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1 Introduction

Let (Ω,F ,P) be a complete probability space with filtration (Ft)t≥0, and {Wt := (W 1
t , · · · ,

W d
t )

∗, 0 ≤ t ≤ T } be a d-dimensional standard Brownian motion on (Ω,F ,P). We use the

asterisk to represent the transpose of a vector or matrix. We assume that Ft = σ(Ws : 0 ≤
s ≤ t), and T is a fixed terminal time.

We consider the following linear stochastic system

Xt = x+

∫ t

0

(AsXs +Bsus + αs) ds+

∫ t

0

d∑

j=1

(Cj
sXs +Dj

sus + βj
s) dW

j
s , t ∈ [0, T ] (1.1)

and the quadratic cost functional

J(u) = E[M(XT )] + E

[ ∫ T

0

l(t,Xt, ut) ds
]
. (1.2)

We define

Lp
F
(0, T ) :=

{
u : ‖u‖pLp

F
(0,T )

:= E

[ ∫ T

0

|ut|p dt
]
< ∞

}
.

Letting U ⊂ R
m, our admissible control set is

Uad = {u ∈ L2
F (0, T ) : ut ∈ U a.e.a.s.}.
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The optimal control problem is to find a u ∈ Uad which minimizes the cost functional J(u) over

u ∈ Uad. Note that the range of control U is allowed to be non-convex here.

The linear quadratic (LQ for short) optimal control problem is a classic case in stochastic

control problems. However, most existing results (see [4]) assume that U is convex, and see

among others [4, Theorem 3.2, p. 427], [2, Theorem 4.1, p. 30] and [3, Theorem 1.2, Chapter

VI, p. 232].

When U is not convex, the method of convex variations fails to give the stochastic maximum

principle for optimal stochastic controls.

Besides, when the control does not enter into the diffusion term, we also have the stochastic

maximum principle (see [1, 2, 8, 11]) to solve LQ problems (see [2, Theorem 2.1, p. 19]). In

this case, the variational calculus is quite analogous to the deterministic case.

When both the control range U is non-convex and the diffusion depends on the control, we

can only appeal to the general stochastic maximum principle of Peng [16]. However, Peng [16,

p. 967] assumes that admissible controls satisfy the following higher integrability:

sup
t∈[0,T ]

E|ut|m < ∞, ∀m = 1, 2, · · · , (1.3)

which seems necessary in his second order Taylor’s expansions of both the system and the cost

functional at the optimal pair. For more details about the history of LQ problems, we refer the

reader to Yong and Zhou’s book [19, Chapter 6].

In particular, Ji and Xue [10, Theorem 4.4, p. 501] give a stochastic maximum principle for

optimal control of one-dimensional linear stochastic controlled system subject to a quadratic

cost functional and a particular non-convex range U of admissible control values. More precisely,

they specify U as follows

U := C ∩ {0, 1}k

for a convex set C and an integer k. Their proof heavily relied on their particular control domain

U and cost functional, and seems difficult to be generalized to our more general context. Note

that our control domain U can be very general, and it can be any measurable subset in R
m.

In this paper, we use the combined techniques of truncation and approximation to get

a stochastic maximum principle for square-integrable optimal stochastic control. Firstly, we

obtain the variational inequalities for such admissible controls u that u− u ∈ L4
F
(0, T ), where

the L4-integrability is used to estimate the fourth-order moment of the first variation of the

state |δ1Xt|4 and then the cost variation J(uǫ) − J(u). Here δ1Xt is the first variation of

Xρ
t − Xt. For a given admissible control u ∈ Uad, we have the variational inequalities for a

sequence of truncated (and thus L4-integrable ) admissible controls

uk
t :=

{
ut, if |ut − ut| ≤ k,

ut, if |ut − ut| > k.

Since uk converges to u in L2
F
(0, T ), we have the variational inequality (by passing to

the limit in those variational inequalities for the preceding sequence of truncated admissible



SMP for Square-Integrable Optimal Control 663

controls) for the preceding admissible control u ∈ L2
F
(0, T ) and thus the desired stochastic

maximum principle. Finally, we illustrate our main result with the classical typical example:

Optimal control of linear stochastic systems with a quadratic cost functional.

2 The Main Result

We give our assumptions.

Assumption 2.1 The coefficients of linear system (1.1) satisfy: A : [0, T ] × Ω → R
n×n,

B : [0, T ]× Ω → R
n×m, Cj : [0, T ]× Ω → R

n×n, Dj : [0, T ]× Ω → R
n×m, α : [0, T ]× Ω → R

n,

βj : [0, T ] × Ω → R
n are Ft-adapted processes, and A, B, Cj , Dj are bounded for almost

everywhere t ∈ [0, T ] and almost surely ω ∈ Ω.

