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Abstract This paper investigates the stabilization of a Bresse system with internal damp-
ing and logarithmic source. The authors use the potential well theory. For initial data in
the stability set created by the Nehari surface, the existence of a global solution is proved
by using Faedo-Galerkin’s approximation. The Nakao theorem gives the exponential decay.
A numerical approach is presented to illustrate the results obtained.
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1 Introduction

The Bresse system is known as the circular arch problem. Its mathematical formulation

is given by a system of three partial differential equations representing vertical displacement,

shear, and longitudinal motion, given by,

ρAϕtt −Qx − ℓN = F1,

ρIψtt −Mx +Q = F2,

ρAωtt −Nx + ℓQ = F3,

where M is the bending moment, N is the axial force and Q is the shear force. Fi, i = 1, 2, 3,

are external sources. The coefficient ρ is the density of the beam, and ℓ = 1
R , where R is the

radius of the arch. The functions ϕ, ψ and ω depending on (x, t) ∈ (0, L)× (0, T ) and describes,

respectively, the vertical displacement, shear angle, and longitudinal displacements.
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We take

M(x, t) = EIψx,

N(x, t) = EA(ωx − ℓϕ),

Q(x, t) = kAG(ϕx + ψ + ℓω),

where E, G, k, A, and I are the modulus of elasticity, the shear modulus, the shear factor, the

cross-sectional area, and the moment of inertia of the cross-section.

We consider logarithmic source

F1(x, t) = µ1 ϕ ln |ϕ|2
R
,

F2(x, t) = µ2 ψ ln |ψ|2R,

F3(x, t) = µ3 ω ln |ω|2R,

where µj > 0, j = 1, 2, 3 and | · |R denotes the absolute value of a real number. The physical

setting is represented in Figure 1.

Figure 1 The circular arch beam.

We are interested in studying the competition between internal damping and the logarithmic

source. To simplify the notation let us denote by ρ1 = ρA, ρ2 = ρI, κ = kAG, b = EI, and

κ0 = EA. Under these conditions, we get the following initial-boundary problem

ρ1ϕtt − κ(ϕx + ψ + ℓω)x − ℓκ0(ωx − ℓϕ) + γ1ϕt = µ1 ϕ ln |ϕ|2R in (0, L)× (0, ∞), (1.1)

ρ2ψtt − bψxx + κ(ϕx + ψ + ℓω) + γ2ψt = µ2 ψ ln |ψ|2
R

in (0, L)× (0, ∞), (1.2)

ρ1ωtt − κ0(ωx − ℓϕ)x + ℓκ(ϕx + ψ + ℓω) + γ3ωt = µ3 ω ln |ω|2
R

in (0, L)× (0, ∞), (1.3)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L), (1.4)

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L), (1.5)

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x), x ∈ (0, L), (1.6)
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ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = ω(0, t) = ω(L, t) = 0, t ≥ 0. (1.7)

Shear deformation effects were first introduced by Rankine [28] in 1858. Rotary inertia

effects were discovered independently by Bresse [9] in 1859, and Rayleigh [29] in 1945. One

contributor to developing the theory that considers both effects was Paul Ehrenfest, cited by

Timoshenko [31] in the footnote of his book in 1916. Nowadays, this celebrated Timoshenko’s

theory is due to pioneer work [32] of 1921. For more detailed historical context, see [13–15]

with references therein.

The internal damping is associated with an oscillating system and produces a loss of energy

to overcome external sources that act in the mechanical resistance of the material. Logarithmic

nonlinearity is a class of nonlinearities distinguished by several interesting physical properties.

It appears, for instance, in dynamics of Q-ball in theoretical physics (see [18]), theories of

quantum gravity (see [35]), inflationary models (see [6]), quantum mechanics (see [8]).

There are several studies on this competition, that is, stability analysis of the global solution

taking into account the effect provoked by the presence of both stabilizing mechanism and

source term. Below we cite a few. [12] studied the existence and exponential stability of the

global solution to a Klein-Gordon equation of Kirchhoff-Carrier type with a strong damping

and logarithmic source term. An extensible beam equation of Kirchhoff type with internal

damping and source term was investigated in [26]. Kirchhoff plate equations with internal

damping and logarithmic nonlinearity were considered in [25]. The general decay result for a

plate equation with nonlinear damping and a logarithmic source term was established in [3]. For

global solution and blow-up of logarithmic Klein-Gordon equation, see [34]. The global existence

and asymptotic behavior of a Timoshenko system with internal damping and logarithmic source

terms were considered in [11].

About Bresse beams, below we gather some results in the literature intending to awaken

the reader to the importance of the subject. [16] showed the exponential stability of the Bresse

system with temperature taking into account that speeds of the wave propagation in the three

equations of the system are equal. [23] studied the energy decay rate of the Bresse system with

one locally internal distributed dissipation law acting on the equation about the shear angle

displacement. Under the equal speed wave propagation condition, it was shown that the system

is exponentially stable. For non-equal speed waves, it was established a polynomial energy

decay rate. [2] proved the stability of the Bresse system with one discontinuous local internal

KelvinVoigt damping on the first equation of the system. [4] considered a one-dimensional

linear Bresse system with only one infinite memory acting in the second equation of the system

and proved the asymptotic stability. [7] studied uniform and weak stability of the Bresse system

with one infinite memory in the shear angle displacements.

