On the Turán Numbers of Linear Forests in Bipartite Graphs^{*}

Tianying XIE¹ Longtu YUAN²

Abstract A linear forest is a graph consisting of paths. In this paper, the authors determine the maximum number of edges in an (m, n)-bipartite graph which does not contain a linear forest consisting of paths on at least four vertices for $n \ge m$ when m is sufficiently large.

Keywords Turán number, Linear forest, Bipartite graph 2000 MR Subject Classification 05C35, 05C05

1 Introduction

In this paper, only finite graphs without loops and multiple edges will be considered. Let K_n and P_n be the clique and path on n vertices, respectively. An even path (odd path) is a path on even (odd) number of vertices. Let $K_{m,n}$ be the complete bipartite graph with two parts of size m and n. A linear forest is a forest whose components are paths. For a given graph G = (V(G), E(G)), if $v \in V(G)$ is a vertex of G, let $N_G(v)$ and $d_G(v)$ be the neighborhood and degree of v in graph G, respectively. For a vertex set $U \subseteq V$, let $N_U(v) = N_G(v) \cap U$, $N_G(U) = \bigcup_{u \in U} N_G(u), N_G^c(U) = \bigcap_{u \in U} N_G(u)$ and $d_G^c(U) = |N_G^c(U)|$. For a subset $U \subset V(G)$, if G[U] is connected, denote the connected component of G containing U by $C_G(U)$.

Given two graphs G and H, we say a graph G is H-free if G does not contain a copy of H as a subgraph. The Turán number of a graph H, denoted by ex(n, H), is the maximum number of edges in an *n*-vertex H-free graph. If an *n*-vertex H-free graph G has ex(n, H) edges, then we call G an extremal graph for H. In 1959, Erdős and Gallai [1] proved the following well-known result about the Turán numbers of paths.

Manuscript received September 1, 2022. Revised December 22, 2022.

¹School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China. E-mail: xiety@mail.ustc.edu.cn

²School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China. E-mail: ltyuan@math.ecnu.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 12125106, 12271169, 12331014), National Key R and D Program of China (No. 2020YFA0713100), Anhui Initiative in Quantum Information Technologies (No. AHY150200) and Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014).

T. Y. Xie and L. T. Yuan

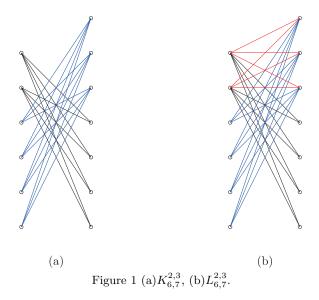
Theorem 1.1 (see Erdős and Gallai [1]) Let $n \ge t$. Then

$$\operatorname{ex}(n, P_t) \le \frac{1}{2}(t-2)n.$$

For a given graph H, we use kH to denote the vertex-disjoint union of k copies of H. Recently, many researchers focus on determining the Turán numbers for linear forests. Gorgol [2] first studied the functions $ex(n, 2P_3)$ and $ex(n, 3P_3)$. For more results concerning the Turán numbers for linear forests, we refer the readers to [3–8, 12–17].

We use ex(m, n; H) to denote the maximum number of edges in an *H*-free (m, n)-bipartite graph, and call *G* an bipartite extremal graph for *H* if *G* is an *H*-free (m, n)-bipartite graph with ex(m, n; H) edges, and denote the set of all bipartite extremal graphs for *H* by EX(m, n; H). In 1984, Gyárfás, Rousseau and Schelp [9] determined $ex(m, n; P_k)$ and characterized all bipartite extremal graphs for all values of m, n, k.

Denote by $K_{m,n}^{a,b}$ the (m, n)-bipartite graph consists of $K_{a,n-b}$ and $K_{m-a,b}$. Denote by $L_{m,n}^{a,b}$ the (m, n)-bipartite graph obtained from $K_{m,n}^{a,b}$ by joining each vertex of the class with size a to each vertex of the class with size b (see Figure 1). In particular, we say $L_{m,n}^{1,1}$ is a double star.



Theorem 1.2 (see Gyárfás, Rousseau and Schelp [9]) Let $\ell = \lfloor \frac{k}{2} \rfloor - 1$ and $n \ge m$. (1) If $k \ge 2$ is even, then

$$ex(m,n;P_k) = \begin{cases} mn, & \text{for } m \le \ell;\\ \ell n, & \text{for } \ell + 1 \le m \le 2\ell - 1;\\ (n-\ell)\ell + (m-\ell)\ell, & \text{for } m \ge 2\ell. \end{cases}$$

Moreover,

$$\mathrm{EX}(m,n;P_k) = \begin{cases} \{K_{m,n}\}, & \text{for } m \le \ell; \\ \{K_{\ell,n}\}, & \text{for } \ell+1 \le m \le 2\ell-1; \\ \bigcup_{j=0}^{\lfloor \frac{n}{2} \rfloor} \{K_{m,n}^{\ell,j}\}, & \text{for } m = 2\ell; \\ \{K_{m,n}^{\ell,\ell}\}, & \text{for } m \ge 2\ell+1. \end{cases}$$

(2) For k = 3,

$$\operatorname{ex}(m, n; P_3) = m.$$

Moreover, the unique extremal graph is $mP_2 \cup \overline{K}_{n-m}$.

(3) For k = 5,

$$ex(m,n;P_5) = \begin{cases} m+n, & \text{for } m=n \ge 2 \text{ is even};\\ m+n-1, & \text{otherwise.} \end{cases}$$

Moreover, the extremal graphs consist of at most one double star and copies of $K_{2,2}$.

(4) If $k \ge 7$ is odd, then

$$ex(m,n;P_k) = \begin{cases} mn, & \text{for } m \le \ell \text{ or } m = n = \ell + 1; \\ \ell(n-1) + m, & \text{for } n > m = \ell + 1 \text{ or } \ell + 2 \le m \le 2\ell + 1; \\ 2\ell^2, & \text{for } m = n = 2\ell + 2; \\ (n-\ell)\ell + (m-\ell)\ell, & \text{for } n > m = 2\ell + 2 \text{ or } m \ge 2\ell + 3. \end{cases}$$

Moreover,

$$\mathrm{EX}(m,n;P_k) = \begin{cases} \{K_{m,n}\}, & \text{for } m \leq \ell \text{ or } m = n = \ell + 1; \\ \{K_{\ell+1,\ell+1} \cup K_1, L_{m,n}^{\ell,1}\}, & \text{for } m = \ell + 1 \text{ and } n = \ell + 2; \\ \{K_{m,n}^{\ell+1,1}, L_{m,n}^{\ell,1}\}, & \text{for } m = n = \ell + 2; \\ \{L_{m,n}^{\ell,1}\}, & \text{for } n - 1 > m = \ell + 1 \text{ or } n \geq m = \ell + 2 \\ \{L_{m,n}^{\ell,\ell+1}\}, & \text{for } n - 1 > m = \ell + 1; \\ \{K_{m,n}^{\ell,\ell+1}, L_{m,n}^{\ell,1}\}, & \text{for } m = 2\ell + 1; \\ \{K_{m,n}^{\ell,\ell+1}\}, & \text{for } m = n = 2\ell + 2; \\ \{K_{m,n}^{\ell,\ell}\}, & \text{for } n > m = 2\ell + 2 \text{ or } m \geq 2\ell + 3. \end{cases}$$

In order to use it easily later, we will give a simple version of Theorem 1.2.

Corollary 1.1 Let $\ell = \lfloor \frac{k}{2} \rfloor - 1$ and $n \ge m$. If $m \le k$, then

$$\exp(m, n; P_k) \le \ell(m+n);$$

if $m \geq k$, then

$$ex(m,n;P_k) = \begin{cases} m, & \text{for } k = 3;\\ n+m-i, & \text{for } k = 5;\\ (n-\ell)\ell + (m-\ell)\ell, & \text{otherwise}, \end{cases}$$

where i = 0 when n = m is even, and i = 1 otherwise. In particular, for any $n \ge m \ge 0$ and $k \ge 2$,

$$\exp(m, n; P_k) \le \ell(m+n).$$

From now on, let F_j be the linear forest consisting of P_{k_1}, \dots, P_{k_j} with $k_1 \ge k_2 \ge \dots \ge k_j \ge 2$ and $j \ge 2$. Letting $X_j = \{k_1, \dots, k_j\}$, we say that X_j is odd if all numbers in it are odd and X_j is not odd otherwise. Let $r_i = \lfloor \frac{k_i}{2} \rfloor$ for $i \in \{1, 2, \dots, \ell\}$, $s_j = \sum_{i=1}^j r_i$ and $x_j = \sum_{i=1}^j k_i$.

Vert recently, Chen, Wang, Yuan and Zhang [10] determined $ex(m, n; F_{\ell})$ when n is sufficiently larger than m and s_{ℓ} , and characterized the extremal graphs.

Theorem 1.3 (see Chen, Wang, Yuan and Zhang [10]) If $n \ge \sigma m$ and $m \ge s_{\ell}$, where $\sigma = \sigma(k_1, \dots, k_{\ell})$, then the following hold.

(1) If X_{ℓ} is not odd, then

$$ex(m,n;F_{\ell}) = \begin{cases} (s_{\ell}-1)n, & \text{for } s_{\ell} \le m \le 2s_{\ell}-2; \\ (s_{\ell}-1)(n-r_{\ell}+1) + (m-s_{\ell}+1)(r_{\ell}-1), & \text{for } m \ge 2s_{\ell}-1. \end{cases}$$

Moreover, the extremal graphs are $K_{s_{\ell}-1,n} \cup \overline{K}_{m-s_{\ell}+1}$ for $s_{\ell} \leq m \leq 2s_{\ell}-3$, $K_{m,n}^{s_{\ell}-1,n-i}$ with $0 \leq i \leq r_{\ell}-1$ for $m = 2s_{\ell}-2$ and $K_{m,n}^{s_{\ell}-1,r_{\ell}-1}$ for $m \geq 2s_{\ell}-1$.

(2) Let $p = 2s_{\ell} - 2 + \frac{(s_{\ell} - 1)}{(r_{\ell} - 2)}$. If X_{ℓ} is odd and $k_{\ell} \notin \{3, 5\}$, then

$$ex(m,n;F_{\ell}) = \begin{cases} (s_{\ell}-1)n+m-s_{\ell}+1, & \text{for } s_{\ell} \le m \le p; \\ (s_{\ell}-1)(n-r_{\ell}+1)+(m-s_{\ell}+1)(r_{\ell}-1), & \text{for } m \ge p. \end{cases}$$

Moreover, for $\ell \geq 2$, the extremal graphs are $L_{m,n}^{s_{\ell}-1,1}$ for $s_{\ell} \leq m \leq p$ and $K_{m,n}^{s_{\ell}-1,r_{\ell}-1}$ for $m \geq p$.

(3) If X_{ℓ} is odd and $k_{\ell} = 3$, then

$$ex(m,n;F_{\ell}) = \begin{cases} (s_{\ell}-1)n + m - s_{\ell} + 1, & \text{for } k_1 = k_2 = \dots = k_{\ell} = 3; \\ (s_{\ell}-1)n + 1, & \text{otherwise.} \end{cases}$$

Moreover, the extremal graphs are the graph obtained from $K_{s_{\ell}-1,n}$ by joining $m - s_{\ell} + 1$ independent edges connecting new $m - s_{\ell} + 1$ isolated vertices to $m - s_{\ell} + 1$ vertices with degree $s_{\ell} - 1$ in $K_{s_{\ell}-1,n}$ respectively for $k_1 = k_2 = \cdots = k_{\ell} = 3$, and $L_{s_{\ell},n}^{s_{\ell}-1,1} \cup \overline{K}_{m-s_{\ell}}$ otherwise.

(4) If X_{ℓ} is odd and $k_{\ell} = 5$, then

$$ex(m, n; F_{\ell}) = (s_{\ell} - 1)n + m - s_{\ell} + 1.$$

Moreover, the unique extremal graph is $L_{m,n}^{s_{\ell}-1,1}$ for $\ell \geq 2$.

The above two theorems show that the extremal graphs for linear forests are very complicated when m is small. In this paper, by using Theorem 1.3 and a key lemma, we will determine $ex(m, n; F_{\ell})$ for $k_{\ell} \ge 4$ and $n \ge m$ when m is sufficiently large. Moreover, all the extremal graphs will be characterized.

We define

$$f(m,n;X_j) = \begin{cases} (s_j - 1)(n - 1) + m, & \text{if } X_j \text{ is odd with } k_j = 5; \\ 6m - 9, & \text{if } F_j = P_9 \cup P_4 \text{ with } m = n; \\ (s_j - 1)(n - r_j + 1) + (r_j - 1)(m - s_j + 1), & \text{otherwise.} \end{cases}$$

Denote by $\mathcal{F}(m, n; X_j)$ the F_j -free graphs with $f(m, n; X_j)$ edges:

$$\mathcal{F}(m,n;X_j) = \begin{cases} \{L_{m,n}^{s_j-1,1}\}, & \text{if } X_j \text{ is odd with } k_j = 5; \\ \{L_{m,m}^{3,3}\}, & \text{if } F_j = P_9 \cup P_4 \text{ with } m = n; \\ \{L_{m,m}^{4,3}, K_{m,m}^{6,1}\}, & \text{if } F_j = P_{11} \cup P_4 \text{ with } m = n; \\ \{K_{m,n}^{s_j-1,r_j-1}\}, & \text{otherwise.} \end{cases}$$

Furthermore, we define

$$F(m, n; X_j) = \max\{\exp(m, n; P_{k_1}), f(m, n; X_2), \cdots, f(m, n; X_j)\}.$$

Theorem 1.4 Let $n \ge m$ and m be sufficiently large. If $F_{\ell} = P_{k_1} \cup P_{k_1} \cup \cdots \cup P_{k_{\ell}}$ is a linear forest with $k_1 \ge k_2 \ge \cdots \ge k_{\ell} \ge 4$, then

$$ex(m, n; F_{\ell}) = F(m, n; X_{\ell})$$

and all extremal graphs belong to $\mathrm{EX}(m,n;P_{k_1}) \cup \big(\bigcup_{i=2}^{\ell} \mathcal{F}(m,n;X_i)\big).$

2 Several Lemmas and Proof of Main Theorem

First, we introduce a result concerning cycles in bipartite graphs. Jackson [11] proved the following result.

