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On the Turan Numbers of Linear Forests in
Bipartite Graphs*

Tianying XIE! Longtu YUAN?

Abstract A linear forest is a graph consisting of paths. In this paper, the authors
determine the maximum number of edges in an (m,n)-bipartite graph which does not
contain a linear forest consisting of paths on at least four vertices for n > m when m is
sufficiently large.
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1 Introduction

In this paper, only finite graphs without loops and multiple edges will be considered. Let
K, and P, be the clique and path on n vertices, respectively. An even path (odd path) is a
path on even (odd) number of vertices. Let K, , be the complete bipartite graph with two
parts of size m and n. A linear forest is a forest whose components are paths. For a given graph
G = (V(G),E(Q)), if v € V(G) is a vertex of G, let Ng(v) and dg(v) be the neighborhood
and degree of v in graph G, respectively. For a vertex set U C V, let Ny(v) = Ng(v) N U,
Neg(U) = U Ng(u), N&(U) = [\ Ng(u) and d&(U) = |[N&(U)|. For a subset U C V(G), if
G[U] is corulflgcted, denote the cofn%cted component of G containing U by C¢g(U).

Given two graphs G and H, we say a graph G is H-free if G does not contain a copy of H as
a subgraph. The Turdn number of a graph H, denoted by ex(n, H), is the maximum number of
edges in an n-vertex H-free graph. If an n-vertex H-free graph G has ex(n, H) edges, then we
call G an extremal graph for H. In 1959, Erdds and Gallai [1] proved the following well-known

result about the Turan numbers of paths.
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Theorem 1.1 (see Erdds and Gallai [1]) Let n >t. Then

ex(n, Py) < =(t — 2)n.

N =

For a given graph H, we use kH to denote the vertex-disjoint union of k£ copies of H.
Recently, many researchers focus on determining the Turdn numbers for linear forests. Gorgol
[2] first studied the functions ex(n,2P;3) and ex(n, 3P;). For more results concerning the Turdn
numbers for linear forests, we refer the readers to [3-8, 12-17].

We use ex(m,n; H) to denote the maximum number of edges in an H-free (m, n)-bipartite
graph, and call G an bipartite extremal graph for H if G is an H-free (m, n)-bipartite graph with
ex(m,n; H) edges, and denote the set of all bipartite extremal graphs for H by EX(m, n; H). In
1984, Gyéartds, Rousseau and Schelp [9] determined ex(m, n; P) and characterized all bipartite
extremal graphs for all values of m,n, k.

Denote by K5, the (m,n)-bipartite graph consists of K4 n—p and Ky, _q5. Denote by L&b,
the (m,n)-bipartite graph obtained from Kﬁ;f)n by joining each vertex of the class with size a to

each vertex of the class with size b (see Figure 1). In particular, we say L,lnln is a double star.

l[’

e/
O
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Figure 1 (a)ng?, (b)ng

Theorem 1.2 (see Gyérfds, Rousseau and Schelp [9]) Let £ =[] —1 and n > m.
(1) If k > 2 is even, then
mn, Jor m < {;

ex(m,n; Py) =} {n, for£4+1<m<20—1,;
(n—=0L+ (m—20)4¢, form > 2L
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Moreover,
{Km,n}7 fOT’ m S é;
{Kin}, forf+1<m<20—1;
) _ ) 13] _
EX(m, n; Br) UA{K5,.},  form = 2¢;
§=0
{K5E ) form > 20+ 1.
(2) For k =3,

ex(m,n; P3) = m.
Moreover, the unique extremal graph is mPs U K, _,.
(3) For k=05,

m+n, form =n > 2 is even;

ex(m,n; Ps) = {m +n—1, otherwise.

Moreover, the extremal graphs consist of at most one double star and copies of K 2.
(4) If k > 7 is odd, then

mn, form <Llorm=n=~0+1,
ex(m, n; Py) = ((n—1)+m, form>m=~0+10rl+2<m<20+1;
X s 10y I ) — 2€2’ fOTm:TL:2€+27

=00+ (m—20¢, forn>m=20+2orm>2{+3.

Moreover,
{Kmn}, form<Lorm=n=~0+1,
{Kpg1001 UKL LEN Y, form=L+1andn="{+2;
(KELU LA form=n=(+2
. I RO/ form—=1>m={0+1o0orn>m=1{+2

EX(m, n; Py) = or{+3<m <2
{Kﬁf;’{l,L%n}, for m =20+ 1;
{Kﬁ;’f}/"’l}, form=mn=20+2;
{Kf;fn}, formn>m=204+2 orm > 2{+ 3.

In order to use it easily later, we will give a simple version of Theorem 1.2.

Corollary 1.1 Letf = L%J —landn>m. If m <k, then
ex(m,n; Py) < £(m + n);

if m >k, then
m, for k =3;
ex(m,n; Py) =< n+m—1, for k = 5;
(n—200+ (m — )¢, otherwise,
where i = 0 when n = m is even, and i = 1 otherwise. In particular, for any n > m > 0 and
k>2,
ex(m,n; Py) < £(m+n).
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From now on, let F; be the linear forest consisting of Py,,- -+, Py, with k4 > ko > -+ >
kj > 2 and j > 2. Letting X; = {k1,--- , k;}, we say that X is odd if all numbers in it are odd

J J
and X; is not odd otherwise. Let r; = [ %] for i € {1,2,--- £}, 85 = Y r; and z; = Y k;.
i=1 i=1
Vert recently, Chen, Wang, Yuan and Zhang [10] determined ex(m,n; Fy) when n is suffi-

ciently larger than m and s,, and characterized the extremal graphs.

Theorem 1.3 (see Chen, Wang, Yuan and Zhang [10]) If n > om and m > s;, where
o=o0(ky,- ,ke), then the following hold.
(1) If X, is not odd, then

ex(m,n; Fy) = 4 (8¢~ D for sg <m <280 —2;
M1 1) = (se—D)(n—r¢+1)+(m—sp+1)(rg—1), form>2s,—1.

Moreover, the extremal graphs are Kq,—1n Ufm_sﬁl for sp < m < 2sp — 3, Kﬁf;l’"_i with
0<i<ry;—1form=2sy—2 and Kﬁf;ﬁ”‘l form > 2sy — 1.

(2) Let p=2s, — 2+ Eii:;; If Xy is odd and k¢ ¢ {3,5}, then

(se —1)n+m—s,+1, for sg < m < p;
(se—D(n—re+1)+(m—sg+1)(re—1), form>p.

extim,nis Fr) = {

Moreover, for £ > 2, the extremal graphs are Lf,g;}l forsg <m <p and Kf,f)jll”_l form > p.
(3) If Xy is odd and ky = 3, then

exmm Ry = { (e T S e T

Moreover, the extremal graphs are the graph obtained from K,_1, by joining m — s; + 1
independent edges connecting new m — s¢+ 1 isolated vertices to m — sg+ 1 vertices with degree
sp— 1 in Ky,_14, respectively for k1 = ko =--- =k =3, and Lﬁﬁ)}l’l Ufm_sl otherwise.

(4) If X, is odd and ky = 5, then
ex(m,n; Fp) = (sp — L)n+m — sp + 1.
Moreover, the unique extremal graph is Lf,ﬁ;lm for £ > 2.

The above two theorems show that the extremal graphs for linear forests are very complicat-
ed when m is small. In this paper, by using Theorem 1.3 and a key lemma, we will determine
ex(m,n; Fy) for ky > 4 and n > m when m is sufficiently large. Moreover, all the extremal
graphs will be characterized.

We define

(s; —1)(n—1) +m, if X, is odd with k; = 5;
f(m,n; X;) =< 6m—9, if F} = Py U Py with m =mn;
(sj —)(n—rj+1)+(r; —1)(m —s; +1), otherwise.
Denote by F(m,n; X;) the Fj-free graphs with f(m,n; X;) edges:
{Lf,i;;ll’l}, if X; is odd with k; = 5;
N RV if Fj = Py U Py with m = n;
FlmmiX;) =\ (LA K61 3. if Fj = Piy U Py with m = n;
(K571 otherwise.
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Furthermore, we define
F(m’ n; XJ) = maX{eX(m, n; Pkl)? f(mv n; X2)7 T f(ma n; XJ)}

Theorem 1.4 Let n > m and m be sufficiently large. If Fy = Py, UP,, U---U Py, is a
linear forest with k1 > ko > -+- > ky > 4, then

eX(m7 n; Ff) = F(m7 n; Xf)

¢
and all extremal graphs belong to EX(m,n; Py, ) U (U F(m, n; X;)).
=2

1=

2 Several Lemmas and Proof of Main Theorem

First, we introduce a result concerning cycles in bipartite graphs. Jackson [11] proved the

following result.