Motivated by the above research, in this paper, we prove the global existence and obtain
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the exponential decay of solution. Furthermore, we develope a numerical algorithm to obtain

the numerical solution to the system.

This paper is organized as follows: In the next section, we will give some preliminaries.

Section 3 deals with the potential well theory introduced by Payne and Sattinger [24] and

Sattinger [30], and we introduce the stability set. In Section 4, we prove the existence of a

global solution. In Section 5, we study exponential decay. Finally, Section 6 is devoted to the

numerical approach.

2 Preliminaries

We denote L2(0, L) the Hilbert’s space of square-integrable function on the interval (0, L),

with the inner product

(u, v) =

∫ L

0

uvdx, ∀u, v ∈ L2(0, L)

and norm

|u|2 = (u, u), ∀u ∈ L2(0, L).

We use the notation and properties of Sobolev space as in [1]. We denote

H1(0, L) = {u : u ∈ L2(0, L), ux ∈ L2(0, L)}

and

H1
0 (0, L) = {u ∈ H1(0, L) : u(0) = u(L) = 0}.

In this section, we present some results needed for to obtain our results. We start defining

the energy functional associated with the problem (1.1)–(1.7),

E(t) =
1

2

[
ρ1|ϕt(t)|

2 + ρ2|ψt(t)|
2 + ρ3|ωt(t)|

2 + κ|ϕx(t) + ψ(t) + ℓω(t)|2

+ b|ψx(t)|
2 + κ0|ωx − ℓϕ|2 + µ1|ϕ(t)|

2 + µ2|ψ(t)|
2 + µ3|ω(t)|

2

− µ1

∫ L

0

ϕ2(t) ln |ϕ(t)|2Rdx− µ2

∫ L

0

ψ2(t) ln |ψ(t)|2Rdx

− µ3

∫ L

0

ω2(t) ln |ω(t)|2Rdx
]
. (2.1)

Direct differentiation of (2.1) gives us

d

dt
E(t) = −γ1|ϕt(t)|

2 − γ2|ψt(t)|
2 − γ3|ωt(t)|

2. (2.2)

Now, consider the following lemmas.

Lemma 2.1 (Sobolev-Poincaré inequality) Let p be a number with in 2 < p < ∞ if

n = 1, 2 or 2 ≤ p ≤ 2n
n−2 if n ≥ 3, then there exist a constant C > 0 such that

‖u‖p ≤ C|ux|, ∀u ∈ H1
0 (0, L). (2.3)
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Lemma 2.2 (Aubin-Lions compactness Theorem) (see [20, Theorem 5.1]) Let T > 0,

1 < p0, p1 < ∞. Consider B0 ⊂ B ⊂ B1 Banach spaces, where B0, B1 reflexive, B0 with

compact embedding in B. Define

W = {u : u ∈ Lp0(0, T ; B0) , ut ∈ Lp1(0, T ; B1)}

equipped with the norm ‖u‖W = ‖u‖Lp0(0, T ;B0) + ‖ut‖Lp1(0, T ;B1). Then, W has compact em-

bedding in Lp0(0, T ; B).

Lemma 2.3 (see [20, lemma 1.3 ]) Let Q = Ω× (0, T ), T > 0 be a bounded open set of

R
n × R and gm, g : Q → R be functions of Lp(0, T ; Lp(Ω)) = Lp(Q), 1 < p < ∞ such that

‖gm‖Lp(Q) ≤ C, gm → g a.e. in Q. Then gm ⇀ g in Lp(Q) as m→ ∞.

Lemma 2.4 (Nakao’s lemma) (see [21]) Suppose that φ(t) is a bounded nonnegative func-

tion on R
+, satisfying

sup ess
t≤s≤t+1

φ(s) ≤ C0[φ(t)− φ(t+ 1)]

for any t ≥ 0, where C0 is a positive constant. Then,

φ(t) ≤ Ce−αt, ∀ t ≥ 0,

where C and α are positive constants.

3 The Potential Well

In this section, we present the potential well corresponding to the equations (1.1)–(1.2). We

define the operator J : (H1
0 (0, L))

3 → R by

J(ϕ, ψ, ω)
def
=

1

2

[
κ|ϕx + ψ + ℓω|2 + b|ψx|

2 + κ0|ωx − ℓϕ|2 + µ1|ϕ|
2 + µ2|ψ|

2 + µ3|ω|
2

− µ1

∫ L

0

ϕ2 ln |ϕ|2Rdx− µ2

∫ L

0

ψ2 ln |ψ|2Rdx− µ3

∫ L

0

ω2 ln |ω|2Rdx
]
.