Theorem 2.1 (see Jackson [11]) Let G(A, B) be a bipartite graph with |A| = m, |B| = nand $n \ge m$. If each vertex of B has degree at least k, then G contains a cycle of length at least 2k.

The following lemma is widely used in extremal problems.

Lemma 2.1 Let G = G(A, B) be a bipartite graph with |A| = a and |B| = n, where a is a constant and n is sufficiently large. If e(G) = bn - o(n), then there exists a vertex set $A' \subseteq A$ with size $t = \lceil b \rceil$ and a constant $\delta > 0$ such that the number of common neighbors of A' is at least δn .

Proof Let X be the set of vertices of B with degree less than t. Since $e(G) \ge bn - o(n)$, we have $(t-1)|X| + a(n-|X|) \ge bn - o(n)$. Thus, we have $|X| \le \frac{a-b}{a-t+1}n - o(n)$. Hence, there are at least $n - |X| \ge \frac{b-t+1}{a-t+1}n - o(n)$ vertices of B with degree at least t. Since there are $\binom{a}{t}$ t-sets in A, by the pigeonhole principle, there exists a vertex set $A' \subseteq A$ with size t such that the number of common neighbors of A is at least δn , where $\delta = \frac{b-t+1}{(a-t+1)\binom{a}{t}+1} > 0$. The proof is complete.

Given a graph G, for any two vertices x, y of G, we use $e_G(x, y)$ to denote the number of edges incident to x or y in G. Thus, if x is adjacent to y then $e_G(x, y) = d(x) + d(y) - 1$ and if x is not adjacent to y then $e_G(x, y) = d(x) + d(y)$, where d(x) and d(y) are the degrees of x and y in G, respectively.

Lemma 2.2 Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. Let $\ell \geq 2$ and $k_{\ell} \geq 4$. Let $n \geq m$ and $m \geq m_1 = m_1(k_1, \dots, k_{\ell})$. Suppose that G contains a copy of $F_{\ell-1} = P_{k_1} \cup \dots \cup P_{k_{\ell-1}}$. Let $A_0 = A - V(F_{\ell-1})$, $B_0 = B - V(F_{\ell-1})$. If $e_G(x, y) \geq s_\ell + r_\ell - 2$ for each $x \in A_0$ and $y \in B_0$, then

$$e(G) \le f(m, n; X_{\ell})$$

where the equality holds if and only if $G \in \mathcal{F}(m, n; X_{\ell})$.

Now we will show that Lemma 2.2 and Theorem 1.3 imply Theorem 1.4.

Proof of Theorem 1.4 Let G(A, B) be an F_{ℓ} -free (m, n)-bipartite graph. Let $n \ge m$ and $m \ge \rho m_1$, where m_1 is from Lemma 2.2, and $\rho > 1$ will be defined later. Let $k_{\ell} \ge 4$. Assume that

$$e(G) \ge F(m, n; X_{\ell}). \tag{2.1}$$

Then we will prove this theorem by induction on ℓ . It is trivial for $\ell = 1$ (by Theorem 1.1), so we may assume that $\ell \geq 2$ and the theorem holds for $\ell - 1$. Let $F_{\ell-1} = P_{k_1} \cup \cdots \cup P_{k_{\ell-1}}$. If G is $F_{\ell-1}$ -free, then by the definitions of $F(m, n; X_\ell)$ and $\mathcal{F}(m, n; X_\ell)$, we have $e(G) \leq ex(m, n; F_{\ell-1}) = F(m, n; X_{\ell-1}) \leq F(m, n; X_\ell)$. So $e(G) = ex(m, n; F_{\ell-1}) = F(m, n; X_\ell)$ and $G \in EX(m, n; P_{k_1}) \cup (\bigcup_{i=2}^{\ell-1} \mathcal{F}(m, n; X_i))$, hence Theorem 1.4 holds. So we assume that G contains a copy of $F_{\ell-1}$, and let $A_0 = A - V(F_{\ell-1})$, $B_0 = B - V(F_{\ell-1})$.

If $e_G(x, y) \ge s_\ell + r_\ell - 2$ for each $x \in A_0$ and $y \in B_0$, then Theorem 1.4 holds by Lemma 2.2. Suppose that there exist $x_1 \in A_0$ and $y_1 \in B_0$ such that $e_G(x_1, y_1) \le s_\ell + r_\ell - 3$. Let $G^1 = G - \{x_1, y_1\}$. Then we can construct G^{i+1} from G^i if there exist $x_i \in A_0 \cap V(G^i)$ and $y_i \in B_0 \cap V(G^i)$ such that $e_{G^i}(x, y) \le s_\ell + r_\ell - 3$. Note that $f(m, n; X_\ell) \ge (s_\ell - 1)n + (r_\ell - 1)m - O(1)$. Thus for any t,

$$e(G^{t}) \ge F(m, n; X_{\ell}) - (s_{\ell} + r_{\ell} - 3)t$$

$$\ge f(m, n; X_{\ell}) - (s_{\ell} + r_{\ell} - 3)t$$

$$\ge (s_{\ell} - 1)(n - t) + (r_{\ell} - 1)(m - t) + t - O(1).$$
(2.2)

Since $e(G^t) \le (n-t)(m-t)$, combining with (2.2), we have $(s_{\ell}-1)(n-t) + (r_{\ell}-1)(m-t) + t - O(1) \le (n-t)(m-t)$ implying $t \le m - s_{\ell}$.

So the process will be stopped in $1 \le t_0 \le m - s_\ell$ steps. Furthermore, let $r' = \lfloor \frac{x_\ell}{2} \rfloor$. Then G^{t_0} is P_{x_ℓ} -free (since P_{x_ℓ} contains a copy of F_ℓ). By Corollary 1.1,

$$e(G^{t_0}) \le e(m - t_0, n - t_0; P_{x_\ell}) \le (r' - 1)(n - t_0) + (r' - 1)(m - t_0).$$

By (2.2), we have

$$e(G^{t_0}) \ge (s_{\ell} - 1)n + (r_{\ell} - 1)m - (s_{\ell} + r_{\ell} - 3)t_0 - O(1)$$

Hence, combining the above two inequalities, we have

$$t_0 \le \frac{r' - s_\ell}{2r' - s_\ell - r_\ell + 1}n + \frac{r' - r_\ell}{2r' - s_\ell - r_\ell + 1}m + O(1) \le \frac{2r' - s_\ell - r_\ell}{2r' - s_\ell - r_\ell + 1}n + O(1).$$

Since n is sufficient large, there is a constant $0 < q_1 < 1$ such that $q_1n - t_0 \ge m_1$.

Suppose that $m - t_0 < m_1$, i.e., $m < m_1 + t_0 \le q_1 n$. Let $\rho = \frac{\sigma}{\frac{1}{q_1} - 1} > 1$ (since q_1 can be chosen close to one), where σ is the constant from Theorem 1.3. Now by $m \ge \rho m_1 \ge \rho (m - t_0)$,

we have

$$n-t_0 \ge \left(\frac{1}{q_1}\right)m - t_0 \ge \left(\frac{1}{q_1} - 1\right)m \ge \left(\frac{1}{q_1} - 1\right)\rho(m-t_0) = \sigma(m-t_0).$$

Recall that $m - t_0 \ge s_\ell$. Let $p = 2s_\ell - 2 + \frac{s_\ell - 1}{r_\ell - 2}$. Theorem 1.3 implies

$$e(G^{t_0}) \leq \begin{cases} f(m,n;X_\ell) - (s_\ell + r_\ell - 2)t_0, & \text{if } m - t_0 \ge p; \\ f(m,n;X_\ell) - (s_\ell + r_\ell - 2)t_0 + O(1), & \text{if } m - t_0 \le p. \end{cases}$$

Hence if $m - t_0 \ge p$, then $f(m, n; X_\ell) \le e(G) \le e(G^{t_0}) + (s_\ell + r_\ell - 3)t_0 \le f(m, n; X_\ell) - t_0 \le f(m, n; X_\ell) - (m - m_1) < F(m, n; X_\ell)$, a contradiction to (2.1). If $m - t_0 \le p$, then since m is sufficient large, $f(m, n; X_\ell) \le e(G) \le e(G^{t_0}) + (s_\ell + r_\ell - 3)t_0 \le f(m, n; X_\ell) - t_0 + O(1) \le f(m, n; X_\ell) - (m - m_1) + O(1) < f(m, n; X_\ell) \le F(m, n; X_\ell)$, contradicting (2.1).

Suppose that $m-t_0 \ge m_1$. Note that we only delete vertices in $A_0 \cup B_0$. Hence, G^{t_0} contains a copy of $F_{\ell-1}$. By the termination condition, $e_{G^{t_0}}(x, y) \ge s_\ell + r_\ell - 2$ for each $x \in V(G^{t_0}) \cap A_0$ and $y \in V(G^{t_0}) \cap B_0$. It follows from Lemma 2.2 that $e(G^{t_0}) \le f(n - t_0, n - t_0; X_\ell) =$ $f(m, n; X_\ell) - (s_\ell + r_\ell - 2)t_0$. Therefore, $e(G) \le e(G^{t_0}) + (s_\ell + r_\ell - 3)t_0 \le f(m, n; X_\ell) - t_0 <$ $f(m, n; X_\ell) \le F(m, n; X_\ell)$, a contradiction to (2.1). This completes the proof of Theorem 1.4.

3 Proof of Lemma 2.2

We first introduce a stability result for paths in bipartite graphs.

Lemma 3.1 Let G = G(A, B) be a P_t -free bipartite graph with |A| = m, |B| = n and $t \ge 4$. Let Δ be a constant and $n \ge m$ be sufficiently large. If

$$e(G) \ge \exp(m, n; P_t) - \Delta, \tag{3.1}$$

then there is a constant $0 < \varepsilon \leq 1$ depending on Δ and t such that

(1) if t = 5, then there are two vertices $u \in A$ and $v \in B$ such that $d_G(u) \ge \varepsilon(n - 2q)$ and $d_G(v) \ge \varepsilon(m - 2q)$, where q is the number of copies of $K_{2,2}$ in G;

(2) if $t \neq 5$, then there are two subset $A_1 \subset A$ and $B_1 \subset B$ with $|A_1| = |B_1| = \lfloor \frac{t}{2} \rfloor - 1$ such that $d_G^c(A_1) \geq \varepsilon n$ and $d_G^c(B_1) \geq \varepsilon m$.

Proof If t = 4, then G consists of stars¹. By (3.1) and Corollary 1.1, we have $e(G) \ge n + m - \Delta - 2$. Thus G consists of at most $\Delta + 2$ stars, and hence there is a star whose center belongs to A with at least $\frac{n}{\Delta+2}$ leaves and a star whose center belongs to B with at least $\frac{m}{\Delta+2}$ leaves. The results follow from setting $\varepsilon = \frac{1}{\Delta+2}$.

If t = 5, then G consists of stars and copies of $K_{2,2}$. Let q be the number of copies of $K_{2,2}$ in G. The rest proof of this case is similar to that of t = 4 and be omitted.

Now, let $t \ge 6$, $n \ge m$ and m be sufficient large. Let $r = \lfloor \frac{t}{2} \rfloor$. Deleting vertices of degree at most r-2 in G until that the resulting graph $G^* = G(A^*, B^*)$ has no such vertex. Let

¹We view isolated vertices and edges as trivial stars.

T. Y. Xie and L. T. Yuan

 $|A^*|=m^*,\,|B^*|=n^*$ and $\beta=m+n-m^*-n^*.$ By (3.1) and Corollary 1.1,

$$e(G^*) \ge e(G) - (r-2)\beta \ge (r-1)(m^* + n^*) - 2(r-1)^2 - \Delta + \beta.$$
(3.2)

Without loss generality, we may assume that $m^* = \min\{m^*, n^*\}$. Since G^* is P_t -free, by Corollary 1.1,

$$e(G^*) \le \begin{cases} (r-1)(m^*+n^*), & \text{if } m^* \le t-1; \\ (r-1)(m^*+n^*) - 2(r-1)^2, & \text{if } m^* \ge t. \end{cases}$$
(3.3)

Combining (3.2) and (3.3), we have that $\beta \leq \Delta + 2(r-1)^2$ if $m^* \leq t-1$ and that $\beta \leq \Delta$ if $m^* \geq t$. However, if $m^* \leq t-1$, then $m \leq \beta + m^* \leq t-1 + \Delta + 2(r-1)^2$, contradicting that m is sufficient large. Hence $m^* \geq t$ and $\beta \leq \Delta$, that is, $m^* + n^* \geq m + n - \Delta$. So

$$m^* \ge m - \Delta$$
 and $n^* \ge n - \Delta$. (3.4)

Since $n \ge m$ and m is sufficient large, both m^* and n^* are sufficient large.

Since the minimum degree of G^* is at least $r-1 \ge 2$, by Theorem 2.1, any connected component of G^* must contains a cycle of length at least 2(r-1). Furthermore, since G^* is P_t -free, the length of longest cycle of G^* is at most 2r.

Claim 3.1 Any connected component of G^* must be one of the following four types:

• Type 1 A subgraph of $K_{r,r}$ containing a cycle of length 2r;

• Type 2 A complete bipartite graph $K_{r-1,r-1}$;

• Type 3 A complete bipartite graph $K_{r-1,r-1+t}$ with $t \ge 1$ and the part of size r-1 belongs to A^* ;

• Type 4 A complete bipartite graph $K_{r-1,r-1+t}$ with $t \ge 1$ and the part of size r-1 belongs to B^* .

Proof If a connected component G_1^* of G^* contains a cycle C_1 of length 2r, since G^* is P_t -free, $N_{G_1^*}(V(C_1)) \subset V(C_1)$. So $V(G_1^*) = V(C_1)$, i.e., G_1^* is of Type 1.