The terminal cost function M(x) and running cost function l(t, x, u) satisfy the following

conditions.

Assumption 2.2 For (x, u) ∈ R
n×U , l(·, x, u) is an Ft-adapted process, and M(x) is FT -

measurable variable. The functions l(t, ω, x, u), M(ω, x) are twice differential with respect to

variable x. l(t, ω, x, u), M(ω, x), lx(t, ω, x, u), Mx(ω, x), lxx(t, ω, x, u), Mxx(ω, x) are continuous

with respect to (x, u). l(t, ω, x, u) and M(ω, x) have a quadratic growth with respect to (x, u).

Both lx(t, ω, x, u) and Mx(ω, x) have linear growth with respect to (x, u). lxx(t, ω, x, u) and

Mxx(ω, x) are bounded. That is, there exists a constant C such that

|l(t, ω, x, u)| ≤ C(1 + |x|2 + |u|2), |M(ω, x)| ≤ C(1 + |x|2),
|lx(t, ω, x, u)| ≤ C(1 + |x|+ |u|), |Mx(ω, x)| ≤ C(1 + |x|),
|lxx(t, ω, x, u)| ≤ C, |Mxx(ω, x)| ≤ C.

For t ∈ [0, T ], x ∈ R
n, u ∈ U , p ∈ R

n, q = (q1, · · · , qd) ∈ (Rn)d and ω ∈ Ω, the Hamiltonian

is

H(t, ω, x, u, p, q) = 〈p,Atx+Btu+ αt〉+
d∑

j=1

〈qj , Cj
t x+Dj

tu+ βj
t 〉+ l(t, ω, x, u). (2.1)

Then we have the following stochastic maximum principle.

Theorem 2.1 Let Assumptions 2.1–2.2 hold. Let (X,u) be an optimal pair for system (1.1)

which minimizes cost functional (1.2). Let the two pairs of stochastic processes

(p; q1, · · · , qd) ∈ L2
F (0, T ;Rn ×Rn×d)

and

(P ;Q1, · · · , Qd) ∈ L2
F (0, T ;Rn×n × (Rn×n)d)
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solve the first- and second-order adjoint equations





dpt = −
{
A∗

t pt +

d∑

j=1

Cj,∗
t qjt + l∗x(t,Xt, ut)

}
dt+

d∑

j=1

qjt dW
j
t , t ∈ [0, T ),

pT = M∗
x(XT )

(2.2)

and




dPt = −
{
A∗

tPt + PtAt +

d∑

j=1

(Cj,∗
t PtC

j
t + Cj,∗

t Qj
t +Qj

tC
j
t ) + lxx(t,Xt, ut)

}
dt

+

d∑

j=1

Qj
t dW

j
t , t ∈ [0, T ),

PT = Mxx(XT ).

(2.3)

Then, we have the maximum condition

min
u∈U

{
〈pt, Bt(u− ut)〉+

d∑

j=1

〈qjt , Dj
t (u− ut)〉+ l(t,Xt, u)− l(t,Xt, ut)

+
1

2

d∑

j=1

(u− ut)
∗Dj,∗

t PtD
j
t (u − ut)

}
= 0, a.e.a.s. (2.4)

3 Proof of Theorem 2.1

We have the following priori estimate on the solution of a stochastic differential equation

(see [17, Lemma 7.1], [7, Basic theorem, pp. 756–757]).

Lemma 3.1 Assume that the vector functions f : Ω× [0, T ]×R
n → R

n and g : Ω× [0, T ]×
R

n → R
n×d satisfy the following two conditions :

(i) For each x ∈ R
n, f(·, x) and g(·, x) are {Ft, 0 ≤ t ≤ T }-adapted processes. Moreover,

∫ T

0

|f(t, 0)| dt < ∞,

∫ T

0

|g(t, 0)|2 dt < ∞, a.s.

(ii) Lipschitz continuity: There exist two positive functions α1 and α2 such that they are

{Ft, 0 ≤ t ≤ T }-adapted. Moreover,

∫ T

0

α1(t) dt < ∞,

∫ T

0

|α2(t)|2 dt < ∞, a.s.

For any x, y ∈ R
n,

|f(t, x)− f(t, y)| ≤ α1(t)|x− y|,
|g(t, x)− g(t, y)| ≤ α2(t)|x− y|.

