Lemma 2.7 and identity (4.5) of [21]

Huf = SuHf , Hug = SuHg,

we have

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0

and

lim
z→m

‖Hufkz‖2 = lim
z→m

‖Hugkz‖2 = 0,

which implies that

lim
z→m

‖Hgkz ⊗Hfkz −Hfkz ⊗Hgkz‖ = 0

and

lim
z→m

‖Hugkz ⊗Hufkz −Hufkz ⊗Hugkz‖ = 0.
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Similarly, if f |Sm
, g|Sm

∈ H∞|Sm
, then we also have

lim
z→m

‖Hgkz ⊗Hfkz −Hfkz ⊗Hgkz‖ = 0

and

lim
z→m

‖Hugkz ⊗Hufkz −Hufkz ⊗Hugkz‖ = 0.

Thus Condition (1) or (2) in Theorem 1.1 can imply (3.1).

If Condition (3) holds, we have

(af + bg)|Sm
= c

for some constants a, b, c with |a|+ |b| 6= 0. Without loss of generality, we may assume that

(f − dg)|Sm
= e

for some constants d and e. Then we have

Hgkz ⊗Hfkz −Hfkz ⊗Hgkz

= Hgkz ⊗H(f−dg+dg)kz −Hfkz ⊗Hgkz

= Hgkz ⊗H(f−dg)kz + dHgkz ⊗Hgkz −Hfkz ⊗Hgkz

= Hgkz ⊗H(f−dg)kz +H(dg−f)kz ⊗Hgkz

and

Hugkz ⊗Hufkz −Hufkz ⊗Hugkz

= Hugkz ⊗Hu(f−dg+dg)kz −Hufkz ⊗Hugkz

= Hugkz ⊗Hu(f−dg)kz + dHugkz ⊗Hugkz −Hufkz ⊗Hugkz

= Hugkz ⊗Hu(f−dg)kz +Hu(dg−f)kz ⊗Hugkz .

Since (f − dg)|Sm
is a constant, we conclude that (u(f − dg))|Sm

and (u(dg − f))|Sm
both

belong to H∞|Sm
. Using Lemma 2.7 again, we get that

lim
z→m

‖Hgkz ⊗Hfkz −Hfkz ⊗Hgkz‖ = 0

and

lim
z→m

‖Hugkz ⊗Hufkz −Hufkz ⊗Hugkz‖ = 0,

which implies that the equation in (3.1) holds, as desired.

By the definition of K1 and Lemma 2.5, we have

K1 − T ∗
φz
K1Tφz

= [(H∗
gHf −H∗

f
Hg)− (H∗

ugHuf −H∗
uf
Hug)]

− T ∗
φz
[(H∗

gHf −H∗
f
Hg)− (H∗

ugHuf −H∗
uf
Hug)]Tφz

= V [(Hgkz ⊗Hfkz −Hfkz ⊗Hgkz)]V
∗

− V [(Hugkz ⊗Hufkz −Hufkz ⊗Hugkz)]V
∗.
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It follows that

lim
|z|→1−

‖K1 − T ∗
φz
K1Tφz

‖ = 0. (4.1)

On the other hand, since

H∗
uf
Hug = Tfg − TufTug

and

H∗
ugHuf = Tfg − TugTuf ,

we have

K1 = (TfTg − TgTf) + (TugTuf − TufTug),

which is a finite sum of finite products of Toeplitz operators. According to [15, Theorem 12],

we obtain by (4.1) that K1 is equal to a compact perturbation of a Toeplitz operator, i.e.,

K1 = Th +K

for some h ∈ L∞ and some compact operator K. Thus K = K1 − Th belongs to the Toeplitz

algebra TL∞ . We conclude by [3, Corollary 6] that h = 0 a.e., which implies that K1 = K is

compact.

To show the fourth operator HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf is compact, we recall that

V Hϕ = H∗
ϕV and SϕV = V Tϕ.

Then

V (HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf )V

= H∗
ufV V Hug + TfV V Tg −H∗

ugV V Huf − TgV V Tf

= H∗
ufHug + TfTg −H∗

ugHuf − TgTf , (4.2)

where the second equality follows from V 2 = I. Using the same method as the above, we can

show similarly that

H∗
ufHug + TfTg −H∗

ugHuf − TgTf

is compact. Furthermore, (4.2) gives us that

HufH
∗
ug + SfSg −HugH

∗
uf

− SgSf

is also compact.

