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Abstract A linear forest is a graph consisting of paths. In this paper, the authors
determine the maximum number of edges in an (m,n)-bipartite graph which does not
contain a linear forest consisting of paths on at least four vertices for n ≥ m when m is
sufficiently large.
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1 Introduction

In this paper, only finite graphs without loops and multiple edges will be considered. Let

Kn and Pn be the clique and path on n vertices, respectively. An even path (odd path) is a

path on even (odd) number of vertices. Let Km,n be the complete bipartite graph with two

parts of size m and n. A linear forest is a forest whose components are paths. For a given graph

G = (V (G), E(G)), if v ∈ V (G) is a vertex of G, let NG(v) and dG(v) be the neighborhood

and degree of v in graph G, respectively. For a vertex set U ⊆ V , let NU (v) = NG(v) ∩ U ,

NG(U) =
⋃

u∈U

NG(u), N
c
G(U) =

⋂

u∈U

NG(u) and dcG(U) = |N c
G(U)|. For a subset U ⊂ V (G), if

G[U ] is connected, denote the connected component of G containing U by CG(U).

Given two graphs G and H , we say a graph G is H-free if G does not contain a copy of H as

a subgraph. The Turán number of a graph H , denoted by ex(n,H), is the maximum number of

edges in an n-vertex H-free graph. If an n-vertex H-free graph G has ex(n,H) edges, then we

call G an extremal graph for H . In 1959, Erdős and Gallai [1] proved the following well-known

result about the Turán numbers of paths.
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Theorem 1.1 (see Erdős and Gallai [1]) Let n ≥ t. Then

ex(n, Pt) ≤
1

2
(t− 2)n.

For a given graph H , we use kH to denote the vertex-disjoint union of k copies of H .

Recently, many researchers focus on determining the Turán numbers for linear forests. Gorgol

[2] first studied the functions ex(n, 2P3) and ex(n, 3P3). For more results concerning the Turán

numbers for linear forests, we refer the readers to [3–8, 12–17].

We use ex(m,n;H) to denote the maximum number of edges in an H-free (m,n)-bipartite

graph, and call G an bipartite extremal graph forH if G is anH-free (m,n)-bipartite graph with

ex(m,n;H) edges, and denote the set of all bipartite extremal graphs for H by EX(m,n;H). In

1984, Gyárfás, Rousseau and Schelp [9] determined ex(m,n;Pk) and characterized all bipartite

extremal graphs for all values of m,n, k.

Denote by Ka,b
m,n the (m,n)-bipartite graph consists of Ka,n−b and Km−a,b. Denote by La,b

m,n

the (m,n)-bipartite graph obtained from Ka,b
m,n by joining each vertex of the class with size a to

each vertex of the class with size b (see Figure 1). In particular, we say L1,1
m,n is a double star.

Figure 1 (a)K2,3
6,7 , (b)L

2,3
6,7.

Theorem 1.2 (see Gyárfás, Rousseau and Schelp [9]) Let ℓ = ⌊k
2⌋ − 1 and n ≥ m.

(1) If k ≥ 2 is even, then

ex(m,n;Pk) =







mn, for m ≤ ℓ;
ℓn, for ℓ+ 1 ≤ m ≤ 2ℓ− 1;
(n− ℓ)ℓ+ (m− ℓ)ℓ, for m ≥ 2ℓ.
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Moreover,

EX(m,n;Pk) =























{Km,n}, for m ≤ ℓ;
{Kℓ,n}, for ℓ+ 1 ≤ m ≤ 2ℓ− 1;
⌊n

2
⌋

⋃

j=0

{Kℓ,j
m,n}, for m = 2ℓ;

{Kℓ,ℓ
m,n}, for m ≥ 2ℓ+ 1.

(2) For k = 3,

ex(m,n;P3) = m.

Moreover, the unique extremal graph is mP2 ∪Kn−m.

(3) For k = 5,

ex(m,n;P5) =

{

m+ n, for m = n ≥ 2 is even;
m+ n− 1, otherwise.

Moreover, the extremal graphs consist of at most one double star and copies of K2,2.

(4) If k ≥ 7 is odd, then

ex(m,n;Pk) =















mn, for m ≤ ℓ or m = n = ℓ+ 1;
ℓ(n− 1) +m, for n > m = ℓ+ 1 or ℓ+ 2 ≤ m ≤ 2ℓ+ 1;
2ℓ2, for m = n = 2ℓ+ 2;
(n− ℓ)ℓ+ (m− ℓ)ℓ, for n > m = 2ℓ+ 2 or m ≥ 2ℓ+ 3.

Moreover,

EX(m,n;Pk) =















































{Km,n}, for m ≤ ℓ or m = n = ℓ+ 1;
{Kℓ+1,ℓ+1 ∪K1, L

ℓ,1
m,n}, for m = ℓ+ 1 and n = ℓ+ 2;

{Kℓ+1,1
m,n , Lℓ,1

m,n}, for m = n = ℓ+ 2;
{Lℓ,1

m,n}, for n− 1 > m = ℓ+ 1 or n ≥ m = ℓ+ 2
or ℓ+ 3 ≤ m ≤ 2ℓ;

{Kℓ,ℓ+1
m,n , Lℓ,1

m,n}, for m = 2ℓ+ 1;
{Kℓ+1,ℓ+1

m,n }, for m = n = 2ℓ+ 2;
{Kℓ,ℓ

m,n}, for n > m = 2ℓ+ 2 or m ≥ 2ℓ+ 3.

In order to use it easily later, we will give a simple version of Theorem 1.2.