For (ϕ, ψ, ω) ∈ (H1
0 (0, L))

3 and λ > 0 we have

J(λϕ, λψ, λω)

def
=

λ2

2

[
κ|ϕx+ψ+ℓω|

2+b|ψx|
2 + κ0|ωx−ℓϕ|+ µ1|ϕ|

2 + µ2|ψ|
2 + µ3|ω|

2 − 2µ1 lnλ

∫ L

0

ϕ2dx

− µ1

∫ L

0

ϕ2 ln |ϕ|2Rdx− 2µ2 lnλ

∫ L

0

ψ2dx− µ2

∫ L

0

ψ2 ln |ψ|2Rdx− 2µ3 lnλ

∫ L

0

ω2dx

− µ3

∫ L

0

ω2 ln |ω|2Rdx
]
.

Associated with J , we have the well-known Nehari manifold

N
def
=

{
(ϕ, ψ, ω) ∈ (H1

0 (0, L))
3/{0};

[ d

dλ
J(λϕ, λψ, λω)

]

λ=1
= 0

}
.
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Equivalently,

N =
{
(ϕ, ψ, ω) ∈ (H1

0 (0, L))
3;κ|ϕx + ψ + ℓω|2 + b|ψx|

2 + κ0|ωx − ℓϕ|2

= µ1

∫ L

0

ϕ2 ln |ϕ|2Rdx+ µ2

∫ L

0

ψ2 ln |ψ|2Rdx+ µ3

∫ L

0

ω2 ln |ω|2Rdx
}
.

We define, as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [5],

d
def
= inf

(ϕ,ψ, ω)∈(H1

0
(0, L))3/{0}

sup
λ>0

J(λu).

According to Willem [33] and Theorem 4.2, the depth of the well d is a strictly positive

constant given by

0 < d = inf
ϕ,ψ, ω∈N

J(λu).

Now, we introduce

W = {(ϕ, ψ, ω) ∈ H1
0 (0, L)

3; J(ϕ, ψ, ω) < d} ∪ {0}

and a partition of this into two sets as follows

W1 =
{
(ϕ, ψ, ω) ∈W ; κ|ϕx + ψ + ℓω|2 + b|ψx|

2 + κ0|ωx − ℓϕ| > µ1

∫ l

0

ϕ2 ln |ϕ|2Rdx

+ µ2

∫ l

0

ψ2 ln |ψ|2Rdx+ µ3

∫ l

0

ω2 ln |ω|2Rdx
}
∪ {0}

and

W2 =
{
(ϕ, ψ, ω) ∈W ;κ|ϕx + ψ + ℓω|2 + b|ψx|

2 + κ0|ωx − ℓϕ|

< µ1

∫ l

0

ϕ2 ln |ϕ|2
R
dx+ µ2

∫ l

0

ψ2 ln |ψ|2
R
dx+ µ3

∫ l

0

ω2 ln |ω|2
R
dx

}
.

Then, we define by W1 the set of stability for the problem (1.1)–(1.7).

4 Existence of Global Weak Solutions

In this section we prove the existence of global weak solutions.

Theorem 4.1 Let (ϕ0, ψ0, ω0) ∈ W1, J(ϕ0, ψ0, ω0) < d and (ϕ1, ψ1, ω1) ∈ (L2(0, L))3.

Then the problem (1.1)–(1.7) admits a weak solution (ϕ, ψ, ω) in the class

(ϕ, ψ, ω) ∈ (L∞
loc(0,∞;H1

0 (0, L)))
3, (4.1)

(ϕt, ψt, ωt) ∈ (L∞
loc(0,∞;L2(0, L)))3 (4.2)

satisfying u, y, z ∈ H1
0 (0, L).
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d

dt
(ρ1ϕt(t), u) + (κ(ϕx + ψ + ℓω)(t), ux)

− (κ0ℓ(ωx − ℓϕ)(t), u) + (γ1ϕt(t), u)− (µ1ϕ(t) ln |ϕ(t)|
2
R
, u) = 0, (4.3)

d

dt
(ρ2ψt(t), y) + (bψx(t), yx) + (κ(ϕx + ψ + ℓω)(t), y)

+ (γ2ψt(t), y)− (µ2ψ(t) ln |ψ(t)|
2
R, y) = 0, (4.4)

d

dt
(ρ1ωt(t), z) + (κ0(ωx − ℓϕ)(t), zx) + (κℓ(ϕx + ψ + ℓω)(t), z)

+ (γ3ωt(t), z)− (µ3ω(t) ln |ω(t)|
2
R, z) = 0, (4.5)

(ϕ, ψ, ω)(x, 0) = (ϕ0, ψ0, ω0), (4.6)

(ϕt, ψt, ωt)(x, 0) = (ϕ1, ψ1, ω1) (4.7)

in D′(0, T ).

We use the Faedo-Galerkin’s method. The proof of the global existence of solutions will be

made in three steps: Approximated problem, a priori estimates, and passage to the limit.

4.1 Approximated problem

Let (uν)ν∈N be a basis of H1
0 (0, L) from the eigenvectors of the operator −∆, and

Vm = span{u1, u2, · · · , um}.

