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1 Introduction

The non-conservative hyperbolic system plays an important role in many areas, such as

the laminar flow in compliant tubes (see [2]), the shallow water (see [12]) and the multiphase

flows (see [16]). The main difficulties of the Riemann problem for it are the existence and the

uniqueness of the solution. In a recent paper [19], the Riemann problem for the isentropic,

inviscid, simple flow of ideal gas, subjected to transverse magnetic field, in a duct with cross-

sectional area a(x) > 0 in magnetogasdynamics, was studied. It is governed by the hyperbolic

system 



(aρ)t + (aρu)x = 0,

(aρu)t +
(
a
(
ρu2 + p+

B2

2µ

))
x
=

(
p+

B2

2µ

)
ax

at = 0

(1.1)

with the Riemann initial data

(u, ρ, a) =

{
(u−, ρ−, a−), x < 0,
(u+, ρ+, a+), x > 0,

(1.2)

where a+ > a− > 0, ρ− > 0, ρ+ > 0, u− and u+ are arbitrary constants. Symbols ρ, p, u,B

and µ are the specific density, the pressure, the velocity, the transverse magnetic field and the
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magnetic permeability, resp. (see [18]). The pressure function and the transverse magnetic field

function are given by p = κργ and B = kρ, resp., where γ ∈ (1, 2), κ, k are positive constants.

The existence has been obtained for any given initial data. However, for some initial data, there

exist multi solutions.

In this article, we will select a proper unique solution mainly by the vanishing magnetic

field method, motivated by the vanishing viscosity method (see [4]) and the vanishing pressure

method (see [5]). It will be verified that the unique solution happens to the one obtained in

[19] by the entropy rate admissibility criterion (see [6]).

We call a solution of (1.1) to be stable in a vanishing magnetic field, provided that the limit

of it, as k → 0, equals to the solution of




(aρ)t + (aρu)x = 0,
(aρu)t + (a(ρu2 + p))x = pax,

at = 0
(1.3)

with the initial data (1.2). System (1.3) describes a compressible polytropic fluid flow in a

nozzle and was studied in [13, 20]. The nonisentropic case was investigated in [1, 8, 22].

Putting ax = 0, (1.1) can be written in conservation form as



ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p+

B2

2µ

)
x
= 0,

(1.4)

which describes an unsteady one-dimensional isentropic flow in magnetogasdynamic. The sys-

tem was studied in [17]. In [7, 15, 21], the authors were concerned with the nonisentropic

cases.

This paper is organised as follows. In Section 2, the elementary waves and some properties

of them are collected. In Section 3, we present all the solutions of (1.1) and (1.3), for any

given initial data (1.2). In Section 4, the unique solution is determined by choosing the stable

solution in a vanishing magnetic field, which satisfies the entropy rate admissibility criterion,

as it will be seen. Summary is given in Section 5.

2 Elementary Waves

System (1.1) has three real eigenvalues

λ1 = u− ω, λ2 = 0, λ3 = u+ ω,

where ω(ρ) =
√

df
dρ and f(ρ) = p+ B2

2µ . It is strictly hyperbolic in the following three regions

I = {(u, ρ, a) | u < −ω}, II = {(u, ρ, a) | |u| < ω}, III = {(u, ρ, a) | u > ω}.

The characteristic fields λ1 and λ3 are genuinely nonlinear, and the characteristic field of λ2 is

linearly degenerate. For convenience, we set Σ = {u = −ω}, Π = {u = ω}, II− = II ∩ {u < 0}
and II+ = II ∩ {u > 0}. There exist three different elementary waves.
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2.1 Rarefaction waves

Define the point (u, ρ, a) in (u, ρ, a)-space as U or U(u, ρ, a). Centered rarefaction waves

R1(U0, U) and R3(U0, U) (abb. R1(U0) and R3(U0), resp.) are





R1(U0) : a = a0, u = u0 −
∫ ρ

ρ0

ω

ρ
dρ, ρ < ρ0,

R3(U0) : a = a0, u = u0 +

∫ ρ

ρ0

ω

ρ
dρ, ρ > ρ0

(2.1)

for any given left hand state U0(u0, ρ0, a0). R1(U0) is convex and monotonic decreasing while

R3(U0) is concave and monotonic increasing.

2.2 Shock waves

Considering discontinuous solutions, we obtain the Rankine-Hugoniot jump condition of the

system for any given smooth function a = a(x),

σ[aρ] = [aρu], σ[aρu] =
[
a
(
ρu2 + p+

B2

2µ

)]
.

Here σ represents the speed of the discontinuity, [aρ] = arρr − alρl. The component a remains

invariant across shock waves S1(U0, U) and S3(U0, U) (abb. S1(U0) and S3(U0), resp.) satisfying

−σ [ρ] + [ρu] = 0, −σ [ρu] + [g(u, ρ)] = 0, [a] = 0, (2.2)

where

g(u, ρ) = ρu2 + κργ +
k2

2µ
ρ2. (2.3)

By Lax entropy conditions (see [9]), Si(U0) can be expressed as





S1(U0) : a = a0, u = u0 −
√

1

ρρ0
[f ] [ρ], σ = u0 + ρ

[u]

[ρ]
, ρ > ρ0, u < u0,

S3(U0) : a = a0, u = u0 −
√

1

ρρ0
[f ] [ρ], σ = u0 + ρ

[u]

[ρ]
, ρ < ρ0, u < u0.

(2.4)

S1(U0) is convex and monotonic decreasing while S3(U0) is concave and monotonic increasing.

We obtain the following lemma by direct calculations to (2.4).

Lemma 2.1 On the shock waves S1(U0) (resp., S3(U0)), it holds that

(i) dσ
dρ < 0 (resp., dσ

dρ > 0) ;

(ii) du
dρ < −ω

ρ
(resp., du

dρ > ω
ρ
) ;

(iii) there exists a unique state U ∈ II+ (resp., U ∈ I), denoted by S0
1(U0) (resp., S0

3(U0)),

such that σ(U0, U) = 0 if and only if U0 ∈ III (resp., U0 ∈ II−).
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For any given left hand states U0, we define

R−

i (U0) = Ri(U0) ∩ {λi(U) ≤ 0}, S−

i (U0) = Si(U0) ∩ {σ(U0, U) ≤ 0},
R+

i (U0) = Ri(U0) ∩ {λi(U) ≥ 0}, S+
i (U0) = Si(U0) ∩ {σ(U0, U) ≥ 0},

W±

i (U0) = R±

i (U0) ∪ S±

i (U0), Wi(U0) = Ri(U0) ∪ Si(U0), i = 1, 3.

Figure 1 shows the notations above for two cases, U0 ∈ II− and U0 ∈ III.

(a) U− ∈ II−. (b) U− ∈ III.
u

--
u

6 6
ρ ρ

O O

r

S0
3

S
−
3

S
+
3

S
+
3

S
−
1

S
−
1R

+
3

R
+
3

R
+
1

R
−
1

R
+
1

Σ ΣΠ Π

r

U0

r
U0

r

S
+
1

S0
1

Figure 1 The solid (stressed solid) curves connected with U0 are rarefaction waves R−

i
(R+

i
),

while the dotted (stressed dotted) ones are shock waves S−

i
(S+

i
) for i = 1, 3.

U0 is omitted in the notations for convenience.

2.3 Stationary waves

For the case [a] 6= 0, following [10–11], the generalized Rankie-Hugoniot jump relations are

−σ(M −M0) +

∫ 1

0

A(φ(s;M0,M))
∂φ

∂s
(s;M0,M)ds = 0 (2.5)

for any given left-hand state M0 and right-hand state M . Here M(x, t) = (m1,m2,m3)
T =

(aρ, aρu, a)T and

A(M) =




0 1 0

df

dρ

(m1

m3

)
−
(m2

m1

)2

2
m2

m1
−m1

m3

df

dρ

(m1

m3

)

0 0 0


 .