Then, the stochastic differential equation

dxt = f(t, xt) dt+ g(t, xt) dWt, 0 ≤ t ≤ T, x(0) = h (3.1)
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has a unique strong solution. Moreover, if for p ≥ 1 the following conditions hold

E‖f(·, 0)‖p
L1(0,T ;Rn) := E

[(∫ T

0

|f(s, 0)| ds
)p]

< ∞,

E‖g(·, 0)‖p
L2(0,T ;Rn×d)

:= E

[(∫ T

0

|g(s, 0)|2 ds
) p

2

]
< ∞,

then the solutions of (3.1) satisfy the following

E

[
max
t∈[0,T ]

|xt|p
]
≤ Cp,T (|h|p + E‖f(·, 0)‖p

L1(0,T ;Rn) + E‖g(·, 0)‖p
L2(0,T ;Rn×d)

).

We use f(x) . g(x) to mean f(x) ≤ Cg(x) for a positive constant C.

Since the control range U is not necessarily convex, we use the spike variation. We pick up

a u ∈ Uad which satisfies

‖u− u‖4L4

F
(0,T ) := E

[ ∫ T

0

|ut − ut|4 dt
]
< ∞.

Then according to Liapunov’s range theorem of a vector-valued measure (see [13–14]), there

exists Iρ such that

∫

Iρ

G∗(t) dt = ρ

∫

[0,T ]

G∗(t) dt, (3.2)

where

G(t) :=
(
1,E|ut − ut|4,E

[
δH(t;ut) +

1

2

d∑

j=1

(ut − ut)
∗Dj,∗

t PtD
j
t (ut − ut)

])

and

δH(t;ut) = H(t,Xt, ut, pt, qt)−H(t,Xt, ut, pt, qt).

We define the spike variation uρ of u as follows:

uρ
t =

{
ut, t ∈ Iρ,

ut, t /∈ Iρ.
(3.3)

We denote by Xρ the solution of (1.1) corresponding to the admissible control uρ. Let δ1X

and δ2X be respectively the unique solutions of the following stochastic differential equations:

δ1Xt =

∫ t

0

Asδ1Xs ds+

∫ t

0

d∑

j=1

(Cj
sδ1Xs +Dj

s(u
ρ
s − us)) dW

j
s (3.4)

and

δ2Xt =

∫ t

0

(Asδ2Xs +Bs(u
ρ
s − us)) ds+

∫ t

0

d∑

j=1

Cj
sδ2Xs dW

j
s . (3.5)
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Since

Xρ
t −Xt =

∫ t

0

[As(X
ρ
s −Xs) +Bs(u

ρ
s − us)] ds

+

∫ t

0

d∑

j=1

[Cj
s (X

ρ
s −Xs) +Dj

s(u
ρ
s − us)] dW

j
s , (3.6)

using the existence and uniqueness theorem for stochastic differential equations (see [9, 15]),

we have

Xρ
t −Xt = δ1Xt + δ2Xt. (3.7)

Then we have the following estimates.

Lemma 3.2 Let Assumption 2.1 hold. For u ∈ L2
F
(0, T ) such that

‖u− u‖4L4

F
(0,T ) := E

[ ∫ T

0

|ut − ut|4 dt
]
< ∞,

we have

E

[
max
t∈[0,T ]

|Xρ
t −Xt|4

]
= (1 + ‖u− u‖4L4

F
(0,T ))O(ρ2), (3.8)

E

[
max
t∈[0,T ]

|δ1Xt|4
]
= (1 + ‖u− u‖4L4

F
(0,T ))O(ρ2), (3.9)

E

[
max
t∈[0,T ]

|Xρ
t −Xt − δ1Xt|2

]
= (1 + ‖u− u‖4L4

F
(0,T ))O(ρ2), (3.10)

E

[
max
t∈[0,T ]

|δ2Xt|2
]
= (1 + ‖u− u‖4L4

F
(0,T ))O(ρ2). (3.11)

Proof (i) According to (3.6) and Lemma 3.1, we have that for p1 ≥ 2,

E

[
max
t∈[0,T ]

∣∣Xρ
t −Xt

∣∣p1

]
≤ Cp1,T (I1,p1

+ I2,p1
) ,

where

I1,p1
:= E

[( ∫ T

0

|Bs(u
ρ
s − us)| ds

)p1
]
, I2,p1

:= E

[(∫ T

0

d∑

j=1

|Dj
s(u

ρ
s − us)|2 ds

) p1
2

]
.