Consider

ϕm(t) =

m∑

j=1

gjm(t)uj , ψm(t) =

m∑

j=1

hjm(t)uj , ωm(t) =

m∑

j=1

ljm(t)uj

a solution of the approximated problem

(ρ1ϕ
m
tt (t), u) + (κ(ϕmx (t) + ψm(t) + ℓωm(t)), ux)

− (κ0ℓ(ω
m
x − ℓϕm)(t), u) + (γ1ϕ

m
t (t), u)− (µ1ϕ

m(t) ln |ϕm(t)|2, u) = 0, (4.8)

(ρ2ψ
m
tt (t), y) + (bψmx (t), yx) + (κ(ϕmx (t) + ψm(t) + ℓωm(t)), y)

+ (γ2ψ
m
t (t), y)− (µ2ψ

m(t) ln |ψm(t)|2, y) = 0, (4.9)

(ρ1ω
m
tt (t), z) + (κ0(ω

m
x − ℓϕm)(t), zx) + (κℓ(ϕmx (t) + ψm(t) + ℓωm(t)), z)

+ (γ3ω
m
t (t), z)− (µ3ω

m(t) ln |ωm(t)|2, z) = 0, (4.10)

(ϕm(0), ψm(0), ωm(0)) = (ϕ0m, ψ0m, ω0m) → (ϕ0, ψ0, ω0) strongly in (H1
0 (0, l))

3, (4.11)

(ϕmt (0), ψmt (0), ωmt (0)) = (ϕ1m, ψ1m, ω1m) → (ϕ1, ψ1, ω1) strongly in (L2(0, l))3, (4.12)

∀ u, y, z ∈ Vm. By virtue of Carathéodory’s theorem (see [10]), the system (4.8) has a local

solution in [0, tm), 0 < tm ≤ T . The extension of the solution to the whole interval [0, T ] is a

consequence of the following a priori estimates.
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4.2 A priori estimates

Let u = ϕmt (t), y = ψmt (t) and z = ωmt (t) in (4.8), (4.9) and (4.10), respectively. Then we

have

1

2

d

dt

[
ρ1|ϕ

m
t (t)|2 + ρ2|ψ

m
t (t)|2 + ρ1|ω

m
t (t)|2 + κ|ϕmx (t) + ψm(t) + ℓωm(t)|2

+ b|ψmx (t)|2 + κ0|ω
m
x (t)− ℓϕm(t)|2 + µ1|ϕ

m(t)|2 + µ2|ψ
m(t)|2

+ µ3|ω
m(t)|2 − µ1

∫ L

0

ϕm(t)2 ln |ϕm(t)|2Rdx

− µ2

∫ L

0

ψm(t)2 ln |ψm(t)|2Rdx− µ3

∫ L

0

ωm(t)2 ln |ωm(t)|2Rdx
]

+ γ1|ϕ
m
t (t)|2 + γ2|ψ

m
t (t)|2 + γ3|ω

m
t (t)|2 = 0.

From (2.1) we have

d

dt
Em(t) + γ1|ϕ

m
t (t)|2 + γ2|ψ

m
t (t)|2 + γ3|ω

m
t (t)|2 = 0, (4.13)

where Em(t) is the approximated energy of the problem (4.8). Now, integrating (4.13) from 0

to t, 0 ≤ t ≤ tm, we obtain

Em(t) + γ1

∫ t

0

|ϕmt (t)|2ds+ γ2

∫ t

0

|ψmt (s)|2ds+ γ3

∫ t

0

|ωmt (s)|2ds=Em(0). (4.14)

Thus

Em(t) + γ1

∫ t

0

|ϕmt (s)|2ds+ γ2

∫ t

0

|ψmt (s)|2ds+ γ3

∫ t

0

|ωmt (s)|2ds

= ρ1|ϕ1m|2 + ρ2|ψ1m|2 + ρ1|ω1m|2

+ κ|ϕ0mx + ψ0m + ℓω0m|
2 + κ0|ω0mx − ℓϕ0m|2

+ b|ψ0mx|
2 + µ1|ϕ0m|2 + µ2|ψ0m|2 + µ3|ω0m|2

− µ1

∫ L

0

ϕ2
0m ln |ϕ0m|2Rdx− µ2

∫ L

0

ψ2
0m ln |ψ0m|2Rdx− µ3

∫ L

0

ω2
0m ln |ω0m|

2
Rdx,

which gives us the following estimate

Em(t) + γ1

∫ t

0

|ϕmt (s)|2ds+ γ2

∫ t

0

|ψmt (s)|2ds+ γ3

∫ t

0

|ωmt (s)|2ds

≤ ρ1|ϕ1m|2 + ρ2|ψ1m|2 + ρ1|ω1m|2 + J(ϕ0m, ψ0m, ω0m).

We have that J(ϕ0m, ψ0m, ω0m) < d, then by (4.8) we get

Em(t) + µ1

∫ t

0

|ϕmt (s)|2ds+ µ2

∫ t

0

|ψmt (s)|2ds+ γ3

∫ t

0

|ωmt (s)|2ds ≤ C1, (4.15)

where C1 is a positive constant independent of m and t.