If a connected component G_2^* of G^* contains no cycle of length 2r, then G_2^* must contains a cycle $C_2 = u_1 v_1 u_2 v_2 \cdots u_{r-1} v_{r-1} u_1$ of length 2r - 2. If $V(G_2^*) = V(C_2)$, then G_2^* is a complete graph $K_{r-1,r-1}$. So G_2^* is of Type 2.

Suppose that $V(G_2^*) \neq V(C_2)$. If there is a vertex $x_1 \notin V(C_2)$ of G_2^* such that $N_{V(C_2) \cap B^*}(x_1) \neq \emptyset$, then we claim that $N_{G_2^*}(x_1) = V(C_2) \cap B^*$. Otherwise, there is a vertex $y_1 \in N_{G_2^*}(x_1) \setminus V(C_2)$. Since G^* is P_t -free, $N_{G_2^*}(y_1) \subset V(C_2) \cup \{x_1\}$. Thus y_1 is adjacent to at least r-2 vertices of $V(C_2)$. Let $v_i \in N_{V(C_2)}(x_1)$. So at least one vertex of u_i and u_{i+1} is adjacent to y_1 , say $u_iy_1 \in E(G_2^*)$. Thus $u_1v_1u_2v_2\cdots u_iy_1x_1v_i\cdots u_{r-1}v_{r-1}u_1$ is a cycle of length 2r in G_2^* , a contradiction.

Then for any vertex $u_j \in V(C_2) \cap A$, $G[(V(C_2) \setminus \{u_j\}) \cup \{x_1\}]$ contains a cycle of length 2r-2 in G_2^* . By the above proof, u_j has no neighbor in $B^* - V(C_2)$. Hence $V(G_2^*) \cap B^* = V(C_2) \cap B^*$, and G_2^* is a complete bipartite graph such that the class of order r-1 belongs to B^* . Similarly,

716

if $N_{V(C_2)\cap A^*}(x_1) \neq \emptyset$, then G_2^* is a complete bipartite graph such that the class of order r-1 belongs to A^* . Therefore, G_2^* is of either Type 3 or Type 4.

Let q_i be the number of connected components in G^* with Type *i* for $i \in \{1, 2, 3, 4\}$. Then we will consider two cases. Set $\varepsilon = \frac{(r-1)^2}{2(\Delta + (r-1)^2)}$.

Case 1 t is even. Clearly, we have $q_1 = 0$. Hence

$$e(G^*) = (r-1)^2 q_2 + (r-1)(n^* - (r-1)(q_2 + q_4) + (r-1)(m^* - (r-1)(q_2 + q_3)))$$

= $(r-1)(m^* + n^*) - (r-1)^2(q_2 + q_3 + q_4).$

Combining with (3.2), we have $q_2 + q_3 + q_4 \le \frac{\Delta - \beta}{(r-1)^2} + 2$.

If $q_3 = 0$, then $e(G^*) \le (r-1)m^*$, contradicting (3.2); if $q_4 = 0$, then $e(G^*) \le (r-1)n^*$, contradicting (3.2).

Thus $1 \leq q_3, q_4 \leq \frac{\Delta - \beta}{(r-1)^2} + 1$. By (3.4), there are two subsets $A_0 \subset A^*$ and $B_0 \subset B^*$ with $|A_0| = |B_0| = r - 1$ such that $d_G^c(A_0) \geq d_{G^*}^c(A_0) \geq \frac{n^* - (r-1)(q_2 + q_4)}{q_3} \geq \varepsilon n$ and $d_G^c(B_0) \geq d_{G^*}^c(B_0) \geq \frac{m^* - (r-1)(q_2 + q_3)}{q_4} \geq \varepsilon m$.

Case 2 t is odd. Note that both m^* and n^* are sufficient large. Hence

$$e(G^*) \le (r-1)(n^* - (r-1)(q_2 + q_4) - rq_1) + (r-1)(m^* - (r-1)(q_2 + q_3) - rq_1) + (r-1)^2 q_2 + r^2 q_1 = (r-1)(m^* + n^*) - (r-1)^2 (q_2 + q_3 + q_4) - (r-2)rq_1.$$

Combining with (3.2), we have $(q_2 + q_3 + q_4) + \frac{(r-2)rq_1}{(r-1)^2} \le 2 + \frac{\Delta - \beta}{(r-1)^2}$.

If $q_3 = 0$, then $e(G^*) \leq (r-1)m^* + rq_1$, contradicting (3.2); if $q_4 = 0$, then $e(G^*) \leq (r-1)n^* + rq_1$, contradicting (3.2).

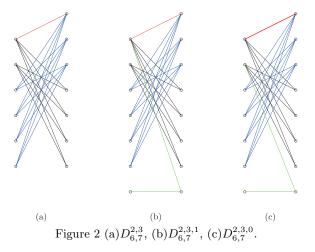
Thus $1 \leq q_3, q_4 \leq \frac{\Delta - \beta}{(r-1)^2} + 2 - \frac{(r-2)rq_1}{(r-1)^2}$. By (3.4), there are two subsets $A_1 \subset A^*$ and $B_1 \subset B^*$ with $|A_1| = |B_1| = r - 1$ such that $d_G^c(A_1) \geq d_{G^*}^c(A_1) \geq \frac{n^* - (r-1)(q_2 + q_4) - rq_1}{q_3} \geq \varepsilon n$ and $d_G^c(B_1) \geq d_{G^*}^c(B_1) \geq \frac{m^* - (r-1)(q_2 + q_3) - rq_1}{q_4} \geq \varepsilon m$.

This completes the proof of Lemma 3.1.

Given a multi-set of integers $D = \{q_1, \dots, q_\ell\}$, we say that an integer a is D-sum-free if there is no subset of D whose sum is a. For any $1 \leq j \leq \ell$, denote $R_j = \{r_1, r_2, \dots, r_j\}$. For any integer $a \geq 1$ which is R_j -sum-free, denote

$$\mathcal{R}_j(a) = \{(i, y) : 1 \le y \le r_i - 1, a = y \text{ or } (a - y) \text{ is not } (R_j \setminus \{r_i\}) \text{-sum-free} \}$$

Denote by $D_{m,n}^{a,b}$ the (m, n)-bipartite graph obtained from $K_{m,n}^{a,b}$ by adding an edge between the class with size a and the class with size b. If $a \ge 1$, denote by $D_{m,n}^{a,b,1}$ the (m + 1, n + 1)bipartite graph by identifying an end vertex of P_3 and the vertex with degree n - b + 1 in $D_{m,n}^{a,b}$. Furthermore, if $a \ge 2$, denote by $D_{m,n}^{a,b,0}$ the (m + 1, n + 1)-bipartite graph by identifying an end vertex of P_3 and one vertex with degree n - b in $D_{m,n}^{a,b}$ (see Figure 2).



Lemma 3.2 (1) If $a + b \ge s_{\ell} + 1$, then $D^{a,b}_{x_{\ell},x_{\ell}}$ contains a copy of F_{ℓ} .

(2) Let $a + b = s_{\ell}$. If there is a pair $(i, 1) \in \mathcal{R}_{\ell}(a)$, then $D^{a,b,1}_{x_{\ell},x_{\ell}}$ contains a copy of F_{ℓ} . If there is a pair $(i, y) \in \mathcal{R}_{\ell}(a)$ with $y \ge 2$, then $D^{a,b,0}_{x_{\ell},x_{\ell}}$ contains a copy of F_{ℓ} .

- (3) If $a + b = s_{\ell}$, then the following three statements are equivalent.
- (i) $L^{a,b}_{x_{\ell},x_{\ell}}$ is F_{ℓ} -free;
- (ii) $D^{a,b}_{x_{\ell},x_{\ell}}$ is F_{ℓ} -free;
- (iii) a is R_{ℓ} -sum-free and $k_i \in X_{\ell}$ is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(a)$.

Proof Let A_1 and B_1 be the vertex set of $D^{a,b}_{x_\ell,x_\ell}$ with degree at least $x_\ell - b$ and $x_\ell - a$, respectively. Let A_2 and B_2 be the vertex set of $L^{a,b}_{x_\ell,x_\ell}$ with degree x_ℓ and x_ℓ in two different classes, respectively. Let $F_i^* = F_\ell - P_{k_i}$.

Note that $\bigcup_{j \neq i} K_{r_j,k_j}$ contains a copy of F_i^* . The definitions of $D_{2r,2r}^{a,r-a}$, $L_{2r,2r}^{a,r-a}$, $D_{2r,2r}^{a,r-a,1}$, $D_{2r,2r}^{a,r-a,0}$ and $\mathcal{R}_{\ell}(a)$ imply the following observations.

Observation 3.1 Let $r \ge 2$ and $1 \le a \le r-1$. The lengths of longest paths of both $D_{2r,2r}^{a,r-a}$ and $L_{2r,2r}^{a,r-a}$ are 2r. The length of longest path of $D_{2r,2r}^{1,r-1,1}$ is 2r+1 and the length of longest path of $D_{2r,2r}^{a,r-a,0}$ with $a \ge 2$ is 2r+1.

Observation 3.2 For any pair $(i, y) \in \mathcal{R}_{\ell}(a)$, $D_{x_{\ell}, x_{\ell}}^{a, b}$ (or $D_{x_{\ell}, x_{\ell}}^{a, b, 1}$, $D_{x_{\ell}, x_{\ell}}^{a, b, 0}$) with $a + b \ge s_{\ell}$ contains a copy of $F_i^* \cup D_{k_i, k_i}^{y, z}$ (or $F_i^* \cup D_{k_i, k_i}^{y, z, 1}$, $F_i^* \cup D_{k_i, k_i}^{y, z, 0}$, respectively), where $z = (a + b - s_{\ell}) + (r_i - y)$.

(1) Let $a + b \ge s_{\ell} + 1$. If a is not R_{ℓ} -sum-free, then $D_{x_{\ell},x_{\ell}}^{a,b}$ contains a copy of $\bigcup_{i \in [\ell]} K_{r_i,r_i+1}$ implying that $D_{x_{\ell},x_{\ell}}^{a,b}$ contains a copy of F_{ℓ} , we are done. So we may assume that a is R_{ℓ} -sumfree, whence $\mathcal{R}_{\ell}(a)$ is not empty. Let $(j_1, y_1) \in \mathcal{R}_{\ell}(a)$. By Observation 3.2, $D_{x_{\ell},x_{\ell}}^{a,b}$ contains a copy of $F_{j_1}^* \cup D_{k_{j_1},k_{j_1}}^{y_1,r_{j_1}-y_1+1}$. By Observation 3.1, $D_{k_{j_1},k_{j_1}}^{y_1,r_{j_1}-y_1+1}$ contains a copy of $P_{k_{j_1}}$. Thus $D_{x_{\ell},x_{\ell}}^{a,b}$ contains a copy of F_{ℓ} . (2) Let $a+b = s_{\ell}$. If there is a pair $(j_2, 1) \in \mathcal{R}_{\ell}(a)$, then by Observation 3.2, $D_{x_{\ell}, x_{\ell}}^{a, b, 1}$ contains a copy of $F_{j_2}^* \cup D_{k_{j_2}, k_{j_2}}^{1, r_{j_2} - 1, 1}$. By Observation 3.1, $D_{k_{j_2}, k_{j_2}}^{1, r_{j_2} - 1, 1}$ contains a copy of $P_{k_{j_2}}$. Thus $D_{x_{\ell}, x_{\ell}}^{a, b, 1}$ contains a copy of F_{ℓ} . The proof for the rest case is similar to that of the first case and be omitted.

(3) Let $a + b = s_{\ell}$. Assume that $L^{a,b}_{x_{\ell},x_{\ell}}$ is F_{ℓ} -free. Clearly, $D^{a,b}_{x_{\ell},x_{\ell}}$ is F_{ℓ} -free (by $D^{a,b}_{x_{\ell},x_{\ell}} \subset L^{a,b}_{x_{\ell},x_{\ell}}$). Thus (i) implies (ii).

Assume that $D_{x_{\ell},x_{\ell}}^{a,b}$ is F_{ℓ} -free. Then a is R_{ℓ} -sum-free and $k_i \in X_{\ell}$ is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(a)$. Otherwise, a is not R_{ℓ} -sum-free or there is a pair $(j_3, y_3) \in \mathcal{R}_{\ell}(a)$ with k_{j_3} is even.

If a is not R_{ℓ} -sum-free, then there is a partition (I_a, I_b) of $[\ell]$ such that $a = \sum_{i \in I_a} r_i$ and $b = \sum_{i \in I_b} r_i$. Then $D_{x_{\ell}, x_{\ell}}^{a, b}$ contains a copy of $\bigcup_{\{i \in I_a\}} P_{k_i}$ containing A_1 and a copy of $\bigcup_{\{i:r_i \in I_b\}} P_{k_i}$ containing B_1 , and the two linear forests are disjoint. Hence $D_{x_{\ell}, x_{\ell}}^{a, b}$ contains a copy of F_{ℓ} .

If there is a pair $(j_3, y_3) \in \mathcal{R}_{\ell}(a)$ with k_{j_3} is even, then by Observation 3.2, $D_{x_{\ell}, x_{\ell}}^{a,b}$ contains a copy of $F_{j_3}^* \cup D_{k_{j_3}, k_{j_3}}^{y_3, r_{j_3} - y_3}$. Then by Observation 3.1, $D_{k_{j_3}, k_{j_3}}^{y_3, r_{j_3} - y_3}$ contains a copy of $P_{2r_{j_3}} = P_{k_{j_3}}$, so $D_{x_{\ell}, x_{\ell}}^{a,b}$ contains a copy of F_{ℓ} . Thus (ii) implies (iii).

Assume that a is R_{ℓ} -sum-free and $k_i \in X_{\ell}$ is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(a)$. Then $L^{a,b}_{x_{\ell},x_{\ell}}$ is F_{ℓ} -free. Otherwise, $L^{a,b}_{x_{\ell},x_{\ell}}$ contains a copy of F_{ℓ} , then each P_i for $i \in [\ell]$ contains exact r_i vertices of $A_2 \cup B_2$ (since $a + b = s_{\ell}$). So if k_i is odd, by Observation 3.1, P_{k_i} contains r_i vertices of A_2 or B_2 . Thus either a is not R_{ℓ} -sum-free or $k_i \in X_{\ell}$ is even for some pair $(i, y) \in \mathcal{R}_{\ell}(a)$. Hence, (iii) implies (i).