φ = (φ1, φ2, φ3)
T : [0, 1]×R

3×R
3 → R

3 is a fixed Lipchitz continuous family of paths satisfying

φ(0;M0,M) = M0, φ(1;M0,M) = M

with some other properties, see also [12]. A direct calculation to (2.5) yields





−σ[aρ] + [aρu] = 0,

−σ[aρu] +

∫ 1

0

((∂φ1

∂s
− φ1

φ3

∂φ3

∂s

)
f ′

(φ1

φ3

)
−
(φ2

φ1

)2 ∂φ1

∂s
+ 2

φ2

φ1

∂φ2

∂s

)
ds = 0,

−σ[a] = 0.

(2.6)
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The second equation of (2.6) leads to different relation if we define different paths φ1 and φ3.

Especially, (2.6) is equivalent to (2.2) if we define φ3 as a constant when [a] = 0. From the

other two equations of (2.6), we have σ = 0 and [aρu] = 0. It motivates us to transform (2.6)

to the form of the steady solution to (1.1). Under the definitions

φ1 =





a0ρ0, 0 ≤ s ≤ s1,

a0ρ0 +
s− s1

s2 − s1
[aρ], s1 < s < s2,

aρ, s2 ≤ s ≤ 1,

φ3 =





a0 +
s

s1
(ã− a0), 0 ≤ s ≤ s1,

ã, s1 < s < s2,

ã+
s− s2

1− s2
(a− ã), s2 ≤ s ≤ 1

with arbitrary constants s1, s2 and the proper constant ã, we finally obtain the generalized

Rankine-Hugoniot jump relations of stationary waves

W2 : [aρu] = 0, [h(u, ρ)] = 0, σ = 0, (2.7)

where

h(u, ρ) =
u2

2
+

κγ

γ − 1
ργ−1 +

k2

µ
ρ.

It is not reachable to obtain the explicit expressions of U in (2.7) as we have done in

discussing rarefaction waves and shock waves for the given state U0(u0, ρ0, a0). However, once

we assume that a > a0 and ρ0u0 6= 0, there exist two different solutions, denoted by U0(u0, ρ0, a)

and U0(u0, ρ0, a) of (2.7). They satisfy

|u0| > |u0|, ρ0 < ρ0, |u0| < |u0|, ρ0 > ρ0. (2.8)

In fact, equation [aρu] = 0 implies that (u, ρ) lies on the curve aρu = a0ρ0u0. Along this curve,

it holds that

dh

dρ
=

ω2 − u2

ρ
.

Thus h reaches its minimum value at D, the intersection point of aρu = a0ρ0u0 with Π ∪ Σ.

We obtain

h(u0, ρ0) ≥ h(D0) > h(D),

where D0 is the intersection point of ρu = ρ0u0 with Π ∪ Σ. Therefore, two states solve

(2.7). Inequalities in (2.8) can be achieved easily by comparing h(u0, ρ0) with h
(
u0,

aρu
a0u0

)
. In

particular, when a = a0, the two solutions U0 = U0, U0 ∈ I∪III if U0 ∈ II, while U0 ∈ II, U0 = U0

if U0 ∈ I ∪ III. Figure 2 shows two cases, U0 ∈ III and U0 ∈ II−. The dotted curves reveal the

behaviours of the solutions for (2.7) as a decreases to a0. That can be obtained by differentiating

(2.7) with respect to a, resp.. State U1 will be defined later. The fact that there exists no

stationary wave solution for (1.4) motivates us to suggest the stability stationary wave condition

to remove the unreasonable solution.
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(a) U− ∈ II−. (b) U− ∈ III.

u u

- -

6 6
ρ ρ

O O

Σ Πaρu = a0ρ0u0 aρu = a0ρ0u0ρu = ρ0u0 ρu = ρ0u0

r r

r r
r

r r

r r

r r

r

r

r

U0

U0
U0

U0

U0

S0
3(U0)

S0
1(U0)

U1 U0
D0

D0

D

D

Figure 2 The stationary wave solutions U0 and U0.

Stability Stationary Wave Condition: The state U(u, ρ, a) is called a stable stationary

solution of (2.7), if u and ρ are continuous functions of a, and the two states U and U0 satisfy

the Rankine-Hugoniot jump condition (2.2) when a = a0.

As a conclusion, we obtain the following lemma.

Lemma 2.2 For any given U0(u0, ρ0, a0) and a > a0, the two solutions U0(u0, ρ0, a) and

U0(u0, ρ0, a) of (2.7) satisfy (2.8) and

(i) U0 ∈ II± is the unique stable stationary solution, if U0 ∈ II± ;

(ii) U0 ∈ I (resp., III) is the unique stable stationary solution, if U0 ∈ I (resp., III) ;

(iii) both U0 ∈ I (resp., III) and U0 ∈ II are the stable stationary solutions, if U0 ∈ Σ (resp.,

Π).

Proof We only give the proof for the case U0 ∈ II−, see Figure 2(a). The others can be

obtained by similar discussions. Define Uz(uz, ρz, a0) = S0
3(U0) and U1(u1, ρ1, a0) = U0. It is

clear that U0 is the stable stationary solution. Furthermore, following jump conditions (2.2)

and (2.7), we have

g(uz, ρz) = g(u0, h0), h(u1, ρ1) = h(u0, h0), ρzuz = ρ1u1 = ρ0u0.

Along the curve ρu = ρ0u0, it holds that

ρ1

∫ ρz

ρ1

h′(ρ)dρ >

∫ ρz

ρ1

ρh′(ρ)dρ =

∫ ρz

ρ1

g′(ρ)dρ =

∫ ρ0

ρ1

g′(ρ)dρ > ρ1

∫ ρ0

ρ1

h′(ρ)dρ.

Thus we get

h(uz, ρz) > h(u0, h0) = h(u1, ρ1),

which implies that U0 does not satisfy the stability stationary wave condition. We complete

the proof.

For any given left hand state U0 and right hand state U , W 2(U0, U) denotes the stationary

wave satisfying U = U0, while W2(U0, U) denotes the stationary wave satisfying U = U0.
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It is clear that a changes only when the gas passes across the stationary wave. When there

exists no confusion, symbols denote the projections of themselves on (u, ρ) plane, either. For

example, U− denotes both U−(u−, ρ−, a−) and U−(u−, ρ−).

3 The Riemann Solutions for k ≥ 0

For any given k ≥ 0, Riemann problem (1.1) with (1.2) can be solved constructively by the

two cases U− ∈ ∆± with

∆+(∆−) ,
{
U(u, ρ)

∣∣∣u+

∫ ρ

0

ω(ρ)

ρ
dρ > (≤)0

}
,

which are separated by R1(U,O) : u = −
∫ ρ

0
ω(ρ)
ρ

dρ, see Figure 3. The Riemann problem can

be solved constructively as

W−

1 ⊕W−

3 ⊕W2 ⊕W+
1 ⊕W+

3 , (3.1)

if it contains a unique stable stationary wave, here “⊕” means “followed by”. Each elementary

wave may not appear except W2. A solution contains two stable stationary waves is constructed

as

W−

1 ⊕W−

3 ⊕W2 ⊕ Si ⊕W2 ⊕W+
1 ⊕W+

3 . (3.2)

Here the cross-section areas a on both sides of the zero-speed shock wave Si (i = 1 or 3) satisfy

a ∈ (a−, a+).

Case 1 U− ∈ ∆−. The curves are defined by

(a) U− ∈ ∆−. (b) U− ∈ ∆+.