Since B and D are bounded, from the definition of uρ in (3.3), we have

I1,p1
≤ CB,p1

E

[(∫

Iρ

|us − us| ds
)p1

]
, I2,p1

≤ CD,p1
E

[( ∫

Iρ

|us − us|2 ds
) p1

2

]
,

where CB,p1
is a constant depending on the upper bound of |B| and subscript p1, and CD,p1

has the same meaning. Using Hölder’s inequality and Fubini lemma, we have

I1,p1
. E

[(∫

Iρ

1 ds
)p1−1

∫

Iρ

|us − us|p1 ds
]

. |Iρ|p1−1
E

[ ∫

Iρ

|us − us|p1 ds
]
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. |Iρ|p1−1

∫

Iρ

E[|us − us|p1 ] ds for p1 ≥ 1

and

I2,p1
. E

[(∫

Iρ

1 ds
) p1

2
−1

∫

Iρ

|us − us|p1 ds
]

. |Iρ|
p1
2
−1

E

[ ∫

Iρ

|us − us|p1 ds
]

. |Iρ|
p1
2
−1

∫

Iρ

E[|us − us|p1 ] ds for p1 ≥ 2.

Taking p1 = 4 and using the definition of Iρ in (3.2), we have

E

[
max
t∈[0,T ]

|Xρ
t −Xt|4

]
≤ CB,D,T ρ

∫

Iρ

E[|us − us|4] ds . ρ2
∫ T

0

E|us − us|4 ds.

So the estimate (3.8) holds.

(ii) According to (3.4) and Lemma 3.1, we have

E

[
max
t∈[0,T ]

|δ1Xt|p2

]
≤ Cp2,TE

[( ∫ T

0

d∑

j=1

|Dj
s(u

ρ
s − us)|2 ds

) p2
2

]
, p2 ≥ 2.

We use the definition of uρ in (3.3), the fact that D is bounded, and Hölder’s inequality to have

I2,p2
: = E

[(∫ T

0

d∑

j=1

|Dj
s(u

ρ
s − us)|2 ds

) p2
2

]
= E

[(∫

Iρ

d∑

j=1

|Dj
s(us − us)|2 ds

) p2
2

]

≤ CD,p2
E

[(∫

Iρ

|us − us|2 ds
) p2

2

]
. |Iρ|

p2
2
−1

E

[ ∫

Iρ

|us − us|p2 ds
]
, p2 ≥ 2.

Taking p2 = 4 and using the definition of Iρ in (3.2), we can deduce (3.9).

(iii) Using (3.4) and (3.6), we deduce the stochastic differential equation for Xρ
t −Xt−δ1Xt.

From Lemma 3.1, we have

E

[
max
t∈[0,T ]

|Xρ
t −Xt − δ1Xt|p3

]
≤ Cp3,TE

[( ∫ T

0

|Bs(u
ρ
s − us)| ds

)p3
]
, p3 ≥ 2.

Then from the definition of uρ in (3.3) and Hölder’s inequality, since B is bounded, we have for

p3 ≥ 2,

I1,p3
: = E

[(∫ T

0

|Bs(u
ρ
s − us)| ds

)p3
]
≤ CB,p3

E

[(∫

Iρ

|us − us| ds
)p3

]

. |Iρ|p3−1
E

[ ∫

Iρ

|us − us|p3 ds
]
= |Iρ|p3−1

∫

Iρ

E|us − us|p3 ds.

Taking p3 = 2, we have

E

[
max
t∈[0,T ]

|Xρ
t −Xt − δ1Xt|2

]
. ρ

∫

Iρ

E|us − us|2 ds.



668 S. J. Tang and X. Q. Wang

Using Hölder’s inequality, we have
∫

Iρ

E|us − us|2 ds ≤
∫

Iρ

{E|us − us|4}
1

2 ds

≤
∫

Iρ

(1 + E|us − us|4)
1

2 ds ≤
∫

Iρ

(1 + E|us − us|4) ds.

Then, according to the definition of Iρ in (3.2), we have

E

[
max
t∈[0,T ]

|Xρ
t −Xt − δ1Xt|2

]
. ρ2

∫ T

0

(1 + E|us − us|4) ds.

So the estimate (3.10) holds.

(iv) According to (3.7), we have

δ2Xt = Xρ
t −Xt − δ1Xt.

So (3.10) deduces (3.11). The proof is complete.