Corollary 1.1 Let ℓ = ⌊k
2 ⌋ − 1 and n ≥ m. If m ≤ k, then

ex(m,n;Pk) ≤ ℓ(m+ n);

if m ≥ k, then

ex(m,n;Pk) =







m, for k = 3;
n+m− i, for k = 5;
(n− ℓ)ℓ+ (m− ℓ)ℓ, otherwise,

where i = 0 when n = m is even, and i = 1 otherwise. In particular, for any n ≥ m ≥ 0 and

k ≥ 2,

ex(m,n;Pk) ≤ ℓ(m+ n).
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From now on, let Fj be the linear forest consisting of Pk1
, · · · , Pkj

with k1 ≥ k2 ≥ · · · ≥

kj ≥ 2 and j ≥ 2. Letting Xj = {k1, · · · , kj}, we say that Xj is odd if all numbers in it are odd

and Xj is not odd otherwise. Let ri = ⌊ki

2 ⌋ for i ∈ {1, 2, · · · , ℓ}, sj =
j
∑

i=1

ri and xj =
j
∑

i=1

ki.

Vert recently, Chen, Wang, Yuan and Zhang [10] determined ex(m,n;Fℓ) when n is suffi-

ciently larger than m and sℓ, and characterized the extremal graphs.

Theorem 1.3 (see Chen, Wang, Yuan and Zhang [10]) If n ≥ σm and m ≥ sℓ, where

σ = σ(k1, · · · , kℓ), then the following hold.

(1) If Xℓ is not odd, then

ex(m,n;Fℓ) =

{

(sℓ − 1)n, for sℓ ≤ m ≤ 2sℓ − 2;
(sℓ − 1)(n− rℓ + 1) + (m− sℓ + 1)(rℓ − 1), for m ≥ 2sℓ − 1.

Moreover, the extremal graphs are Ksℓ−1,n ∪Km−sℓ+1 for sℓ ≤ m ≤ 2sℓ − 3, Ksℓ−1,n−i
m,n with

0 ≤ i ≤ rℓ − 1 for m = 2sℓ − 2 and Ksℓ−1,rℓ−1
m,n for m ≥ 2sℓ − 1.

(2) Let p = 2sℓ − 2 + (sℓ−1)
(rℓ−2) . If Xℓ is odd and kℓ /∈ {3, 5}, then

ex(m,n;Fℓ) =

{

(sℓ − 1)n+m− sℓ + 1, for sℓ ≤ m ≤ p;
(sℓ − 1)(n− rℓ + 1) + (m− sℓ + 1)(rℓ − 1), for m ≥ p.

Moreover, for ℓ ≥ 2, the extremal graphs are Lsℓ−1,1
m,n for sℓ ≤ m ≤ p and Ksℓ−1,rℓ−1

m,n for m ≥ p.

(3) If Xℓ is odd and kℓ = 3, then

ex(m,n;Fℓ) =

{

(sℓ − 1)n+m− sℓ + 1, for k1 = k2 = · · · = kℓ = 3;
(sℓ − 1)n+ 1, otherwise.

Moreover, the extremal graphs are the graph obtained from Ksℓ−1,n by joining m − sℓ + 1

independent edges connecting new m− sℓ+1 isolated vertices to m− sℓ+1 vertices with degree

sℓ − 1 in Ksℓ−1,n respectively for k1 = k2 = · · · = kℓ = 3, and Lsℓ−1,1
sℓ,n

∪Km−sℓ otherwise.

(4) If Xℓ is odd and kℓ = 5, then

ex(m,n;Fℓ) = (sℓ − 1)n+m− sℓ + 1.

Moreover, the unique extremal graph is Lsℓ−1,1
m,n for ℓ ≥ 2.

The above two theorems show that the extremal graphs for linear forests are very complicat-

ed when m is small. In this paper, by using Theorem 1.3 and a key lemma, we will determine

ex(m,n;Fℓ) for kℓ ≥ 4 and n ≥ m when m is sufficiently large. Moreover, all the extremal

graphs will be characterized.

We define

f(m,n;Xj) =







(sj − 1)(n− 1) +m, if Xj is odd with kj = 5;
6m− 9, if Fj = P9 ∪ P4 with m = n;
(sj − 1)(n− rj + 1) + (rj − 1)(m− sj + 1), otherwise.

Denote by F(m,n;Xj) the Fj -free graphs with f(m,n;Xj) edges:

F(m,n;Xj) =















{L
sj−1,1
m,n }, if Xj is odd with kj = 5;

{L3,3
m,m}, if Fj = P9 ∪ P4 with m = n;

{L4,3
m,m,K6,1

m,m}, if Fj = P11 ∪ P4 with m = n;

{K
sj−1,rj−1
m,n }, otherwise.
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Furthermore, we define

F (m,n;Xj) = max{ex(m,n;Pk1
), f(m,n;X2), · · · , f(m,n;Xj)}.

Theorem 1.4 Let n ≥ m and m be sufficiently large. If Fℓ = Pk1
∪ Pk1

∪ · · · ∪ Pkℓ
is a

linear forest with k1 ≥ k2 ≥ · · · ≥ kℓ ≥ 4, then

ex(m,n;Fℓ) = F (m,n;Xℓ)

and all extremal graphs belong to EX(m,n;Pk1
) ∪

(

ℓ
⋃

i=2

F(m,n;Xi)
)

.

2 Several Lemmas and Proof of Main Theorem

First, we introduce a result concerning cycles in bipartite graphs. Jackson [11] proved the

following result.

Theorem 2.1 (see Jackson [11]) Let G(A,B) be a bipartite graph with |A| = m, |B| = n

and n ≥ m. If each vertex of B has degree at least k, then G contains a cycle of length at least

2k.

The following lemma is widely used in extremal problems.

Lemma 2.1 Let G = G(A,B) be a bipartite graph with |A| = a and |B| = n, where a is a

constant and n is sufficiently large. If e(G) = bn− o(n), then there exists a vertex set A′ ⊆ A

with size t = ⌈b⌉ and a constant δ > 0 such that the number of common neighbors of A′ is at

least δn.