These estimates imply that the approximated solution (ϕm, ψm, ωm) exists globally in [0,∞)

(see [17]). Then by estimate (4.15) we have

(ϕm), (ψm), (ωm) are bounded in L∞
loc(0, T ;H

1
0(0, L)), (4.16)



Bresse Beam with Damping and Logarithmic Source 693

(ϕmt ), (ψmt ), (ωmt ) are bounded in L∞
loc(0, T ;L

2(0, L)). (4.17)

Now by the logarithmic inequality

|t2 ln t| ≤ C(1 + |t|3),

we get

µ1

∫ L

0

|ϕm(t) ln |ϕm(t)|2
R
|2dx

= 4µ1

∫ L

0

|ϕm(t)|2
R
ln |ϕm(t)|2

R
dx

= 4µ1

∫

x∈(0,L);|ϕm|<1

|ϕm(t)|2
R
ln |ϕm(t)|2dx+ 4µ1

∫

x∈(0,L);|ϕm|≥1

|ϕm(t)|2
R
ln |ϕm(t)|2dx

≤ 4µ1

∫ L

0

|ϕm(t)|2Rdx+ 4µ1

∫ L

0

|ϕm(t)|4R ln |ϕm(t)|2Rdx

≤ 4µ1|ϕ
m(t)|2 + 4µ1C

∫ L

0

(1 + |ϕm(t)|6R)dx

= 4µ1|ϕ
m(t)|2 + 4µ1CL+ C|ϕm(t)|62

≤ µ1|ϕ
m(t)|2 + CL + C|ϕm(t)|6 ≤ C̃1. (4.18)

Analogously we have

µ2

∫ L

0

|ψm(t) ln |ψm(t)|2R|
2dx ≤ C̃2, (4.19)

µ3

∫ L

0

|ωm(t) ln |ωm(t)|2R|
2dx ≤ C̃3, (4.20)

where C̃1, C̃2 and C̃3 are constant independent of m and t. From (4.18)–(4.20), we get

ϕm ln |ϕ|2R are bounded in L2
loc(0,∞;L2(0, L)), (4.21)

ψm ln |ψ|2
R

are bounded in L2
loc(0,∞;L2(0, L)), (4.22)

ωm ln |ω|2
R

are bounded in L2
loc(0,∞;L2(0, L)). (4.23)

4.3 Passage to the limit

From estimates (4.16)–(4.17), there exists a subsequence of (ϕm), (ψm) and (ωm) also

denoted by (ϕm), (ψm) and (ωm), such that

(ϕm), (ψm), (ωm)
∗
⇀ ϕ,ψ, ω weakly star in L∞

loc(0,∞;H1
0 (0, L)), (4.24)

(ϕmt ), (ψmt ), (ωmt )
∗
⇀ ϕt, ψt, ωt weakly in L∞

loc(0,∞;L2(0, L)). (4.25)

Applying the Aubin-Lions compactness theorem (see Lemma 2.2), we get from (4.24)–(4.25),

(ϕm), (ψm), (ωm) → ϕ, ψ, ω strongly in L2
loc(0,∞;L2(0, L)), (4.26)
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and, for all T > 0,

(ϕm) → ϕ a.e in (0, L)× (0, T ), (4.27)

(ψm) → ψ a.e in (0, L)× (0, T ), (4.28)

(ωm) → ω a.e in (0, L)× (0, T ). (4.29)

Now, since that f(s) = s ln |s|2 is continuous, we have the convergence

µ1ϕ
m ln |ϕm|2R → µ1ϕ ln |ϕ|2R a.e in (0, L)× (0, T ), (4.30)

µ2ψ
m ln |ψm|2

R
→ µ2ψ ln |ψ|2

R
a.e in (0, L)× (0, T ), (4.31)

µ3ω
m ln |ωm|2

R
→ µ3ω ln |ω|2

R
a.e in (0, L)× (0, T ). (4.32)

From (4.21)–(4.23), (4.30)–(4.32) using the Lions’s lemma (Lemma 2.3), we obtain

µ1ϕ
m ln |ϕm|2

R
⇀ µ1ϕ ln |ϕ|2

R
weakly in L2

loc(0,∞;L2(0, L)), (4.33)

µ2ψ
m ln |ψm|2

R
⇀ µ2ψ ln |ψ|2

R
weakly in L2

loc(0,∞;L2(0, L)), (4.34)

µ3ω
m ln |ωm|2R ⇀ µ3ω ln |ω|2R weakly in L2

loc(0,∞;L2(0, L)). (4.35)

By the convergences (4.16)–(4.17) and (4.30)–(4.32), we can pass to the limit in the approx-

imate system (4.8)–(4.10) and obtain that for all u, y, z ∈ H1
0 (0, L),

d

dt
(ρ1ϕt(t), u) + (κ(ϕx + ψ + ℓω)(t), ux)

− (κ0ℓ(ωx − ℓϕ)(t), u) + (γ1ϕt(t), u)− (µ1ϕ(t) ln |ϕ(t)|
2
R, u) = 0, (4.36)

d

dt
(ρ2ψt(t), y) + (bψx(t), yx) + (κ(ϕx + ψ + ℓω)(t), y)

+ (γ2ψt(t), y)− (µ2ψ(t) ln |ψ(t)|
2
R
, y) = 0, (4.37)

d

dt
(ρ1ωt(t), z) + (κ0(ωx − ℓϕ)(t), zx) + (κℓ(ϕx + ψ + ℓω)(t), z) + (γ3ωt(t), z)

− (µ3ω(t) ln |ω(t)|
2
R, z) = 0 (4.38)

in D′(0, T ).