Theorem 2.1 (see Jackson [11]) Let G(A, B) be a bipartite graph with |A| = m, |B| = n
andn > m. If each vertex of B has degree at least k, then G contains a cycle of length at least
2k.

The following lemma is widely used in extremal problems.

Lemma 2.1 Let G = G(A, B) be a bipartite graph with |A| = a and |B| = n, where a is a
constant and n is sufficiently large. If e(G) = bn — o(n), then there exists a vertex set A’ C A
with size t = [b] and a constant § > 0 such that the number of common neighbors of A’ is at

least on.

Proof Let X be the set of vertices of B with degree less than ¢. Since e(G) > bn — o(n),
we have (¢t — 1)|X|+a(n—|X]) > bn—o(n). Thus, we have |X| < ai;jiln —o(n). Hence, there
b=tin — o(n) vertices of B with degree at least t. Since there are ({)

t-sets in A, by the pigeonhole principle, there exists a vertex set A’ C A with size ¢ such that

are at least n — | X| >

the number of common neighbors of A is at least dn, where § = m—ir]% > 0. The proof is

complete.

Given a graph G, for any two vertices z,y of G, we use eg(z,y) to denote the number of
edges incident to « or y in G. Thus, if z is adjacent to y then eq(z,y) = d(z) + d(y) — 1 and
if  is not adjacent to y then eg(z,y) = d(z) + d(y), where d(z) and d(y) are the degrees of x

and y in G, respectively.

Lemma 2.2 Let G = G(A, B) be an Fy-free bipartite graph with |A] = m and |B| = n. Let
£>2and ke > 4. Let n >m and m > mq = my(ky,---,k¢). Suppose that G contains a copy
of Fp_1 =P U---UPy, ,. Let Ag=A—V(Fy_1), Bo=B—-V(Fi_1). Ifeg(x,y) > se+1i—2
for each x € Ay and y € By, then

e(G) < f(m,n; Xy)
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where the equality holds if and only if G € F(m,n; Xy).
Now we will show that Lemma 2.2 and Theorem 1.3 imply Theorem 1.4.

Proof of Theorem 1.4 Let G(A, B) be an Fy-free (m,n)-bipartite graph. Let n > m and

m > pmy, where m; is from Lemma 2.2, and p > 1 will be defined later. Let k; > 4. Assume
that

e(G) > F(m,n; Xy). (2.1)

Then we will prove this theorem by induction on ¢. It is trivial for £ = 1 (by Theorem 1.1),
so we may assume that ¢ > 2 and the theorem holds for ¢ — 1. Let Fy_1 = Py, U---U Py, ,.
If G is Fy_1-free, then by the definitions of F(m,n; Xy) and F(m,n; X;), we have e(G) <
ex(m,n; Fy_1) = F(m,n; Xy—1) < F(m,n; Xy). So e(G) = ex(m,n; Fy—1) = F(m,n; X;) and
G € EX(m,n; Py, )U (ZL_Jl F(m,n; X;)), hence Theorem 1.4 holds. So we assume that G contains
a copy of Fy_1, and lelt:ilo =A—-V(Fy—1), Bo=B—V(F_1).

If eg(x,y) > s¢+ r¢ — 2 for each € Ay and y € By, then Theorem 1.4 holds by Lemma
2.2. Suppose that there exist 1 € Ay and y; € By such that eg(z1,y1) < sp + 10 — 3. Let
G' = G—{z1,y1}. Then we can construct G*** from G" if there exist z; € AgNV (G?) and y; €
BoNV (G?) such that egi(z,y) < sg+7r¢—3. Note that f(m,n; X¢) > (s¢—1)n+(re—1)m—0(1).
Thus for any ¢,

e(GY) > F(m,n; Xy) — (sg + 10— 3)t
> f(m,n; Xe) = (se +re = 3)t
>(s=D(n—t)+ (re—1)(m—t)+t—0(1). (2.2)
Since e(G") < (n —t)(m — t), combining with (2.2), we have (s, — 1)(n —t) + (r¢ — 1)(m — t) +
t—0(1) < (n—t)(m—t) implying t < m — s.

So the process will be stopped in 1 <ty < m — s, steps. Furthermore, let 7" = | % |. Then

Gt is P,,-free (since P,, contains a copy of Fy). By Corollary 1.1,
e(G") < ex(m —tg,n —to; Py,) < (7' — 1)(n —to) + (r' — 1)(m — o).
By (2.2), we have
e(G™) > (sg — D)n+ (rg — 1)m — (s¢ + ¢ — 3)to — O(1).
Hence, combining the above two inequalities, we have
2" —sp— 1y

< ——m—m——— .
m+0(1) < 2r’—se—rg+1n+0(1)

r — sy r—rp

to <
0 2T’—3g—rg+1n+2r’—3g—rg+1

Since n is sufficient large, there is a constant 0 < ¢; < 1 such that ¢yn — tg > my.
Suppose that m —ty < mq, i.e., m < mj +tg < g1n. Let p = 1%1 > 1 (since ¢; can be

a1
chosen close to one), where o is the constant from Theorem 1.3. Now by m > pm; > p(m —tp),
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we have

n—ty> (qil)m—to > (q_ll —1)m2 (q_ll —l)p(m—to) =o(m —tp).

Recall that m —tg > sp. Let p =25y — 2 + se=Ll Theorem 1.3 implies

re—2

(Gt < {f(m,n;Xe) — (s¢+re — 2)to, if m —to > p;

flm,m; Xo) — (se + 10— 2)tg + O(1), if m—ty <p.
Hence if m — to > p, then f(m,n; X¢) < e(G) < e(G®) + (s¢ + 10 — 3)to < f(m,n; X)) —to <
f(m,n; Xp) — (m —mq) < F(m,n; X¢), a contradiction to (2.1). If m —to < p, then since m
is sufficient large, f(m,n; Xy) < e(G) < e(G') + (s¢ + 10 — 3)to < f(m,n; Xy) —to + O(1) <

f(m,n; Xp) — (m —mq) + O(1) < f(m,n; X¢) < F(m,n; X;), contradicting (2.1).

Suppose that m—ty > m1. Note that we only delete vertices in AgUBy. Hence, G contains
a copy of F;_1. By the termination condition, egto (x,9) > s¢+1¢ — 2 for each z € V(G?) N Ag
and y € V(G™) N By. It follows from Lemma 2.2 that e(G") < f(n — to,n — to; Xy) =
f(myn; Xo) — (s¢ + 10 — 2)to. Therefore, e(G) < e(G™) + (s¢ + 10 — 3)to < f(m,n; X)) —to <
f(m,n; X¢) < F(m,n; Xy), a contradiction to (2.1). This completes the proof of Theorem 1.4.

3 Proof of Lemma 2.2

We first introduce a stability result for paths in bipartite graphs.

Lemma 3.1 Let G = G(A, B) be a P;-free bipartite graph with |A| = m, |B| =n andt > 4.
Let A be a constant and n > m be sufficiently large. If

e(G) > ex(m,n; Py) — A, (3.1)

then there is a constant 0 < e < 1 depending on A and t such that

(1) if t = 5, then there are two vertices u € A and v € B such that dg(u) > e(n — 2q) and
da(v) > e(m — 2q), where q is the number of copies of Koo in G;

(2) if t #5, then there are two subset Ay C A and By C B with |A1| = |B| = [§] — 1 such
that d%.(Ay) > en and d&(By1) > em.

Proof If t = 4, then G consists of stars!. By (3.1) and Corollary 1.1, we have e(G) >

n+m— A —2. Thus G consists of at most A + 2 stars, and hence there is a star whose center

belongs to A with at least AL—i-Q leaves and a star whose center belongs to B with at least

leaves. The results follow from setting e =

_m_

A+2
1
A+2
If t = 5, then G consists of stars and copies of K3 5. Let ¢ be the number of copies of K5 o
in G. The rest proof of this case is similar to that of ¢ = 4 and be omitted.
Now, let t > 6, n > m and m be sufficient large. Let r = |§|. Deleting vertices of degree
at most r — 2 in G until that the resulting graph G* = G(A*, B*) has no such vertex. Let

IWe view isolated vertices and edges as trivial stars.
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|A*| =m*, |B*| =n* and 8 = m+n —m* —n*. By (3.1) and Corollary 1.1,
e(G*) > e(G) — (r—2)3 > (r—1)(m* +n*) —2(r —1)> = A+ 3. (3.2)

Without loss generality, we may assume that m* = min{m*,n*}. Since G* is P;-free, by
Corollary 1.1,
e(G") < {E: - 352 iﬁi_ 2r —1)?, o ; .
Combining (3.2) and (3.3), we have that 3 < A +2(r —1)? if m* <t — 1 and that 8 < A if
m* > t. However, if m* <t — 1, then m < B+ m* <t— 1+ A+ 2(r — 1)2, contradicting that
m is sufficient large. Hence m* >t and g < A, that is, m* +n* >m+n — A. So

(3.3)

m*>m—A and n*>n-—A. (3.4)

Since n > m and m is sufficient large, both m* and n* are sufficient large.
Since the minimum degree of G* is at least r — 1 > 2, by Theorem 2.1, any connected
component of G* must contains a cycle of length at least 2(r — 1). Furthermore, since G* is

P;-free, the length of longest cycle of G* is at most 2r.