Now we turn to the proof of the compactness of the second operator

TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf .

Denoting the above operator by

K2 = TfH
∗
ug +H∗

uf
Sg − TgH

∗
uf

−H∗
ugSf ,

we need only to consider the compactness of K2K
∗
2 . From identity (4.5) in [21], we have

Hϕψ = HϕTψ + SϕHψ = HψTϕ + SψHϕ
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for any ϕ, ψ ∈ L∞, to obtain

K2 = TfH
∗
ug − TufH

∗
g − TgH

∗
uf

+ TugH
∗
f

and

K∗
2 = HugTf −HgTuf −HufTg +HfTug.

Observe that the operator K2K
∗
2 is in the Toeplitz algebra TL∞ and the symbol map maps

K2K
∗
2 to 0. By [15, Theorem 12] again, we need only to prove that

lim
z→m

‖K2K
∗
2 − T ∗

φz
K2K

∗
2Tφz

‖ = 0.

By Lemma 3.1 and V Tϕφz
kz = −Hϕkz for all ϕ in L∞,

K∗
2Tφz

= Sφz
K∗

2 − Fz,

where Fz is introduced in Lemma 4.1 and lim
|z|→1−

‖Fz‖ = 0. Thus we have

T ∗
φz
K2K

∗
2Tφz

= (K∗
2Tφz

)∗K∗
2Tφz

= (Sφz
K∗

2 − Fz)
∗(Sφz

K∗
2 − Fz)

= (K2S
∗
φz

− F ∗
z )(Sφz

K∗
2 − Fz)

= K2S
∗
φz
Sφz

K∗
2 −K2S

∗
φz
Fz − F ∗

z Sφz
K∗

2 + F ∗
z Fz

= K2(I − V kz ⊗ V kz)K
∗
2 −K2S

∗
φz
Fz − F ∗

z Sφz
K∗

2 + F ∗
z Fz

= K2K
∗
2 − (K2V kz)⊗ (K2V kz)−K2S

∗
φz
Fz − F ∗

z Sφz
K∗

2 + F ∗
z Fz .

It follows that

K2K
∗
2 − T ∗

φz
K2K

∗
2Tφz

= (K2V kz)⊗ (K2V kz) +K2S
∗
φz
Fz + F ∗

z Sφz
K∗

2 − F ∗
z Fz .

Therefore, in order to show that

lim
|z|→1−

‖K2K
∗
2 − T ∗

φK2K
∗
2Tφ‖ = 0,

it is sufficient to show

lim
|z|→1−

‖K2V kz‖2 = 0 (4.3)

as lim
|z|→1−

‖Fz‖ = 0. For this purpose, we will check that each condition of Theorem 1.1 can

imply (4.3).

Recall that

TϕV = V Sϕ and V Hϕ = H∗
ϕV

for all ϕ ∈ L∞, we get

K2V kz = V (SfHugkz − SufHgkz + SugHfkz − SgHufkz). (4.4)
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If f and g satisfy Condition (2) in Theorem 1.1, we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0

and

lim
z→m

‖Hufkz‖2 = lim
z→m

‖Hugkz‖2 = 0.

This gives that

lim
z→m

‖K2V kz‖2 = 0.

Assume that Condition (1) holds, i.e.,

f |Sm
, g|Sm

, ((u− λ)f)|Sm
and ((u− λ)g)|Sm

∈ H∞|Sm
.

It follows that

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0

and

lim
z→m

‖H(u−λ)fkz‖2 = lim
z→m

‖H(u−λ)gkz‖2 = 0.

Computing K2V kz directly, we obtain

K2V kz = V (SfHugkz − SufHgkz + SugHfkz − SgHufkz)

= V {SfH[(u−λ)g+λg]kz − SufHgkz + SugHfkz − SgH[(u−λ)f+λf ]kz}

= V [SfH(u−λ)gkz − S(u−λ)fHgkz + S(u−λ)gHfkz − SgH(u−λ)fkz]

= V [SfH(u−λ)gkz − SgH(u−λ)fkz] + V [S(u−λ)gHfkz − S(u−λ)fHgkz].