Proof Let X be the set of vertices of B with degree less than t. Since e(G) ≥ bn− o(n),

we have (t− 1)|X |+ a(n− |X |) ≥ bn− o(n). Thus, we have |X | ≤ a−b
a−t+1n− o(n). Hence, there

are at least n − |X | ≥ b−t+1
a−t+1n − o(n) vertices of B with degree at least t. Since there are

(

a
t

)

t-sets in A, by the pigeonhole principle, there exists a vertex set A′ ⊆ A with size t such that

the number of common neighbors of A is at least δn, where δ = b−t+1

(a−t+1)(at)+1
> 0. The proof is

complete.

Given a graph G, for any two vertices x, y of G, we use eG(x, y) to denote the number of

edges incident to x or y in G. Thus, if x is adjacent to y then eG(x, y) = d(x) + d(y) − 1 and

if x is not adjacent to y then eG(x, y) = d(x) + d(y), where d(x) and d(y) are the degrees of x

and y in G, respectively.

Lemma 2.2 Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n. Let

ℓ ≥ 2 and kℓ ≥ 4. Let n ≥ m and m ≥ m1 = m1(k1, · · · , kℓ). Suppose that G contains a copy

of Fℓ−1 = Pk1
∪· · ·∪Pkℓ−1

. Let A0 = A−V (Fℓ−1), B0 = B−V (Fℓ−1). If eG(x, y) ≥ sℓ+ rℓ−2

for each x ∈ A0 and y ∈ B0, then

e(G) ≤ f(m,n;Xℓ)



714 T. Y. Xie and L. T. Yuan

where the equality holds if and only if G ∈ F(m,n;Xℓ).

Now we will show that Lemma 2.2 and Theorem 1.3 imply Theorem 1.4.

Proof of Theorem 1.4 Let G(A,B) be an Fℓ-free (m,n)-bipartite graph. Let n ≥ m and

m ≥ ρm1, where m1 is from Lemma 2.2, and ρ > 1 will be defined later. Let kℓ ≥ 4. Assume

that

e(G) ≥ F (m,n;Xℓ). (2.1)

Then we will prove this theorem by induction on ℓ. It is trivial for ℓ = 1 (by Theorem 1.1),

so we may assume that ℓ ≥ 2 and the theorem holds for ℓ − 1. Let Fℓ−1 = Pk1
∪ · · · ∪ Pkℓ−1

.

If G is Fℓ−1-free, then by the definitions of F (m,n;Xℓ) and F(m,n;Xℓ), we have e(G) ≤

ex(m,n;Fℓ−1) = F (m,n;Xℓ−1) ≤ F (m,n;Xℓ). So e(G) = ex(m,n;Fℓ−1) = F (m,n;Xℓ) and

G ∈ EX(m,n;Pk1
)∪

(

ℓ−1
⋃

i=2

F(m,n;Xi)
)

, hence Theorem 1.4 holds. So we assume that G contains

a copy of Fℓ−1, and let A0 = A− V (Fℓ−1), B0 = B − V (Fℓ−1).

If eG(x, y) ≥ sℓ + rℓ − 2 for each x ∈ A0 and y ∈ B0, then Theorem 1.4 holds by Lemma

2.2. Suppose that there exist x1 ∈ A0 and y1 ∈ B0 such that eG(x1, y1) ≤ sℓ + rℓ − 3. Let

G1 = G−{x1, y1}. Then we can construct Gi+1 from Gi if there exist xi ∈ A0∩V (Gi) and yi ∈

B0∩V (Gi) such that eGi(x, y) ≤ sℓ+rℓ−3. Note that f(m,n;Xℓ) ≥ (sℓ−1)n+(rℓ−1)m−O(1).

Thus for any t,

e(Gt) ≥ F (m,n;Xℓ)− (sℓ + rℓ − 3)t

≥ f(m,n;Xℓ)− (sℓ + rℓ − 3)t

≥ (sℓ − 1)(n− t) + (rℓ − 1)(m− t) + t−O(1). (2.2)

Since e(Gt) ≤ (n− t)(m− t), combining with (2.2), we have (sℓ − 1)(n− t) + (rℓ − 1)(m− t) +

t−O(1) ≤ (n− t)(m− t) implying t ≤ m− sℓ.

So the process will be stopped in 1 ≤ t0 ≤ m− sℓ steps. Furthermore, let r′ = ⌊xℓ

2 ⌋. Then

Gt0 is Pxℓ
-free (since Pxℓ

contains a copy of Fℓ). By Corollary 1.1,

e(Gt0) ≤ ex(m− t0, n− t0;Pxℓ
) ≤ (r′ − 1)(n− t0) + (r′ − 1)(m− t0).

By (2.2), we have

e(Gt0) ≥ (sℓ − 1)n+ (rℓ − 1)m− (sℓ + rℓ − 3)t0 −O(1).

Hence, combining the above two inequalities, we have

t0 ≤
r′ − sℓ

2r′ − sℓ − rℓ + 1
n+

r′ − rℓ
2r′ − sℓ − rℓ + 1

m+O(1) ≤
2r′ − sℓ − rℓ

2r′ − sℓ − rℓ + 1
n+O(1).

Since n is sufficient large, there is a constant 0 < q1 < 1 such that q1n− t0 ≥ m1.

Suppose that m − t0 < m1, i.e., m < m1 + t0 ≤ q1n. Let ρ = σ
1

q1
−1

> 1 (since q1 can be

chosen close to one), where σ is the constant from Theorem 1.3. Now by m ≥ ρm1 ≥ ρ(m− t0),
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we have

n− t0 ≥
( 1

q1

)

m− t0 ≥
( 1

q1
− 1

)

m ≥
( 1

q1
− 1

)

ρ(m− t0) = σ(m− t0).

Recall that m− t0 ≥ sℓ. Let p = 2sℓ − 2 + sℓ−1
rℓ−2 . Theorem 1.3 implies

e(Gt0) ≤

{

f(m,n;Xℓ)− (sℓ + rℓ − 2)t0, if m− t0 ≥ p;
f(m,n;Xℓ)− (sℓ + rℓ − 2)t0 +O(1), if m− t0 ≤ p.