Claim 3.1 Any connected component of G* must be one of the following four types:

e Type 1 A subgraph of K, , containing a cycle of length 2r;

e Type 2 A complete bipartite graph K, _; ,_1;

e Type 3 A complete bipartite graph K,_; ,_14¢ with ¢ > 1 and the part of size r—1 belongs
to A*;

e Type 4 A complete bipartite graph K,_; ,—14+ with ¢ > 1 and the part of size r—1 belongs
to B*.

Proof If a connected component G} of G* contains a cycle C; of length 2r, since G* is
Pi-free, Ng:(V(C1)) C V(Cy). So V(GT) = V(Ch), i.e., G7 is of Type 1.

If a connected component G5 of G* contains no cycle of length 2r, then G5 must contains a
cycle Cy = urviugve - - - ur_1vp—1u7 of length 2r — 2. If V(G3%) = V(C2), then G is a complete
graph K,_j,_1. So G5 is of Type 2.

Suppose that V (G3)#V (Ca). If there is a vertexz; ¢ V(Ca)of G5 such that Ny (c,)np- (21) #
0, then we claim that Ngy(z1) = V(C2)NB*. Otherwise, there is a vertex y1 € Ngz (21)\V(Ca).
Since G* is Pi-free, Ngz(y1) C V(C2) U {x1}. Thus y; is adjacent to at least r — 2 vertices
of V(Cs). Let v; € Nv(cz)($1)~ So at least one vertex of u; and w;41 is adjacent to yi,
say wiyr € E(G35). Thus ujviugvs -« - w1 10; -+ - up—10,_1ug is a cycle of length 2r in G35, a
contradiction.

Then for any vertex u; € V(C2)NA, G[(V(C2)\{u;})U{x1}] contains a cycle of length 2r—2
in G3. By the above proof, u; has no neighbor in B*—V(C5). Hence V(G3)NB* = V(Cy)NB*,
and G5 is a complete bipartite graph such that the class of order r — 1 belongs to B*. Similarly,
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if Ny (c,)na=(z1) # 0, then G3 is a complete bipartite graph such that the class of order 7 — 1
belongs to A*. Therefore, G is of either Type 3 or Type 4.
Let ¢; be the number of connected components in G* with Type i for i € {1,2,3,4}. Then

2
we will consider two cases. Set ¢ = m.

Case 1 tis even. Clearly, we have ¢ = 0. Hence

e(G*) = (r=1)2q+ (r = 1)(n" = (r = 1)(g2 + @) + (r = 1)(m" = (r = 1)(g2 + g3))
=(r=D(m" +n") = (r = 1)%(¢2 + g3 + q4)-

Combining with (3.2), we have g2 + g3 + q4 < (TA—;J)Z + 2.

If g3 = 0, then e(G*) < (r — 1)m*, contradicting (3.2); if ¢4 = 0, then e(G*) < (r — 1)n*,
contradicting (3.2).

Thus 1 < ¢3,q4 < % + 1. By (3.4), there are two subsets Ag C A* and By C B*
with [Ag| = |Bo| = r — 1 such that d%(A4g) > d&.(Ag) > W > en and d%(By) >

. (Bo) > % > em.

Case 2 tis odd. Note that both m* and n* are sufficient large. Hence

e(G) < (r=1)(n" = (r—1)(q2 + @) —rq) + (r = 1)(m" — (r —1)(g2 + ¢3) —rq1)
+(r—1)%g@+7q
=(r—1m" +n*) = (r—1)*(g2+ g3+ @) — (r—2)rq:.

Combining with (3.2), we have (g2 + ¢3 + q4) + (2;_2531 <2+ (7«A—_1€2'

If g3 = 0, then e(G*) < (r — 1)m* + rq1, contradicting (3.2); if g4 = 0, then e(G*) <
(r — 1)n* +rqi, contradicting (3.2).

Thus 1 < g3,q4 < % + 2 — (’E;_Q%’;Zl. By (3.4), there are two subsets A; C A* and
By C B* with |Ay| = [Bi| = r — 1 such that dg(A;) > dg. (4;) > tr=Detalra > o
and dg;(By) > dg. (By) > "=tr=tleta)=ra > oy,

This completes the proof of Lemma 3.1.

Given a multi-set of integers D = {q1, - ,q¢}, we say that an integer a is D-sum-free if
there is no subset of D whose sum is a. For any 1 < j </, denote R; = {ry,ro,--- ,r;}. For

any integer a > 1 which is R;-sum-free, denote
Rj(a) ={(i,y): 1 <y<r;—1l,a=yor (a —y) is not (R; \ {r;})-sum-free}.

Denote by D%’ the (m,n)-bipartite graph obtained from K5, by adding an edge between
the class with size a and the class with size b. If ¢ > 1, denote by ngf’;} the (m + 1,n + 1)-
bipartite graph by identifying an end vertex of P53 and the vertex with degree n —b+1 in Dg;f’n.
Furthermore, if a > 2, denote by Dﬁ;?;lo the (m+ 1,n+ 1)-bipartite graph by identifying an end

vertex of P; and one vertex with degree n — b in D% (see Figure 2).

m,n
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(a) (b) (c)
Figure 2 (aL)Déy’?7 (b)Dg:g’l7 (C)Dé:?’o.

Lemma 3.2 (1) Ifa+b> s, + 1, then D¥"_ contains a copy of Fy.

Te,Tp

(2) Let a+b = s;. If there is a pair (i,1) € Re(a), then D&%L contains a copy of Fy. If

Le, T

there is a pair (i,y) € Re(a) with y > 2, then D2 contains a copy of Fy.

T, Te

(3) If a+ b = sy, then the following three statements are equivalent.
i) L&Y s Fy-free;

( Ty,Tp
(ii) D&P,, is Fp-free;
(

iii) a is Re-sum-free and k; € Xy is odd for any pair (i,y) € Re(a).
Proof Let A; and B be the vertex set of D‘;’;’M with degree at least x4y — b and zp — a,

respectively. Let As and By be the vertex set of Lgfm , with degree x, and z; in two different

classes, respectively. Let F* = Fy — P,.

Note that L#J_Krj,kj contains a copy of Fy". The definitions of D5’ %, Ly, Dg%—rml7
J#
Dg;i{ra’o and R¢(a) imply the following observations.

Observation 3.1 Let r > 2 and 1 < a < r — 1. The lengths of longest paths of both
Dy)’5," and Ly, are 2r. The length of longest path of D%’TT;TM is 2r + 1 and the length of
longest path of Dg'5 “° with a > 2 is 2r + 1.

Observation 3.2 For any pair (i,y) € Re(a), D&, (or D&% D3P0 with a +b > sy

Ze,Tp Tyg,Tg? Ze,Te

contains a copy of F; U D}’%  (or Fj U DZ;Z,Q, Fru DZ;Z,;?, respectively), where z = (a + b —

se) + (ri = y)-

(1) Let a + b > s¢ + 1. If a is not Ry-sum-free, then D‘;’;’w contains a copy of |J Ky, r,+1
i€ [(]

implying that Dg’elfw , contains a copy of Fy, we are done. So we may assume that a is Ry-sum-

free, whence Ry(a) is not empty. Let (j1,y1) € Re(a). By Observation 3.2, Dg;f?ze contains a

* Y1,75; —y1+1 . Y1,75; —y1+1 .
copy of I}, UD "3 - By Observation 3.1, Dy "3' contains a copy of Py, . Thus

b i
Dg;”,, contains a copy of Fy.
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(2) Let a+b = s;. If there is a pair (j2, 1) € Re(a), then by Observation 3.2, D%%! contains

T, Te
1,7‘]‘2— 1,7‘]‘2—1

a copy of F U ka,kj:’l' By Observation 3.1, ij2>kj2 ! contains a copy of Py, . Thus Dbl

Tg,Tg
contains a copy of Fy. The proof for the rest case is similar to that of the first case and be
omitted.

(3) Let a + b = s;. Assume that Lg', is Fy-free. Clearly, D%’ is Fy-free (by D%’ C
Lgt,,). Thus (i) implies (ii).

Assume that Dg;ffm , 18 Fy-free. Then a is Ry-sum-free and k; € X, is odd for any pair
(i,9) € Re(a). Otherwise, a is not R,-sum-free or there is a pair (j3,y3) € Re(a) with kj, is
even.