-
u

6
ρ

O

∆− ∆+

Σz Σ ΣΣ

∆1
− ∆2

−∆3
−

R1(U, O)

6

uO

-

ρ

Σ+
z Σ ΣΣ+

∆1
+ ∆2

+ ∆3
+ ∆4

+∆5
+ W

+
3 (D−)

Γ

Γ

W3(Y )

D−

D−

S0
3(D−)

Γz

Γz

Y

Z

r

r

rr
r r

D−

W3(Z)

Figure 3 Different regions separated by the solid curves.

Σ = {U | U = U0, U0 ∈ Σ}, Σ = {U | U = U0, U0 ∈ Σ}, Σz = {U | U = S0
3(U0), U0 ∈ Σ}

with the cross-section area of U0 being a−, and the one of U being a+. It can be proved that

Σ is on the right of Σz. Thus the solid curves Σz and Σ in Figure 1(a) separate the upper half

(u, ρ) plane into three regions, ∆1
−, ∆

2
− and ∆3

− (including Σz and Σ).
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The states, connected by the coalescence waves W−

1 ⊕W−

3 with U−, are located on the left

of Σ. Considering the Riemann solution is illustrated as (3.1) with W2, we require that U+ is

located on the left of Σ following Lemmas 2.1–2.2. U+ must be located on the right of Σz if

the solution is illustrated as (3.1) with W 2. It is easy to prove that the states connected by

the coalescence waves W−

1 ⊕W−

3 ⊕W 2 ⊕ S3 ⊕W2 are located on ∆3
− ⊂ I. Thus, the Riemann

solutions of (1.1) with (1.2) are illustrated as follows.

Subcase 1.1 U− ∈ ∆−, U+ ∈ ∆1
− (see Figure 4). The solution is unique and structured in

Q1
− : W−

1 ⊕W−

3 ⊕W2.

-
x

6
t

O

W
−
3

W
−
1

U−

U1

U2 U+

W2

Σz

-
u

6
ρ

O

Σ

W
−
1 (U−)

W
−
3

(U1)

U1

U+

U2

r
r

r

Figure 4 Subcase 1.1, Q1
−
: W−

1 ⊕W−

3 ⊕W2.

Subcase 1.2 U− ∈ ∆−, U+ ∈ ∆2
− (see Figure 5). The solution is unique and structured in

Q2
− : W−

1 ⊕R−

3 ⊕W 2 ⊕W+
3 .

-
x

6t

O

W
+
3

U+

W2

U2

R
−
3 (U1, U2)

W
−
1

U1

U−

-
u

6ρ

O

ΣΣ Σ

r

r

r

W
−
1 (U−)

W
−
3

(U1)

U1

U2

r

U+

U2

W
+
3 (U2)

Figure 5 Subcase 1.2, Q2
−
: W−

1 ⊕R−

3 ⊕W 2 ⊕W+

3 .

Subcase 1.3 U− ∈ ∆−, U+ ∈ ∆3
−, the solution is not unique. Besides Q1

−, Q
2
−, the other

solution with two stable stationary waves can be constructed as

Q3
− : W−

1 (U−, U1)⊕R−

3 (U1, U3)⊕W 2(U3, U4)⊕ S3(U4, U2)⊕W2(U2, U+).
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This special solution and Q5
+, which will be listed later, were not discussed in [13]. The states

U3(u3, ρ3, a−), U4(u4, ρ4, a) and U2(u2, ρ2, a) satisfy that

σ(U4, U2) = 0, u2, u3, u4 < 0, a ∈ [a−, a+].

a = a− holds if and only if U+ ∈ Σ, and then Q3
− = Q1

−. a = a+ holds if and only if U+ ∈ Σz ,

and then Q3
− = Q2

−. When U+ ∈ ∆2
−\(Σz ∪ Σ), Q3

− is unstable (see [14]). Because it contains

a standing shock wave S3(U4, U2)(σ(U4, U2) = 0), which occurs in contracting duct.

x

6

-

t

O

U+

W2 ⊕ S3 ⊕ W2R
−
3

(U1, U3)

W
−
1

U1

U−

u

6ρ

O

Σz Σ Σ Σ

∆3
−

-

r

r

r

r

r

U1

U3
U4

S3(U4)

U2

U+

W
−
1 (U−)

R
−
3

(U1)

Figure 6 Subcase 1.3, Q3
−
: W−

1 ⊕R−

3 ⊕W 2 ⊕ S3 ⊕W2.

Case 2 U− ∈ ∆+. The solid curves Σ
+

z , Γz , Σ
+, Γz, W3(Y ) and W3(Z) in Figure 1(b)

separate the upper half (u, ρ) plane into ∆1
+, ∆

2
+ (including W3(Y )), ∆3

+, ∆
4
+ (including W3(Z))

and ∆5
+ (including the boundaries). Γ is the part of the curve W1(U−), the ends of which are

D− ∈ Σ and the one on ρ axis, resp.. Define

Γ = {U | U = U0, U0 ∈ Γ}, Γz = {U | U = S0
3(U0), U0 ∈ Γ},

Γz = {Ũ | Ũ = S0
3(U0), U0 ∈ Γ}, Γz = {U | U = U0, U0 ∈ Γz}

with the cross-section areas of U0, Ũ being a− and the one of U being a+. Obviously, D− is an

end of Γz and S0
3(D−) is an end of Γz. For convenience, let

Σ
+

z = Σz ∩ {ρ ≥ ρ(S0
3(D−))}, Σ+ = Σ ∩ {ρ ≥ ρ(D−)},

where ρ(D−) denotes the ρ coordinate at D−. It can be proved that Γz is at the left of Γz, and

W3(Y ) is at the left of W3(Z). Here,

Y =

{
S0
1(U−), if U− ∈ III,

D+, otherwise,
Z =

{
S0
1(U−), if U− ∈ III,

S0
1(D+), otherwise,

where D+ is the intersection point of Π with W1(U−).

After a similar discussion as we have done in Case 1, the Riemann solutions are constructed

as follows.
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Subcase 2.1 U− ∈ ∆+, U+ ∈ ∆1
+ (see Figure 7). The solution is unique and structured in

Q1
+ : W−

1 ⊕W−

3 ⊕W2.

-
x

6
t

O

U+

W2

U1

W
−
3

W
−
1

U2

U−

-
u

6
ρ

O

Σz Σ

-

W
−
1

(U−)

U2

W3(U2)

U1

Γz

r

r

r
b

r

S0
3(U2)

U+

rS0
3(D−)

Figure 7 Subcase 2.1, Q1
+ : W−

1 ⊕W−

3 ⊕W2.

Subcase 2.2 U− ∈ ∆+, U+ ∈ ∆2
+. The solution is unique and structured in

Q2
+ : W−

1 (⊕R−

3 )⊕W 2 ⊕W+
3 ,

where R−

3 appears if and only if U+ is located on the left of W+
3 (D−) (see Figure 8).

-
x

6t

O

W
+
3

U+

W2

U2

R
−
3

(U1, U2)

W
−
1

U1

U−

-
u

6
ρ

O

Σ Σ Σ

-

r

r

U+

r

r

r

r

U2U2

U1

D−
D−

W
−
1

(U−)

W
+
3

(D−)

W
+
3 (U2)

R
−
3

(U1)

Figure 8 Subcase 2.2, Q2
+ : W−

1 ⊕R−

3 ⊕W 2 ⊕W+

3 .

Subcase 2.3 U− ∈ ∆+, U+ ∈ ∆3
+. The solution is unique and structured in

Q3
+ : (R−

1 ⊕)W2 ⊕ S1 ⊕W 2 ⊕W+
3 ,

where the gas velocities of both sides of the standing shock wave S1 are positive. Therefore, S1

occurs in a compacting duct, and R−

1 appears if and only if u− < ω(ρ−). Figure 9 shows the

case U− ∈ III.