Hence if m− t0 ≥ p, then f(m,n;Xℓ) ≤ e(G) ≤ e(Gt0) + (sℓ + rℓ − 3)t0 ≤ f(m,n;Xℓ) − t0 ≤

f(m,n;Xℓ) − (m −m1) < F (m,n;Xℓ), a contradiction to (2.1). If m − t0 ≤ p, then since m

is sufficient large, f(m,n;Xℓ) ≤ e(G) ≤ e(Gt0) + (sℓ + rℓ − 3)t0 ≤ f(m,n;Xℓ) − t0 + O(1) ≤

f(m,n;Xℓ)− (m−m1) +O(1) < f(m,n;Xℓ) ≤ F (m,n;Xℓ), contradicting (2.1).

Suppose that m−t0 ≥ m1. Note that we only delete vertices in A0∪B0. Hence, G
t0 contains

a copy of Fℓ−1. By the termination condition, eGt0 (x, y) ≥ sℓ+ rℓ− 2 for each x ∈ V (Gt0)∩A0

and y ∈ V (Gt0 ) ∩ B0. It follows from Lemma 2.2 that e(Gt0) ≤ f(n − t0, n − t0;Xℓ) =

f(m,n;Xℓ)− (sℓ + rℓ − 2)t0. Therefore, e(G) ≤ e(Gt0) + (sℓ + rℓ − 3)t0 ≤ f(m,n;Xℓ) − t0 <

f(m,n;Xℓ) ≤ F (m,n;Xℓ), a contradiction to (2.1). This completes the proof of Theorem 1.4.

3 Proof of Lemma 2.2

We first introduce a stability result for paths in bipartite graphs.

Lemma 3.1 Let G = G(A,B) be a Pt-free bipartite graph with |A| = m, |B| = n and t ≥ 4.

Let ∆ be a constant and n ≥ m be sufficiently large. If

e(G) ≥ ex(m,n;Pt)−∆, (3.1)

then there is a constant 0 < ε ≤ 1 depending on ∆ and t such that

(1) if t = 5, then there are two vertices u ∈ A and v ∈ B such that dG(u) ≥ ε(n − 2q) and

dG(v) ≥ ε(m− 2q), where q is the number of copies of K2,2 in G ;

(2) if t 6= 5, then there are two subset A1 ⊂ A and B1 ⊂ B with |A1| = |B1| =
⌊

t
2

⌋

− 1 such

that dcG(A1) ≥ εn and dcG(B1) ≥ εm.

Proof If t = 4, then G consists of stars1. By (3.1) and Corollary 1.1, we have e(G) ≥

n+m−∆− 2. Thus G consists of at most ∆+ 2 stars, and hence there is a star whose center

belongs to A with at least n
∆+2 leaves and a star whose center belongs to B with at least m

∆+2

leaves. The results follow from setting ε = 1
∆+2 .

If t = 5, then G consists of stars and copies of K2,2. Let q be the number of copies of K2,2

in G. The rest proof of this case is similar to that of t = 4 and be omitted.

Now, let t ≥ 6, n ≥ m and m be sufficient large. Let r =
⌊

t
2

⌋

. Deleting vertices of degree

at most r − 2 in G until that the resulting graph G∗ = G(A∗, B∗) has no such vertex. Let

1We view isolated vertices and edges as trivial stars.
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|A∗| = m∗, |B∗| = n∗ and β = m+ n−m∗ − n∗. By (3.1) and Corollary 1.1,

e(G∗) ≥ e(G)− (r − 2)β ≥ (r − 1)(m∗ + n∗)− 2(r − 1)2 −∆+ β. (3.2)

Without loss generality, we may assume that m∗ = min{m∗, n∗}. Since G∗ is Pt-free, by

Corollary 1.1,

e(G∗) ≤

{

(r − 1)(m∗ + n∗), if m∗ ≤ t− 1;
(r − 1)(m∗ + n∗)− 2(r − 1)2, if m∗ ≥ t.

(3.3)

Combining (3.2) and (3.3), we have that β ≤ ∆ + 2(r − 1)2 if m∗ ≤ t − 1 and that β ≤ ∆ if

m∗ ≥ t. However, if m∗ ≤ t− 1, then m ≤ β +m∗ ≤ t− 1 + ∆+ 2(r − 1)2, contradicting that

m is sufficient large. Hence m∗ ≥ t and β ≤ ∆, that is, m∗ + n∗ ≥ m+ n−∆. So

m∗ ≥ m−∆ and n∗ ≥ n−∆. (3.4)

Since n ≥ m and m is sufficient large, both m∗ and n∗ are sufficient large.

Since the minimum degree of G∗ is at least r − 1 ≥ 2, by Theorem 2.1, any connected

component of G∗ must contains a cycle of length at least 2(r − 1). Furthermore, since G∗ is

Pt-free, the length of longest cycle of G∗ is at most 2r.

Claim 3.1 Any connected component of G∗ must be one of the following four types:

• Type 1 A subgraph of Kr,r containing a cycle of length 2r;

• Type 2 A complete bipartite graph Kr−1,r−1;

• Type 3 A complete bipartite graph Kr−1,r−1+t with t ≥ 1 and the part of size r−1 belongs

to A∗;

• Type 4 A complete bipartite graph Kr−1,r−1+t with t ≥ 1 and the part of size r−1 belongs

to B∗.

Proof If a connected component G∗
1 of G∗ contains a cycle C1 of length 2r, since G∗ is

Pt-free, NG∗

1
(V (C1)) ⊂ V (C1). So V (G∗

1) = V (C1), i.e., G
∗
1 is of Type 1.