According to (3.7) and Taylor’s expansion, we have

J(uρ)− J(u)

= E[Mx(XT )(δ1XT + δ2XT )] + E

[1
2
Mxx(XT )(δ1XT )

2
]

+ E

[
(M̃xx(T )−

1

2
Mxx(XT ))(δ1XT )

2 + M̃xx(T )((X
ρ
T −XT )

2 − (δ1XT )
2)
]

+ E

[ ∫ T

0

lx(s,Xs, us)(δ1Xs + δ2Xs) + (lx(s,Xs, u
ρ
s)− lx(s,Xs, us))(X

ρ
s −Xs) ds

]

+ E

[ ∫ T

0

1

2
lxx(s,Xs, us)(δ1Xs)

2 +
(
l̃xx(s)−

1

2
lxx(s,Xs, us)

)
(Xρ

s −Xs)
2 ds

]

+ E

[ ∫ T

0

1

2
lxx(s,Xs, us)((X

ρ
s −Xs)

2 − (δ1Xs)
2) ds

]
+ E

[ ∫ T

0

δl(s;uρ
s) ds

]
,

where M̃xx(T ) and l̃xx(t) are defined as

M̃xx(T ) =

∫ 1

0

∫ 1

0

λMxx(XT + λθ(Xρ
T −XT )) dλdθ,

l̃xx(s) =

∫ 1

0

∫ 1

0

λlxx(s,Xs + λθ(Xρ
s −Xs), u

ρ
s) dλdθ,

respectively, and δl(s;uρ
s) is defined as

δl(s;uρ
s) := l(s,Xs, u

ρ
s)− l(s,Xs, us).

Using Hölder’s inequality, we have

E

[
(M̃xx(T )−

1

2
Mxx(XT ))(δ1XT )

2
]

≤
{
E

[
|M̃xx(T )−

1

2
Mxx(XT )|2

]} 1

2 {E[|δ1XT |4]}
1

2 .
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Since Mxx(·) is bounded, we use (3.8) and dominated convergence theorem to have

lim
ρ→0

E

[∣∣∣M̃xx(T )−
1

2
Mxx(XT )

∣∣∣
2]

= 0.

Then we use Lemma 3.2 to deduce

E

[
(M̃xx(T )−

1

2
Mxx(XT ))(δ1XT )

2
]
= o(ρ).

Since Mxx(·) is bounded and (3.7) holds, we have

E[M̃xx(T )((X
ρ
T −XT )

2 − (δ1XT )
2)]

≤ CME[|δ2XT ||Xρ
T −XT + δ1XT |]

. {E[|δ2XT |2]}
1

2 {E[|Xρ
T −XT + δ1XT |2]}

1

2 .

The CM is a constant depending on the upper bound of the function |Mxx|. Besides, we have

E[|Xρ
T −XT + δ1XT |2] ≤ 2E[|Xρ

T −XT |2] + 2E[|δ1XT |2]
≤ 2{E[|Xρ

T −XT |4]}
1

2 + 2{E[|δ1XT |4]}
1

2 .

Then we use Lemma 3.2 to have

{E[|δ2XT |2]}
1

2 {{E[|Xρ
T −XT |4]}

1

2 + {E[|δ1XT |4]}
1

2 } 1

2 = O(ρ
3

2 ) = o(ρ).

Similarly, we have

E

[ ∫ T

0

1

2
lxx(s,Xs, us)((X

ρ
s −Xs)

2 − (δ1Xs)
2) ds

]
= o(ρ).

In addition, since

E

[ ∫ T

0

(
l̃xx(s)−

1

2
lxx(s,Xs, us)

)
(Xρ

s −Xs)
2 ds

]

≤
{
E

[ ∫ T

0

∣∣∣l̃xx(s)−
1

2
lxx(s,Xs, us)

∣∣∣
2

ds
]} 1

2

{
E

[ ∫ T

0

|Xρ
s −Xs|4 ds

]} 1

2

,

we have

E

[ ∫ T

0

(
l̃xx(s)−

1

2
lxx(s,Xs, us)

)
(Xρ

s −Xs)
2 ds

]
= o(ρ).

Through out above detailed computation, we have

J(uρ)− J(u)

= E

[
Mx(XT )(δ1XT + δ2XT ) +

1

2
Mxx(XT )(δ1XT )

2
]

+ E

[ ∫ T

0

lx(s)(δ1Xs + δ2Xs) +
1

2
lxx(s)(δ1Xs)

2 + δl(s;uρ
s) ds

]
+ o(ρ).