Subcase 2.4 U− ∈ ∆+, U+ ∈ ∆4
+. The solution is unique and structured in

Q4
+ : (R−

1 ⊕)W2 ⊕W+
1 ⊕W+

3 ,
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u

W
+
3

O

t 6

x

-

U+

W2 ⊕ S1 ⊕ W2

U− U3

6ρ

O

U3

W3(Y )

Y

W
+
3 (U3)

W3(Z)

Z

-

a+ρu = a−ρ−u−

rU−

r

U1

r

rU2
r

U+

r

r

Figure 9 Subcase 2.3, Q3
+ : W2 ⊕ S1 ⊕W 2 ⊕W+

3 .

-
x

6
t

O

W
+
3

U+

W
+
1

U1

W2

D+

R
−
1 (U−, D+)

U−

-
u

6
ρ

O

Πz Π Π

r

R
−
1 (U−)

D+

D+

U1

W3(U1)

W
+
1 (D+)

W3(Z)

Z
r

r

r

r

U+

Figure 10 Subcase 2.4, Q4
+ : R−

1 ⊕W2 ⊕W+

1 ⊕W+

3 .

where R−

1 appears if and only if u+ < ω(ρ+) (see Figure 10).

Subcase 2.5 U− ∈ ∆+, U+ ∈ ∆5
+. In this case, the solution loses uniqueness. Besides Q1

+

and Q2
+, the other solution can be structured in

Q5
+ : W−

1 (⊕R−

3 )⊕W 2 ⊕ S3 ⊕W2,

O

t6

x

-

U+

W2 ⊕ S3 ⊕ W2

W
−
1

U2

U−

-
u

6ρ

O

Σz Σ

-

U2

U3

U1
U+Γz

Γz

Γ

W
−
1 (U−)

S
+
3 (D−)

r

S0
3(D−)

b

r

D−

r

S
+
3 (U3)

r

r

r

Figure 11 Subcase 2.5: Q5
+ : W−

1 ⊕W 2 ⊕ S3 ⊕W2.

where, R−

3 appears if and only if U+ is located on the left of W+
3 (D−). Figure 11 shows Q5

+

without R−

3 . The states U1(u1, ρ1, a−) ∈ I, U2(u2, ρ2, a) ∈ II− and U3(u3, ρ3, a) ∈ II− satisfy
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that

g(U3) = g(U1), h(U2) = h(U3), h(U1) = h(U+),

a−ρ2u2 = aρ3u3 = aρ1u1 = a+ρ+u+, a ∈ [a−, a+].

a = a− holds if and only if U+ ∈ Σ
+

z ∪ Γz , and then Q5
+ = Q1

+. a = a+ holds if and only if

U+ ∈ Σ+ ∪ Γz, and then Q5
+ = Q2

+. Otherwise, similar to Q3
−, the solution Q5

+ will not be

considered, either.

Under the stability stationary wave condition, the unique stable solution of (2.7) is guaran-

teed except U0 ∈ Σ∪Π following Lemma 4.3. The existence of the Riemann problem has been

obtained case by case. However, the solutions lose uniqueness in Subcases 1.3 and 2.5. Sug-

gesting the entropy rate admissibility criterion, [19] obtained the unique admissible solutions.

Entropy Rate Admissibility Criterion A solution U(x, t) of the Riemann problem (1.1)

with (1.2) is admissible provided that D+HU (τ) < D+HÛ
(τ), τ ∈ [0, t], where Û(x, t) 6= U(x, t)

is any other Riemann solution of (1.1).

The total entropy rate of a solution U(x, t) is defined as

D+HU (t) = lim
∆t→0+

HU (x0, t+∆t)−HU (x0, t)

∆t
,

where the total entropy is

HU (x0, t) =

∫ x0+u+t

−x0+u−t

aρη(U)dx

with t ≥ 0. Here x0 > 0 is large enough so that for any τ ∈ [0, t], U(x, τ) = U+ as x ≥ x0+u+τ

and U(x, τ) = U− as x ≤ −x0 + u−τ . The definition of the special entropy η(U) = −u of

(1.1) with the entropy flux q(U) = −h(u, ρ) is motivated by the works [3, 6, 9]. Then direct

calculations yield that D+HQ2
−
is less than D+HQ1

−
and D+HQ3

−
in Subcase 1.3, while D+HQ2

+

is less than D+HQ1
+
and D+HQ5

+
in Subcase 2.5. Hence the unique admissible solution of (1.1)

with (1.2) is Q2
± in Subcases 1.3 and 2.5, respectively.

4 The Behaviour of the Solution as k → 0

It has been declaimed that in Subcase 1.3 (resp., 2.5), both Q1
− and Q2

− (resp., Q1
+ and

Q2
+) are the solutions of (1.1) for k ≥ 0. By the entropy rate admissibility criterion, we can

construct the solution uniquely for any given initial data (1.2). In this section, we firstly study

the limit solutions of (1.1) with any initial data (1.2) as k → 0. Secondly, we compare the limit

solutions with the solutions of (1.3). We want to check whether the limit solution is the one

selected by the entropy rate admissibility criterion. The variation of k leads to the changes of

the solid curves in Figure 3. Thus, the structure of the solution may change if k vanishes for the

fixed initial data. To study the limit solution of (1.1) with (1.2), we only need to concentrate

on the case that U+ is located on the solid curves when k = 0 in Figure 3. Then our goal is to
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investigate the behaviour of the solid curves as k → 0. For simplify calculations, we replace k2

µ

with k. Then ω, f, g and h are rewritten as

ω(ρ) =
√
κγργ−1 + kρ, f(ρ) = κργ + k

2ρ
2,

g(u, ρ) = ρu2 + κργ + k
2ρ

2, h(u, ρ) = u2

2 + κγ
γ−1ρ

γ−1 + kρ,

respectively, from now on. To be more exactly, ω(ρ) is the abbreviation of ω(ρ, k), etc. We

define Σ(0) = {U(u, ρ) | u = −ω(ρ, 0) = −
√
κγργ−1}, etc.

4.1 The behaviour of the solution as k → 0 when U
−

∈ ∆
−
(0)

We have the following lemma when we investigate the behaviour of Σz and Σ as k → 0.

Lemma 4.1 There exists a sufficient small constant k0 > 0 such that, for any k ∈ (0, k0),

(i) Σ is at the left of Σ(0) ; (ii) Σz is at the left of Σz(0).

Proof (i) Assume that U0(0) = (u0(0), ρ0(0), a−) ∈ Σ(0) is an arbitrary state. Define

U0 = (u0, ρ0, a−) ∈ Σ, U0 = (u0, ρ0, a+) ∈ Σ, U0 = (u0, ρ0, a+) ∈ Σ and Uz = (uz, ρz, a+) ∈ Σz

satisfying that

u2
0 = ω2

0 = κγρ
γ−1
0 + kρ0, h(u0, ρ0) = h(u0, ρ0) = h(u0, ρ0), (4.1)

g(uz, ρz) = g(u0, ρ0), (4.2)

a−ρ0(0)u0(0) = a−ρ0u0 = a+ρ0u0 = a+ρ0u0 = a+ρzuz (4.3)

- u

6
ρ

O

Σz Σ Σ Σ

r

r

r

U0
U0

U0(0)

U0
Uzρu = ρ0(0)u0(0)

a+ρu = a−ρ0u0

r

r

Figure 12 Curves Σz, Σ, Σ and Σ, move to the dotted lines Σz(0), Σ(0), Σ(0) and Σ(0), resp.,

from their left as k → 0.

(see Figure 12). Lemma 2.2 implies that the following inequalities hold,

ρz < ρ0 < ρ0 < ρ0, u2
z > ω2

z, u0
2 > ω0

2, u2
0 < ω2

0,

where ωz = ω(ρz), etc.