Therefore, the above three statements are equivalent.

Lemma 3.3 Let n > m and m be sufficient large. Let $k_{\ell} \ge 4$. If $L_{m,n}^{a,b}$ with $a+b = s_{\ell}+r_{\ell}-2$ is F_{ℓ} -free, then $k_{\ell} \in \{4,5\}$. Moreover, $e(L_{m,n}^{a,b}) \le f(m,n;X_{\ell})$ and equality holds only when $L_{m,n}^{a,b} \in \mathcal{F}(m,n,X_{\ell})$.

Proof Suppose that $L_{m,n}^{a,b}$ is F_{ℓ} -free with $a + b = s_{\ell} + r_{\ell} - 2$. Let A_1, B_1 be the vertex sets of $L_{m,n}^{a,b}$ with degree n and m respectively.

If $k_{\ell} \ge 6$, then $s_{\ell} + r_{\ell} - 2 \ge s_{\ell} + 1$. By Lemma 3.2(1), $D_{m,n}^{a,b}$ contains a copy of F_{ℓ} , so $L_{m,n}^{a,b}$ contains a copy of F_{ℓ} . Thus $k_{\ell} \in \{4,5\}$ and $a+b=s_{\ell}$.

Note that $L_{m,n}^{a,b}$ is F_{ℓ} -free if and only if $L_{m,n}^{b,a}$ is F_{ℓ} -free. Since $n \ge m$ and m is sufficient large, $a \ge b$ implies that $e(L_{m,n}^{a,b}) \ge e(L_{m,n}^{b,a})$. Thus we may assume that $a \ge b$, so $b \le \lfloor \frac{s_{\ell}}{2} \rfloor$. Since m is sufficiently large,

 $e(L_{m,n}^{a,b}) = an + bm - ab$ is monotone decrease respect to b.

Since $L_{m,n}^{a,b}$ is F_{ℓ} -free, by Lemma 3.2(3), b is R_{ℓ} -sum-free and k_i is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(b)$. Thus $b \neq 2$ (since $r_{\ell} = 2$). Moreover, if X_{ℓ} is not odd, then $b \neq 1$ (since k_i is odd for

T. Y. Xie and L. T. Yuan

any pair $(i, y) \in \mathcal{R}_{\ell}(b)$). Hence,

$$b \ge \begin{cases} 3, & \text{if } k_{\ell} = 4; \\ 1, & \text{if } k_{\ell} = 5 \text{ and } X_{\ell} \text{ is odd}; \\ 3, & \text{if } k_{\ell} = 5 \text{ and } X_{\ell} \text{ is not odd.} \end{cases}$$
(3.5)

If X_{ℓ} is odd with $k_{\ell} = 5$, then $b \ge 1$ (by (3.5)), $e(L_{m,n}^{a,b}) \le e(L_{m,n}^{s_{\ell}-1,1}) = f(m,n;X_{\ell})$ and equality holds only when $L_{m,n}^{a,b} = L_{m,n}^{s_{\ell}-1,1} \in \mathcal{F}(m,n;X_{\ell})$.

If $F_{\ell} = P_9 \cup P_4$ with m = n, then $b \ge 3$ (by (3.5)), $e(L_{m,n}^{a,b}) \le e(L_{m,n}^{3,3}) = f(m,n;X_{\ell})$ and equality holds only when $L_{m,n}^{a,b} = L_{m,n}^{3,3} \in \mathcal{F}(m,n;X_{\ell})$.

Otherwise, by the definition of $f(m, n; X_{\ell})$, we have $f(m, n; X_{\ell}) = e(K_{m,n}^{s_{\ell}-1, r_{\ell}-1})$. If $e(L_{m,n}^{a,b}) \ge e(K_{m,n}^{s_{\ell}-1, r_{\ell}-1})$, then since $r_{\ell} = 2$,

$$e(L_{m,n}^{a,b}) = s_{\ell}n - b(n-m) - b(s_{\ell}-b) \ge (s_{\ell}-1)(n-1) + m - s_{\ell} + 1 = e(K_{m,n}^{s_{\ell}-1,1})$$
(3.6)

that is, $(b-1)(n-m) + b(s_{\ell}-b) - 2(s_{\ell}-1) \leq 0$. Thus $b(s_{\ell}-b) \leq 2(s_{\ell}-1)$ since $n \geq m$. (a) If $k_{\ell} = 4$, then $b \geq 3$ (by (3.5)) implies $s_{\ell} \geq 6$ and $3(s_{\ell}-3) \leq b(s_{\ell}-b) \leq 2(s_{\ell}-1)$. Thus $6 \leq s_{\ell} \leq 7$. If $s_{\ell} = 6$, then b = 3 ($9 \leq b(6-b) \leq 10$). So $2(n-m) - 1 \leq 0$ implies n = m. Furthermore, by Lemma 3.2(3), $k_i \in X_{\ell}$ is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(3)$, so $F_{\ell} = P_9 \cup P_4$ with m = n, a contradiction (in this case, we suppose that $F_{\ell} \neq P_9 \cup P_4$ with m = n). If $s_{\ell} = 7$, then $12 \leq b(7-b) \leq 12$ implies b = 3. Thus $2(n-m) \leq 0$ implies m = n. And we also have $k_i \in X_{\ell}$ is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(3)$, so $F_{\ell} = P_{11} \cup P_4$. Hence, if $k_{\ell} = 4$, then $F_{\ell} = P_{11} \cup P_4$ with m = n. (b) If $k_{\ell} = 5$, then by (3.5), $b \geq 3$. By the similar proof as that of case $k_{\ell} = 4$, we have $6 \leq s_{\ell} \leq 7$ and b = 3. However, X_{ℓ} is not odd, it implies that there is an even integer $k_i \in X_{\ell}$ such that $(i, y) \in \mathcal{R}_{\ell}(3)$.

Therefore, $e(L_{m,n}^{a,b}) \leq e(K_{m,n}^{s_{\ell}-1,r_{\ell}-1}) = f(m,n;X_{\ell})$, and equality holds only when $F_{\ell} = P_{11} \cup P_4$ with m = n and $L_{m,n}^{a,b} = L_{m,n}^{4,3} \in \mathcal{F}(m,n;X_{\ell})$.

This completes the proof of Lemma 3.3.

Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. We call a pair of subsets (A^*, B^*) in G with $A^* \subset A$ and $B^* \subset B$ a (p, q)-core of G if $d^c_G(A^*) \ge p$, $d^c_G(B^*) \ge q$ and one of the following holds:

(a) $|A^*| + |B^*| = s_\ell$ with $e_G(A^*, B^*) \ge 1$ and $r_\ell = 2$;

(b) $|A^*| = \sum_{i \in I_a} r_i + r_\ell - 1$ and $|B^*| = \sum_{i \in I_b} r_i + r_\ell - 1$ with $e_G(A^*, B^*) = 0$, where (I_a, I_b) is a partition of $[\ell - 1]$.

We call a (p,q)-core of G satisfying (a) Type A, and satisfying (b) Type B.

Lemma 3.4 Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. Let $\ell \geq 2$ and $k_{\ell} \geq 4$. Suppose that $e(G) \geq f(m, n; X_{\ell}) - \Delta_1$, where $\Delta_1 \geq 0$. Let $n \geq m$ and m be sufficient large compare with x_{ℓ} and Δ_1 . If (A^*, B^*) with $A^* \subset A$ and $B^* \subset B$ is an (x_{ℓ}, x_{ℓ}) -core of G, then there is a pair of subsets (A_1^*, B_1^*) with $A_1^* \subset A$ and $B_1^* \subset B$

720

and a constant $0 < \xi = \xi(X_{\ell}, \Delta_1, |A^*|, |B^*|) \leq 1$ such that (A_1^*, B_1^*) is an $(\xi n, \xi m)$ -core of G. Moreover, $e(G) \leq f(m, n; X_{\ell})$, where equality holds only when $G \in \mathcal{F}(m, n; X_{\ell})$.

Proof Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. Suppose that

$$e(G) \ge f(m, n; X_{\ell}) - \Delta_1. \tag{3.7}$$

Let $n \ge m$ and m be sufficient large than x_{ℓ} and Δ_1 . Let (A^*, B^*) with $A^* \subset A$ and $B^* \subset B$ be an (x_{ℓ}, x_{ℓ}) -core of G. Let $|A^*| = a^*$, $|B^*| = b^*$ and $G^* = G - A^* \cup B^*$. Let $A_0 = N_G(B^*) - A^*$ and $B_0 = N_G(A^*) - B^*$.

We first show that

(1) G^* is $P_{k_{\ell}}$ -free. Suppose that G^* contains a copy of $P_{k_{\ell}}$. If $a^* + b^* = s_{\ell}$ with $e_G(A^*, B^*) \ge 1$ and $r_{\ell} = 2$, then $G - P_{k_{\ell}}$ contains a copy of $D_{x_{\ell-1}, x_{\ell-1}}^{a^*, b^*}$. By Lemma 3.2(1), $D_{x_{\ell-1}, x_{\ell-1}}^{a^*, b^*}$ contains a copy of $F_{\ell-1}$ since $a^* + b^* = s_{\ell-1} + 2$, so G contains a copy of F_{ℓ} , a contradiction. If $a^* = \sum_{i \in I_a} r_i + r_{\ell} - 1$ and $b^* = \sum_{i \in I_b} r_i + r_{\ell} - 1$ with $e_G(A^*, B^*) = 0$, where (I_a, I_b) is a partition of $[\ell - 1]$, then $G - P_{k_{\ell}}$ contains a copy of $\bigcup_{i \in I_a} P_{k_i}$ containing $a^* - r_{\ell} + 1$ vertices of A^* and a copy of $\bigcup_{i \in I_b} P_{k_i}$ containing $b^* - r_{\ell} + 1$ vertices of B^* . Thus G contains a copy of F_{ℓ} , a contradiction. (2) a^* is R_{ℓ} -sum-free. Otherwise, there is a partition (I_{a^*}, I_{b^*}) of $[\ell]$ such that $a^* = \sum_{i \in I_{a^*}} r_i$

and $b^* \geq \sum_{i \in I_{b^*}} r_i$. Then G contains a copy of $\bigcup_{i \in I_{a^*}} P_{k_i}$ containing A^* and a copy of $\bigcup_{i \in I_{b^*}} P_{k_i}$ containing $\sum_{i \in I_{b^*}} r_i$ vertices of B^* , and those two linear forests are disjoint, a contradiction.

(3) There is no path between A_0 and B_0 in G^* . Otherwise, there is a path P_{t_1} with $t_1 \geq 2$ between B_0 and A_0 in G^* . Since a^* is R_ℓ -sum-free, $\mathcal{R}_\ell(a^*)$ is not empty. For any pair $(i, y) \in \mathcal{R}_\ell(a^*)$, G contains a copy of a path with order $2y + t_1 + 2(r_i - y) \geq 2r_i + 2 > k_i$ containing y vertices of A^* , $r_i - y$ vertices of B^* and the path P_{t_1} . By the definition of $\mathcal{R}_\ell(a^*)$ and $a^* + b^* \geq s_\ell$, $G - P_{k_i}$ contains a copy of $F_\ell - P_{k_i}$. Thus, G contains a copy of F_ℓ , a contradiction.

Let $G_a^* = C_{G-B^*}(A^*)$ and $G_b^* = C_{G-A^*}(B^*)$. Let $G_r = G - (V(G_a^*) \cup V(G_b^*))$. Thus $e(G) = e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*) + e(G_r)$.

Let $A_1 = N_G^c(B^*) \cap A_0$, $A_2 = A_0 - A_1$, $A_3 = V(G_a^*) \cap A$, $A_4 = V(G_b^*) \cap A - A_0$ and $A_r = V(G_r) \cap A$. Let $B_1 = N_G^c(A^*) \cap B_0$, $B_2 = B_0 - B_1$, $B_3 = V(G_b^*) \cap B$, $B_4 = V(G_a^*) \cap B - B_0$ and $B_r = V(G_r) \cap B$ (see Figure 3). Let $|A_i| = a_i$ for i = 1, 2, 3, 4, r and $|B_i| = b_i$ for i = 1, 2, 3, 4, r. Thus we have $a^* + a_1 + a_2 + a_3 + a_4 + a_r = |A| = m$ and $b^* + b_1 + b_2 + b_3 + b_4 + b_r = |B| = n$.

Since (A^*, B^*) is an (x_ℓ, x_ℓ) -core of G, we consider two cases as following.

Case 1 (A^*, B^*) is an (x_ℓ, x_ℓ) -core of G with Type A. Thus, $a^* + b^* = s_\ell$ with $e_G(A^*, B^*) \ge 1$ and $r_\ell = 2$.

Then $k_{\ell} \in \{4, 5\}, a^*, b^* \ge 1$ and $a^* + b^* \ge 4$. Since $e_G(A^*, B^*) \ge 1$ and $d_G^c(A^*), d_G^c(B^*) \ge x_{\ell}$, G contains a copy of $D_{x_{\ell}, x_{\ell}}^{a^*, b^*}$. Thus $D_{x_{\ell}, x_{\ell}}^{a^*, b^*}$ is F_{ℓ} -free (since G is F_{ℓ} -free). Hence, Lemma

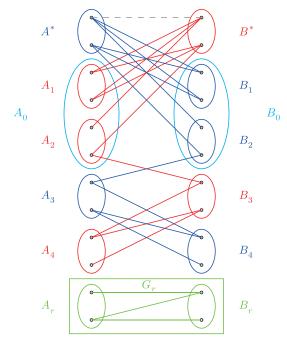


Figure 3 Graph G: G_a^* consists of blue parts and lines, G_b^* consist of red parts and lines and G_r consists of green parts and lines.