If a connected component G∗
2 of G∗ contains no cycle of length 2r, then G∗

2 must contains a

cycle C2 = u1v1u2v2 · · ·ur−1vr−1u1 of length 2r− 2. If V (G∗
2) = V (C2), then G∗

2 is a complete

graph Kr−1,r−1. So G∗
2 is of Type 2.

Suppose thatV (G∗
2) 6=V (C2). If there is a vertexx1 /∈V (C2)of G

∗
2 such thatNV (C2)∩B∗(x1) 6=

∅, then we claim that NG∗

2
(x1) = V (C2)∩B∗. Otherwise, there is a vertex y1 ∈ NG∗

2
(x1)\V (C2).

Since G∗ is Pt-free, NG∗

2
(y1) ⊂ V (C2) ∪ {x1}. Thus y1 is adjacent to at least r − 2 vertices

of V (C2). Let vi ∈ NV (C2)(x1). So at least one vertex of ui and ui+1 is adjacent to y1,

say uiy1 ∈ E(G∗
2). Thus u1v1u2v2 · · ·uiy1x1vi · · ·ur−1vr−1u1 is a cycle of length 2r in G∗

2, a

contradiction.

Then for any vertex uj ∈ V (C2)∩A, G[(V (C2)\{uj})∪{x1}] contains a cycle of length 2r−2

in G∗
2. By the above proof, uj has no neighbor in B∗−V (C2). Hence V (G∗

2)∩B
∗ = V (C2)∩B∗,

and G∗
2 is a complete bipartite graph such that the class of order r−1 belongs to B∗. Similarly,
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if NV (C2)∩A∗(x1) 6= ∅, then G∗
2 is a complete bipartite graph such that the class of order r − 1

belongs to A∗. Therefore, G∗
2 is of either Type 3 or Type 4.

Let qi be the number of connected components in G∗ with Type i for i ∈ {1, 2, 3, 4}. Then

we will consider two cases. Set ε = (r−1)2

2(∆+(r−1)2) .

Case 1 t is even. Clearly, we have q1 = 0. Hence

e(G∗) = (r − 1)2q2 + (r − 1)(n∗ − (r − 1)(q2 + q4) + (r − 1)(m∗ − (r − 1)(q2 + q3))

= (r − 1)(m∗ + n∗)− (r − 1)2(q2 + q3 + q4).

Combining with (3.2), we have q2 + q3 + q4 ≤ ∆−β
(r−1)2 + 2.

If q3 = 0, then e(G∗) ≤ (r − 1)m∗, contradicting (3.2); if q4 = 0, then e(G∗) ≤ (r − 1)n∗,

contradicting (3.2).

Thus 1 ≤ q3, q4 ≤ ∆−β
(r−1)2 + 1. By (3.4), there are two subsets A0 ⊂ A∗ and B0 ⊂ B∗

with |A0| = |B0| = r − 1 such that dcG(A0) ≥ dcG∗(A0) ≥
n∗−(r−1)(q2+q4)

q3
≥ εn and dcG(B0) ≥

dcG∗(B0) ≥
m∗−(r−1)(q2+q3)

q4
≥ εm.

Case 2 t is odd. Note that both m∗ and n∗ are sufficient large. Hence

e(G∗) ≤ (r − 1)(n∗ − (r − 1)(q2 + q4)− rq1) + (r − 1)(m∗ − (r − 1)(q2 + q3)− rq1)

+ (r − 1)2q2 + r2q1

= (r − 1)(m∗ + n∗)− (r − 1)2(q2 + q3 + q4)− (r − 2)rq1.

Combining with (3.2), we have (q2 + q3 + q4) +
(r−2)rq1
(r−1)2 ≤ 2 + ∆−β

(r−1)2 .

If q3 = 0, then e(G∗) ≤ (r − 1)m∗ + rq1, contradicting (3.2); if q4 = 0, then e(G∗) ≤

(r − 1)n∗ + rq1, contradicting (3.2).

Thus 1 ≤ q3, q4 ≤ ∆−β
(r−1)2 + 2 − (r−2)rq1

(r−1)2 . By (3.4), there are two subsets A1 ⊂ A∗ and

B1 ⊂ B∗ with |A1| = |B1| = r − 1 such that dcG(A1) ≥ dcG∗(A1) ≥ n∗−(r−1)(q2+q4)−rq1
q3

≥ εn

and dcG(B1) ≥ dcG∗(B1) ≥
m∗−(r−1)(q2+q3)−rq1

q4
≥ εm.

This completes the proof of Lemma 3.1.

Given a multi-set of integers D = {q1, · · · , qℓ}, we say that an integer a is D-sum-free if

there is no subset of D whose sum is a. For any 1 ≤ j ≤ ℓ, denote Rj = {r1, r2, · · · , rj}. For

any integer a ≥ 1 which is Rj-sum-free, denote

Rj(a) = {(i, y) : 1 ≤ y ≤ ri − 1, a = y or (a− y) is not (Rj \ {ri})-sum-free}.

Denote by Da,b
m,n the (m,n)-bipartite graph obtained from Ka,b

m,n by adding an edge between

the class with size a and the class with size b. If a ≥ 1, denote by Da,b,1
m,n the (m + 1, n + 1)-

bipartite graph by identifying an end vertex of P3 and the vertex with degree n− b+1 in Da,b
m,n.

Furthermore, if a ≥ 2, denote by Da,b,0
m,n the (m+1, n+1)-bipartite graph by identifying an end

vertex of P3 and one vertex with degree n− b in Da,b
m,n (see Figure 2).
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Figure 2 (a)D2,3
6,7 , (b)D

2,3,1
6,7 , (c)D2,3,0

6,7 .

Lemma 3.2 (1) If a+ b ≥ sℓ + 1, then Da,b
xℓ,xℓ

contains a copy of Fℓ.

(2) Let a + b = sℓ. If there is a pair (i, 1) ∈ Rℓ(a), then Da,b,1
xℓ,xℓ

contains a copy of Fℓ. If

there is a pair (i, y) ∈ Rℓ(a) with y ≥ 2, then Da,b,0
xℓ,xℓ

contains a copy of Fℓ.