Noting that

S(u−λ)gHfkz − S(u−λ)fHgkz

= (I − P )[(u − λ)g(I − P )(fkz)]− (I − P )[(u− λ)f (I − P )(gkz)]

= (I − P )[(u − λ)gfkz − (u− λ)gP (fkz)− (u− λ)fgkz + (u − λ)fP (gkz)]

= (I − P )[(u − λ)fP (gkz)− (u− λ)gP (fkz)]

= H(u−λ)fTgkz −H(u−λ)gTfkz,

we have

K2V kz = V [SfH(u−λ)gkz − SgH(u−λ)fkz ]

+ V [H(u−λ)fTgkz −H(u−λ)gTfkz ]

and

‖K2V kz‖2 ≤ ‖f‖∞ · ‖H(u−λ)gkz‖2 + ‖g‖∞ · ‖H(u−λ)fkz‖2

+ ‖H(u−λ)fTgkz‖2 + ‖H(u−λ)gTfkz‖2.

Since

((u − λ)g)|Sm
and ((u − λ)f)|Sm

∈ H∞|Sm
,
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we conclude by Lemma 4.2 that ‖K2V kz‖2 → 0 as z → m.

Finally, we suppose that Condition (3) holds. Without loss of generality, we assume that

(f − αg)|Sm
= β

for some constants α and β. Then we have

(f − αg)|Sm
and (f − αg)|Sm

are in H∞|Sm
. Observe that

K2V kz

= V (SfHugkz − SufHgkz + SugHfkz − SgHufkz)

= V [SfHugkz − SufHgkz + SugH(f−αg+αg)kz − SgHu(f−αg+αg)kz]

= V [SugH(f−αg)kz − SgHu(f−αg)kz] + V [S(f−αg)Hugkz − Su(f−αg)Hgkz ].

Similarly, we calculate that

S(f−αg)Hugkz − Su(f−αg)Hgkz

= (I − P )[(f − αg)(I − P )(ugkz)]− (I − P )[u(f − αg)(I − P )(gkz)]

= (I − P )[(f − αg)ugkz − (f − αg)P (ugkz)− u(f − αg)gkz + u(f − xg)P (gkz)]

= (I − P )[u(f − αg)P (gkz)− (f − αg)P (ugkz)]

= Hu(f−αg)Tgkz −H(f−αg)Tugkz .

It follows that

‖K2V kz‖2 = ‖V [SugH(f−αg)kz − SgHu(f−αg)kz] + V [S(f−αg)Hugkz − Su(f−αg)Hgkz ]‖2

≤ ‖SugH(f−αg)kz − SgHu(f−αg)kz‖2 + ‖S(f−αg)Hugkz − Su(f−αg)Hgkz‖2

≤ ‖g‖∞ · ‖H(f−αg)kz‖2 + ‖g‖∞ · ‖Hu(f−αg)kz‖2

+ ‖Hu(f−αg)Tgkz −H(f−αg)Tugkz‖2

≤ ‖g‖∞ · ‖H(f−αg)kz‖2 + ‖g‖∞ · ‖Hu(f−αg)kz‖2

+ ‖Hu(f−αg)Tgkz‖2 + ‖H(f−αg)Tugkz‖2.

Using the conditions that

(f − αg)|Sm
and (u(f − αg))|Sm

are in H∞|Sm
, we again conclude by Lemma 4.2 that ‖K2V kz‖2 → 0 as z → m.

To summarize, each condition in Theorem 1.1 implies

lim
|z|→1−

‖K2K
∗
2 − T ∗

φK2K
∗
2Tφ‖ = 0,

which gives that K2 is compact.

In order to complete the proof, it remains to show that the third operator

K3 = HufTg + SfHug −HugTf − SgHuf
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is compact. Rewrite K3 as follows:

K3 = HufTg + SfHug −HugTf − SgHuf

= HufTg +Hfug −HfTug −HugTf −Hguf +HgTuf

= HufTg −HfTug −HugTf +HgTuf .

Observe that

K∗
3 = TgH

∗
uf − TugH

∗
f − TfH

∗
ug + TufH

∗
g

has the same form as K2. Using the same arguments as in the proof of the compactness of K2,

we conclude that K∗
3 is also compact, which implies that K3 is compact.