3.2(3) implies that $L_{m,n}^{a^*,b^*}$ is F_{ℓ} -free, a^* and b^* are R_{ℓ} -sum-free and k_i is odd for any pair $(i,y) \in \mathcal{R}_{\ell}(a^*) \cup \mathcal{R}_{\ell}(b^*)$. Therefore, since $r_{\ell} = 2$, we have

$$a^* \neq 2$$
 and $b^* \neq 2$. (3.8)

We claim that

$$N_{G^*}(A_1 \cup B_1) = \emptyset. \tag{3.9}$$

Otherwise, G contains both a copy of $D_{x_{\ell},x_{\ell}}^{a^*,b^*,1}$ and a copy of $D_{x_{\ell},x_{\ell}}^{a^*,b^*,0}$. Since a^* is R_{ℓ} -sum-free, $\mathcal{R}_{\ell}(a^*) \neq \emptyset$. Thus Lemma 3.2(2) implies that G contains a copy of F_{ℓ} , a contradiction.

Claim 3.2 $e(G_a^*) \le a^*b_1 + (a^* - 1)b_2 + a_3 + b_4.$

Proof Assume that there is a pair $(i_1, y_1) \in \mathcal{R}_{\ell}(a^*)$ with $y_1 \ge 2$. If at least two vertices of A^* are adjacent to B^* , then B_0 has no neighbor in G^* . Otherwise, G contains a copy of $D_{x_\ell, x_\ell}^{a^*, b^*, 0}$, by Lemma 3.2(2), G contains a copy of F_ℓ , a contradiction. Thus $a_3 = b_4 = 0$ and $e(G_a^* - A^*) = 0$. Hence $e(G_a^*) \le a^*b_1 + (a^* - 1)b_2$, the claim holds. If only one vertex $u^* \in A^*$ is adjacent to B^* , then $N_G(A^* - \{u^*\}) \cap B_0$ has no neighbor in G^* . Otherwise, G contains a copy of $D_{x_\ell, x_\ell}^{a^*, b^*, 0}$, by Lemma 3.2(2), it is a contradiction. By (3.8), we have $a^* \ge 3$ (since $y_1 \ge 2$ and $a^* \ne 2$). Let b'_2 be the number of vertices of B_0 with degree at least one in G^* . Since G^* is P_{k_ℓ} -free and $r_\ell = 2$, by Corollary 1.1, we have $e(G_a^* - A^*) \le b'_2 + a_3 + b_4$. Thus by $a^* \ge 3$ and $b'_2 \ge b_2$, $e(G_a^*) \le a^*b_1 + (a^* - 1)(b_2 - b'_2) + b'_2 + (a_3 + b'_2 + b_4) \le a^*b_1 + (a^* - 1)b_2 + a_3 + b_4$, the claim holds.

Assume that y = 1 for any pair $(i, y) \in \mathcal{R}_{\ell}(a^*)$. If $a^* = 1$, then $b_2 = a_3 = b_4 = 0$ (by (3.9)). Thus $e(G_a^*) \leq b_1$, the claim holds. If $a^* \geq 3$, then any neighbor of B_0 in G^* has degree exact one in G^* . Otherwise, suppose that $u_1 \in N_{G^*}(B_0)$ has two neighbors $v_1, v_2 \in V(G^*)$ with $v_1 \in B_0$. Since $a^* \geq 3$ and $(i, 1) \in \mathcal{R}_{\ell}(a^*)$, there is a subset $\emptyset \neq I_1 \subset [\ell] \setminus \{i\}$ such that $a^* = 1 + \sum_{i \in I_1} r_i$. For any integer $j \in I_1$, G contains a path P^1 of order $2(r_j - 1) + 1$ whose an end vertex is v_1 such that $|V(P^1) \cap A^*| = r_j - 1$. So G contains a path $P^2 = P^1 v_1 u_1 v_2$ of order $2r_j + 1 \geq k_j$ with $|V(P^2) \cap A^*| = r_j - 1$. It is clearly that $G - P^2$ contains a copy of $D_{x_\ell - k_j, x_\ell - k_j}^{a^* - r_j + 1, b^*}$, so $G - P^2$ contains a copy of $F_\ell - P_{k_j}$ (since $D_{x_\ell - k_j, x_\ell - k_j}^{a^* - r_j + 1, b^*}$ contains a copy of $F_\ell - P_{k_j}$ by Lemma 3.2(1)). Hence, G contains a copy of F_ℓ , a contradiction. Thus, $b_4 = 0$ and $e(G_a^* - A^*) \leq a_3$. Hence $e(G_a^*) \leq a^* b_1 + (a^* - 1)b_2 + a_3$, the claim holds.

Similarly, we have $e(G_b^*) \leq b^* a_1 + (b^* - 1)a_2 + b_3 + a_4$. Then since G_r is P_{k_ℓ} -free and $r_\ell = 2$, $e(G_r) \leq a_r + b_r$ by Corollary 1.1. Thus since $L_{m,n}^{a^*,b^*}$ is F_ℓ -free, by Lemma 3.3, we have

$$e(G) = e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*) + e(G_r)$$

$$\leq a^*b^* + a^*b_1 + (a^* - 1)b_2 + a_3 + b_4 + b^*a_1 + (b^* - 1)a_2 + b_3 + a_4 + e(G_r)$$

$$= a^*n + b^*m - a^*b^* - (a_2 + b_2) - (a^* - 1)(b_3 + b_4) - (b^* - 1)(a_3 + a_4)$$

$$- a^*b_r - b^*a_r + e(G_r)$$

$$\leq a^*n + b^*m - a^*b^* - (a_2 + b_2) - (a^* - 1)(b_3 + b_4 + b_r) - (b^* - 1)(a_3 + a_4 + a_r)$$

$$\leq e(L_{m,n}^{a^*,b^*}) \leq f(m,n;X_\ell).$$
(3.10)

Moreover, the equality holds only when $a_2 = b_2 = a_3 = b_3 = a_4 = b_4 = a_r = b_r = 0$, and $G = L_{m,n}^{a^*,b^*} \in \mathcal{F}(m,n;X_\ell)$. This completes the moreover part of the lemma in Case 1.

Since $L_{m,n}^{a^*,b^*}$ is F_{ℓ} -free, Lemma 3.3 implies that

$$e(G) = f(m, n; X_{\ell}) - \Delta_1 \ge a^* n + b^* m - a^* b^* - \Delta_1.$$
(3.11)

Thus by (3.10a) and (3.10)-(3.11),

$$\begin{cases} a_2 + b_2 + (a^* - 1)(b_3 + b_4) + (b^* - 1)(a_3 + a_4) + a^*b_r + b^*a_r \le \Delta_1, & \text{if } e(G_r) = 0; \\ a_2 + b_2 + (a^* - 1)(b_3 + b_4 + b_r) + (b^* - 1)(a_3 + a_4 + a_r) \le \Delta_1, & \text{if } e(G_r) \ge 0. \end{cases}$$
(3.12)

Hence, if $a^*, b^* \ge 2$, then by (3.12), $b_2 + b_3 + b_4 + b_r + a_2 + a_3 + a_4 + a_r \le \Delta_1$. Thus since $n \ge m$ and m is sufficient large, $a_1 \ge m - a^* - \Delta_1 \ge \frac{m}{2}$ and $b_1 \ge n - b^* - \Delta_1 \ge \frac{n}{2}$, this is, (A^*, B^*) is an $(\frac{n}{2}, \frac{m}{2})$ -core of G with Type A. The lemma holds by setting $A_2^* = A^*, B_2^* = B^*$ and $\xi = \frac{1}{2}$.

If $a^* = 1$ or $b^* = 1$, without loss of generality, we may assume that $a^* = 1$ and $b^* = s_{\ell} - 1$. Then $b_2 = a_3 = b_4 = 0$. Since k_i is odd for any pair $(i, y) \in \mathcal{R}_{\ell}(1)$ (by Lemma 3.2(3)), $k_{\ell} = 5$ and X_{ℓ} is odd. By (3.12) and $b^* = s_{\ell} - 1 \ge 3$, we have $a_2 + b_2 + a_3 + a_4 + a_r \le \Delta_1$. Thus $a_1 \ge m - a^* - \Delta_1 \ge \frac{m}{2}$.

We will show that any neighbor of A_0 in G^* has degree exact one in G^* . Otherwise, G^* contains a copy of P_3 with an end vertex in A_0 . Hence G contains a copy of P_5 containing one

vertex of B^* and a copy of $F_{\ell} - P_5$ containing $s_{\ell} - 2 = s_{\ell-1}$ vertices of B^* , a contradiction. Thus $a_4 = 0$.

Furthermore, for any vertex $v^* \in B^*$, there is at most one vertex in $N_G(v^*) \cap A_0$ which has neighbors in G^* . Otherwise, G contains a copy of P_5 containing only one vertex v^* in B^* and four vertices of G^* , then G contains a copy of F_ℓ , a contradiction. Thus there are at most $b^* = s_\ell - 1$ vertices of A_0 have neighbors in G^* . Hence, there is one vertex of A_0 has degree at least $\frac{b_3}{(s_\ell - 1)}$.

(i) If $b_r = 0$ or $a_r = 0$, then $e(G_r) = 0$. Since $a^* = 1$ and $b_2 = a_3 = b_4 = a_4 = 0$, by (3.12), $a_2 + a^*b_r + b^*a_r \leq \Delta_1$. Then there is a vertex $u_1^* \in A$ has degree at least $\max\{b_1, \frac{b_3}{s_{\ell}-1}\} \geq \frac{n-a^*-\Delta_1}{s_{\ell}} \geq \frac{n}{s_{\ell}+1}$ (since *n* is sufficient large). Thus $(\{u_1^*\}, B^*)$ is an $(\frac{n}{s_{\ell}+1}, \frac{m}{2})$ -core of *G* with Type *A*. The lemma holds by setting $A_2^* = \{u_1^*\}, B_2^* = B^*$ and $\xi = \frac{1}{s_{\ell}+1}$.

(ii) If $b_r \ge 1$ and $a_r \ge 1$, then $e(G_r) \ge 0$. Since $a^* = 1$ and $b_2 = a_3 = b_4 = a_4 = 0$, by (3.12), $a_2 + a_r \le \Delta_1$.

By (3.10)-(3.12), we have

$$\begin{split} e(G_r) &= e(G) - (e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*)) \\ &\geq a^*n + b^*m - a^*b^* - \Delta_1 - (a^*n + b^*m - a^*b^*) + a_2 + b_2 + (a^* - 1)(b_3 + b_4) \\ &+ (b^* - 1)(a_3 + a_4) + a^*b_r + b^*a_r \\ &\geq a_r + b_r - (\Delta_1 - (a_2 + b_2 + (a^* - 1)(b_3 + b_4 + b_r) + (b^* - 1)(a_3 + a_4 + a_r))) \\ &\geq \exp(a_r, b_r; P_{k_\ell}) - \Delta_1. \end{split}$$

Since the number of $K_{2,2}$ in G_r is at most $\frac{a_r}{2} \leq \frac{\Delta_1}{2}$, Lemma 3.1 implies that there is a constant ε such that there is a vertex of $V(G_r) \cap A$ with degree at least $\varepsilon(b_r - \Delta_1)$. Thus there is a vertex $u_2^* \in A$ with $d_G(u_2^*) \geq \max\{b_1, \frac{b_3}{s_{\ell}-1}, \varepsilon(b_r - \Delta_1)\} \geq (n - a^* - \Delta_1)\frac{\varepsilon}{\varepsilon(s_{\ell}-1)+1} \geq \frac{\varepsilon n}{\varepsilon s_{\ell}+2}$ (since *n* is sufficient large). Hence $(\{u_2^*\}, B^*)$ is an $(\frac{\varepsilon n}{\varepsilon s_{\ell}+2}, \frac{m}{2})$ -core with Type *A* or Type *B*. The lemma holds by setting $A_2^* = \{u_2^*\}, B_2^* = B^*$ and $\xi = \frac{\varepsilon}{\varepsilon s_{\ell}+2}$.

Case 2 (A^*, B^*) is an (x_ℓ, x_ℓ) -core of G with Type B. That is, $a^* = \sum_{i \in I_a} r_i + r_\ell - 1$ and $b^* = \sum_{i \in I_b} r_i + r_\ell - 1$ with $e_G(A^*, B^*) = 0$, where (I_a, I_b) is a partition of $[\ell - 1]$.

Then any neighbor of B_0 in G^* has degree exact one in G^* . Otherwise, G^* contains a copy of P_3 with one end vertex in B_0 , then one can find a copy of P_{k_ℓ} containing $r_\ell - 1$ vertices of A^* . By the condition of Case 2, G contains a copy of F_ℓ , a contradiction. Thus $b_4 = 0$, and $e(G_a^*) \leq a^*b_1 + (a^* - 1)b_2 + a_3$. Similarly, we have that any neighbor of A_0 in G^* has degree exact one in G^* , $a_4 = 0$ and $e(G_b^*) \leq b^*a_1 + (b^* - 1)a_2 + b_3$.

By Corollary 1.1, we have $e(G_r) \leq ex(a_r, b_r; P_{k_\ell}) \leq (r_\ell - 1)(a_r + b_r)$ for any $a_r \geq 0, b_r \geq 0$ and $k_\ell \geq 4$. Thus

$$e(G) = e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*) + e(G_r)$$

$$\leq a^*b_1 + (a^* - 1)b_2 + a_3 + b^*a_1 + (b^* - 1)a_2 + b_3 + e(G_r)$$

$$= a^{*}n + b^{*}m - 2a^{*}b^{*} - (a_{2} + b_{2}) - (a^{*} - 1)b_{3} - (b^{*} - 1)a_{3}$$

$$- a^{*}b_{r} - b^{*}a_{r} + e(G_{r})$$
(3.13a)

$$\leq a^{*}n + b^{*}m - 2a^{*}b^{*} - (a_{2} + b_{2}) - (a^{*} - 1)b_{3} - (a^{*} - r_{\ell} + 1)b_{r} - (b^{*} - 1)a_{3}$$

$$- (b^{*} - r_{\ell} + 1)a_{r}$$

$$\leq e(K_{m,n}^{a^{*},b^{*}}) \leq f(m,n;X_{\ell}).$$
(3.13)

Moreover, the equality holds only when $a_2 = b_2 = a_3 = b_3 = a_r = b_r = 0$ and $G = K_{m,n}^{s_\ell - 1, r_\ell - 1} \in \mathcal{F}(m, n; X_\ell)$. This completes the moreover part of the lemma in Case 2.