(3) If a+ b = sℓ, then the following three statements are equivalent.

(i) La,b
xℓ,xℓ

is Fℓ-free;

(ii) Da,b
xℓ,xℓ

is Fℓ-free;

(iii) a is Rℓ-sum-free and ki ∈ Xℓ is odd for any pair (i, y) ∈ Rℓ(a).

Proof Let A1 and B1 be the vertex set of Da,b
xℓ,xℓ

with degree at least xℓ − b and xℓ − a,

respectively. Let A2 and B2 be the vertex set of La,b
xℓ,xℓ

with degree xℓ and xℓ in two different

classes, respectively. Let F ∗
i = Fℓ − Pki

.

Note that
⋃

j 6=i

Krj ,kj
contains a copy of F ∗

i . The definitions of Da,r−a
2r,2r , La,r−a

2r,2r , Da,r−a,1
2r,2r ,

Da,r−a,0
2r,2r and Rℓ(a) imply the following observations.

Observation 3.1 Let r ≥ 2 and 1 ≤ a ≤ r − 1. The lengths of longest paths of both

Da,r−a
2r,2r and La,r−a

2r,2r are 2r. The length of longest path of D1,r−1,1
2r,2r is 2r + 1 and the length of

longest path of Da,r−a,0
2r,2r with a ≥ 2 is 2r + 1.

Observation 3.2 For any pair (i, y) ∈ Rℓ(a), D
a,b
xℓ,xℓ

(or Da,b,1
xℓ,xℓ

, Da,b,0
xℓ,xℓ

) with a + b ≥ sℓ

contains a copy of F ∗
i ∪Dy,z

ki,ki
(or F ∗

i ∪Dy,z,1
ki,ki

, F ∗
i ∪Dy,z,0

ki,ki
, respectively), where z = (a + b −

sℓ) + (ri − y).

(1) Let a+ b ≥ sℓ + 1. If a is not Rℓ-sum-free, then Da,b
xℓ,xℓ

contains a copy of
⋃

i∈[ℓ]

Kri,ri+1

implying that Da,b
xℓ,xℓ

contains a copy of Fℓ, we are done. So we may assume that a is Rℓ-sum-

free, whence Rℓ(a) is not empty. Let (j1, y1) ∈ Rℓ(a). By Observation 3.2, Da,b
xℓ,xℓ

contains a

copy of F ∗
j1

∪ D
y1,rj1−y1+1

kj1
,kj1

. By Observation 3.1, D
y1,rj1−y1+1

kj1
,kj1

contains a copy of Pkj1
. Thus

Da,b
xℓ,xℓ

contains a copy of Fℓ.
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(2) Let a+b = sℓ. If there is a pair (j2, 1) ∈ Rℓ(a), then by Observation 3.2, Da,b,1
xℓ,xℓ

contains

a copy of F ∗
j2
∪D

1,rj2−1,1

kj2
,kj2

. By Observation 3.1, D
1,rj2−1,1

kj2
,kj2

contains a copy of Pkj2
. Thus Da,b,1

xℓ,xℓ

contains a copy of Fℓ. The proof for the rest case is similar to that of the first case and be

omitted.

(3) Let a + b = sℓ. Assume that La,b
xℓ,xℓ

is Fℓ-free. Clearly, Da,b
xℓ,xℓ

is Fℓ-free (by Da,b
xℓ,xℓ

⊂

La,b
xℓ,xℓ

). Thus (i) implies (ii).

Assume that Da,b
xℓ,xℓ

is Fℓ-free. Then a is Rℓ-sum-free and ki ∈ Xℓ is odd for any pair

(i, y) ∈ Rℓ(a). Otherwise, a is not Rℓ-sum-free or there is a pair (j3, y3) ∈ Rℓ(a) with kj3 is

even.

If a is not Rℓ-sum-free, then there is a partition (Ia, Ib) of [ℓ] such that a =
∑

i∈Ia

ri and

b =
∑

i∈Ib

ri. Then Da,b
xℓ,xℓ

contains a copy of
⋃

{i∈Ia}

Pki
containing A1 and a copy of

⋃

{i:ri∈Ib}

Pki

containing B1, and the two linear forests are disjoint. Hence Da,b
xℓ,xℓ

contains a copy of Fℓ.

If there is a pair (j3, y3) ∈ Rℓ(a) with kj3 is even, then by Observation 3.2, Da,b
xℓ,xℓ

contains

a copy of F ∗
j3
∪D

y3,rj3−y3

kj3
,kj3

. Then by Observation 3.1, D
y3,rj3−y3

kj3
,kj3

contains a copy of P2rj3
= Pkj3

,

so Da,b
xℓ,xℓ

contains a copy of Fℓ. Thus (ii) implies (iii).

Assume that a is Rℓ-sum-free and ki ∈ Xℓ is odd for any pair (i, y) ∈ Rℓ(a). Then La,b
xℓ,xℓ

is Fℓ-free. Otherwise, La,b
xℓ,xℓ

contains a copy of Fℓ, then each Pi for i ∈ [ℓ] contains exact ri

vertices of A2∪B2 (since a+b = sℓ). So if ki is odd, by Observation 3.1, Pki
contains ri vertices

of A2 or B2. Thus either a is not Rℓ-sum-free or ki ∈ Xℓ is even for some pair (i, y) ∈ Rℓ(a).

Hence, (iii) implies (i).

Therefore, the above three statements are equivalent.

Lemma 3.3 Let n > m and m be sufficient large. Let kℓ ≥ 4. If La,b
m,n with a+b = sℓ+rℓ−2

is Fℓ-free, then kℓ ∈ {4, 5}. Moreover, e(La,b
m,n) ≤ f(m,n;Xℓ) and equality holds only when

La,b
m,n ∈ F(m,n,Xℓ).