Finally, as the necessity part of Theorem 1.1 was contained in Theorem 3.1, thus we finish

the proof of Theorem 1.1.

5 The Necessary Part of Theorem 1.2

Section 5 is devoted to the proof of the necessary part of Theorem 1.2. Let us begin with

the following necessary condition for the compactness of the first operator given in Lemma 2.3.

Proposition 5.1 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞+C).

Suppose that

TfTg +H∗
uf
Hug − Tfg

is compact. Then for the support set Sm of m, one of the following holds :

(1) f |Sm
is in H∞|Sm

;

(2) g|Sm
is in H∞|Sm

.

Proof Suppose that

K = TfTg +H∗
uf
Hug − Tfg

is compact. Clearly, K can be rewritten as

K = H∗
uf
Hug −H∗

f
Hg.

By Lemmas 2.5–2.6, we have

lim
z→m

‖K − T ∗
φz
KTφz

‖ = lim
z→m

‖V [Hufkz ⊗Hugkz −Hfkz ⊗Hgkz ]V
∗‖ = 0,

which gives

lim
z→m

‖Hufkz ⊗Hugkz −Hfkz ⊗Hgkz‖ = 0. (5.1)

For [f |Sm
] ∈ (L∞|Sm

)
/
(H∞|Sm

), let us consider the following two cases.

Case 1 If [f |Sm
] = 0, then f |Sm

∈ H∞|Sm
, as desired.

Case 2 Suppose that [f |Sm
] 6= 0. Then we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 > 0.
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On the other hand, (5.1) gives that

lim
z→m

∥∥∥
〈Hfkz , Hufkz〉

‖Hfkz‖
2
2

Hugkz −Hgkz

∥∥∥
2
= 0.

Note that
〈Hfkz ,Hufkz〉

‖Hfkz‖
2
2

is bounded for z in some small neighborhood O(m)∩D of m. Using the

Bolzano-Weierstrass theorem, we can find a subnet {zα} ⊂ D such that

lim
zα→m

〈Hfkzα , Hufkzα〉

‖Hfkzα‖
2
2

= a

for some constant a with |a| ≤ 1. Furthermore, we have

lim
zα→m

‖aHugkzα −Hgkzα‖2 = 0.

Thus we conclude by Lemma 2.7 that

lim
z→m

‖aHugkz −Hgkz‖2 = 0

to get

lim
z→m

‖H(1−au)gkz‖2 = 0.

According to the last two paragraphs in the proof of Case 2 of Proposition 3.1, we obtain

lim
z→m

‖Hgkz‖2 = 0,

which implies that g|Sm
∈ H∞|Sm

. This completes the proof.

The next proposition again follows directly from the following equalities in Remark 2.1:

V Tϕ = SϕV, V Hϕ = H∗
ϕV and V 2 = I.

Proposition 5.2 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞+C).

Assume that

HufH
∗
ug + SfSg − Sfg

is compact. Then for the support set Sm of m, one of the following holds :

(1) f |Sm
is in H∞|Sm

;

(2) g|Sm
is in H∞|Sm

.

Combining Propositions 5.1–5.2, we obtain a necessary condition for the compactness of

[Df , Dg).

Proposition 5.3 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞+C).

Suppose that the semicommutator [Df , Dg) is compact. Then for the support set Sm of m, one

of following conditions holds :

(1) f |Sm
and g|Sm

are in H∞|Sm
;

(2) f |Sm
and g|Sm

are in H∞|Sm
;

(3) either f |Sm
or g|Sm

is a constant.
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We establish a necessary condition for the compactness of the operator TfH
∗
ug+H

∗
uf
Sg−H

∗
ufg

in the following proposition.

Proposition 5.4 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞+C).

Suppose that

TfH
∗
ug +H∗

uf
Sg −H∗

ufg

is compact and f |Sm
, g|Sm

are in H∞|Sm
. Then for the support set Sm of m, one of the

following holds :

(1) ((u− λ)f )|Sm
, ((u − λ)g)|Sm

and ((u − λ)fg)|Sm
are in H∞|Sm

for some constant λ;

(2) either f |Sm
or g|Sm

is constant.

Proof Let K denote the compact operator given above, then

K∗ = HugTf + SgHuf −Hufg

is also compact. Using identity (4.5) of [21], we obtain

Hufg = HgTuf + SgHuf

to get

K∗ = HugTf −HgTuf .