If a is not Re-sum-free, then there is a partition (I, I) of [¢] such that a = > r; and

i€l,

b= > r;. Then D%, contains a copy of |J Pk, containing A; and a copy of |J Py,
i€y {icl,} {i:r;€l}
containing Bj, and the two linear forests are disjoint. Hence Dg;fr , contains a copy of Fy.

If there is a pair (js,ys) € R¢(a) with kj, is even, then by Observation 3.2, D&’ contains

a copy of F, UDZ:;J;];'% Then by Observation 3.1, DZ:ST?J;% contains a copy of Pa;. = Py, ,
so D& contains a copy of Fy. Thus (i) implies (iii).

Assume that a is Ry-sum-free and k; € X, is odd for any pair (i,y) € Re(a). Then L&,
is Fy-free. Otherwise, Lg;fjx , contains a copy of Fy, then each P; for i € [¢] contains exact r;
vertices of Ao UBs (since a+b = sp). So if k; is odd, by Observation 3.1, Py, contains r; vertices
of Ay or By. Thus either a is not Ry-sum-free or k; € X, is even for some pair (i,y) € R¢(a).
Hence, (iii) implies (i).

Therefore, the above three statements are equivalent.

Lemma 3.3 Letn > m and m be sufficient large. Let ky > 4. IfL‘}n’f’ with a+b = sg+rp—2

is Fy-free, then ky € {4,5}. Morcover, e(L&b,) < f(m,n;Xy) and equality holds only when
L&, € F(m,n, Xy).

Proof Suppose that L;l,;f’n is Fy-free with a +b = sy +ry — 2. Let Ay, By be the vertex sets

of L?,;f’n with degree n and m respectively.

If k¢ > 6, then sp + 1y —2 > s, + 1. By Lemma 3.2(1), D;ln’f’ contains a copy of Fy, so Lgif’n

contains a copy of Fy. Thus k¢ € {4,5} and a + b = sy.
Note that L&Y is Fy-free if and only if L%® is Fy-free. Since n > m and m is sufficient

m,n m,n

large, a > b implies that e(L%5,) > e(L%%,). Thus we may assume that a > b, so b < |3].

Since m is sufficiently large,
e(L‘},;l)’n) = an + bm — ab is monotone decrease respect to b.

Since Lf,’fn is Fy-free, by Lemma 3.2(3), b is Re-sum-free and k; is odd for any pair (¢,y) €
Re(b). Thus b # 2 (since ry, = 2). Moreover, if X, is not odd, then b # 1 (since k; is odd for
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any pair (i,y) € Re(b)). Hence,

3, if ky = 4;
b><1, if kp =5 and X, is odd; (3.5)
3, if ky =5 and Xy is not odd.
If X, is odd with k; = 5, then b > 1 (by (3.5)), e(L%",) < e(L§t M) = f(m,n; X;) and
equality holds only when Lfﬁf’n = Lf?’;;ll’l € F(m,n; Xy).

If F; = Py U P, with m = n, then b > 3 (by (3.5)), e(L%b,) < e(L33,) = f(m,n; X¢) and

equality holds only when L% = L33 € F(m,n; Xy).
Otherwise, by the definition of f(m,n; Xy), we have f(m,n;X,)

e(Leb,) > e(Ky,bm~1), then since rp = 2,

e(Kfo;Zl“_l). If

e(LZ{{’n) =sm—bn—m)—0b(sg—b)>(se—1)(n—1)+m—sp+1 e(Kf,f;LLl) (3.6)

that is, (b —1)(n — m) + b(sg — b) — 2(sg — 1) < 0. Thus b(sy — b) < 2(s¢ — 1) since n > m.
(a) If ky = 4, then b > 3 (by (3.5)) implies sy > 6 and 3(sy — 3) < b(sg — b) < 2(sg — 1). Thus
6 <s <7 If sy =06, thenb=3(9<b6—0>b) <10). So 2(n —m) — 1 < 0 implies n = m.
Furthermore, by Lemma 3.2(3), k; € X, is odd for any pair (i,y) € Re(3), so Fy = Py U Py with
m = n, a contradiction (in this case, we suppose that Fy # PyU Py with m = n). If s, = 7, then
12 < b(7 —b) < 12 implies b = 3. Thus 2(n —m) < 0 implies m = n. And we also have k; € X,
is odd for any pair (i,y) € Re(3), so Fy = P11 U Py. Hence, if ky = 4, then Fy = P11 U Py with
m = n. Moreover, the equality of (3.6) holds when F;, = P;; U Py with m = n. (b) If k, =5,
then by (3.5), b > 3. By the similar proof as that of case k; = 4, we have 6 < s, < 7 and b = 3.
However, X is not odd, it implies that there is an even integer k; € Xy such that (i,y) € Re(3).
By Lemma 3.2(3), L%}, contains a copy of Fy, a contradiction.

Therefore, e(L%b,) < e(Ky,b"1) = f(m,n; Xy), and equality holds only when F;, =
Py U Py with m =n and L%’ = L3, € F(m,n; Xy).

This completes the proof of Lemma 3.3.

Let G = G(A, B) be an Fy-free bipartite graph with |A| = m and |B| = n. We call a pair of
subsets (A*, B*) in G with A* C A and B* C B a (p, g)-core of G if d3,(A*) > p, di.(B*) > ¢
and one of the following holds:

(a) |A*| + |B*| = s¢ with eq(A*,B*) > 1 and ry = 2;

(b) |A*| = > ri+r¢—1and |B*| = Y ri+re— 1 with eq(A*, B*) =0, where (I,, 1) is
icl, i€l
a partition of [¢ — 1].

We call a (p, ¢)-core of G satisfying (a) Type A, and satisfying (b) Type B.

Lemma 3.4 Let G = G(A, B) be an Fy-free bipartite graph with |A| = m and |B)
Let £ > 2 and k¢ > 4. Suppose that e(G) > f(m,n; Xy) — Ay, where Ay > 0. Let n >
and m be sufficient large compare with x; and Ay. If (A*, B*) with A* C A and B*
is an (xg,xp)-core of G, then there is a pair of subsets (A}, BY) with Ay C A and BY

n N
w3 T
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and a constant 0 < & = (X, A1,|A*|,|B*|) <1 such that (A3, BY) is an (&n,&m)-core of G.
Moreover, e(G) < f(m,n; X;), where equality holds only when G € F(m,n; X,).

Proof Let G = G(A, B) be an Fy-free bipartite graph with |A] = m and |B| = n. Suppose
that
e(G) > f(m,n; X,) — Ay (3.7)

Let n > m and m be sufficient large than xy and A;. Let (A*, B*) with A* C A and B* C B be
an (xg, xg)-core of G. Let |A*| = a*, |B*| =b* and G* = G — A*U B*. Let Ay = Ng(B*) — A*
and By = Ng(A*) — B*.

We first show that

(1) G* is Py,-free. Suppose that G* contains a copy of Py, . If a*+b* = s, with eq(A*, B*) >
1 and r, = 2, then G — Py, contains a copy of D% ¥ By Lemma 3.2(1), D& > contains

Tg—1,Tg—1" Te—1,Te—1

a copy of Fy_i since a* + b* = sy_1 + 2, so G contains a copy of Fy, a contradiction. If

a*= Y ritrg—landb* = 3 ri+r,—1with eq(A", B) = 0, where (I,, I)) is a partition of
[¢— l]l,eﬁlen G- Py, containszsl(l:)opy of U Py, containing a* — ry + 1 vertices of A* and a copy
of U Py, containing b* —r, +1 Verticelseg% B*. Thus G contains a copy of Fy, a contradiction.

l?éb) a* is Ry-sum-free. Otherwise, there is a partition (I«, [p«) of [¢] such that a* = Y r;

i€l

and b* > > r;. Then G contains a copy of |J Py, containing A* and a copy of |J Px,
i€ T i€l i€l
containing > r; vertices of B*, and those two linear forests are disjoint, a contradiction.

i€ T
(3) There is no path between Ag and By in G*. Otherwise, there is a path P;, with

t; > 2 between By and Ag in G*. Since a* is Ry-sum-free, Ry(a*) is not empty. For any pair
(i,y) € Re(a*), G contains a copy of a path with order 2y + ¢ + 2(r; —y) > 2r; +2 > k;
containing y vertices of A*, r; — y vertices of B* and the path P;,. By the definition of R,(a*)
and a* + b* > s;, G — Py, contains a copy of Fy — Py,. Thus, G contains a copy of Fy, a
contradiction.

Let G = Cg_p«(A*) and G} = Cg_a-(B*). Let G, = G — (V(G) UV(G})). Thus
e(G) = e(G[A*, B*]) + e(G) + e(G}) + e(Gy).