Using adjoint processes (p, q) and (P,Q) as the unique solutions of BSDEs (2.2)–(2.3), we have

J(uρ)− J(u)
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= E

[ ∫ T

0

δH(t;uρ
t ) +

1

2

d∑

j=1

(uρ
t − ut)

∗Dj,∗
t PtD

j
t (u

ρ
t − ut) dt

]
+ o(ρ)

= E

[ ∫

Iρ

δH(t;ut) +
1

2

d∑

j=1

(ut − ut)
∗Dj,∗

t PtD
j
t (ut − ut) dt

]
+ o(ρ)

= ρE
[ ∫ T

0

δH(t;ut) +
1

2

d∑

j=1

(ut − ut)
∗Dj,∗

t PtD
j
t (ut − ut) dt

]
+ o(ρ)

≥ 0,

where

δH(t;u) = 〈pt, Bt(u− ut)〉+
d∑

j=1

〈qjt , Dj
t (u− ut)〉+ δl(t;u).

Taking ρ → 0, then we have the following lemma.

Lemma 3.3 For any admissible control u such that

E

[ ∫ T

0

|ut − ut|4 dt
]
< ∞, (3.12)

the following condition holds

E

[ ∫ T

0

δH(t;ut) +
1

2

d∑

j=1

(ut − ut)
∗Dj,∗

t PtD
j
t (ut − ut) dt

]
≥ 0. (3.13)

Next, we demonstrate that for any u ∈ Uad (i.e., u ∈ L2
F
(0, T )), (3.13) still holds. Note that

u− u ∈ L2
F
(0, T ), we define

(u− u)kt =

{
ut − ut, if |ut − ut| ≤ k,

0, if |ut − ut| > k.

Then {(u− u)k}∞k=1 ⊂ L4
F
(0, T ) and this sequence satisfies:

(i) (u − u)k converges to u− u strongly in L2
F
(0, T ),

(ii) |(u− u)kt | ≤ |ut − ut| a.e.a.s.
Set

uk
t = (u− u)kt + ut, (3.14)

so we have

uk
t =

{
ut, if |ut − ut| ≤ k,

ut, if |ut − ut| > k.

Thus uk ∈ Uad and uk satisfies (3.12)–(3.13). Then we have the following lemma.

Lemma 3.4 For uk which is defined in (3.14), we have

lim
k→∞

E

[ ∫ T

0

δH(t;uk
t ) dt

]
= E

[ ∫ T

0

δH(t;ut) dt
]
. (3.15)
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Proof Since the right-hand side of (3.15) is integrable, we only need to prove

lim
k→∞

E

[ ∫ T

0

δH(t;uk
t )− δH(t;ut) dt

]
= 0. (3.16)

From the definition of Hamiltonian in (2.1), we have

δH(t;uk
t ) = p∗tBt(u

k
t − ut) +

d∑

j=1

qj,∗t Dj
t (u

k
t − ut) + l(t,Xt, u

k
t )− l(t,Xt, ut)

and

δH(t;ut) = p∗tBt(ut − ut) +

d∑

j=1

qj,∗t Dj
t (ut − ut) + l(t,Xt, ut)− l(t,Xt, ut).

Thus we only need to prove the corresponding term converges to 0. From the definition of uk

in (3.14), we have

E

[ ∫ T

0

p∗tBt((u
k
t − ut)− (ut − ut)) dt

]
= E

[ ∫ T

0

p∗tBt((u − u)kt − (ut − ut)) dt
]

≤
{
E

[ ∫ T

0

|p∗tBt|2 dt
]} 1

2

{
E

[ ∫ T

0

|(u − u)kt − (ut − ut)|2 dt
]} 1

2 → 0, as k → ∞.

The last limit follows from the strong convergence of (u−u)k to u−u in L2
F
(0, T ). Similarly,

for some j = 1, · · · , d, we have

E

[ ∫ T

0

qj,∗t Dj
t ((u

k
t − ut)− (ut − ut)) dt

]
= E

[ ∫ T

0

qj,∗t Dj
t ((u − u)kt − (ut − ut)) dt

]

≤
{
E

[ ∫ T

0

|qj,∗t Dj
t |2 dt

]} 1

2

{
E

[ ∫ T

0

|(u− u)kt − (ut − ut)|2 dt
]} 1

2 → 0, as k → ∞.

Since |l(t, x, u)| ≤ C(1 + |x|2 + |u|2), we have

|l(t,Xt, u
k
t )− l(t,Xt, ut)| ≤ 2C(1 + |Xt|2 + |uk

t |2 + |ut|2)
≤ 4C(1 + |Xt|2 + |uk

t − ut|2 + |ut|2 + |ut|2).