Since

$$e(G) = f(m, n; X_{\ell}) - \Delta_1 \ge a^* n + b^* m - 2a^* b^* - \Delta_1,$$
(3.14)

by (3.13a) and (3.13),

$$\begin{cases} a_2 + b_2 + (a^* - 1)b_3 + (b^* - 1)a_3 + a^*b_r + b^*a_r \le \Delta_1, & \text{if } e(G_r) = 0; \\ a_2 + b_2 + (a^* - 1)b_3 + (a^* - r_\ell + 1)b_r + (b^* - 1)a_3 & (3.15) \\ + (b^* - r_\ell + 1)a_r \le \Delta_1, & \text{if } e(G_r) \ge 0. \end{cases}$$

Hence, if $a^*, b^* \ge r_{\ell} \ge 2$, then by (3.15), $b_2 + b_3 + b_r + a_2 + a_3 + a_r \le \Delta_1$. Thus since $n \ge m$ and m is sufficient large, $a_1 \ge m - a^* - \Delta_1 \ge \frac{m}{2}$ and $b_1 \ge n - b^* - \Delta_1 \ge \frac{n}{2}$. Hence (A^*, B^*) is an $(\frac{n}{2}, \frac{m}{2})$ -core of G with Type B. The lemma holds by setting $A_2^* = A^*, B_2^* = B^*$ and $\xi = \frac{1}{2}$.

If $a^* = r_{\ell} - 1$ or $b^* = r_{\ell} - 1$, without loss of generality, we may assume that $b^* = r_{\ell} - 1$ and $a^* = s_{\ell} - 1$. By (3.15), $a_2 + b_2 + b_3 + b_r \leq \Delta_1$, so $b_1 \geq n - a^* - \Delta_1 \geq \frac{n}{2}$ (since *n* is sufficient large). Then we consider the following two subcases.

Subcase 2.1 If $k_{\ell} \in \{4, 5\}$, then $b^* = 1$ and $a_2 = 0$. (a) If X_{ℓ} is not odd, then B_0 has no neighbor in G^* . Otherwise, G contains a copy of an even path P_{k_i} containing exact $r_i - 1$ vertices of A^* , then $G - P_{k_i}$ contains a copy of $F_{\ell} - P_{k_i}$ containing $s_{\ell} - 1 - r_i + 1 = s_{\ell} - r_i$ vertices of A^* . Thus G contains a copy of F_{ℓ} , a contradiction. Hence $a_3 = 0$. (b) If X_{ℓ} is odd, then $k_{\ell} = 5$. We claim that for any vertex $u^* \in A^*$, there is at most one vertex in $N_G(u^*) \cap B_0$ with neighbors in G^* . Otherwise, G contains a copy of P_5 containing only one vertex u^* in A^* and four vertices of G^* , then G contains a copy of F_{ℓ} , a contradiction. Thus there are at most $a^* = s_{\ell} - 1$ vertices of B_0 with neighbors in G^* . Hence, there is one vertex of B_0 has degree at least $\frac{a_3}{s_{\ell}-1}$.

(i) If $b_r = 0$ or $a_r = 0$, then $e(G_r) = 0$. Since $b^* = r_\ell - 1 = 1$ and $a_2 = a_4 = b_4 = 0$, by (3.15), $b_2 + b_3 + b_r + a_r \le \Delta_1$. If X_ℓ is not odd, then $a_3 = 0$ implies $a_1 \ge m - a^* - \Delta_1 \ge \frac{m}{2}$ (since *m* is sufficient large). So (A^*, B^*) is an $(\frac{n}{2}, \frac{m}{2})$ -core of *G* of Type *B*. If X_ℓ is odd with $k_\ell = 5$, then there is a vertex v_1^* of *B* with degree at least max $\{a_1, \frac{a_3}{s_\ell - 1}\} \ge \frac{m}{s_\ell + 1}$ since *m* is sufficient large. Thus $(A^*, \{v_1^*\})$ is an $(\frac{n}{2}, \frac{m}{s_\ell + 1})$ -core of *G* with Type *A* or Type *B*. The lemma holds by setting $A_2^* = A^*$, $B_2^* = \{v_1^*\}$ and $\xi = \frac{1}{s_\ell + 1}$.

(ii) If $b_r \ge 1$ and $a_r \ge 1$, then $e(G_r) \ge 0$. By (3.15), $a_2 + b_2 + b_3 + b_r \le \Delta_1$. By (3.13)–(3.15),

$$\begin{split} e(G_r) &= e(G) - \left(e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*)\right) \\ &\geq a^*n + b^*m - 2a^*b^* - \Delta_1 - (a^*n + b^*m - 2a^*b^*) + a_2 + b_2 + (a^* - 1)b_3 \\ &+ (b^* - 1)a_3 + a^*b_r + b^*a_r \\ &\geq a_r + b_r - (\Delta_1 - (a_2 + b_2 + (a^* - 1)(b_3 + b_r) + (b^* - 1)(a_3 + a_r))) \\ &\geq \operatorname{ex}(a_r, b_r; P_{k_\ell}) - \Delta_1. \end{split}$$

When $k_{\ell} = 5$, the number of $K_{2,2}$ in G_r is at most $\frac{b_r}{2} \leq \frac{\Delta_1}{2}$. So, by Lemma 3.1, there is a constant ε and a vertex of $V(G_r) \cap B$ with degree at least $\varepsilon(a_r - \Delta_1)$. Thus if X_{ℓ} is not odd, then there is a vertex $v_2^* \in B$ with $d_G(v_2^*) \geq \max\{a_1, \varepsilon(a_r - \Delta_1)\} \geq \frac{(m-a^*-\Delta_1)\varepsilon}{\varepsilon+1} \geq \frac{\varepsilon m}{\varepsilon+2}$ since m is sufficient large. Thus $(A^*, \{v_2^*\})$ is an $(\frac{n}{2}, \frac{\varepsilon m}{\varepsilon+2})$ -core of G of Type B, the lemma holds by setting $A_2^* = A^*$, $B_2^* = \{v_2^*\}$ and $\xi = \frac{\varepsilon}{\varepsilon+2}$. If X_{ℓ} is odd with $k_{\ell} = 5$, then there is a vertex $v_3^* \in B$ with $d_G(v_3^*) \geq \max\{a_1, \frac{a_3}{s_{\ell}-1}, \varepsilon(a_r - \Delta_1)\} \geq \frac{(m-a^*-\Delta_1)\varepsilon}{\varepsilon(s_{\ell}-1)+1} \geq \frac{\varepsilon m}{\varepsilon s_{\ell}+2}$ (since m is sufficient large). Thus $(A^*, \{v_3^*\})$ is an $(\frac{n}{2}, \frac{\varepsilon m}{\varepsilon s_{\ell}+2})$ -core of G of Type A or Type B, the lemma holds by setting $A_2^* = A^*, B_2^* = \{v_3^*\}$ and $\xi = \frac{\varepsilon}{\varepsilon s_{\ell}+2}$.

Subcase 2.2 If $k_{\ell} \ge 6$, then $b^* = r_{\ell} - 1 \ge 2$.

(i) If $b_r = 0$ or $a_r = 0$, then $e(G_r) = 0$. By (3.15), $a_2 + b_2 + b_3 + b_r + a_3 + a_r \le \Delta_1$. Since $n \ge m$ and m is sufficient large, $a_1 \ge m - a^* - \Delta_1 \ge \frac{m}{2}$ and $b_1 \ge n - b^* - c \ge \frac{n}{2}$. This is, (A^*, B^*) is an $(\frac{n}{2}, \frac{m}{2})$ -core of G of Type B. The lemma holds by setting $A_2^* = A^*$, $B_2^* = B^*$ and $\xi = \frac{1}{2}$.

(ii) If $b_r \ge 1$ and $a_r \ge 1$, then by (3.15), $a_2 + b_2 + b_3 + b_r + a_3 \le \Delta_1$. By (3.13)–(3.15),

$$\begin{split} e(G_r) &= e(G) - (e(G[A^*, B^*]) + e(G_a^*) + e(G_b^*)) \\ &\geq a^*n + b^*m - 2a^*b^* - \Delta_1 - (a^*n + b^*m - 2a^*b^*) + a_2 + b_2 + (a^* - 1)b_3 \\ &+ (b^* - 1)a_3 + a^*b_r + b^*a_r \\ &\geq (r_\ell - 1)(a_r + b_r) - (\Delta_1 - (a_2 + b_2 + (a^* - 1)b_3 + (a^* - r_\ell + 1)b_r \\ &+ (b^* - 1)a_3 + (b^* - r_\ell + 1)a_r)) \\ &\geq \exp(a_r, b_r; P_{k_\ell}) - \Delta_1. \end{split}$$

Then by Lemma 3.1, there is a subset $B_1^* \subset B$ with $|B_1^*| = r_{\ell} - 1$ and a constant ε such that $d_{G^*}(B_1^*) \ge \max\{a_1, \varepsilon a_r\} \ge \frac{m-a^*-\Delta_1}{\varepsilon+1} \ge \frac{m}{\varepsilon+2}$ (since *m* is sufficient large). Hence (A^*, B_1^*) is an $(\frac{n}{2}, \frac{m}{\varepsilon+2})$ -core of *G* of Type *B*, the lemma holds by setting $A_2^* = A^*$, $B_2^* = B_1^*$ and $\xi = \frac{1}{\varepsilon+2}$.

This completes the proof of Lemma 3.4.

Lemma 3.5 Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. Let $\ell \geq 2$ and $k_{\ell} \geq 4$. Let $\Delta_2 \geq 0$ and $\delta_2 \geq 0$. Let $n \geq m$ and m be sufficiently large than x_{ℓ} , Δ_2 and δ_2 . Suppose that G contains a copy of $F_{\ell-1} = P_{k_1} \cup \cdots \cup P_{k_{\ell-1}}$. Let $A_0 = A - V(F_{\ell-1})$,

726

 $B_0 = B - V(F_{\ell-1})$. If $e_G(x, y) \ge s_\ell + r_\ell - 2$ for each $x \in A_0 - A'_0$ and $y \in B_0 - B'_0$ with $|A'_0|, |B'_0| \le \delta_2$ and

$$e(G) \ge f(m, n; X_{\ell}) - \Delta_2,$$

then there is a pair of subsets (A_2^*, B_2^*) with $A_2^* \subset A$ and $B_2^* \subset B$ which is an (x_ℓ, x_ℓ) -core of G.

Proof Let G = G(A, B) be an F_{ℓ} -free bipartite graph with |A| = m and |B| = n. Let $\ell \ge 2$ and $k_{\ell} \ge 4$. Let $\Delta_2 \ge 0$ and $\delta_2 \ge 0$. Let

$$n \ge m$$
 and m be larger enough than x_{ℓ}, Δ_2 and δ_2 . (3.16)

Let

$$e(G) \ge f(m, n; X_{\ell}) - \Delta_2. \tag{3.17}$$

Suppose that G contains a copy of $F_{\ell-1}$. Let $A_0 = A - V(F_{\ell-1})$, $B_0 = B - V(F_{\ell-1})$, $A_1 = A - A_0$, $B_1 = B - B_0$ and $G^0 = G(A_0, B_0)$. Let $|A_0| = m_0$ and $|B_0| = n_0$. Let $A'_0 \subset A_0$ and $B'_0 \subset B_0$ with $|A'_0|, |B'_0| \le \delta_2$. Assume that

$$e_G(x,y) \ge s_\ell + r_\ell - 2$$
 for each $x \in A_0 - A'_0$ and $y \in B_0 - B'_0$. (3.18)

Since G is F_{ℓ} -free, G^0 is $P_{k_{\ell}}$ -free. Noting that $m_0 \ge m - x_{\ell-1}$ and $n_0 \ge n - x_{\ell-1}$, by (3.16), m_0 and n_0 are sufficient large. It follows from Corollary 1.1 that

$$e(G^0) \le \exp(m_0, n_0; P_{k_\ell}) \le (r_\ell - 1)(m_0 + n_0).$$
 (3.19)

Note that

$$f(m,n;X_{\ell}) = \begin{cases} (s_{\ell}-1)(n-1) + m, & \text{if } X_{\ell} \text{ is odd with } k_{\ell} = 5; \\ 6m - 9, & \text{if } F_{\ell} = P_9 \cup P_4 \text{ with } m = n; \\ (s_{\ell}-1)(n-r_{\ell}+1) + (r_{\ell}-1)(m-s_{\ell}+1), & \text{otherwise.} \end{cases}$$
(3.20)

Since $e(G(A_1, B_0)) + e(G(A_0, B_1)) = e(G) - e(G^0) - e(G(A_1, B_1)) \ge f(m, n; X_\ell) - \Delta_2 - e(G^0) - e(G(A_1, B_1))$, combining (3.19)–(3.20) and $e(G(A_1, B_1)) \le \left(\frac{x_{\ell-1}}{2}\right)^2$, we have

$$e(G(A_1, B_0)) + e(G(A_0, B_1)) \ge s_{\ell-1}n - \eta_1,$$

where $\eta_1 = 2(r_\ell - 1)(s_\ell - 1) + \left(\frac{x_{\ell-1}}{2}\right)^2 + \Delta_2$. By (3.16), we may assume that $e(G(A_1, B_0)) = c_1 n - \eta_1$ and $e(G(B_1, A_0)) = c_2 n - \eta_1$ with $c_1 + c_2 \ge s_{\ell-1}$. By Lemma 2.1, there exist $A_2 \subseteq A_1$ with $|A_2| = \lceil c_1 \rceil$ and $B_2 \subseteq B_1$ with $|B_2| = s_{\ell-1} - \lceil c_1 \rceil$ and a constant $0 < \delta \le 1$ from Lemma 2.1 such that

$$d_G^c(A_2) \ge \delta n \quad \text{and} \quad d_G^c(B_2) \ge \delta n.$$
 (3.21)

Let $|A_2| = a_2$, $|B_2| = b_2$ and $G' = G(A - A_2, B - B_2)$. So $a_2 + b_2 = s_{\ell-1}$, and $|V(G') \cap A| = m - a_2$ and $|V(G') \cap B| = n - b_2$ are sufficient large by (3.16).