Let A1 = N&(B*)NAg, Ay =Ag— A1, As=V(G)NA, Ay =V(Gf)NA— Ay and A, =
V(Gr)NA. Let By = N&(A*)N By, Bo = By— By, B3 =V (G;)NB, B4 =V (G;)NB— By and
B, = V(G,)NB (see Figure 3). Let |4;| = a; for i =1,2,3,4,r and |B;| = b; fori =1,2,3,4,r.
Thus we have a* + a1 + a2 + ag + a4 + a, = |A] = m and b* + by + by + b3 + by + b, = | B| = n.

Since (A*, B*) is an (x4, x¢)-core of G, we consider two cases as following.

Casel (A*, B*)isan (x¢,x¢)-coreof G with Type A. Thus, a*+b* = s, with eq(A*, B*) >
1 and ry, = 2.
Then k, € {4,5}, a*,b0* > 1 and a*+b* > 4. Since eq(A*, B*) > 1 and dg, (A*), d%(B*) > zy,

G contains a copy of ng’mbe. Thus ng’gl is Fy-free (since G is Fy-free). Hence, Lemma
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Figure 3 Graph G: G, consists of blue parts and lines, G}, consist of red parts and lines and G,
consists of green parts and lines.

3.2(3) implies that Lob" ig Fy-free, a* and b* are Ry-sum-free and k; is odd for any pair

m,n

(i,y) € Re(a*) URe(b*). Therefore, since r, = 2, we have
a*#2 and b"#2. (3.8)
We claim that
Ng+ (Al @] Bl) = 0. (39)
a*,b*1

Le, Ty

Re(a*) # 0. Thus Lemma 3.2(2) implies that G contains a copy of Fy, a contradiction.

a®,b*,0

. s
e, - Slnce a* is Ry-sum-free,

Otherwise, G' contains both a copy of D and a copy of D

Claim 3.2 ¢e(G}) <a*by + (a* — 1)ba + a3 + bs.

Proof Assume that there is a pair (i1,y1) € Re(a*) with y; > 2. If at least two vertices
of A* are adjacent to B*, then By has no neighbor in G*. Otherwise, G contains a copy of
Dg;;g;o, by Lemma 3.2(2), G contains a copy of Fy, a contradiction. Thus a3 = by = 0 and
e(G% — A*) = 0. Hence e(G%) < a*by + (a* — 1)bg, the claim holds. If only one vertex u* € A*
is adjacent to B*, then Ng(A* — {u*}) N By has no neighbor in G*. Otherwise, G contains a
copy of D;Z,’Z’Oa by Lemma 3.2(2), it is a contradiction. By (3.8), we have a* > 3 (since y; > 2
and a* # 2). Let b}, be the number of vertices of By with degree at least one in G*. Since G*
is Py,-free and ry = 2, by Corollary 1.1, we have e(G} — A*) < by + a3 + by. Thus by a* > 3
and by > be, e(GF) < a*by + (a* — 1)(bg — by) + b5 + (a3 + b+ bs) < a*by + (a* — 1)ba + a3 + by,
the claim holds.
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Assume that y = 1 for any pair (i,y) € Re(a*). If a* =1, then by = a3 = by = 0 (by
(3.9)). Thus e(G%) < by, the claim holds. If ¢* > 3, then any neighbor of By in G* has degree
exact one in G*. Otherwise, suppose that u; € Ng«(Bp) has two neighbors vi,ve € V(G*)
with v; € By. Since a* > 3 and (i,1) € Re(a*), there is a subset 0 # I; C [¢] \ {i} such that

a* =1+ > 7. For any integer j € I;, G contains a path P! of order 2(r; — 1) + 1 whose
i€l
an end vertex is vy such that |V(P') N A*| = r; — 1. So G contains a path P? = Plvjujv,

of order 2r; + 1 > k; with |[V(P?) N A*| = r; — 1. It is clearly that G — P? contains a copy

. . i 1b"
so G — P? contains a copy of Fy — Py, (since D it

a”—r;+1,b"
Of D wz—k}j7w£—k}j

wo—ky wo—k; contains a copy of

Fy — Py; by Lemma 3.2(1)). Hence, G contains a copy of Iy, a contradiction. Thus, by = 0 and
e(G: — A*) < as. Hence e(G%) < a*by + (a* — 1)bg + a3, the claim holds.

Similarly, we have e(G}) < b*aq + (b* —1)az + b3 + as. Then since G, is Py,-free and rp = 2,
e(G;) < a, + b, by Corollary 1.1. Thus since Lo is Fy-free, by Lemma 3.3, we have

m,n

e(G) = e(G[A*, B*]) + e(G}) + e(Gy) + e(Gy)
<a™b* +aby + (a" — )by + a3z + by + b%ay + (b — 1)az + bz + a4 + e(G,)
=a'n+b"'m—a"db* — (a2 +b2) — (a* —1)(bg + bs) — (b* — 1) (a3 + a4)
—a'b, —b*a, + e(Gy) (3.10a)
<a'n+b*m—a*d* — (ag + ba) — (a* — 1)(bg + bs + b)) — (b* — 1)(ag + a4 + a)
< e(Le M) < fm,n; Xo). (3.10)

Moreover, the equality holds only when as = by = a3 = bs = a4 = by = a, = b, = 0, and
G = L% Y € F(m,n; X;). This completes the moreover part of the lemma in Case 1.

m,n

Since L% " is Fy-free, Lemma 3.3 implies that

e(G) = f(m,n; X¢) = Ay > a*n+b"m —a™b* — Ay (3.11)

Thus by (3.10a) and (3.10)—(3.11),

= O'
T (312
o 312

as + by + (a* — 1)(bs + bg) + (b* — 1)(az + a4) + a*b, + b*a, < Ay, if e(G,)
as +ba + (a* — 1) (b3 +bs + b)) + (b* — 1)(az + as + ar) < Ay, if e(G,)

Hence, if a*,b* > 2, then by (3.12), by + b3 + by + b, +as +as+as+a, < Ay. Thus since n > m
and m is sufficient large, a1 > m —a* — A1 > % and by >n—b*— A1 > %, this is, (A*, B*) is
an (%, 2)-core of G with Type A. The lemma holds by setting A3 = A*, Bj = B* and £ = 1.

If a* =1 or b* = 1, without loss of generality, we may assume that ¢* =1 and b* = sy — 1.
Then by = ag = by = 0. Since k; is odd for any pair (i,y) € Re(1) (by Lemma 3.2(3)), ks =5
and Xy is odd. By (3.12) and b* = sy — 1 > 3, we have as + bs + as + a4 + a, < A;. Thus
a1 >m—a*— A > o

We will show that any neighbor of Ag in G* has degree exact one in G*. Otherwise, G*

contains a copy of P3 with an end vertex in Ap. Hence G contains a copy of Ps containing one
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vertex of B* and a copy of Fy — Ps containing s; — 2 = sy_1 vertices of B*, a contradiction.
Thus a4 = 0.

Furthermore, for any vertex v* € B*, there is at most one vertex in Ng(v*) N Ag which
has neighbors in G*. Otherwise, G contains a copy of P5 containing only one vertex v* in B*
and four vertices of G*, then G contains a copy of Fy, a contradiction. Thus there are at most
b* = sy — 1 vertices of Ay have neighbors in G*. Hence, there is one vertex of Ay has degree at
least ﬁ

(i) If b, = 0 or a, =0, then e(G,) = 0. Since a* =1 and by = a3 = by = a4 = 0, by (3.12),

as + a*b, + b*a, < Ay. Then there is a vertex u} € A has degree at least max{by, Sebil} >

n—a*—A; n
Se 2 sp+1

Type A. The lemma holds by setting A5 = {u}}, B5 = B* and £ = Tl+l

(ii) If b, > 1 and a, > 1, then e(G,) > 0. Since a* = 1 and by = a3 = by = a4 = 0, by
(3.12), as + a, < Aq.

By (3.10)—(3.12), we have

(since n is sufficient large). Thus ({ui}, B*) is an (57, 5 )-core of G with

e(Gy) = e(G) — (e(GIA", B]) + €(Gy) + e(Gy))
>a*n+b'm—a"b — Ay — (a'n+b"m—a*b*) + ag + ba + (a* — 1)(b3 + by)
+ (0" —1)(az + aq) + a*b, + b a,

>ar + b — (A1 — (ag +bo+ (a* —1)(bg + by + b,-) + (0" — 1)(az + a4 + a,)))

> ex(ap, by; Pr,) — Aq.
Since the number of K32 in G, is at most 4 < %
constant € such that there is a vertex of V(G,) N A with degree at least (b, — A1). Thus there
is a vertex uj € A with de(u3) > max {by, %,s(br —A} > (n—a*—Ay)

en__ m
ese+27 2

The lemma holds by setting A5 = {u}}, By = B* and £ =

, Lemma 3.1 implies that there is a

g EN
E(Sg—l)-‘rl 2 esp+2

(since n is sufficient large). Hence ({u3}, B*) is an ( )-core with Type A or Type B.