Differentiating (4.3) with respect to k, resp., one gets

0 = ρ′0u0 + ρ0u
′

0 = ρ0
′u0 + ρ0u0

′ = ρ′0u0 + ρ0u
′

0 = ρ′zuz + ρzu
′

z, (4.4)
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here and hereafter, ′ = d
dk . From (4.1) and (4.4), we get

ρ0 =
ω2
0 − u2

0

ρ0
ρ′0 + ρ0 =

ω0
2 − u0

2

ρ0
ρ0

′ + ρ0 =
ω2
0 − u2

0

ρ0
ρ′0 + ρ0, (4.5)

which follows ρ0
′ < 0. Because the intersection point of Σ with ρu = const. is unique if k is

fixed. We say Σ to be at the left of Σ(0).

(ii) Differentiating (4.2) with respect to k and from (4.5), we obtain

(ω2
z − u2

z)ρ
′

z = (ω2
0 − u2

0)ρ
′

0 +
ρ20 − ρ2z

2
= ρ0ρ0 − ρ20 +

ρ20 − ρ2z
2

=
2ρ0ρ0 − ρ20 − ρ2z

2
.

We now prove that 2ρ0 > ρ0 + ρz holds at k = 0 for any given state U0(u0, ρ0, a−) with

0 < −u0 ≤ ω0. For a ≥ a−, we define U0(u0, ρ0, a) and Uz(uz, ρz, a) = S0
3(U0) satisfying

h0 = h0, g0 = gz, a−ρ0u0 = aρ0u0 = aρzuz . (4.6)

It is clear that U0 and Uz are functions of a, from the stable stationary wave condition. The

following inequalities hold when a > a−,

ρz < ρ0 < ρ0, uz < u0 < u0 < 0, u2
z > ω2

z, u2
0 < ω2

0 , u2
0 > ω2

0.

We have U0 = U0 and ρ0 ≥ ρz , thus 2ρ0 ≥ ρ0 + ρz, if a = a−. From (4.6), it holds that

d(ρ0 + ρz)

da
=

ρ0u
2
0

a(ω2
0 − u2

0)
+

2ρzu
2
z − ρ0u

2
0

a(ω2
z − u2

z)

=
ρ0u

2
0

a(ω2
0 − u2

0)(ω
2
z − u2

z)

(
κγργ−1

z − ρ0
ρz

f0 − fz

ρ0 − ρz
+
(
2
ρ0
ρz

− 1
)(

κγρ
γ−1
0 − ρz

ρ0

f0 − fz

ρ0 − ρz

))

=
ρ0u

2
0κρ

γ−1
z

a(ω2
0 − u2

0)(ω
2
z − u2

z)

(
γ − α

αγ − 1

α− 1
+ (2α− 1)

(
γαγ−1 − 1

α

αγ − 1

α− 1

))

for k = 0, where

f0 − fz

ρ0 − ρz
=

κρ
γ
0 − κργz
ρ0 − ρz

= κργ−1
z

( ρ0

ρz
)γ − 1

ρ0

ρz
− 1

= κργ−1
z

αγ − 1

α− 1

and α = ρ0

ρz
> 1 for a > a−. Therefore, d(ρ0+ρz)

da has the different sign with the auxiliary

function

M1(α) = γα(α− 1)− α2(αγ − 1) + (2α− 1)(γαγ(α− 1)− αγ + 1).

It is easy to check that M1(α) > M1(1) = 0 by dM1

dα (α) > 0. In fact,

d3M1

dα3
(α) = γ(γ + 1)αγ−3(α2(2γ − 1)(γ + 2)− α(3γ + 2)(γ − 1) + (γ − 2)(γ − 1)) > 0,

d2M1

dα2
(α) = (γ + 1)(αγ(2γ − 1)(γ + 2)− αγ−1(3γ + 2)γ + αγ−2γ(γ − 1) + 2) > 0,
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Then we obtain

dM1

dα
(α) >

dM1

dα
(1) = 0.

As a result, we have that 2ρ0 > ρ0 + ρz holds for any a > a−. Thus

2ρ0ρ0 − ρ20 − ρ2z > (ρ0 + ρz)ρ0 − ρ20 − ρ2z = ρz(ρ0 − ρz) > 0,

which implies ρ′z(0) < 0. We complete the proof.

Lemma 4.1 points out that there exists a constant k0 > 0 such that for any k ∈ (0, k0):

(1) U+ ∈ ∆2
−(k), if U+ ∈ Σ(0) ⊂ ∆3

−(0); (2) U+ ∈ ∆3
−(k), if U+ ∈ Σz(0) ⊂ ∆3

−(0). Recall the

conclusion that the Riemann solution losses uniqueness if and only if U− ∈ ∆−, U+ ∈ ∆3
− or

U− ∈ ∆+, U+ ∈ ∆5
+. We then obtain the following corollary.

Corollary 4.1 When the solution losses uniqueness, we choose Q1
±(resp., Q

2
±) as the unique

solution of (1.1) with (1.2) for any k ≥ 0. There exists a k0 > 0 such that for any k ∈ (0, k0),

we have that :

(i) U− ∈ ∆− and U+ ∈ ∆3
−, if U− ∈ ∆−(0)\R1(U,O)|k=0 and U+ ∈ Σz(0). Then the unique

solution of (1.1) is Q1
−(resp., Q

2
−), while the unique solution of (1.3) is Q1

−(0)(resp., Q
2
−(0)).

(ii) U− ∈ ∆− and U+ ∈ ∆2
−, if U− ∈ ∆−(0)\R1(U,O)|k=0 and U+ ∈ Σ(0). Then the unique

solution of (1.1) is Q2
−, while the unique solution of (1.3) is Q1

−(0)(resp., Q
2
−(0)).

(iii) U− ∈ ∆+ and U+ ∈ ∆5
+ is located on the left of W+

3 (D−), if U− ∈ R1(U,O)|k=0 and

U+ ∈ Σz(0). Then the unique solution of (1.1) is Q1
+(resp., Q

2
+ : W−

1 ⊕R−

3 ⊕W2⊕W+
3 ), while

the unique solution of (1.3) is Q1
−(0)(resp., Q

2
−(0)).

(iv) U− ∈ ∆+ and U+ ∈ ∆2
+ is located on the left of W+

3 (D−), if U− ∈ R1(U,O)|k=0 and

U+ ∈ Σ(0). Then the unique solution of (1.1) is Q2
+ : W−

1 ⊕R−

3 ⊕W2 ⊕W+
3 , while the unique

solution of (1.3) is Q1
−(0)(resp., Q

2
−(0)).

4.2 The behaviour of the solution as k → 0 when U
−

∈ ∆+(0)

We have the following lemma when we investigate the behaviour of Γz and Γz as k → 0.

Lemma 4.2 There exists a sufficient small constant k0 > 0 such that, for any k ∈ (0, k0),

(i) Γz is at the left of Γz(0); (ii) Γz is at the left of Γz(0).