By Lemmas 3.1–3.2, we obtain that

lim
z→m

‖K∗Tφz
− Sφz

K∗‖ = lim
z→m

‖Hugkz ⊗ V Hfkz −Hgkz ⊗ V Hufkz‖ = 0. (5.2)

Before going further, we need to consider the following two cases.

Case 1 If [f |Sm
] = 0, then f |Sm

∈ H∞|Sm
. Since f |Sm

is also in H∞|Sm
, we conclude that

f |Sm
is a constant.

Case 2 If [f |Sm
] 6= 0, then we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 > 0.

By (5.2), we have

lim
z→m

∥∥∥Hugkz −
〈V Hfkz , V Hufkz〉

‖V Hfkz‖
2
2

Hgkz

∥∥∥
2
= 0.

Since V is anti-unitary,
〈V Hfkz ,V Hufkz〉

‖VHfkz‖
2
2

is bounded for z ∈ O(m) ∩ D. Using the Bolzano-

Weierstrass theorem again, there is a subnet {zα} ⊂ D such that

lim
zα→m

〈V Hfkzα , V Hufkzα〉

‖VHfkzα‖
2
2

= λ

for some constant λ, to obtain

lim
zα→m

‖Hugkzα − λHgkzα‖2 = 0.

Now Lemma 2.7 gives us that

lim
z→m

‖H(u−λ)gkz‖2 = 0,
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which implies that ((u − λ)g)|Sm
∈ H∞|Sm

.

Furthermore, since

‖Hgkz ⊗ V H(u−λ)fkz‖

= ‖Hgkz ⊗ V Hufkz −Hλgkz ⊗ V Hfkz +Hugkz ⊗ V Hfkz −Hugkz ⊗ V Hfkz‖

= ‖H(u−λ)gkz ⊗ V Hfkz − (Hugkz ⊗ V Hfkz −Hgkz ⊗ V Hufkz)‖

≤ ‖H(u−λ)gkz‖2 · ‖VHfkz‖2 + ‖Hugkz ⊗ VHfkz −Hgkz ⊗ V Hufkz‖,

we conclude that

lim
z→m

‖Hgkz ⊗ V H(u−λ)fkz‖ = lim
z→m

‖Hgkz‖2 · ‖H(u−λ)fkz‖2 = 0.

As u is inner and f, g ∈ L∞, we obtain that

lim
z→m

‖Hgkz‖2 = 0 or lim
z→m

‖H(u−λ)fkz‖2 = 0.

It follows from Lemma 2.7 that g|Sm
or ((u − λ)f)|Sm

is in H∞|Sm
.

In order to complete the proof of this proposition, we need to consider the following two

subcases for [g|Sm
].

Subcase 2(i) If g|Sm
∈ H∞|Sm

, then we have by g|Sm
∈ H∞|Sm

that g|Sm
is a constant.

Subcase 2(ii) If g|Sm
is not in H∞|Sm

, then we have ((u− λ)f )|Sm
∈ H∞|Sm

and

lim
z→m

‖H(u−λ)fkz‖2 = 0.

Since K∗ is compact, we have

lim
z→m

‖K∗kz‖2 = 0.

Moreover, we have by Lemma 4.2 that

lim
z→m

‖H(u−λ)gTfkz‖2 = 0.

Noting that

K∗kz = HugTfkz −HgTufkz

= H(u−λ)gTfkz +HλgTfkz −HgTufkz

= H(u−λ)gTfkz −HgT(u−λ)fkz

= H(u−λ)gTfkz −H(u−λ)fgkz + SgH(u−λ)fkz,

we have ‖H(u−λ)fgkz‖2 → 0 as z → m. Thus ((u−λ)fg)|Sm
is also in H∞|Sm

, to complete the

proof of Proposition 5.4.

In view of Proposition 5.4, we obtain the following proposition which gives a necessary

condition for the compactness of the operator HufTg + SfHug −Hufg.

Proposition 5.5 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞+C).

Suppose that

HufTg + SfHug −Hufg
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is compact and f |Sm
, g|Sm

are in H∞|Sm
. Then for the support set Sm of m, one of the

following holds :

(1) ((u− λ)f) |Sm
, ((u − λ)g) |Sm

and ((u− λ)fg) |Sm
are in H∞|Sm

for some constant λ;

(2) either f |Sm
or g|Sm

is a constant.