L

Case 2 (A*, B*) is an (x4, z¢)-core of G with Type B. That is, a* = . r; + 7, — 1 and
b* = > r; + 1 — 1 with eq(A*, B*) = 0, where (I,, ) is a partition of [¢ ieﬁ

=

Then any neighbor of By in G* has degree exact one in G*. Otherwise, G* contains a copy
of P with one end vertex in By, then one can find a copy of Py, containing r, — 1 vertices of
A*. By the condition of Case 2, G contains a copy of Fy, a contradiction. Thus by = 0, and
e(G%) < a*by + (a* — 1)be + az. Similarly, we have that any neighbor of Ay in G* has degree
exact one in G*, ay = 0 and e(G}) < b*a; + (b* — 1)az + bs.

By Corollary 1.1, we have e(G,) < ex(ar, by; Pr,) < (r¢ — 1)(ar + b,) for any a, >0, b, >0
and ky > 4. Thus

e(G) = e(G[A", BY]) + e(Gg) + e(Gy) + e(Gr)
<a*b; + (CL* — 1)()2 + a3+ b a1 + (b* — 1)0,2 + b3 + B(GT)
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=a"n+b"m— 2a*d* — (az + ba) — (a* — 1)b3 — (b* — 1)as

—a*b, —b*ar +e(Gr) (3.13a)
<a*n+b*m —2a"b" — (ag + b2) — (¥ — 1)bg — (a* —r¢ + 1)b, — (b* — 1)as

— (" —r¢+Day
< e(Kp i) < fmn; Xo). (3.13)

Moreover, the equality holds only when as = by = a3 =bs3 =a, =b, =0and G = Kﬁf;l’”_l S
F(m,n; Xy). This completes the moreover part of the lemma in Case 2.
Since
e(@) = f(m,n; X¢) — Ay > a*n+b"m — 2a"b" — Ay, (3.14)

by (3.13a) and (3.13),

as + by + (a* — 1)bs + (b* — 1)ag + a*b, + b*a, < Ay, if e(G,) = 0;
az + by + (a* — 1)bs + (a* — r¢ + 1)b, + (b* — 1)ag (3.15)
+(* =71+ 1)a, < Ay, if e(G,) > 0.

Hence, if a*,b* > ry > 2, then by (3.15), ba + b3 + b, + a2 + a3 + +a, < Ay. Thus since
n > m and m is sufficient large, a1 > m —a* — Ay > & and by > n —b* — A; > 5. Hence
(A*,B*) is an (%, %)-core of G with Type B. The lemma holds by setting A5 = A*, Bj = B*
and £ = %

Ifa* =7y —1or b* =1y — 1, without loss of generality, we may assume that b* = r, — 1 and
a* =s;—1. By (3.15), ag + by + b3 + b, < Ay, 50 by >n—a* — Ay > 5 (since n is sufficient

large). Then we consider the following two subcases.

Subcase 2.1 If k, € {4,5}, then b* = 1 and a3 = 0. (a) If X, is not odd, then By has
no neighbor in G*. Otherwise, G contains a copy of an even path Py, containing exact r; — 1
vertices of A*, then G — Py, contains a copy of F; — Py, containing sy — 1 —7r; +1=s,—1;
vertices of A*. Thus G contains a copy of Fy, a contradiction. Hence az = 0. (b) If X, is odd,
then k;, = 5. We claim that for any vertex u* € A*, there is at most one vertex in Ng(u*) N By
with neighbors in G*. Otherwise, G contains a copy of Ps containing only one vertex u* in A*
and four vertices of G*, then G contains a copy of Fy, a contradiction. Thus there are at most

a* = sy — 1 vertices of By with neighbors in G*. Hence, there is one vertex of By has degree at

as
S[—l'

(i) If b, = 0 or a, = 0, then ¢(G,) = 0. Since b* =7y —1 =1 and ay = a4 = by = 0, by
(3.15), ba + b3 + b, +a, < Ay If Xy is not odd, then az = 0 implies a; > m —a* — Ay > 7

(since m is sufficient large). So (A*, B*) is an (%, 2)-core of G of Type B. If X, is odd with

least

k¢ = 5, then there is a vertex vi of B with degree at least max {al, %} > sﬁ-l since m is
sufficient large. Thus (A*, {v}) is an (%, S%’_ﬁl)-core of G with Type A or Type B. The lemma

holds by setting A3 = A, By = {v}} and £ = ;L.
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(i) If b, > 1 and a, > 1, then e(G,) > 0. By (3.15), ag+b2+b3+b, < A;. By (3.13)—(3.15),

e(Gy) = e(G) — (e(GIA*, BY)) + e(G3) + €(Gy))
>a*n+b*m — 2a*b* — A1 — (a*n +b*m — 2a*b*) 4+ as + by + (a* — 1)b3
+ (b* — 1)as + a*b, + b*a,
>ar+b-— (A1 — (az + b2+ (@ — 1)(b3 + b)) + (0" — 1)(az + a,)))
> ex(ar, by; P,) — Aq.

When k;, = 5, the number of K59 in G, is at most % < %. So, by Lemma 3.1, there is a
constant € and a vertex of V(G,) N B with degree at least (a, — A1). Thus if X, is not odd,
then there is a vertex v € B with dg(v3) > max{a1,e(a, — A1)} > % > =% since

m is sufficient large. Thus (A, {v3}) is an (5, £f5)-core of G of Type B, the lemma holds by

setting A3 = A*, B = {v3} and { = 5. If X, is odd with k, = 5, then there is a vertex

. ot —A . . .
v € B with dg(v3) > max {as, 725 e(ar — A} > (72(5;_1)+11)€ > ;25 (since m is sufficient

large). Thus (A*,{vi}) is an (5, ;Z%5)-core of G of Type A or Type B, the lemma holds by

setting A5 = A*, B; = {v3} and £ = ssf+2'

Subcase 2.2 If ky > 6, then b* =1, — 1> 2.

(i) If b, = 0 or a, = 0, then e(G,) = 0. By (3.15), as + by + b3 + b, + as + a, < A;. Since
n > m and m is sufficient large, a1 > m —a* — Ay > Zand by > n—b" —c > . This is,
(A*,B*) is an (%, §)-core of G of Type B. The lemma holds by setting A5 = A*, B; = B*
and £ = %

(i) If b, > 1 and a, > 1, then by (3.15), az + by + b3 + b, + a3 < A;. By (3.13)-(3.15),

e(Gr) = e(G) — (e(G[A", BY]) + e(Gy) + e(Gy))
>a*n+b"m —2a"b" — Ay — (a"n+b"'m — 2a¥b*) + az + by + (a* — 1)bs
+ (b" —1)az + a*b, + b*a,
> (re—1)(ar +br) — (A1 — (a2 + b2 + (a* — 1)bs + (a* —ry + 1)b,
+ (0" —=Dasz+ (b* —re + a,))
> ex(ar, by; Py,) — Aq.

Then by Lemma 3.1, there is a subset B} C B with |Bf| =, — 1 and a constant € such that
dg+(B7) > max{a1,ca,} > % > 5 (since m is sufficient large). Hence (A*, BY) is an

(3, 245)-core of G of Type B, the lemma holds by setting A5 = A*, B = By and £ = 5%2

This completes the proof of Lemma 3.4.

Lemma 3.5 Let G = G(A, B) be an Fy-free bipartite graph with |A] = m and |B| = n. Let
£>2and kg > 4. Let Ay > 0 and 92 > 0. Let n > m and m be sufficiently large than xg, Ag
and d2. Suppose that G contains a copy of Fy_1 = Py, U---U Py, . Let Ag = A—V(F;_1),
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By = B—V(Fi—1). If eg(z,y) > s¢+ 10— 2 for each x € Ay — A} and y € By — B}, with
|Apl, | Bo| < 92 and

e(G) 2> f(mvna Xg) - AQv
then there is a pair of subsets (A%, By) with A5 C A and B3 C B which is an (xg,x;)-core of
G.