Proof (i) Assume that U0(0)(u0(0), ρ(0), a−) ∈ Γ(0) is an arbitrary state. Let U0(u0, ρ0, a−) ∈
II be the intersection point of ρu = ρ0(0)u0(0) with Γ, Uz(uz, ρz, a+) ∈ I, U0(u0, ρ0, a+) ∈ I,

and Uv(uv, ρv, a+) ∈ I satisfying that σ(U0, Uz) = 0 and σ(U 0, Uv) = 0. More precisely, we

have

a−ρ0(0)u0(0) = a−ρ0u0 = a−ρzuz = a+ρzuz = a+ρ0u0 = a+ρvuv, (4.7)

g0 = gz, hz = hz, h0 = h0, g0 = gv, (4.8)

u2
0 < ω2

0 , uz
2 > ωz

2, u2
0 < ω2

0, u2
v > ω2

z, u2
z > ω2

z , ρv < ρz < ρz < ρ0 < ρ0 (4.9)
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(see Figure 13). Differentiating (4.8) with respect to k, resp., one obtains

(ω2
0 − u2

0)ρ
′

0 +
ρ20
2

= (ω2
z − u2

z)ρ
′

z +
ρ2z
2
,

ω2
z − u2

z

ρz
ρ′z + ρz =

ωz
2 − uz

2

ρz
ρz

′ + ρz, (4.10)

ω2
0 − u2

0

ρ0
ρ′0 + ρ0 =

ω2
0 − u2

0

ρ0
ρ′0 + ρ0, (ω2

0 − u2
0)ρ

′

0 +
ρ20
2

= (ω2
v − u2

v)ρ
′

v +
ρ2v
2
. (4.11)

-
u

6
ρ

O

Γz Γz

a+ρu = a−ρ0u0

ρu = ρ0(0)u0(0)

r

r

r

r r

U0

Γ
Γ

Uv

Uz

Uz U0

Figure 13 Γz and Γz move to the dotted lines Γz(0) and Γz(0), resp., from their left as k → 0.

The sign of ρz
′ can be determined by ρ′0, which can be obtained by the following two cases.

When U0 ∈ R1(U−), it holds

u0 = u− −
∫ ρ0

ρ−

ω

ρ
dρ, ρ0 < ρ−.

Associating it with the first equation of (4.7), we have

u′

0 =
u0

ω0 − u0

∫ ρ0

ρ−

1

2ω
dρ, ρ′0 = − ρ0

ω0 − u0

∫ ρ0

ρ−

1

2ω
dρ. (4.12)

Therefore ρ′0 > 0. When U0 ∈ S1(U−), setting ω2
θ = f0−f−

ρ0−ρ−
, we achieve ρ− < ρ0 and

u− − u0 =
(ρ0 − ρ−)ωθ√

ρ−ρ0
, u′

0 =
f ′
0

(
1
ρ−

− 1
ρ0

)
+ (f0 − f−)

ρ′
0

ρ2
0

2(u0 − u−)
(4.13)

from (2.2). The speed of the shock wave can be rewritten as

σ =
ρ0u0 − ρ−u−

ρ0 − ρ−
= u0 + ρ−

u0 − u−

ρ0 − ρ−
= u0 −

√
ρ−

ρ0
ωθ.

Applying (4.13), we have

(u2
0 − σ2 − ω2

0)ρ
′

0 =
ρ20
2
. (4.14)

From (4.10), determined by

ωz
2 − uz

2

ρz
ρz

′ =
ω2
z − u2

z

ρz
ρ′z + ρz − ρz =

1

2ρz
(2(ω2

0 − u2
0)ρ

′

0 + (ρ20 + ρ2z − 2ρzρz)),
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ρz
′ < 0 holds when U0 ∈ R1(U−). Since ρ0 ≥ ρz and ρ′0 > 0, when U0 ∈ S1(U−), it holds that

ωz
2 − uz

2

ρz
ρz

′ =
1

2ρz
(− ω2

0 − u2
0

ω2
0 − u2

0 + σ2
ρ20 + ρ20 + ρ2z − 2ρzρz)

≥ 1

2ρzω2
0

(−(ω2
0 − u2

0)ρ
2
0 + ω2

0ρ
2
0 + ω2

0ρ
2
z − 2ω2

0ρzρz)

=
1

2ρzω2
0

(u2
0ρ

2
0 + ω2

0ρ
2
z − 2ω2

0ρzρz) >
1

2ρzω2
0

2(ρz − ρz)ρzω
2
0 > 0.

In fact, it is clear that

ρ20u
2
0 − ρ2zω

2
0 =

κρz

ρ0 − ρz
(ργ+1

0 − ργzρ0 − γρ
γ
0ρz + γρ

γ−1
0 ρ2z)

=
κργ+1

z ρ0

ρ0 − ρz

((ρ0
ρz

)γ

− 1− γ
(ρ0
ρz

)γ−1

+ γ
(ρ0
ρz

)γ−2)
> 0

for ρ0 > ρz. Thus, we also have ρz
′ < 0.

(ii) When U0 ∈ R−

1 (U−), it is apparent that for k = 0,

(ω2
v − u2

v)ρ
′

v = (ω2
0 − u2

0)ρ
′

0 +
ρ20
2

− ρ2v
2

=
ρ0(ω

2
0 − u2

0)

ρ0
ρ′0 + ρ0ρ0 − ρ20 −

ρ2v
2

> 0,

following (4.11)– (4.12) and the proof of Lemma 4.1. Therefore, ρ′v(0) < 0.

When U0 ∈ S−

1 (U−), from (4.11) and (4.14), we have

(ω2
v − u2

v)ρ
′

v =
ρ0ρ0

2

(
2− ω2

0 − u2
0

ω2
0 − u2

0 + σ2

)
+

−ρ20 − ρ2v
2

≥ 1

2ω2
0

((ω2
0 + u2

0)ρ0ρ0 − ω2
0ρ

2
0 − ω2

0ρ
2
v).

To declaim ρ′v(0) < 0, we are about to prove that

ρ0 >
ρ20 + ρ2v

ρ0

ω2
0

ω2
0 + u2

0

, if α ,
ρ0
ρv

≤ α0, (4.15)

ρ0 ≥
(
ρ0 +

ρv
γ

) ω2
0

ω2
0 + u2

0

, if α > α0, (4.16)

where α0 > γ > 1 is the root of the equation α2
0 − 2α0 − 1 = 0.

For any given state U0(u0, ρ0, a−) with u0 < 0, u2
0 < ω2

0 , we define U0(u0, ρ0, a) and

Uv(uv, ρv, a) = S0
3(U0) for a ≥ a−. It is clear that when a = a− and k = 0, it holds that

ρ0 >
ρ20 + ρ2v

ρ0

ω2
0

ω2
0 + u2

0

,

which is equivalent to

ρ20u
2
0 = ρ0ρv

κρ
γ
0 − κργv
ρ0 − ρv

> ρ2vκγρ
γ−1
0 .

Since

1−
(ρv
ρ0

)γ

> γ
ρv
ρ0

(
1− ρv

ρ0

)
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holds when ρ0 > ρv, we have

d

da

(ρ20 + ρ2v
ρ0

)
=

(2ρ20 − ρ20 − ρ2v)
dρ0

da + 2ρ0ρv
dρv

da

ρ20
=

(ρ20 − ρ2v)
dρ0

da + 2ρ0ρv
dρv

da

ρ20

<
(2ρ0ρv − (ρ20 − ρ2v))

ρ20

dρv
da

=
−(α2 − 2α− 1)

ρ20ρ
2
v

dρv
da

< 0

for 1 ≤ α < α0. So far, (4.15) has been proved.

When α ≥ α0, for a = a− and k = 0, it holds that U0 = U0, Uz = Uz = Uv. From

ρ0u
2
0 = ρv

κρ
γ
0 − κργv
ρ0 − ρv

> ρvκρ
γ−1
0 ,

we have

ρ0 ≥
(
ρ0 +

ρv
γ

) ω2
0

ω2
0 + u2

0

.

Direct calculations lead to

d

da

(
ρ0 +

ρv
γ

)
=

ρ0u
2
0

a(ω2
0 − u2

0)
+

1

γ

2ρvu
2
v − ρ0u

2
0

a(ω2
v − u2

v)

=
ρ0u

2
0κρ

γ−1
v

aγ(ω2
0 − u2

0)(ω
2
v − u2

v)

(
γ2 − γα

αγ − 1

α− 1
+ (2α− 1)

(
γαγ−1 − 1

α

αγ − 1

α− 1

))
,

which has different sign with the auxiliary function

M2(α) = γ2α(α − 1)− γα2(αγ − 1) + (2α− 1)γαγ(α− 1)− (2α− 1)(αγ − 1)

= γαγ+2 − (3γ + 2)αγ+1 + (γ + 1)αγ + (γ2 + γ)α2 + (2− γ2)α− 1.