The verification of the initial data is obtained in a standard way.

5 Exponential Decay

In this section, we provide the exponential decay of the energy associated with the system

solution (1.1)–(1.7).

Theorem 5.1 Under the hypothesis of Theorem 4.1. The energy associated to problem

(1.1)–(1.7) satisfies

E(t) ≤ C0e
−αt, ∀t ≥ 0,

where C0 and α are positive constants.
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Proof Let u = ϕt(t), y = ψt(t) and z = ωt(t) in (4.36) and (4.38), respectively, and

summing up the result, we obtain

1

2

d

dt

[
ρ1|ϕt(t)|

2 + ρ2|ψt(t)|
2 + ρ1|ωt(t)|

2 + κ|ϕx(t) + ψ(t) + ℓω(t)|2

+ b|ψx(t)|
2 + κ0|ωx(t)− ℓϕ(t)|2 + µ1|ϕ(t)|

2 + µ2|ψ(t)|
2 + µ3|ω(t)|

2

− µ1

∫ L

0

|ϕ(t)|2R ln |ϕ(t)|2Rdx− µ2

∫ L

0

|ψ(t)|2R ln |ψ(t)|2Rdx

− µ3

∫ L

0

|ω(t)|2
R
ln |ω(t)|2

R
dx

]
+ γ1|ϕt(t)|

2 + γ2|ψt(t)|
2 + γ3|ωt(t)|

2 = 0, (5.1)

that is,

d

dt
E(t) + γ1|ϕt(t)|

2 + γ2|ψt(t)|
2 + γ3|ωt(t)|

2 ≤ 0, (5.2)

where E(t) is defined in (2.1). Integrating (5.1) from t to t+ 1, we obtain

∫ t+1

t

[γ1|ϕt(s)|
2 + γ2|ψt(s)|

2 + γ3|ωt(t)|
2]ds ≤ E(t)− E(t+ 1)

def
:= F 2(t), (5.3)

therefore, there exist t1 ∈
[
t, t+ 1

4

]
and t2 ∈

[
t+ 3

4 , t+ 1
]
such that

γ1|ϕt(ti)|
2 + γ2|ψt(ti)|

2 + γ3|ωt(ti)|
2 ≤ 4F (ti), i = 1, 2. (5.4)

Let u = ϕ(t), y = ψ(t) and z = ω(t) in (4.36)–(4.38), respectively. Summing the result, we

get

b|ψx(t)|
2 + κ|ϕx(t) + ψ(t) + ℓωt|2 + κ0ℓ|ωx(t)− ℓϕ(t)|2 − µ1

∫ L

0

(ϕ(t))2 ln |ϕ(t)|2Rdx

− µ2

∫ L

0

(ψ(t))2 ln |ψ(t)|2Rdx− µ3

∫ L

0

(ω(t))2 ln |ω(t)|2Rdx

= −
d

dt
ρ1(ϕt(t), ϕ(t)) + ρ1|ϕt(t)|

2 −
d

dt
ρ2(ψt(t), ψ(t)) + ρ2|ψt(t)|

2 −
d

dt
ρ1(ωt(t), ω(t))

+ ρ1|ωt(t)|
2 − γ1(ϕt(t), ϕ(t)) − γ2(ψt(t), ψ(t)) − γ3(ωt(t), ω(t)). (5.5)

Integration (5.5) from t1 to t2, and using (5.4), we obtain

∫ t2

t1

[
b|ψx(t)|

2 + κ|ϕx(t) + ψ(t) + ℓω(t)|2 + κ0ℓ|ωx(t)− ℓϕ(t)|2

− µ1

∫ L

0

(ϕ(t))2 ln |ϕ(t)|2Rdx− µ2

∫ L

0

(ψ(t))2 ln |ψ(t)|2Rdx− µ3

∫ L

0

(ω(t))2 ln |ω(t)|2Rdx
]
ds

≤ ρ1|ϕt(t1)||ϕ(t1)|+ ρ1|ϕt(t2)||ϕ(t2)|+ ρ2|ψt(t1)||ψ(t1)|

+ ρ2|ψt(t2)||ψ(t2)|+ ρ1|ωt(t1)||ω(t1)|+ ρ1|ωt(t2)||ω(t2)|

+ ρ1

∫ t2

t1

|ϕt(s)|
2ds+ ρ2

∫ t2

t1

|ψt(s)|
2ds+ ρ1

∫ t2

t1

|ωt(s)|
2ds+ γ1

∫ t2

t1

|ϕt(s)||ϕ(s)|ds

+ γ2

∫ t2

t1

|ψt(s)||ψ(s)|ds+ γ3

∫ t2

t1

|ωt(s)||ω(s)|ds,
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therefore,

∫ t2

t1

[
b|ψx(t)|

2 + κ|ϕx(t) + ψ(t) + ℓω(t)|2 + κ0ℓ|ωx(t)− ℓϕ(t)|2

− µ1

∫ L

0

(ϕ(t))2 ln |ϕ(t)|2Rdx− µ2

∫ L

0

(ψ(t))2 ln |ψ(t)|2Rdx

− µ3

∫ L

0

(ω(t))2 ln |ω(t)|2Rdx
]
ds

≤ C1

[
F (t) sup ess

t≤s≤t+1
E

1

2 (s) +
1

4
sup ess
t≤s≤t+1

E(s) + F 2(t)
]

def
:= G2(t), (5.6)

where C1 = C1(ρ1, ρ2, γ1, γ2, γ3) > 0 is a constant. Now, from (5.3) and (5.6), we get