Then according to the definition of uk in (3.14) and the sequence {(u − u)k}∞k=1 satisfies the

condition (ii), we have

|uk
t − ut| = |(u − u)kt | ≤ |ut − ut|.

So

|l(t,Xt, u
k
t )− l(t,Xt, ut)| ≤ 4C(1 + |Xt|2 + |ut − ut|2 + |ut|2 + |ut|2).

Then using dominated convergence theorem, we have

E

[ ∫ T

0

|l(t,Xt, u
k
t )− l(t,Xt, ut)| dt

]
= 0.
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Above all, we end the proof.

Since P satisfies linear backward stochastic differential equation (2.3), and A, B, Cj , Dj ,

Mxx(·), lxx(·) are bounded, we have that |Pt| is bounded for almost everywhere t ∈ [0, T ] and

almost surely ω ∈ Ω. Thus the following integral exists, i.e.,

E

[ ∫ T

0

(ut − ut)
∗D∗

tPtD
∗
t (ut − ut) dt

]
< ∞, ∀u, u ∈ L2

F (0, T ).

Lemma 3.5 For uk defined in (3.14), we have

lim
k→∞

E

[ ∫ T

0

(uk
t − ut)

∗D∗
tPtDt(u

k
t − ut) dt

]
= E

[ ∫ T

0

(ut − ut)
∗D∗

tPtDt(ut − ut) dt
]
.

Proof According to the definition of uk in (3.14) and the condition (ii) which the sequence

{(u− u)k}∞k=1 satisfied, we have

|(uk
t − ut)

∗D∗
tPtDt(u

k
t − ut)|

≤ |D∗
tPtDt||uk

t − ut|2

≤ |D∗
tPtDt||(u− u)kt |2

≤ |D∗
tPtDt||ut − ut|2.

Since Pt and Dt are bounded, ut and ut are L2-integrable, the right-hand side of the last

inequality is integrable. We use the dominated convergence theorem to get the lemma.

According to the definition of uk in (3.14), we have that uk satisfies (3.12). Using Lemma

3.3, we have

E

∫ T

0

[
δH(t;uk

t ) +
1

2
(uk

t − ut)
∗D∗

tPtDt(u
k
t − ut)

]
dt ≥ 0. (3.17)

According to Lemmas 3.4 and 3.5, we have the following result.

Lemma 3.6 ∀u ∈ Uad, we have

E

∫ T

0

[
δH(t;ut) +

1

2
(ut − ut)

∗D∗
tPtDt(ut − ut)

]
dt ≥ 0. (3.18)

Since the last lemma holds for any u in Uad, we can deduce that the maximum condition

(2.4) in Theorem 2.1.

4 The Case of Quadratic Cost Functional

We give the maximum condition for linear quadratic optimal control problem with square-

integrable optimal control. The system is also (1.1) and the cost functional is

J(u) =
1

2
E[X∗

TMXT ] + E

[ ∫ T

0

(1
2
X∗

sGsXs +
1

2
u∗
sNsus

)
ds

]
, (4.1)
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where G : [0, T ] → R
n×n, N : [0, T ] → R

m×m, M ∈ R
n×n; and G ≥ 0, M ≥ 0, N ≥ δ̃ for δ̃ > 0.

The admissible control set is

Uad = {u ∈ L2
F (0, T ) : ut ∈ U a.e.a.s.}

and control domain U is not necessarily convex. The optimal control problem is to find an

optimal control u to minimize (4.1) over Uad. In the following two examples, we point out that

the optimal control u may not satisfy (1.3).

Example 4.1 Let n = 1 and set

Yt =
(W 2

t√
t

)2

+
(W 3

t√
t

)2

+
(W 4

t√
t

)2

.

Since W j
t , j = 1, · · · , d, are independent and have the normal distribution N(0, t), we have that

W 1

t√
t
,
W 2

t√
t
, · · · , Wd

t√
t
obey the standard normal law N(0, 1). Then we verify that Yt has the law χ2

3,

where 3 represents the freedom degree of a chi-square distribution (this can also be explained

that Yt is the sum of 3 independent variables (see [6, p. 31])). We set

αt = β1
t = · · · = βd

t :=
W 1

t /
√
t√

Yt/3
,

then the law of αt = β1
t = · · · = βd

t is t3 (student distribution [6, p. 34, 12, p. 390, 18, p. 38]),

we have

E

[ ∫ T

0

α2
t dt

]
= 3T,

but

E

[ ∫ T

0

α4
t dt

]
does not exists.