For γ ∈ (1, 2), the third derivative

1

γ + 1

d3M2

dα3
(α) = γαγ−3(γ(γ + 2)α2 − (γ − 1)(3γ + 2)α+ (γ − 1)(γ − 2))

> γαγ−3(γ2 + 2γ − 3γ2 + γ + 2 + γ2 − 3γ + 2) = γαγ−3(4− γ2) > 0

holds for any α > 1. By using the equation α2
0 − 2α0 − 1 = 0, we have

1

γ + 1

d2M2

dα2
(α) = (γ + 2)γαγ − (3γ + 2)γαγ−1 + γ(γ − 1)αγ−2 + 2γ

≥ 1

γ + 1

d2M2

dα2
(α0) > 0.

Thus, we get
dM2

dα
(α) >

dM2

dα
(α0) and

dM2

dα
(α0) = −(γ2 + γ + 2)αγ

0 + γ(2γ + 2)αγ−1
0 + 2(γ + 1)γα0 + 2− γ2 + γα

γ−1
0 .
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It holds that

dM2

dα
(α0) >

(
2γ2 + 2γ − 5

2
γ2 − 5

2
γ − 5 + 2γ2 + 2γ

)
α
γ−1
0 > 0

if γ2 ≥ 2. Meanwhile

dM2

dα
(α0) >

(
2γ2 + 3γ − 5

2
γ2 − 5

2
γ − 5 + 3γ2 + 3γ

)
α
γ−1
0 =

1

2
(5γ2 + 7γ − 10)αγ−1

0 > 0

holds if γ2 < 2. We finally achieve

M2(α) ≥ M2(α0) = −(γ + 2)αγ+1
0 + (2γ + 1)αγ

0 + (γ2 + 2γ + 2)α0 + (γ2 + γ − 1)

> α
γ
0

(
− 1

2
γ − 4

)
+ (γ2 + 2γ + 2)α0 + (γ2 + γ − 1) , M3(γ) > 0.

In fact, M3(γ) is concave in (1, 2), M3(1) > 0 and M3(2) = 0. We complete the proof.

Lemmas 4.1–4.2 point out that there exists a constant k0 > 0 such that for any k ∈ (0, k0):

(1) U+ ∈ ∆2
+(k), if U+ ∈ Σ+(0) ⊂ ∆5

+(0); (2) U+ ∈ ∆5
+(k), if U+ ∈ Σ

+

z (0) ⊂ ∆5
+(0). Recall

the conclusion that the Riemann solution losses uniqueness if and only if U− ∈ ∆−, U+ ∈ ∆3
−

or U− ∈ ∆+, U+ ∈ ∆5
+. We then obtain the following corollary.

Corollary 4.2 When the initial data satisfy U− ∈ ∆+ and U+ ∈ ∆5
+, we choose Q1

+(resp.,

Q2
+) as the unique solution of (1.1) with (1.2) for any k ≥ 0. Lemmas 4.1–4.2 imply that there

exists a k0 > 0, such that for any k ∈ (0, k0), we have that :

(i) U− ∈ ∆+ and U+ ∈ ∆5
+, if U− ∈ ∆+(0), U+ ∈ Σ

+

z (0) ∪ Γz(0). Then the unique solution

of (1.1) is Q1
+(resp., Q

2
+), while the unique solution of (1.3) is Q1

+(0)(resp., Q
2
+(0)).

(ii) U− ∈ ∆+ and U+ ∈ ∆2
+, if U− ∈ ∆+(0), U+ ∈ Σ+(0)∪ Γz(0). Then the unique solution

of (1.1) is Q2
+, while the unique solution of (1.3) is Q1

+(0) ( resp., Q
2
+(0)).

To discuss the behaviour of W3(Y ) as k → 0, we consider the Riemann initial data satisfying

U− ∈ ∆+(0)\III(0), U+ ∈ W3(Y )|k=0 ⊂ ∆2
+(0) (4.17)

(see Figure 14(a)).

(a) k = 0, Q2
+(0) : R−

1
⊕W 2 ⊕W

+

3
. (b) k > 0, Q3

+ : R−

1
⊕W2 ⊕ S1 ⊕W 2 ⊕W

+

3
.

u

6
ρ

O O

Π(0)

ρ

6

u

--

r

r

r

U+

r

Y (0)

U−

Y (0)

R
−
1 (U−)|k=0

W3(Y )|k=0

W3(U2)

W3(Y )

r

r

r

r
r

rr

Π
U−

R1(U−)

U+

Y

U1

Uz
U2

a−ρyuy = a+ρu

Y

Figure 14 The Riemann solution of (1.1) with (1.2) satisfying (4.17).
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Thus, the solution of (1.3) is structured in

Q2
+(0) : R

−

1 (U−, Y (0))⊕W 2(Y (0), Y (0))⊕W+
3 (Y (0), U+).

More precisely, the following equations hold,



uy(0) = u− −

∫ ρy

ρ−

√
κργ−1

ρ
dρ, uy(0) = ωy(0),

a−ρy(0)uy(0) = a+ρy(0)uy(0), hy(0) = h1(0).

(4.18)

Here, we used the fact that Y (0) = D+(0) = (uy(0), ρy(0), a−) and Y (0) = (uy(0), ρy(0), a+).

Whether U+ is located on ∆2
+ or not depends on both U− and U+ for k > 0. As we will see,

the value of
duy

dρy

∣∣
k=0

changes in

(
−∞,−uy

ρy

)
∪
(uy(ω

2
y − u2

y)

ρy(u
2
y − u2

y)
,+∞

)
.

By the definitions of Y and Y , we have

uy = u− −
∫ ρy

ρ−

ω

ρ
dρ = ωy, a−ρyuy = a+ρyuy, hy = hy. (4.19)

The equations follow that




ρ′y =
ωy

∫ ρ−

ρy

1
ω
dρ− ρy

κγρ
γ−2
y (γ + 1) + 3k

,

u′

y =
κγργ−1

y (γ + 3) + 5kρy

κγρ
γ−1
y (γ + 1) + 3kρy

∫ ρ−

ρy

1

2ω
dρ− ωy

κγρ
γ−2
y (γ + 1) + 3k

.

(4.20)

Direct calculations to (4.19)–(4.20) yield





(ω2
y − u2

y)ρ
′

y = ρy(ρy − ρy) +
ρy

uy

(u2
y − u2

y)

∫ ρ−

ρy

1

2ω
dρ,

duy

dρy
=

uy(ω
2
y−u2

y)

uy

∫ ρ−

ρy

1
2ωdρ+ uy(ρy − ρy)

ρy

uy
(u2

y − u2
y)

∫ ρ−

ρy

1
2ωdρ+ ρy(ρy − ρy)

,

(4.21)

where the value of
duy

dρy
depends on U− for the fixed Y . It is no doubt that for k being sufficient

small, W3(Y ) is always at the right of W3(Y )|k=0 if ρ′y ≤ 0. However, when ρ′y > 0, W3(Y ) (at

least S3(Y )) may be at the left of W3(Y )|k=0. Since the minimum value of
duy

dρy
obtained by

(4.21), we have that

uy(ω
2
y − u2

y)

ρy(u
2
y − u2

y)
<

uy

ρy
<

ωy

ρy
.