T. Y. Xie and L. T. Yuan

Let
$$X_1 = N_G^c(A_2) \cap (B_0 - B'_0)$$
 and $Y_1 = N_G^c(B_2) \cap (A_0 - A'_0)$. Thus
 $|X_1| \ge \delta n - x_{\ell-1} - \delta_2$ and $|Y_1| \ge \delta n - x_{\ell-1} - \delta_2$. (3.22)

Claim 3.3 If G' is $P_{k_{\ell}}$ -free, then there is a constant η_2 such that $|X_1|, |Y_1| \ge n - \eta_2$ and $m \le n \le m + \eta_2$. Moreover, there are two subsets of $A'_2 \subset A - A_2$ and $B'_2 \subset B - B_2$ with $|A'_2| = |B'_2| = r_{\ell} - 1$ such that $d^c_G(A_2 \cup A'_2) \ge x_{\ell}$ and $d^c_G(B_2 \cup B'_2) \ge x_{\ell}$.

Proof Suppose that G' is $P_{k_{\ell}}$ -free, by Corollary 1.1, we have

$$e(G') \le \exp(m - a_2, n - b_2; P_{k_\ell}) \le (r_\ell - 1)(m + n - s_{\ell-1}).$$
(3.23)

Then

$$e(G(A_2, B - B_2)) + e(G(A - A_2, B_2)) \ge e(G) - e(G') - e(G(A_2, B_2)) \ge s_{\ell-1}n - \eta'_2,$$

where $\eta'_2 \leq 2(r_\ell - 1)(s_\ell - 1) + \left(\frac{s_{\ell-1}}{2}\right)^2 + \Delta_2$. By $|A - A_2| \leq m$, $|B - B_2| \leq n$ and $a_2 + b_2 = s_{\ell-1}$, each vertex in A_2 and B_2 has degree at least $n - \eta'_2$. Let $\eta_2 = \eta'_2 + \delta_2$. Thus $|X_1| \geq n - \eta_2$ and $|Y_1| \geq n - \eta_2$, and $m \leq n \leq m + \eta_2$.

Since $e(G') = e(G) - e(G(A_2, B)) - e(G(A - A_2, B_2)) \ge e(G) - s_{\ell-1}n + b_2(n - m + a_2)$, by (3.20) and Corollary 1.1,

$$e(G') \ge (r_{\ell} - 1)(m + n - s_{\ell-1}) - (2(r_{\ell} - 1)(s_{\ell} - 1) + \Delta_2)$$

$$\ge ex(m - a_2, n - b_2; P_{k_{\ell}}) - (2(r_{\ell} - 1)(s_{\ell} - 1) + \Delta_2).$$
(3.24)

Note that for $k_{\ell} = 5$, there are at most one copies of $K_{2,2}$ in $G(X_1, Y_1)$ (otherwise one can find a copy fo F_{ℓ}). Thus there are at most $\frac{\eta_2}{2}$ copies of $K_{2,2}$ in G'. Thus by Lemma 3.1 and (3.24), we have that for $k_{\ell} \ge 4$, there are two subsets $A'_2 \subset A - A_2$ and $B'_2 \subset B - B_2$ with $|A'_2| = |B'_2| = r_{\ell} - 1$ and a constant γ such that $d^c_{G'}(A'_2) \ge \gamma n$ and $d^c_{G'}(B'_2) \ge \gamma n$.

Moreover, noting that $d_G^c(A_2) \ge |X_1| \ge n - \eta_2$ and $d_G^c(A_2') \ge d_{G'}^c(A_2') \ge \gamma n$, by (3.16), $d_G^c(A_2 \cup A_2') \ge \gamma n - \eta_2 \ge x_\ell$. Similarly, we have $d_G^c(B_2 \cup B_2') \ge \gamma n - \eta_2 \ge x_\ell$.

Claim 3.4 a_2 is $R_{\ell-1}$ -sum-free.

Proof Suppose that a_2 is not $R_{\ell-1}$ -sum-free. Then there is a partition (I_a^2, I_b^2) of $[\ell - 1]$ such that $a = \sum_{i \in I_a^2} r_i$ and $b_2 = \sum_{i \in I_b^2} r_i$. And we claim that G' is P_{k_ℓ} -free. Otherwise, G' contains a copy of P_{k_ℓ} , then $G - P_{k_\ell}$ contains a copy of $D_{\delta n, \delta n}^{a_2, b_2}$ (when $e(G[A_2, B_2]) \ge 1$) or a copy of $K_{\delta n, \delta n}^{a_2, b_2}$ (when $e(G[A_2, B_2]) \ge 0$). Since a_2 is not $R_{\ell-1}$ -sum-free, by Lemma 3.2(3) and the definition of $K_{\delta n, \delta n}^{a_2, b_2}$, we have that $G - P_{k_\ell}$ contains a copy of $F_{\ell-1}$. That is, G contains a copy of F_ℓ , a contradiction.

By Claim 3.1, we have that there are two subsets of $U_1 \subset A - A_2$ and $U_1 \subset B - B_2$ with $|U_1| = |V_1| = r_\ell - 1$ such that $d_G^c(A_2 \cup U_1) \ge x_\ell$ and $d_G^c(B_2 \cup V_1) \ge x_\ell$.

728

Note that $|A_2 \cup U_1| = \sum_{i \in I_a^2} r_i + r_\ell - 1$ and $|B_2 \cup V_1| = \sum_{i \in I_b^2} r_i + r_\ell - 1$. If $e(G[A_2, B_2]) \ge 1$, then G contains a copy of $D_{x_\ell, x_\ell}^{a_2+r_\ell-1, b_2+r_\ell-1}$. If $r_\ell \ge 3$, then $a_2+r_\ell-1+b_2+r_\ell-1 = s_\ell+r_\ell-2 \ge s_\ell+1$. By Lemma 3.2(1), $D_{x_\ell, x_\ell}^{a_2+r_\ell-1, b_2+r_\ell-1}$ contains a copy of F_ℓ . Thus $r_\ell = 2$. Hence $(A_2 \cup U_1, B_2 \cup V_1)$ is a (x_ℓ, x_ℓ) -core of G with Type A. The lemma holds by setting $A_2^* = A_2 \cup U_1$ and $B_2^* = B_2 \cup V_1$. If $e(G[A_2, B_2]) = 0$, then $(A_2 \cup U_1, B_2 \cup V_1)$ is a (x_ℓ, x_ℓ) -core of G with Type B. The lemma holds by setting $A_2^* = A_2 \cup U_1$ and $B_2^* = B_2 \cup V_1$.

Claim 3.5 $e(G[A_2, B_2]) = 0.$

Proof Let $\theta = {\binom{\lceil k_{\ell} \rceil}{r_{\ell}-1}}$ and $\mu = x_{\ell}\theta$. Suppose that $e(G[A_2, B_2]) \ge 1$. By (3.22) and (3.16), we have $|X_1| \ge \mu$ and $|Y_1| \ge \mu$. We consider two cases.

(a) G' is $P_{k_{\ell}}$ -free. By Claim 3.3, there is a constant η_2 such that $|X_1|, |Y_1| \ge n - \eta_2$, $n = m + \eta_2$ and there are two subsets $U_2 \subset A - A_2$ and $V_2 \subset B - B_2$ with $|U_2| = |V_2| = r_{\ell} - 1$ such that $d_G^c(A_2 \cup U_2) \ge x_{\ell}$ and $d_G^c(B_2 \cup V_2) \ge x_{\ell}$.

If $k_{\ell} \in \{4, 5\}$, then since $e(G[A_2, B_2]) \ge 1$, $(A_2 \cup U_2, B_2 \cup V_2)$ is an (x_{ℓ}, x_{ℓ}) -core of G with Type A. Thus the lemma holds by setting $A_2^* = A_2 \cup U_2$ and $B_2^* = B_2 \cup V_2$. If $k_{\ell} \ge 6$, then $a_2^* + b_2^* = s_{\ell} + r_{\ell} - 2 \ge s_{\ell} + 1$. Since G contains a copy of $D_{x_{\ell}, x_{\ell}}^{a_2^*, b_2^*}$, Lemma 3.2(1) implies that G contains a copy of F_{ℓ} , a contradiction.

(b) G' contains a copy of $P_{k_{\ell}}$. Then $G - V(P_{k_{\ell}})$ is $F_{\ell-1}$ -free. Since $e(G[A_2, B_2]) \ge 1$, each vertex of X_1 can only be adjacent to vertices of $V(P_{k_{\ell}}) \cup A_2$ and each vertex of Y_1 can only be adjacent to vertices of $V(P_{k_{\ell}}) \cup B_2$. Otherwise, $G - V(P_{k_{\ell}})$ contains both a copy of $D_{x_{\ell}, x_{\ell}}^{a_2, b_2, 1}$ and a copy of $D_{x_{\ell}, x_{\ell}}^{a_2, b_2, 0}$. By Claim 3.4, a_2 is $R_{\ell-1}$ -sum-free, so $\mathcal{R}_{\ell-1}(a) \neq \emptyset$. Lemma 3.2(2) implies that $G - V(P_{k_{\ell}})$ contains a copy of $F_{\ell-1}$. Thus G contains a copy of F_{ℓ} , it is a contradiction. Hence, by (3.18), each pair (x, y) with $x \in X_1$ and $y \in Y_1$ is adjacent to at least $2r_{\ell} - 2$ vertices of $V(P_{k_{\ell}})$.

If $k_{\ell} \in \{4,5\}$, then $2r_{\ell} - 2 = 2$. Thus there are two subsets $U_3 \subset V(P_{k_{\ell}}) \cap A$ and $V_3 \subset V(P_{k_{\ell}}) \cap B$ with $|U_3| + |V_3| = 2$ such that $|N_G^c(U_3) \cap X_1| \ge \frac{|X_1|}{\theta} \ge x_{\ell}$ and $|N_G^c(V_3) \cap Y_1| \ge \frac{|Y_1|}{\theta} \ge x_{\ell}$. Thus $d_G^c(A_2 \cup U_3) \ge |N_G^c(U_3) \cap X_1| \ge x_{\ell}$ and $d_G^c(B_2 \cup V_3) \ge |N_G^c(V_3) \cap Y_1| \ge x_{\ell}$. Hence $(A_2 \cup U_3, B_2 \cup V_3)$ is an (x_{ℓ}, x_{ℓ}) -core of G with Type A. The lemma holds by setting $A_2^* = A_2 \cup U_3$ and $B_2^* = B_2 \cup V_3$.

We may assume that $k_{\ell} \geq 6$. If there are more than r_{ℓ} vertices of X_1 have degree at least r_{ℓ} vertices in $V(P_{k_{\ell}}) \cap A$, then G contains a path of order k_{ℓ} (say $P'_{k_{\ell}}$) containing r_{ℓ} vertices in $V(P_{k_{\ell}}) \cap A$ and $k_{\ell} - r_{\ell}$ vertices in X_1 . Since $2r_{\ell} - 2 \geq r_{\ell} + 1$, $X_1 \cup Y_1$ has at least one neighbor in $V(G^*) \setminus V(P'_{k_{\ell}})$. Then $G - P'_{k_{\ell}}$ contains a copy of $F_{\ell-1}$ and G contains a copy of F_{ℓ} , a contradiction. Similarly, the number of vertices in Y_1 which are adjacent to at least r_{ℓ} vertices of $V(P_{k_{\ell}}) \cap B$ is at most r_{ℓ} .

However, if there is a vertex $x \in X_1$ such that $d_{V(P_{k_\ell})}(x) \leq r_\ell - 2$, then each vertex of Y_1 is adjacent to at least r_ℓ vertices in $V(P_{k_\ell})$. Thus any vertex of $X_1 \cup Y_1$ is adjacent to at least $r_\ell - 1$ vertices of $V(P_{k_\ell})$. So there exist subsets $U_4 \subset V(P_{k_\ell}) \cap A$ and $V_4 \subset V(P_{k_\ell}) \cap B$ with $|U_4| = |V_4| = r_\ell - 1$ such that $|N_G^c(U_4) \cap X_1| \ge \frac{|X_1|}{\theta} \ge x_\ell$ and $|N_G^c(V_4) \cap Y_1| \ge \frac{|Y_1|}{\theta} \ge x_\ell$. Then G contains a copy of $D_{x_\ell, x_\ell}^{a_2+r_\ell-1, b_2+r_\ell-1}$. Since $a_2 + b_2 + 2r_\ell - 2 \ge s_\ell + 1$, by Lemma 3.2(1), G contains a copy of F_ℓ , a contradiction. The proof of Claim 3.5 is complete.

Claim 3.6 There is no edge between $N_{V(G')}(A_2)$ and $N_{V(G')}(B_2)$.

Proof Suppose that there are two vertices $v_0 \in N_{V(G')}(A_2)$ and $u_0 \in N_{V(G')}(B_2)$ such that u_0v_0 is an edge of G'. Let $H = G - (A_2 \cup B_2 \cup \{u_0, v_0\})$. We claim that H is P_{k_ℓ} -free. Otherwise, H contains a copy of P_{k_ℓ} . By Claim 3.4, a_2 is $R_{\ell-1}$ -sum-free, so $\mathcal{R}_{\ell-1}(a_2) \neq \emptyset$. Thus there is a pair $(i, y) \in \mathcal{R}_{\ell-1}(a_2)$. Then G contains a path of order $2r_i + 2 > k_i$ containing the edge u_0v_0 and y vertices of A_2 and $r_i - y$ vertices of B_2 . Hence by (3.16) and (3.21), $G - P_{k_\ell}$ contains a copy of $F_{\ell-1}$. Therefore, G contains a copy of F_ℓ , a contradiction.