Example 4.2 Let n = 1. We set

αt = βj
t = t−

1

4 , j = 1, · · · , d.

Then

∫ T

0

|αt|2 dt =
∫ T

0

t−
1

2 dt = 2T
1

2 < ∞,

but
∫ T

0

|αt|4 dt =
∫ T

0

t−1 dt = ∞.

When U = R
m, we have

ut = −N−1
t

(
B∗

t pt +

d∑

j=1

Dj,∗
t qjt

)
,
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where (p, q) is the first order adjoint process. In general, we assume

pt = KtXt + ϕt,

where Kt satisfies a Riccati equation, and ϕt satisfies an ordinary differential equation which

can be found in [19, Chapter 6, (6.6)–(6.7), p. 314]. When coefficients A, B, Cj , Dj are

deterministic (see [19]), we have

ut = −
(
Nt +

d∑

j=1

Dj,∗
t KtD

j
t

)−1[(
B∗

tKt +

d∑

j=1

Dj,∗
t KtC

j
t

)
Xt +B∗

t ϕt +

d∑

j=1

Dj,∗
t Ktβ

j
t

]
.

When coefficients A, B, Cj , Dj are stochastic, we refer to [17]. When control domain is the

whole space, the optimal control ut is a feedback of the optimal state Xt.

In Examples 4.1–4.2, the optimal trajectory ofX is only square-integrable. Since the optimal

control u is always a feedback of optimal trajectory of X, u does not satisfy (1.3). Therefore,

Peng’s stochastic maximum principle dose not apply both examples.

According to the linear stochastic system (1.1) and the quadratic cost functional (4.1), the

Hamiltonian is

H(t, x, u, p, q) = 〈p,Atx+Btu+ αt〉+
d∑

j=1

〈qj , Cj
t x+Dj

tu+ βj
t 〉+

1

2
x∗Gtx+

1

2
u∗Ntu.

Note that the admissible control range U is not necessarily convex. Applying Theorem 2.1, we

have the following theorem.

Theorem 4.1 Let (X,u) be an optimal pair for the linear stochastic system (1.1) and the

quadratic cost functional (4.1). Let the adapted stochastic processes (p, q) and (P,Q) solve the

adjoint equations :




pt = −
(
A∗

t pt +

d∑

j=1

Cj,∗
t qjt +GtXt

)
dt+

d∑

j=1

qjt dW
j
t , t ∈ [0, T ),

pT = MXT

and




Pt = −
{
A∗

tPt + PtAt +
d∑

j=1

(Cj,∗
t PtC

j
t + Cj,∗

t Qj
t +Qj

tC
j
t ) +Gt

}
dt

+

d∑

j=1

Qj
t dW

j
t , t ∈ [0, T ),

PT = M.

Then, we have the maximum condition: Almost surely ω ∈ Ω and almost every t ∈ [0, T ],

min
u∈U

(
〈pt, Bt(u− ut)〉+

d∑

j=1

〈qjt , Dj
t (u − ut)〉+

1

2
u∗Ntu− 1

2
u∗
tNtut

+
1

2

d∑

j=1

[Dj
t (u− ut)]

∗Pt[D
j
t (u− ut)]

)
= 0.
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The above maximum condition also reads that ∀u ∈ U ,

(
p∗tBt +

d∑

j=1

qj,∗t Dj
t + u∗

tNt

)
(u − ut) +

1

2
(u− ut)

∗
(
Nt +

d∑

j=1

Dj,∗
t PtD

j
t

)
(u− ut) ≥ 0.

The stochastic maximum principle of Cadenillas and Karatzas (see [5]) for linear stochastic

system assumes that the cost functional is convex. On one hand, taking advantage of the

convexity of the cost functional to avoid estimating the variation of state processes, they (see

[5, Theorem 1.4, p. 608]) do not require the (t, ω)-joint L2-integrability of admissible controls;

in fact, their admissible control processes are only almost surely square time-integrable, that is,

P

{∫ T

0

|ut|2 dt < ∞
}
= 1.

On the other hand, since their admissible control range U is required to be convex, their

stochastic maximum principle does not apply to the typical situation that we consider in this

section. However, when the control range U is convex, their stochastic maximum condition (see

[5, Theorem 3.2, p. 608]) :

max
u∈U

H(t, pt, qt, X̂t, u) = H(t, pt, qt, X̂t, ût), Leb⊗ P−a.e. on [0, T ]× Ω

coincides with ours.
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