∫ t2

t1

[
b|ψx(t)|

2 + κ|ϕx(t) + ψ(t) + ℓω(t)|2 + κ0ℓ|ωx(t)− ℓϕ(t)|2

− µ1

∫ L

0

(ϕ(t))2 ln |ϕ(t)|2Rdx− µ2

∫ L

0

(ψ(t))2 ln |ψ(t)|2Rdx

− µ3

∫ L

0

(ω(t))2 ln |ω(t)|2Rdx
]
ds

≤ 2[F 2(t) +G2(t)], (5.7)

thus, there exists t∗ ∈ [t1, t2] such that

ρ1|ϕt(t
∗)|2 + ρ2|ψt(t

∗)|2 + ρ1|ωt(t
∗)|2 + b|ψx(t

∗)|2

+ κ|ϕx(t
∗) + ψ(t∗) + ℓω(t∗)|2 + κ0ℓ|ωx(t

∗)− ℓϕ(t∗)|2

− µ1

∫

Ω

(ϕ(t∗))2 ln |ϕ(t∗)|2
R
dx− µ2

∫ L

0

(ψ(t∗))2 ln |ψ(t∗)|2
R
dx

− µ3

∫ L

0

(ω(t∗))2 ln |ω(t∗)|2
R
dx

≤ C2[F
2(t) +G2(t)]. (5.8)

We deduce

|ϕ(t∗)|2 + |ψ(t∗)|2 + |ω(t∗)|2

≤ C3[|ϕx(t
∗) + ψ(t∗) + ℓ|ω(t∗)|2|2

+ |ψx(t
∗)|2 + |ωx(t

∗)− ℓϕ(t∗)|2]. (5.9)

By (5.8)–(5.9), we have

E(t∗) ≤ C4[F
2(t) +G2(t)]. (5.10)

Since E(t) is increasing, by (5.3) and (5.9)–(5.10) we obtain

sup ess
t≤s≤t+1

E(s) ≤ E(t∗) +

∫ t+1

t

[γ1|ϕt(s)|
2 + γ2|ψt(s)|

2 + γ3|ωt(s)|
2]ds
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≤ C5[F
2(t) +G2(t)]

≤ C6

[
F (t) sup ess

t≤s≤t+1
E

1

2 (s) + F 2(t) +
1

4
sup ess
t≤s≤t+1

E(s)
]

≤ C7F
2(t) +

1

2
sup ess
t≤s≤t+1

E(s).

Hence, by Nakao’s lemma (see Lemma 2.4),

sup ess
t≤s≤t+1

E(s) ≤ C8F
2(t) = C9[E(t)− E(t+ 1)],

where Ci = 1, 2, · · · , 9 are positive constants. By Lemma (2.4), we conclude

E(t) ≤ C0e
−αt, ∀t ≥ 0,

where C0 and α are positive constants.

6 Numerical Approach

In this section, we develope an algorithms numerical to obtain the numerical solution to

system (1.1)–(1.7). Here, we use the Newmark’s methods (see [22]).

6.1 Variational formulation

Here, we use a representation to the functions ϕ, ψ and ω in the form by component vectorial

u = [ϕ, ψ, ω]T. Thus, from (1.1)–(1.3) we get the following variational problem

(utt(t), ũ) + a(uǫ(t), ũ) + (ut(t), ũ) = (F(u), ũ), ∀ ũ ∈ [H1
0 (0, L)]

3, (6.1)

with u satisfying the initial conditions

(u(0), ũ) = (u0, ũ), (ut(0), ũ) = (u1, ũ),

where

a(u(t), ũ) = κ(ϕx + ψ + ℓω, u1,x + u2 + ℓu3)+b(ψx, u2,x)+κ0(ωx − ℓϕ, u3,x − ℓu1),

(ut(t), ũ) = γ1(ϕt(t), u1) + γ2(ψt(t), u2) + γ3(ωt(t), u3),

(F(u(t)), ũ) = (ϕ(t) ln |ϕ(t)|2R, u1) + (ψ(t) ln |ψ(t)|2R, u2) + (ω(t) ln |ω(t)|2R, u3)

and

(utt(t), ũ) = ρ1(ϕtt, u1) + ρ2(ψtt, u2) + ρ1(ωtt, u3).
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6.2 Algorithms and numerical approximation

To obtain the full discretization to problem (6.1), firstly, we consider a partition Xh over

the interval Ω = (0, L), that is,

Xh = {0 = x0 < x1 < · · · < xN = L}, Ωj+1 = (xj , xj+1),

being,

Ωi ∩ Ωj = Ø, i 6= j, Ω =

Ne⋃

e=1

Ωe,

where Ne is the number of the elements obtained of partition.