If there is a subset $A_3 \subset A_2$ with $|A_3| = a_2 - 1$ such that $|N_G^c(A_3 \cup \{u_0\}) \cap (A_0 - A'_0)| \ge \mu$ (or there is a subset $B_3 \subset B_2$ with $|B_3| = b_2 - 1$ such that $|N_G^c(B_3 \cup \{v_0\}) \cap (B_0 - B'_0)| \ge \mu$), then by Claim 3.5 with $A_2 = A_3 \cup \{u_0\}$ and $B_2 = B_2$ (or $A_2 = A_2$ and $B_2 = B_3 \cup \{v_0\}$), a contradiction.

Then we may assume that for any subset $A_3 \subset A_2$ with $|A_3| = a_2 - 1$, $|N_G^c(A_3 \cup \{u_0\}) \cap (A_0 - A'_0)| \le \mu$ and for any subset $B_3 \subset B_2$ with $|B_3| = b_2 - 1$, $|N_G^c(B_3 \cup \{v_0\}) \cap (B_0 - B'_0)| \le \mu$. Since $|V(H) \cap A| - |A_0 - A'_0| \le x_\ell + \delta_2$ and $|V(H) \cap B| - |B_0 - B'_0| \le x_\ell + \delta_2$, $|N_G^c(A_2 \cup \{u_0\}) \cap V(H)| \le \mu + x_\ell + \delta_2$ and $|N_G^c(B_2 \cup \{v_0\}) \cap V(H)| \le \mu + x_\ell + \delta_2$. Thus

$$e(G[A_2 \cup \{u_0\}, B]) + e(G[A - (A_2 \cup u_0), B_2 \cup \{v_0\}]) \le a_2n + b_2m + 2(\mu + x_\ell + \delta_2).$$
(3.25)

Furthermore, since *H* is $P_{k_{\ell}}$ -free, by Corollary 1.1, $e(H) \leq (r_{\ell} - 1)(m + n - s_{\ell-1} - 2)$. Thus by (3.17) and (3.20),

$$e(G[A_2 \cup \{u_0\}, B]) + e(G[A - (A_2 \cup u_0), B_2 \cup \{v_0\}]) = e(G) - e(H)$$

$$\geq (s_{\ell} - 1)n + (r_{\ell} - 1)m - 2(r_{\ell} - 1)(s_{\ell} - 1) - \Delta_2 - (r_{\ell} - 1)(m + n - s_{\ell-1} - 2)$$

$$\geq s_{\ell-1}n - (\Delta_2 + 2(r_{\ell} - 1)(s_{\ell} - 1)).$$

Hence

$$|N_G^c(A_2) \cap V(H)| \ge n - \eta_3$$
 and $|N_G^c(B_2) \cap V(H)| \ge n - \eta_3$, (3.26)

where $\eta_3 = \Delta_2 + 2(r_\ell - 1)(s_\ell - 1) + \mu + x_\ell + \delta_2 + a_2\mu + b_2\mu$.

Moreover, by (3.17), (3.20), (3.25) and Corollary 1.1,

$$e(H) = e(G) - e(G[A_2 \cup \{u_0\}, B]) - e(G[A - (A_2 \cup u_0), B_2 \cup \{v_0\}])$$

$$\geq (s_{\ell} - 1)n + (r_{\ell} - 1)m - 2(r_{\ell} - 1)(s_{\ell} - 1) - \Delta_2 - a_2n - b_2m - 2(\mu + x_{\ell} + \delta_2)$$

$$\geq (r_{\ell} - 1)(m + n - s_{\ell} - 2) - (\Delta_2 + 2(r_{\ell} - 1)(s_{\ell} - 1) + 2(\mu + x_{\ell} + \delta_2))$$

$$\geq ex(m - a_2 - 1, n - b_2 - 1; P_{k_{\ell}}) - \eta_4,$$
(3.27)

where $\eta_4 = \Delta_2 + 2(r_\ell - 1)(s_\ell - 1) + 2(\mu + x_\ell + \delta_2).$

Note that for $k_{\ell} = 5$, there are at most one copy of $K_{2,2}$ in $G[N_G^c(A_2) \cap V(H), N_G^c(B_2) \cap V(H)]$ (otherwise, one can find a copy of F_{ℓ} in G). Thus by (3.26), there are at most $\frac{\eta_3}{2}$ copies of $K_{2,2}$ in H. By (3.27) and Lemma 3.1, there are two subsets $U_5 \subset A - (A_2 \cup \{u_0\})$ and $V_5 \subset B - (B_2 \cup \{v_0\})$ with $|U_5| = |V_5| = r_{\ell} - 1$ such that $d_H^c(U_5), d_H^c(V_5) \ge \varepsilon n$.

Thus by (3.26) and (3.16), $d_G^c(A_2 \cup U_5) \ge \varepsilon n - \eta_3$ and $d_G^c(B_2 \cup V_5) \ge \varepsilon n - \eta_3 \ge x_\ell$. Since $|A_2 \cup U_5| + |B_2 \cup V_5| = s_\ell + r_\ell - 2 \ge s_\ell$ and there is the edge u_0v_0 between $N_{V(G')}(A_2)$ and $N_{V(G')}(B_2)$, G contains a copy of F_ℓ , it is a contradiction.

Combining Claims 3.4–3.6, we conclude that a_2 is $R_{\ell-1}$ -sum-free, $e(G[A_2, B_2]) = 0$ and there is no edge between $N_{V(G')}(A_2)$ and $N_{V(G')}(B_2)$.

Now we will give the proof of Lemma 3.5 by induction. When $\ell = 2$, if a_2 is $R_{\ell-1}$ -sum-free, then either $e(G[A_2, B_2]) \geq 1$ or there is an edge between $N_{V(G')}(A_2)$ and $N_{V(G')}(B_2)$ with $e(G[A_2, B_2]) = 0$ (since $a_2 + b_2 = r_1$, $A_2 \subset A_1$ and $B_2 \subset B_1$). Thus the lemma holds.

Let $\ell \geq 3$. We claim that there exists an $i^* \in [\ell - 1]$ such that $|V(P_{i^*}) \cap A_2| \geq r_{i^*} + 1$ or $|V(P_{i^*}) \cap B_2| \geq r_{i^*} + 1$. Otherwise, $|V(P_{K_i}) \cap (A_2 \cup B_2)| = r_i$ for any $i \in [\ell - 1]$ (since $a_2 + b_2 = s_{\ell-1}, A_2 \subset A_1$ and $B_2 \subset B_1$). Then since a_2 is $R_{\ell-1}$ -sum-free, there is $i_1 \in [\ell - 1]$ such that $V(P_{k_{i_1}}) \cap A_2 \neq \emptyset$ and $V(P_{k_{i_1}}) \cap B_2 \neq \emptyset$. Thus either $e(G[A_2, B_2]) \geq 1$ or there is an edge between $N_{V(G')}(A_2)$ and $N_{V(G')}(B_2)$ with $e(G[A_2, B_2]) = 0$, a contradiction.

We may assume that $|V(P_{i^*}) \cap A_2| \ge r_{i^*} + 1$. Let $C_1 \subset V(P_{i^*}) \cap A_2$ with $|C_1| = r_{i^*}$ and $G^{i^*} = G - C_1$. Let $F'_{\ell-1} = \bigcup_{i \in [\ell] \setminus i^*} P_{k_i}$ and $F'_{\ell-2} = \bigcup_{i \in [\ell-1] \setminus i^*} P_{k_i}$.

Since $d_G^c(C_1) \ge \delta n$, G^{i^*} is $F'_{\ell-1}$ -free. Since $C_1 \subset V(P_{i^*})$ and G contains a copy of $F_{\ell-1}$, G^{i^*} contains a copy of $F'_{\ell-2}$. Thus by (3.17) and (3.20),

$$e(G^{i^*}) \ge e(G) - r_{i^*}n$$

$$\ge f(m, n; X_{\ell}) - \Delta_2 - r_{i^*}n$$

$$\ge f(m - r_{i^*}, n; X_{\ell} \setminus \{i^*\}) - \eta_5,$$
(3.28)

where $\eta_5 = \Delta_2 + r_{i^*}(r_{\ell} - 1)$, and for any $x \in A_0 - A'_0$ and $y \in B_0 - V(P_{k_{i_0}}) - B'_0$, $e_G(x, y) \ge s_{\ell} - r_{i_0} + r_{\ell} - 2$.

By (3.16), $m - r_{i^*}$ is sufficient large than $|V(P_{k_{i_0}}) - B'_0| \leq \delta_2 + r_{i_0}$ and η_5 . By the induction hypothesis, Lemma 3.5 holds for G^{i^*} . Thus there is a pair of subsets (A^{i^*}, B^{i^*}) with $A^{i^*} \subset V(G^{i^*}) \cap A$ and $B^{i^*} \subset V(G^{i^*}) \cap B$ being an $(x_{\ell} - r_{i^*}, x_{\ell} - r_{i^*})$ -core of G^{i^*} . From (3.28), Lemma 3.4 implies that $e(G^{i^*}) \leq f(m - r_{i^*}, n; X_{\ell} \setminus \{k_{i^*}\})$ and there is a pair of subsets (C^*, D^*) with $C^* \subset A$ and $D^* \subset B$ and a constants ξ such that (C^*, D^*) is an $(\xi n, \xi(m - r_{i^*}))$ -core of G^{i^*} .

Since $e_G(C_1, B) \ge e(G) - e(G^{i^*}) \ge f(m, n; X_\ell) - \Delta_2 - f(m - r_{i^*}, n; X_\ell \setminus \{k_{i^*}\}) \ge r_{i^*}n - \eta_5,$ $d_G^c(C_1) \ge n - \eta_5.$ Hence $d_G^c(C_1 \cup C^*) \ge \xi n - \eta_5 \ge x_\ell$ and $d_G^c(D^*) \ge \xi (m - r_{i^*}) \ge x_\ell.$ Therefore, $(C_1 \cup C^*, D^*)$ is an (x_ℓ, x_ℓ) -core of G. Lemma 3.5 holds by setting $A_2^* = C_1 \cup C^*$ and $B_2^* = D^*.$ This completes the proof of Lemma 3.5.

Proof of Lemma 2.2 Let G = G(A, B) be a bipartite extremal graph for F_{ℓ} with classes

A, B. Let |A| = m and |B| = n with $n \ge m \ge m_1 = m_1(k_1, \dots, k_\ell)$. Let $k_\ell \ge 4$. From the definitions of $f(m, n; X_\ell)$ and $\mathcal{F}(m, n; X_\ell)$, we have

$$e(G) \ge f(m, n; X_{\ell}).$$

Suppose that G contains a copy of $F_{\ell-1}$. Let $A_0 = A - V(F_{\ell-1})$, $B_0 = B - V(F_{\ell-1})$, $A_1 = A - A_0$, $B_1 = B - B_0$ and $G^0 = G(A_0, B_0)$. Let $|A_0| = m_0$ and $|B_0| = n_0$. Assume that

$$e_G(x,y) \ge s_\ell + r_\ell - 2$$
 for each $x \in A_0$ and $y \in B_0$.

Then by Lemma 3.5 with setting $\Delta_2 = \delta_2 = 0$, we have that there is a pair of subsets (A^*, B^*) with $A^* \subset A$ and $B^* \subset B$ being an (x_ℓ, x_ℓ) -core of G. Then by Lemma 3.4, we have $e(G) \leq f(m, n; X_\ell)$, where equality holds only when $G \in \mathcal{F}(m, n; X_\ell)$. This completes the proof of Lemma 2.2.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

- Erdős, P. and Gallai, T., On maximal paths and circuits of graphs, Acta Math. Hungarica, 10(3), 1959, 337–356.
- [2] Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin, 27, 2011, 661-667.
- [3] Bushaw, N. and Kettle, N., Forbidding Multiple Copies of Forestable Graphs, Graphs Combin, 36, 2020, 459–467.
- Bielak, H. and Kieliszek, S., The Turán number of the graph 3P₄, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 68(1), 2014, 21–29.
- [5] Bielak, H. and Kieliszek, S., The Turán number of the graph 2P₅, Discuss. Math. Graph Theory, 36(3), 2016, 683–694.
- [6] Lan, Y., Qin, Z. and Shi, Y., The Turán number for 2P7, Discuss. Math. Graph Theory, 39, 2019, 805-814.
- [7] Lidický, B., Liu, H. and Palmer, C., On the Turán number of forests, *Electron. J. Comb*, 20(2), 2013, 13 pp.
- [8] Yuan, L. and Zhang, X., Turán numbers for disjoint paths, J. Graph Theory, 98(3), 2021, 499-524.
- [9] Gyárfás, A., Rousseau, C. C. and Schelp, R. H., An extremal problem for paths in bipartite graphs, J. Graph Theory, 8(1), 1984, 83–95.
- [10] Chen, M., Wang, N., Yuan, L. and Zhang, X., The bipartite Turán number and spectral extremum for linear forests, http://arxiv.org/abs/2201.00453v1.
- [11] Jackson, B., Cycles in bipartite graphs, J. Combin. Theory Ser. B, 30, 1981, 332-342.
- [12] Balister, P. N., Győri, E., Lehel, J. and Schelp, R. H., Connected graphs without long paths, Discrete Math., 308, 2008, 4487–4494.
- [13] Yuan, L. and Zhang, X., The Turán number of disjoint copies of paths, Discrete Math., 340(2), 2017, 132–139.
- [14] Yuan, L. and Zhang, X., Extremal graphs for even linear forests in bipartite graphs, Discuss. Math. Graph Theory, 44(1), 2024, 5–16.
- [15] Bushaw, N. and Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput, 20, 2011, 837–853.
- [16] Faudree, R. J. and Schelp, R. H., Path Ramsey numbers in multicolourings, J. Combin. Theory Ser. B, 19, 1975, 150–160.
- [17] Kopylov, G. N., On maximal paths and cycles in a graph, Soviet Math. Dokl, 18, 1977, 593–596.