Proof Suppose that La,b
m,n is Fℓ-free with a+ b = sℓ + rℓ − 2. Let A1, B1 be the vertex sets

of La,b
m,n with degree n and m respectively.

If kℓ ≥ 6, then sℓ + rℓ − 2 ≥ sℓ +1. By Lemma 3.2(1), Da,b
m,n contains a copy of Fℓ, so La,b

m,n

contains a copy of Fℓ. Thus kℓ ∈ {4, 5} and a+ b = sℓ.

Note that La,b
m,n is Fℓ-free if and only if Lb,a

m,n is Fℓ-free. Since n ≥ m and m is sufficient

large, a ≥ b implies that e(La,b
m,n) ≥ e(Lb,a

m,n). Thus we may assume that a ≥ b, so b ≤ ⌊ sℓ
2 ⌋.

Since m is sufficiently large,

e(La,b
m,n) = an+ bm− ab is monotone decrease respect to b.

Since La,b
m,n is Fℓ-free, by Lemma 3.2(3), b is Rℓ-sum-free and ki is odd for any pair (i, y) ∈

Rℓ(b). Thus b 6= 2 (since rℓ = 2). Moreover, if Xℓ is not odd, then b 6= 1 (since ki is odd for



720 T. Y. Xie and L. T. Yuan

any pair (i, y) ∈ Rℓ(b)). Hence,

b ≥







3, if kℓ = 4;
1, if kℓ = 5 and Xℓ is odd;
3, if kℓ = 5 and Xℓ is not odd.

(3.5)

If Xℓ is odd with kℓ = 5, then b ≥ 1 (by (3.5)), e(La,b
m,n) ≤ e(Lsℓ−1,1

m,n ) = f(m,n;Xℓ) and

equality holds only when La,b
m,n = Lsℓ−1,1

m,n ∈ F(m,n;Xℓ).

If Fℓ = P9 ∪ P4 with m = n, then b ≥ 3 (by (3.5)), e(La,b
m,n) ≤ e(L3,3

m,n) = f(m,n;Xℓ) and

equality holds only when La,b
m,n = L3,3

m,n ∈ F(m,n;Xℓ).

Otherwise, by the definition of f(m,n;Xℓ), we have f(m,n;Xℓ) = e(Ksℓ−1,rℓ−1
m,n ). If

e(La,b
m,n) ≥ e(Ksℓ−1,rℓ−1

m,n ), then since rℓ = 2,

e(La,b
m,n) = sℓn− b(n−m)− b(sℓ − b) ≥ (sℓ − 1)(n− 1) +m− sℓ + 1 = e(Ksℓ−1,1

m,n ) (3.6)

that is, (b − 1)(n − m) + b(sℓ − b) − 2(sℓ − 1) ≤ 0. Thus b(sℓ − b) ≤ 2(sℓ − 1) since n ≥ m.

(a) If kℓ = 4, then b ≥ 3 (by (3.5)) implies sℓ ≥ 6 and 3(sℓ − 3) ≤ b(sℓ − b) ≤ 2(sℓ − 1). Thus

6 ≤ sℓ ≤ 7. If sℓ = 6, then b = 3 (9 ≤ b(6 − b) ≤ 10). So 2(n −m) − 1 ≤ 0 implies n = m.

Furthermore, by Lemma 3.2(3), ki ∈ Xℓ is odd for any pair (i, y) ∈ Rℓ(3), so Fℓ = P9 ∪P4 with

m = n, a contradiction (in this case, we suppose that Fℓ 6= P9∪P4 with m = n). If sℓ = 7, then

12 ≤ b(7− b) ≤ 12 implies b = 3. Thus 2(n−m) ≤ 0 implies m = n. And we also have ki ∈ Xℓ

is odd for any pair (i, y) ∈ Rℓ(3), so Fℓ = P11 ∪ P4. Hence, if kℓ = 4, then Fℓ = P11 ∪ P4 with

m = n. Moreover, the equality of (3.6) holds when Fℓ = P11 ∪ P4 with m = n. (b) If kℓ = 5,

then by (3.5), b ≥ 3. By the similar proof as that of case kℓ = 4, we have 6 ≤ sℓ ≤ 7 and b = 3.

However, Xℓ is not odd, it implies that there is an even integer ki ∈ Xℓ such that (i, y) ∈ Rℓ(3).

By Lemma 3.2(3), La,b
m,n contains a copy of Fℓ, a contradiction.

Therefore, e(La,b
m,n) ≤ e(Ksℓ−1,rℓ−1

m,n ) = f(m,n;Xℓ), and equality holds only when Fℓ =

P11 ∪ P4 with m = n and La,b
m,n = L4,3

m,n ∈ F(m,n;Xℓ).

This completes the proof of Lemma 3.3.

Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n. We call a pair of

subsets (A∗, B∗) in G with A∗ ⊂ A and B∗ ⊂ B a (p, q)-core of G if dcG(A
∗) ≥ p, dcG(B

∗) ≥ q

and one of the following holds:

(a) |A∗|+ |B∗| = sℓ with eG(A
∗, B∗) ≥ 1 and rℓ = 2;

(b) |A∗| =
∑

i∈Ia

ri + rℓ − 1 and |B∗| =
∑

i∈Ib

ri + rℓ − 1 with eG(A
∗, B∗) = 0, where (Ia, Ib) is

a partition of [ℓ − 1].

We call a (p, q)-core of G satisfying (a) Type A, and satisfying (b) Type B.

Lemma 3.4 Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n.

Let ℓ ≥ 2 and kℓ ≥ 4. Suppose that e(G) ≥ f(m,n;Xℓ) − ∆1, where ∆1 ≥ 0. Let n ≥ m

and m be sufficient large compare with xℓ and ∆1. If (A∗, B∗) with A∗ ⊂ A and B∗ ⊂ B

is an (xℓ, xℓ)-core of G, then there is a pair of subsets (A∗
1, B

∗
1) with A∗

1 ⊂ A and B∗
1 ⊂ B
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and a constant 0 < ξ = ξ(Xℓ,∆1, |A
∗|, |B∗|) ≤ 1 such that (A∗

1, B
∗
1) is an (ξn, ξm)-core of G.