Proof Let G = G(A, B) be an Fy-free bipartite graph with |A| = m and |B| = n. Let £ > 2
and ky > 4. Let Ay >0 and d2 > 0. Let
n > m and m be larger enough than xz,, As and ds. (3.16)
Let
e(@) > f(m,n; Xy) — Aa. (3.17)

Suppose that G contains a copy of Fy—1. Let Ag = A — V(Fy—1), Bo = B — V(Fi_1),
A= A-— Ao, By = B— By and GO = G(AQ,BQ). Let |A0| = myg and |Bo| = ng. Let A6 C Ap
and B} C By with |A(],|B}| < 2. Assume that

ec(z,y) > si+1¢ — 2 for each x € Ag — A, and y € By — B,. (3.18)

Since G is Fy-free, G° is Py,-free. Noting that mg > m — xy—1 and ng > n — zy_1, by (3.16),

mg and ng are sufficient large. It follows from Corollary 1.1 that
e(G%) < ex(mg,no; Pr,) < (e — 1)(mo + no). (3.19)

Note that

(se —1)(n—1)+m, if X, is odd with ky = 5;
flm,n; Xp) =< 6m—9, if Fy = Py U Py with m = n; (3.20)
(se—D)(n—r¢+1)+(re—1)(m—s,+1), otherwise.

Since e(G(A1, By))+e(G(Ao, B1)) = e(G) —e(G°) —e(G(A1, B1)) > f(m,n; X¢) — Az —e(GO) —

e(G(A1, B1)), combining (3.19)(3.20) and e(G(A1, B1)) < (252)°, we have

e(G(A1, By)) +e(G(Ag, B1)) > se—1n — 1,

where 1 = 2(rg — 1)(sg — 1) + (”2’1)2 + As. By (3.16), we may assume that e(G(41, By)) =
cin—mn and e(G(By, Ag)) = can — 11 with ¢; +¢2 > sp—1. By Lemma 2.1, there exist Ay C A,
with |As] = [¢1] and By C By with |Bs| = sg—1 — [¢1] and a constant 0 < ¢ < 1 from Lemma
2.1 such that

dé(A2) > dn and dg(Ba) > dn. (3.21)

Let |A2| = ag, |B2| = b2 and G/ = G(A—AQ, B_BQ). So CLQ—I—bQ = S¢—1, and |V(G/)QA| =m—a2
and |V (G') N B| = n — by are sufficient large by (3.16).
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Let Xy = Né(Ag) n (BO - B(/J) and Y] = Né(Bg) n (AQ — Aé) Thus

|X1| Z on — Tp—_1 — 52 and |Y1| Z on — Typ—1 — 52. (322)

Claim 3.3 If G’ is Py,-free, then there is a constant 1y such that | X[, |Y1]| > n — 2 and
m < n < m+ny. Moreover, there are two subsets of A, C A — Ay and B) C B — By with
|A5| = |Bs| = r¢ — 1 such that df, (A U A5) > x4 and df (B2 U BY) > 4.

Proof Suppose that G’ is Py,-free, by Corollary 1.1, we have
e(G') < ex(m —az,n —ba; Pr,) < (rg — 1)(m+n — sp—1). (3.23)
Then

e(G(Az, B — Bs)) + e(G(A — Az, Bs)) > e(G) — e(G") — e(G(Az, B2)) > sg—1n — 1,

where 75 < 2(rg —1)(sg— 1)+ (5‘2’1)2+A2. By |[A—As| <m, |B—By| <nanday+by =541,
each vertex in Ay and Bs has degree at least n — n,. Let no = n} + d2. Thus | X1| > n —n and
[Y1] > n—1n9, and m < n < m+ ne.

Since e(G') = e(G) — e(G(A2, B)) — e(G(A — Az, Ba)) > e(G) — sg—1n+ ba(n —m+az), by
(3.20) and Corollary 1.1,

e(G) > (re—1)(m+mn—si—1) — (2(re = 1)(se — 1) + Ay)
>ex(m —ag,n —ba; Py,) — (2(rg — 1)(s¢ — 1) + As). (3.24)

Note that for k;, = 5, there are at most one copies of Ko in G(X1,Y1) (otherwise one can
find a copy fo Fy). Thus there are at most % copies of K35 in G’. Thus by Lemma 3.1 and
(3.24), we have that for k; > 4, there are two subsets A, C A — Ay and B, C B — B, with
|AS| = |BS| = r¢ — 1 and a constant v such that d%,(A}) > yn and d%,(Bh) > yn.

Moreover, noting that dZ(Az2) > |X1| > n — e and di(A4L) > d&.(A45) > yn, by (3.16),
dg (A U Ab) > yn — ny > . Similarly, we have df, (B U By) > yn — 12 > xy.

Claim 3.4 as is Ry_i-sum-free.

Proof Suppose that as is not Ry_j-sum-free. Then there is a partition (12, I?) of [¢ — 1]

such that a = 22 r; and by = Zz r;. And we claim that G’ is Py,-free. Otherwise, G’ contains
icl? iel

a copy of Py,, then G — P, conZains a copy of Dgfl”gfl (when e(G[A3, B2]) > 1) or a copy of
Kg;gi (when e(G[Az, B2]) = 0). Since ag is not Ry_i-sum-free, by Lemma 3.2(3) and the
definition of Kgfljgfl, we have that G — P, contains a copy of Fy_;. That is, G contains a copy
of Fy, a contradiction.

By Claim 3.1, we have that there are two subsets of U3y C A — Ay and U; C B — By with
|Ui| = |Vi| = r¢ — 1 such that d, (A UUy) > 24 and d% (B2 U Vi) > .
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Note that |[AoUU | = > ri+re—1and [BoUVi| = Y ri+re—1. If e(G[A2, B2]) > 1, then

i€l2 i€l
G contains a copy of ngzrl’b””_l. If rp > 3, then ag+rp—1+bo+1,—1 = sp+1,—2 > 5p+1.

By Lemma 3.2(1), D;i;:’»’_l’b””_l contains a copy of Fy. Thus ry, = 2. Hence (A;UU;, BoUV;)
is a (xg, z¢)-core of G with Type A. The lemma holds by setting A5 = A2UU; and By = BaUV;.
If e(G[As, Bs]) = 0, then (A3 U U, Bo UVy) is a (xy, 2¢)-core of G with Type B. The lemma
holds by setting A5 = As UU; and B = By U V.

Claim 3.5 e(G[As, B3]) =0.

Proof Let 0 = (/") and ;1 = z,0. Suppose that e(G[Az, Ba]) > 1. By (3.22) and (3.16),

we have | X;| > p and |Y1| > p. We consider two cases.

n = m + 72 and there are two subsets Uy C A — As and Vo C B — By with |Us| = |Vo| =7 — 1
such that df,(As UUs) > x4 and d,(Ba U Va) > .

If ky € {4,5}, then since e(G[A2, Ba]) > 1, (A3 U Us, By U V3) is an (xy, 2¢)-core of G with
Type A. Thus the lemma holds by setting A5 = Ay UUy and B3 = By U Va. If ky > 6, then

N
as

a3 + b5 =s¢g+1¢—2> sy + 1. Since G contains a copy of D”,’ig, Lemma 3.2(1) implies that

(a) G' is Py,-free. By Claim 3.3, there is a constant 72 such that | X[, |Y1] > n — 12,

G contains a copy of Fy, a contradiction.

(b) G’ contains a copy of Py,. Then G — V(Py,) is Fy_1-free. Since e(G[Az2, B2]) > 1, each
vertex of X; can only be adjacent to vertices of V(Py,) U Az and each vertex of Y7 can only be
adjacent to vertices of V/(Py,)UB,. Otherwise, G —V (Py,) contains both a copy of D$2:%2:1 and
a copy of D252:0. By Claim 3.4, ay is Ry_i-sum-free, so Ry_1(a) # 0. Lemma 3.2(2) implies
that G — V(Py,) contains a copy of Fy_1. Thus G contains a copy of Fy, it is a contradiction.
Hence, by (3.18), each pair (z,y) with € X; and y € Y; is adjacent to at least 2ry — 2 vertices
of V(Py,).

If k; € {4,5}, then 2r, — 2 = 2. Thus there are two subsets Us C V(P,) N A and V3 C
V(Py,) N B with |Us| + V3| = 2 such that [N&(Us) N X,| > Bl > 4, and |Ng () Y| >
% > xy. Thus d& (A UUs) > [N&(Us) N Xq| > ¢ and d% (B2 U Vs) > |N&(VE) N Y| > zy.
Hence (As U Us, By U V3) is an (24, 2¢)-core of G with Type A. The lemma holds by setting
A5 = Ay UUs and B = By U Vs.

We may assume that k;, > 6. If there are more than r, vertices of X; have degree at least

r¢ vertices in V(Py,) N A, then G contains a path of order k¢ (say P,) containing 7, vertices
in V(P,) N A and k¢ — rg vertices in X;. Since 2rp — 2 > 1y + 1, X3 UY] has at least one
neighbor in V(G*) \ V(P,). Then G — P/, contains a copy of F;—; and G contains a copy of
Fy, a contradiction. Similarly, the number of vertices in Y; which are adjacent to at least 7y
vertices of V(Px,) N B is at most 7.