Combining Propositions 5.3–5.5, now we summarize the necessary condition for the com-

pactness of the semicommutator [Df , Dg) in the following theorem.

Theorem 5.1 Let u be a nonconstant inner function, f, g ∈ L∞ and m ∈ M(H∞ + C).

Suppose that the semicommutator [Df , Dg) is compact. Then for each support set Sm of m,

one of the following conditions holds :

(1) f |Sm
, g|Sm

, ((u − λ)f)|Sm
, ((u − λ)g)|Sm

and ((u − λ)fg)|Sm
are in H∞|Sm

for some

constant λ;

(2) f |Sm
, g|Sm

, ((u − λ)f)|Sm
, ((u − λ)g)|Sm

and ((u − λ)fg)|Sm
are in H∞|Sm

for some

constant λ;

(3) either f |Sm
or g|Sm

is a constant.

6 The Sufficient Part of Theorem 1.2

In the final section, we will present the proof of the sufficient part of Theorem 1.2. To do

this, we need the following lemma analogous to Lemma 4.1.

Lemma 6.1 Let f, g be in L∞ and

Lz = Hugkz ⊗ V Hfkz −Hgkz ⊗ V Hufkz,

where z ∈ D. For each support set S, suppose that f and g satisfy one of following conditions :

(1) f |S, g|S, ((u−λ)f)|S, ((u−λ)g)|S and ((u−λ)fg)|S are in H∞|S for some constant λ;

(2) f |S, g|S , ((u−λ)f)|S, ((u−λ)g)|S and ((u−λ)fg)|S are in H∞|S for some constant λ;

(3) either f |S or g|S is constant.

Then we have

lim
|z|→1−

‖Lz‖ = 0. (6.1)

Proof For any m in M(H∞ + C), let Sm be the corresponding support set. If Condition

(2) or (3) holds, we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hufkz‖2 = 0

or

lim
z→m

‖Hgkz‖2 = lim
z→m

‖Hugkz‖2 = 0.

It follows that lim
|z|→m

‖Lz‖ = 0.

To finish this proof, we need to show that Condition (1) can imply (6.1). By Lemma 2.7,

we have

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0,
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lim
z→m

‖H(u−λ)fkz‖2 = lim
z→m

‖H(u−λ)gkz‖2 = 0

and

lim
z→m

‖H(u−λ)fgkz‖2 = 0.

Since

‖Lz‖ = ‖Hugkz ⊗ V Hfkz −Hgkz ⊗ V Hufkz‖

= ‖H(u−λ)gkz ⊗ V Hfkz −Hgkz ⊗ VH(u−λ)fkz‖

≤ ‖H(u−λ)gkz ⊗ V Hfkz‖+ ‖Hgkz ⊗ VH(u−λ)fkz‖

= ‖H(u−λ)gkz‖2 · ‖Hfkz‖2 + ‖Hgkz‖2 · ‖H(u−λ)fkz‖2,

we obtain ‖Lz‖ → 0 as z → m. This completes the proof.

We are now in position to prove the sufficiency for Theorem 1.2.

Proof of the Sufficient Part of Theorem 1.2 For any m ∈ M(H∞ + C), let Sm be

the support set of m. Suppose that one of Conditions (1), (2) and (3) in Theorem 1.2 holds.

According to Lemma 2.3, we need to show that

K̃1 = TfTg +H∗
uf
Hug − Tfg,

K̃2 = TfH
∗
ug +H∗

uf
Sg −H∗

ufg
,

K̃3 = HufTg + SfHug −Hufg

and

K̃4 = HufH
∗
ug + SfSg − Sfg

are compact operators.

As Tfg − TfTg = H∗
f
Hg, we get

K̃1 = H∗
uf
Hug −H∗

f
Hg.

By Lemma 2.5, we have

K̃1 − T ∗
φz
K̃1Tφz

= V [Hufkz ⊗Hugkz −Hfkz ⊗Hgkz]V
∗. (6.2)

Next we will show that each condition in Theorem 1.2 can imply that

lim
z→m

‖K̃1 − T ∗
φz
K̃1Tφz

‖ = 0. (6.3)

If Condition (3) holds, then we have by Lemma 2.7 that

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0

and

lim
z→m

‖Hufkz‖2 = lim
z→m

‖Hugkz‖2 = 0.