Let Sh(0, L) be a finite-dimensional subspaces of C(0, L) piecewise polinomial finite element

interpolation of degree 1. Also, we consider the following finite-dimensional subspaces

H1
0(0, L) = Sh(0, L) ∩H1

0 (0, L).

Analogously to continuous case, in the finite dimensional problem we consider the functions

ϕh, ψh and ωh in the form by component vectorial [ϕh, ψh, ωh]T. Then

uh(t, x) =

3N∑

i=1

di(t)φi(x),

where 3N is the numbers total of degrees of freedom of the finite element approximation to

displacement and φi(x), i = 1, · · · , 3N are the global vector interpolation functions.

Thus the semi-discrete finite approximation of the variational problem (6.1) is characterized

as the following finite-dimensional problem

(uhtt(t), ũ
h) + a(uh(t), ũh) + (uht (t), ũ

h) = (F(uh), ũh), ∀ ũ ∈ [H1
0(0, L)]

3, (6.2)

where uh(t) satisfies the initial conditions

(uh(0), ũh) = (uh0 , ũ
h), (uht (0), ũ

h) = (uh1 , ũ
h).

Therefore, from the finite dimensional problem (6.2) we obtain the following dynamical

problem in R
3N

Md̈(t) +Cḋ(t) +Kd(t) = F(d(t)),

d(0) = d0, ḋ(0) = ḋ1,

where M is a consistent mass matrix, C is a damping matrix, K is a vector of consistent nodal

elastic stiffness at time t, and F(d(t) is a vector of consistent nodal applied forces generalized

at time t.



Bresse Beam with Damping and Logarithmic Source 699

To solve this system above we introduce a partition P of the time domain [0, T ] into M

intervals of lenght ∆t such that 0 = t0 < t1 < · · · < tM = T, with tn+1 − tn = ∆t. Considering

the non-linearity in our work, follows that our numerical scheme becomes

Md̈n+1 +Cḋn+1 +Kdn+1 = F(dn+1),

dn+1 = dn +∆tḋn +
∆t2

2
[(1− 2β)d̈n + 2βd̈n+1],

ḋn+1 = ḋn +∆t[(1− γ)d̈n + γd̈n+1],

where, β and γ are parameters that govern the stability and accuracy of the method.

The matrices, from the above system, are obtained from the standard finite element method

assembly ( see [19]), that is,

K =

Ne⋃

e=1

(keQ + keM + keN ),

where keQ,k
e
M ,k

e
N are the elementar matrices obtained by element.

For instance, considering linear functions, we have

keM =
bh

h




0 0 0 0 0 0

0 1 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 1 0

0 0 0 0 0 0




,

keQ =
k

6h




6 −3h −3hℓ −6 −3h −3hℓ

−3h 2h2 2ℓh2 3k h2 ℓh2

−3hℓ 2ℓh2 2ℓ2h2 3ℓh ℓh2 ℓ2h2

−6 3h 3ℓh 6 3h 3ℓh

−3h h2 ℓh2 3h 2h2 2ℓh2

−3lh ℓh2 ℓ2h2 3ℓh 2ℓh2 3ℓ2h2




.

Due to its non-linearity we have a vector F(d(t)) with entries for each element of

Fe =
[
µ1

∫

Ωe

(uh(t)) ln |uh(t)|2φei dx, µ2

∫

Ωe

(uh(t)) ln |uh(t)|2φei dx, µ3

∫

Ωe

(uh(t)) ln |uh(t)|2φei dx
]T
.

These vectorial components are obtained by Gaussian-Quadrature using two points.

Remark 6.1 We point out the numerical pathology which occurs in penalized systems the

locking problem, in particular to Bresse system it’s the shear locking. Numerical alternatives

to this problem was performed in the literature and to more details we indicate the classical

reference by Hughes et al [19], Prathap and Bhashyam [27].
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Figure 2 Evolution of the beam’s numerical solution: Transversal displacement ϕh(x, t),
evolution of rotation ψh(x, t) and evolution of the longitudinal displacement ωh(x, t).

The asymptotic behaviour of the numerical energy Eh(t, ϕ, ψ, ω) at 5 s.

Remark 6.2 To get computational results, we use the implemented code in Language C.

The graphics were developed using GNUplot.

In the sequel we realize some numerical experiments to highlight our theorical results.

6.3 Numerical experiments

In our performed numerical experiments to view the asymptotic properties we consider an

uniform mesh h = 0.01 m, ∆t = 10−5 s. The parameters Newmark’s rules algorithms are γ = 1
2 ,

β = 1
4 .

Experiment We consider a rectangular arch beam with L = 1.0 m, thickness 0.09 m,

width 0.09 m, E=69 · 108N/m2 ρ=7680 Kg/m3, κ= 5
6 , r=0.30 (Poisson ratio). Futhermore

we have µ1 =µ2 =µ3 =1.0, γ1 =62.2, γ2 =0.42, γ3 =62.2 and the following initial conditions:

ϕ(x, 0) = 0, ϕt(x, 0) = sin 3πx, ψ(x, 0) = 0, ψt(x, 0) = sin 5πx, ω(x, 0) = 0, ωt(x, 0) = sinπx.
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