However, if there is a vertex x € X; such that dy pk[)(x) < ry — 2, then each vertex of Y}
is adjacent to at least ry vertices in V(Py,). Thus any vertex of X; UY; is adjacent to at least
re — 1 vertices of V(Py,). So there exist subsets Uy C V(Py,) N A and V4 C V(Pg,) N B with
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Us| = [Va| = r¢ — 1 such that [N&(Us) N X;| > X1l > 2 and |Ng(Va)n Y| > 22 > 2. Then
G contains a copy of D2 Ftre=Lbatre=1 Gince ay + by + 21y — 2 > 5 + 1, by Lemma 3.2(1), G

T Te

contains a copy of Fy, a contradiction. The proof of Claim 3.5 is complete.
Claim 3.6 There is no edge between Ny (g (Az2) and Ny (g (Ba).

Proof Suppose that there are two vertices vg € Ny (g (Az2) and ug € Ny (g (Bz2) such
that ugvg is an edge of G'. Let H = G — (As U By U {ug,vo}). We claim that H is Py,-free.
Otherwise, H contains a copy of Py,. By Claim 3.4, ag is Ry—1-sum-free, so R;—1(az) # 0.
Thus there is a pair (i,y) € R¢—1(az). Then G contains a path of order 2r; + 2 > k; containing
the edge ugvo and y vertices of Ay and r; —y vertices of Bz. Hence by (3.16) and (3.21), G— P,
contains a copy of Fy_1. Therefore, G contains a copy of Fy, a contradiction.

If there is a subset Az C Ay with [A3| = as — 1 such that [N&(As U {uo}) N (Ao — Ap)| >
(or there is a subset By C By with |Bs| = ba — 1 such that [N&(Bs U {vo}) N (Bo — By)| > 1),
then by Claim 3.5 with Ay = A3 U {up} and By = By (or A2 = A3 and Bz = B3 U {wg}), a
contradiction.

Then we may assume that for any subset A3 C As with |A3| = as—1, |[N&(AsU{uo})N(Ao—
A)| < pand for any subset B C By with |Bs| = bo —1, [N&(BsU{vg})N(By— By)| < p. Since
[V(H)NA|—|Ao— Ay < z¢+62 and |V(H)NB|—|By— Bj| < z¢+02, [IN&(A2U{up}) NV (H)| <
p+xp+ 02 and [N&(Ba U{wo}) NV (H)| < pp+ x¢ + 2. Thus

G(G[Ag @] {’LLQ}, B]) + G(G[A - (A2 @] ’U,O), By U {’UQ}]) < agn + bom + 2(/L +xp + 52) (325)

Furthermore, since H is Py,-free, by Corollary 1.1, e(H) < (r¢—1)(m+mn—s¢—1 —2). Thus
by (3.17) and (3.20),

e(G[A2 U {uo}, B]) + e(G[A — (A2 Uwuyg), B U{vp}]) = e(G) — e(H)
>(se—Dn+(re—1)m—=2(rg—1)(sp—1) — Ao — (re —1)(m+n—50-1 —2)
> Syp_1n — (AQ + 2(Tg — 1)(5@ — 1))
Hence
IN&(As) V)| >0 =g and  [NG(B2) N V()| > n — 1, (3.26)

where 93 = Ao+ 2(rg — 1)(s¢ — 1) + po + @¢ + 2 + azp + bapu.
Moreover, by (3.17), (3.20), (3.25) and Corollary 1.1,

e(H) = e(G) — e(G[A2 U{uo}, B]) — e(G[A = (A2 U ug), B2 U{vo}])
>(se—1)n+(re—1)m—2(r¢g —1)(sg — 1) — Az — agn — bam — 2(u + x¢ + d2)
> (re=1)(m+n—s,—2)— (A2 +2(re — 1)(se — 1) + 2(p + ¢ + 62))
>ex(m—az—1,n—by—1; Py,) — N4, (3.27)

where 4 = Ag 4+ 2(re — 1)(sg — 1) + 2(p + z¢ + 62).
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Note that for k, = 5, there are at most one copy of K 2 in G[N&(A2)NV (H), N&(Be)NV (H)]
(otherwise, one can find a copy of Fy in ). Thus by (3.26), there are at most ‘2 copies of
K5 in H. By (3.27) and Lemma 3.1, there are two subsets Us C A — (A2 U {uo}) and
Vs C B — (B2 U{wo}) with |Us| = |Vs| = rp — 1 such that d$,(Us), d% (Vs) > en.

Thus by (3.26) and (3.16), d& (A2 UUs) > en — n3 and dg, (B2 U Vs) > en — 13 > x,. Since
|A2 UUs| + |By U Vs| = sg + 1 — 2 > s¢ and there is the edge ugvo between Ny (o) (A2) and
Ny (g (Bz2), G contains a copy of Fy, it is a contradiction.

Combining Claims 3.4-3.6, we conclude that as is Ry—1-sum-free, e(G[As, Bs]) = 0 and
there is no edge between Ny (g (A2) and Ny (g (B2).

Now we will give the proof of Lemma 3.5 by induction. When ¢ = 2, if as is Ry_1-sum-free,
then either e(G[Az, Ba]) > 1 or there is an edge between Ny (gr)(A2) and Ny (g (B2) with
e(G[Aaz, Ba]) = 0 (since ag + by =11, As C Ay and By C By). Thus the lemma holds.

Let £ > 3. We claim that there exists an i* € [¢ — 1] such that |V(P;x) N Ag| > ri + 1
or |V(Pi+) N Ba| > r« + 1. Otherwise, |V(Pgk,) N (A2 U By)| = r; for any ¢ € [¢ — 1] (since
ag + by = s¢_1, Ay C Ay and By C Bj). Then since as is Ry_1-sum-free, there is i1 € [¢ — 1]
such that V (P, )N Ag # 0 and V (P, ) N Bz # 0. Thus either e(G[Az, Bs]) > 1 or there is an
edge between Ny (g (Az2) and Ny (gr)(Bz) with e(G[Az, Bs]) = 0, a contradiction.

We may assume that |V (P=) N Ag| > 7+ + 1. Let Cy C V(P+) N Ag with |Cy] = r;» and

G'=G-C.LetF) ;= U PuandF, ,= U D
. i€ [0]\i* i€[l—1]\¢* .
Since dg,(C1) > on, G* is F,_,-free. Since Cy C V(P;+) and G contains a copy of Fy_1, G*

contains a copy of F, 5. Thus by (3.17) and (3.20),

e(G7) > e(@) —rien
> fm,n; Xe) = Ag — rpem
> f(m—ri*,n;Xg\{i*}) — 15, (328)

where 15 = Ag + 14+ (rg — 1), and for any x € Ag — Aj and y € By — V(P;%) — B, eg(z,y) >
S¢g—Tig + 10— 2.

By (3.16), m —r;« is sufficient large than |V (P, ) — By| < d2 + 74, and 75. By the induction
hypothesis, Lemma 3.5 holds for G*". Thus there is a pair of subsets (A4*, B’ ) with A* C
V(G")NA and B C V(G¥ )N B being an (¢ — 74, 24 — 74+ )-core of G* . From (3.28), Lemma
3.4 implies that e(G*") < f(m — r4,n; X¢ \ {ki-}) and there is a pair of subsets (C*, D*) with
C* C A and D* C B and a constants ¢ such that (C*, D*) is an (én,&(m — 74+ ))-core of G .

Since eq(C1, B) > e(G) — e(G") > f(m,n; X¢) — Ao — f(m —ri=,n; Xo\ {ki= }) > rien — 15,
d%(C1) > n—mns. Hence d3,(C1UC*) > En—ns > x4 and dg(D*) > £(m—r;+) > xy. Therefore,
(CLUC*, D*) is an (xg, x¢)-core of G. Lemma 3.5 holds by setting A5 = C; UC* and B; = D*.
This completes the proof of Lemma 3.5.

Proof of Lemma 2.2 Let G = G(A, B) be a bipartite extremal graph for Fy with classes
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A,B. Let |A| = m and |B| = n with n > m > m; = my(k1,--- ,ke). Let ky > 4. From the
definitions of f(m,n; X,) and F(m,n; X,), we have

e(G) = f(m,n; Xy).

Suppose that G contains a copy of Fy_1. Let Ag = A—V (Fy_1), By = B=V (Fy_1), A1 = A— Ao,
B; = B — By and G° = G(Ag, By). Let |Ag| = mo and |Bg| = ng. Assume that

ec(x,y) > s¢+ 1 — 2 for each z € Ag and y € By.

Then by Lemma 3.5 with setting As = J2 = 0, we have that there is a pair of subsets
(A*, B*) with A* C A and B* C B being an (x4, 2¢)-core of G. Then by Lemma 3.4, we have
e(G) < f(m,n; Xy), where equality holds only when G € F(m, n; X,). This completes the proof

of Lemma 2.2.
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