Observing that

‖Hufkz ⊗Hugkz −Hfkz ⊗Hgkz‖ ≤ ‖Hufkz‖2 · ‖Hugkz‖2 + ‖Hfkz‖2 · ‖Hgkz‖2,
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we obtain

lim
z→m

‖K̃1 − T ∗
φz
K̃1Tφz

‖ = 0.

Assume that Condition (1) holds. From the proof of the sufficient part of Theorem 1.1, we

get that

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hgkz‖2 = 0,

lim
z→m

‖Hufkz‖2 = lim
z→m

‖Hugkz‖2 = 0,

lim
z→m

‖H(u−λ)fkz‖2 = lim
z→m

‖H(u−λ)gkz‖2 = 0

and

lim
z→m

‖H(u−λ)fgkz‖2 = 0.

Since

‖Hufkz ⊗Hugkz −Hfkz ⊗Hgkz‖ ≤ ‖Hufkz‖2 · ‖Hugkz‖2 + ‖Hfkz‖2 · ‖Hgkz‖2,

we conclude that

lim
z→m

‖K̃1 − T ∗
φz
K̃1Tφz

‖ = 0.

Using the same techniques as above, we can show that Condition (2) implies

lim
z→m

‖K̃1 − T ∗
φz
K̃1Tφz

‖ = 0.

Therefore, each condition of Theorem 1.2 implies that

lim
|z|→1−

‖K̃1 − T ∗
φz
K̃1Tφz

‖ = 0.

On the other hand, noting

H∗
uf
Hug = Tfg − TufTug,

it follows that

K̃1 = TfTg +H∗
uf
Hug − Tfg = (Tfg − TufTug)− (Tfg − TfTg) ,

which is a finite sum of finite products of Toeplitz operators. Using the same method as in the

proof of the sufficient part of Theorem 1.1, we conclude by (6.3) that K̃1 is compact.

Using

V Tϕ = SϕV, V Hϕ = H∗
ϕV and V 2 = I

again, we have

V K̃4V = V (HufH
∗
ug + SfSg − Sfg)V

= H∗
ufV

2Hug + TfV
2Tg − TfgV

2

= H∗
ufHug + TfTg − Tfg.

Using the same arguments as above, we conclude that

H∗
ufHug + TfTg − Tfg
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is compact, which gives us that K̃4 is also compact.

To show the compactness of K̃2, we will show that K̃2K̃2

∗
is compact as before. Recall that

K̃2 = TfH
∗
ug +H∗

uf
Sg −H∗

ufg
.

Using identity (4.5) in [21] again, we have

Hufg = SgHuf +HgTuf .

Thus we get

K̃2

∗
= HugTf −HgTuf

and

K̃2K̃2

∗
= (TfH

∗
ug − TufH

∗
g )(HugTf −HgTuf ).

Note that K̃2K̃2

∗
is a finite sum of finite products of Toeplitz operators and the symbol

map maps this operator to zero. Applying [15, Lemma 12] and [3, Corollary 6] again, it suffices

to show that

lim
z→m

∥∥K̃2K̃2

∗
− T ∗

φz
K̃2K̃2

∗
Tφz

∥∥ = 0.

By Lemma 3.1, we have

K̃2

∗
Tφz

= Sφz
K̃2

∗
− Lz,

where Lz is defined in Lemma 6.1. Thus we have

T ∗
φz
K̃2K̃2

∗
Tφz

= (K̃2

∗
Tφz

)∗K̃2

∗
Tφz

= (Sφz
K̃2

∗
− Lz)

∗(Sφz
K̃2

∗
− Lz)

= (K̃2S
∗
φz

− L∗
z)(Sφz

K̃2

∗
− Lz)

= K̃2S
∗
φz
Sφz

K̃2

∗
− K̃2S

∗
φz
Lz − L∗

zSφz
K̃2

∗
+ L∗

zLz

= K̃2(I − V kz ⊗ V kz)K̃2

∗
− K̃2S

∗
φz
Lz − L∗

zSφz
K̃2

∗
+ L∗

zLz

= K̃2K̃2

∗
− K̃2V kz ⊗ K̃2V kz − K̃2S

∗
φz
Lz − L∗

zSφz
K̃2

∗
+ L∗

zLz.