Likewise, when the initial data satisfy that

U− ∈ ∆+(0), U+ ∈ W3(Z)|k=0 ⊂ ∆4
+(0),

the solution of (1.1) with (1.2) may change from Q3
+ to Q4

+(0) as k → 0.
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4.3 The stability of the limit solution

Even though that U+ located on either ∆2
+ or ∆3

+ can not be determined, when we discuss

the limit solution of (1.1) with (1.2) satisfying (4.17), we have the following lemma.

Lemma 4.3 As k → 0, the limit solution of (1.1) equals to the solution of (1.3), provided

that the initial data (1.2) satisfy the condition (4.17).

Proof As an example, we now prove that the solution of (1.1) with (1.2),

Q3
+ : R−

1 (U−, Y )⊕W2(Y, U1)⊕ S1(U1, Uz)⊕W 2(Uz, U2)⊕W+
3 (U2, U+),

tends to the solution of (1.3) with (1.2),

Q2
+(0) : R

−

1 (U−, Y (0))⊕W 2(Y (0), Y (0))⊕ S+
3 (Y (0), U+)

as k → 0. The situation is that U− ∈ ∆+(0), U+ ∈ S3(Y )|k=0, and for some small k0, U+ ∈ ∆3
+

if k ∈ (0, k0). More precisely, we have (4.18) and





uy = u− −
∫ ρy

ρ−

ω

ρ
dρ = ωy, u+ = u2 −

√(
κρ

γ
2 + k

2ρ
2
2 − κρ

γ
+ − k

2ρ
2
+

)
(ρ2 − ρ+)

ρ2ρ+
,

a−ρyuy = aρ1u1 = aρzuz = a+ρ2u2, hy = h1, g1 = gz, hz = h2,

u+ = uy(0)−
√

(κργy(0)− κρ
γ
+)(ρy(0)− ρ+)

ρy(0)ρ+
, a ∈ (a−, a+),

(4.22)

(see Figure 14). Our problem reduces to proving that ρy → ρy(0), uy → uy(0), ρ2 →
ρ2(0) = ρy(0), u2 → u2(0) = uy(0), a → a− as k → 0. To this end, we now show that ρ′y(0),

u′
y(0), ρ

′
2(0) and u′

2(0) are finite. Direct calculations to (4.22) yield that

a+ρ
′

2u2 + a+ρ2u
′

2 = a−ρ
′

yuy + a−ρyu
′

y = −a−ρy

∫ ρy

ρ−

1

2ω
dρ,

0 = u′

2 + ρ′2

( ω2
2

2(u+ − u2)

ρ2 − ρ+

ρ+ρ2
+

(u+ − u2)ρ+
2ρ2(ρ2 − ρ+)

)
+

ρ22 − ρ2+

4(u+ − u2)

( 1

ρ+
− 1

ρ2

)

where u′
y and ρ′y given by (4.20) resp., are finite at k = 0+ for the given state U− ∈ ∆+. Thus

ρ′2

( ω2
2

2(u+ − u2)

ρ2 − ρ+

ρ+
+

(u+ − u2)ρ+
2ρ2(ρ2 − ρ+)

− u2

)
=

a−ρy

a+

∫ ρy

ρ−

1

2ω
dρ− ρ22 − ρ2+

4(u+ − u2)

ρ2 − ρ+

ρ+
,

which implies that ρ′2(0) is finite, and so is u′
2(0). Because the coefficient of ρ′2(0) is not

greater than −ω2+u2

ρ2
< 0. Hence we have hy → hy(0) and h2 → h2(0) as k → 0. From

hy(0) = hy(0) = h2(0), h1 = hy, we notice that h1 → hy(0) and hz → h2(0) as k → 0.

Associating with g1 = gz, ones obtain ρ1 → ρz, u1 → uz and a → a− as k → 0. For the other

cases, the lemma can be obtained similarly. We complete the proof.

A similar argument shows that the limit solution of (1.1) as k → 0 equals to the solution

for (1.3) with (1.2) satisfying neither U+ ∈ Σ(0) when U− ∈ ∆−(0) nor U+ ∈ Σ+(0) ∪ Γz(0)

when U− ∈ ∆+(0), by Corollarys 4.1– 4.2. We achieve the following two theorems.
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Theorem 4.1 The solution of (1.1) with (1.2) is stable in a vanishing magnetic field,

provided that, the unique solution is defined as Q2
−(resp., Q2

+), when U− ∈ ∆− and U+ ∈
∆3

−(resp., U− ∈ ∆+ and U+ ∈ ∆5
+).

Theorem 4.2 The solution of (1.1) with (1.2) is unstable in a vanishing magnetic field,

provided that, the unique solution is defined as Q1
−(resp., Q1

+), when U− ∈ ∆− and U+ ∈
∆3

−(resp., U− ∈ ∆+ and U+ ∈ ∆5
+).

Proof When the initial data satisfy U− ∈ ∆−(0) and U+ ∈ Σ(0), the solution of (1.3) is

Q1
−(0) : W

−

1 (U−, U2)⊕R3(U2, D2)⊕W2(D2, U+),

where D2(uD2 , ρD2) ∈ Σ(0). By Corollary 4.2, we know that U+ ∈ ∆3. Similar as we have done

in Lemma 4.3, as k → 0, the limit solution of (1.1) with (1.2) is

Q2
−(0) : W

−

1 (U−, U1)⊕R3(U1, D1)⊕W2(D1, D1)⊕ S+
1 (D1, U+),

where D1(uD1 , ρD1) ∈ Σ(0), D1(uD1
, ρD1

, a+) ∈ Σ(0). Figure 15 shows the two solutions in

(u, ρ) plane, and Figure 16 shows them in (x, t) plane.

-
u

6
ρ

O

Σz(0) Σ(0) Σ(0) Σ(0)

-
W1(U−)

U1

R
−
3

(U1)|k=0

U+

a+ρu = a−ρD1
uD1

D1

r

r

r

r

R
−
3 (U2)|k=0

D2 r

D1

U2
r

Σ

Figure 15 Q1
−
(0) and Q2

−
(0) in (u, ρ) plane. The dotted line is S+

3 (D1)|k=0.

a. Solution Q1
−
(0). b. The limit solution Q2

−
(0).

--
x x

66
tt

OO

W2W2

D1
W

−
1W

−
1

U1U2

U−U− U+ U+

R3(U2, D2) R3(U1, D1)
S
+
1

Figure 16 Q1
−
(0) and Q2

−
(0) in (x, t) plane.

It holds that

a+ρ+u+ = a−ρD2uD2 , h+ = hD2 , σ(D1, U+) =
ρ+u+ − ρD1

uD1

ρ+ − ρD1

> 0.
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In fact, by the definition of Σz, the unique state S
0
3(D1) is on the curve Σz(0), which is located

on the left of Σ(0). Thus

a−ρD2uD2 = a+ρ+u+ < a+ρD1
uD1

= a−ρD1uD1 ,

which implies that ρD2 > ρD1 since both D1 and D2 are on the curve Σ(0). It is clear that

ρ2 > ρ1 and λ3(U1) > λ3(U2). As far, we have proved that Q1
−(0) and Q2

−(0) are totally

different. Likewise, the case that the initial data (1.2) satisfy

U− ∈ ∆+(0), U+ ∈ Σ+(0) ∪ Γz(0),

shows the solution of (1.1) is unstable in a vanishing magnetic field. We complete the proof.

5 Summary

We have presented all the possible solutions of system (1.1) with arbitrary initial data (1.2).

When the initial data satisfy the condition U− ∈ ∆−, U+ ∈ ∆3
− or U− ∈ ∆+, U+ ∈ ∆5

+, the

system has multi solutions. The conditions and the solutions change with the variation of k.

Investigating the limits of the solutions as k vanishes, we obtain a unique stable solution, which

satisfies the entropy rate admissibility criterion as well, to system (1.1) with any given initial

data (1.2) in a vanishing magnetic field.
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