Lemma 6.1 gives us that ‖K̃2S
∗
φz
Lz‖, ‖L

∗
zSφz

K̃2

∗
‖ and ‖L∗

zLz‖ all converge to 0 as z → m.

Thus, we need to show that ‖K̃2V kz‖2 → 0 as z → m. In fact,

K̃2V kz = (HugTf −HgTuf )
∗V kz

= TfH
∗
ugV kz − TufH

∗
gV kz

= V (SfHugkz − SufHgkz)

= V {(I − P )[f(I − P )(ugkz)]− (I − P )[uf(I − P )(gkz)]}

= V (I − P )[ufP (gkz)− fP (ugkz)]

= V HufTgkz − VHfTugkz,
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where the third equality follows from that

V Tϕ = SϕV, V Hϕ = H∗
ϕV and V 2 = I.

If Condition (2) of Theorem 1.2 holds, then we have

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hufkz‖2 = 0.

It follows from Lemma 4.2 that

lim
z→m

‖K̃2V kz‖2 = lim
z→m

‖HufTgkz −HfTugkz‖2 = 0.

If Condition (3) holds, then f |Sm
or g|Sm

is also a constant. This yields

lim
z→m

‖Hfkz‖2 = lim
z→m

‖Hufkz‖2 = 0

or

lim
z→m

‖Hgkz‖2 = lim
z→m

‖Hugkz‖2 = 0.

By Lemma 4.2 again, we have

lim
z→m

‖K̃2V kz‖2 = lim
z→m

‖HufTgkz −HfTugkz‖2 = 0

or

lim
z→m

‖K̃2V kz‖2 = lim
z→m

‖SfHugkz − SufHgkz‖2 = 0.

Finally, we assume that Condition (1) holds. From Lemma 2.7, we get

lim
z→m

‖H(u−λ)fkz‖2 = lim
z→m

‖H(u−λ)gkz‖2 = lim
z→m

‖H(u−λ)fgkz‖2 = 0.

Noting that

‖K̃2V kz‖2

= ‖HufTgkz −HfTugkz‖2

= ‖H(u−λ)fTgkz −HfT(u−λ)gkz‖2

= ‖H(u−λ)fTgkz − [H(u−λ)fg − SfH(u−λ)g]kz‖2

= ‖H(u−λ)fTgkz −H(u−λ)fgkz + SfH(u−λ)gkz‖2

≤ ‖H(u−λ)fTgkz‖2 + ‖H(u−λ)fgkz‖2 + ‖SfH(u−λ)gkz‖2

≤ ‖H(u−λ)fTgkz‖2 + ‖H(u−λ)fgkz‖2 + ‖f‖∞ · ‖H(u−λ)gkz‖2,

we conclude by Lemma 4.2 that lim
z→m

‖K̃2V kz‖2 = 0. Moreover, since

‖K̃2K̃2

∗
− T ∗

φz
K̃2K̃2

∗
Tφz

‖ = ‖K̃2V kz ⊗ K̃2V kz + K̃2S
∗
φz
Lz + L∗

zSφz
K̃2

∗
− L∗

zLz‖

≤ ‖K̃2V kz ⊗ K̃2V kz‖+ ‖K̃2S
∗
φz
Lz‖+ ‖L∗

zSφz
K̃2

∗
‖+ ‖L∗

zLz‖

= ‖K̃2V kz‖
2
2 + ‖K̃2S

∗
φz
Lz‖+ ‖L∗

zSφz
K̃2

∗
‖+ ‖Lz‖

2,
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we have

lim
z→m

‖K̃2K̃2

∗
− Tφz

K̃2K̃2

∗
Tφz

‖ = 0.

Using the same idea as in the proof of the compactness of K̃1, we conclude that K̃2K̃2

∗
is

compact, so K̃2 is also compact.

In order to finish the proof, we observe that

V K̃3V = V HufTgV + V SfHugV − V HufgV

= H∗
ufSg + TfH

∗
ug −H∗

ufg.

Similarly we can show that K̃3 is compact, to complete the proof of Theorem 1.2.
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