Moreover, e(G) ≤ f(m,n;Xℓ), where equality holds only when G ∈ F(m,n;Xℓ).

Proof Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n. Suppose

that

e(G) ≥ f(m,n;Xℓ)−∆1. (3.7)

Let n ≥ m and m be sufficient large than xℓ and ∆1. Let (A
∗, B∗) with A∗ ⊂ A and B∗ ⊂ B be

an (xℓ, xℓ)-core of G. Let |A∗| = a∗, |B∗| = b∗ and G∗ = G−A∗ ∪B∗. Let A0 = NG(B
∗)−A∗

and B0 = NG(A
∗)−B∗.

We first show that

(1) G∗ is Pkℓ
-free. Suppose that G∗ contains a copy of Pkℓ

. If a∗+b∗ = sℓ with eG(A
∗, B∗) ≥

1 and rℓ = 2, then G−Pkℓ
contains a copy of Da∗,b∗

xℓ−1,xℓ−1
. By Lemma 3.2(1), Da∗,b∗

xℓ−1,xℓ−1
contains

a copy of Fℓ−1 since a∗ + b∗ = sℓ−1 + 2, so G contains a copy of Fℓ, a contradiction. If

a∗ =
∑

i∈Ia

ri+ rℓ−1 and b∗ =
∑

i∈Ib

ri+ rℓ−1 with eG(A
∗, B∗) = 0, where (Ia, Ib) is a partition of

[ℓ− 1], then G−Pkℓ
contains a copy of

⋃

i∈Ia

Pki
containing a∗ − rℓ+1 vertices of A∗ and a copy

of
⋃

i∈Ib

Pki
containing b∗ − rℓ +1 vertices of B∗. Thus G contains a copy of Fℓ, a contradiction.

(2) a∗ is Rℓ-sum-free. Otherwise, there is a partition (Ia∗ , Ib∗) of [ℓ] such that a∗ =
∑

i∈Ia∗

ri

and b∗ ≥
∑

i∈Ib∗

ri. Then G contains a copy of
⋃

i∈Ia∗

Pki
containing A∗ and a copy of

⋃

i∈Ib∗

Pki

containing
∑

i∈Ib∗

ri vertices of B
∗, and those two linear forests are disjoint, a contradiction.

(3) There is no path between A0 and B0 in G∗. Otherwise, there is a path Pt1 with

t1 ≥ 2 between B0 and A0 in G∗. Since a∗ is Rℓ-sum-free, Rℓ(a
∗) is not empty. For any pair

(i, y) ∈ Rℓ(a
∗), G contains a copy of a path with order 2y + t1 + 2(ri − y) ≥ 2ri + 2 > ki

containing y vertices of A∗, ri − y vertices of B∗ and the path Pt1 . By the definition of Rℓ(a
∗)

and a∗ + b∗ ≥ sℓ, G − Pki
contains a copy of Fℓ − Pki

. Thus, G contains a copy of Fℓ, a

contradiction.

Let G∗
a = CG−B∗(A∗) and G∗

b = CG−A∗(B∗). Let Gr = G − (V (G∗
a) ∪ V (G∗

b )). Thus

e(G) = e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b) + e(Gr).

Let A1 = N c
G(B

∗) ∩ A0, A2 = A0 −A1, A3 = V (G∗
a) ∩ A, A4 = V (G∗

b ) ∩ A−A0 and Ar =

V (Gr)∩A. Let B1 = N c
G(A

∗)∩B0, B2 = B0−B1, B3 = V (G∗
b )∩B, B4 = V (G∗

a)∩B−B0 and

Br = V (Gr)∩B (see Figure 3). Let |Ai| = ai for i = 1, 2, 3, 4, r and |Bi| = bi for i = 1, 2, 3, 4, r.

Thus we have a∗ + a1 + a2 + a3 + a4 + ar = |A| = m and b∗ + b1 + b2 + b3 + b4 + br = |B| = n.

Since (A∗, B∗) is an (xℓ, xℓ)-core of G, we consider two cases as following.

Case 1 (A∗, B∗) is an (xℓ, xℓ)-core ofG with Type A. Thus, a∗+b∗ = sℓ with eG(A
∗, B∗) ≥

1 and rℓ = 2.

Then kℓ ∈ {4, 5}, a∗, b∗ ≥ 1 and a∗+b∗ ≥ 4. Since eG(A
∗, B∗) ≥ 1 and dcG(A

∗), dcG(B
∗) ≥ xℓ,

G contains a copy of Da∗,b∗

xℓ,xℓ
. Thus Da∗,b∗

xℓ,xℓ
is Fℓ-free (since G is Fℓ-free). Hence, Lemma
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Figure 3 Graph G: G∗

a consists of blue parts and lines, G∗

b consist of red parts and lines and Gr

consists of green parts and lines.

3.2(3) implies that La∗,b∗

m,n is Fℓ-free, a∗ and b∗ are Rℓ-sum-free and ki is odd for any pair

(i, y) ∈ Rℓ(a
∗) ∪Rℓ(b

∗). Therefore, since rℓ = 2, we have

a∗ 6= 2 and b∗ 6= 2. (3.8)

We claim that

NG∗(A1 ∪B1) = ∅. (3.9)

Otherwise, G contains both a copy of Da∗,b∗,1
xℓ,xℓ

and a copy of Da∗,b∗,0
xℓ,xℓ

. Since a∗ is Rℓ-sum-free,

Rℓ(a
∗) 6= ∅. Thus Lemma 3.2(2) implies that G contains a copy of Fℓ, a contradiction.

Claim 3.2 e(G∗
a) ≤ a∗b1 + (a∗ − 1)b2 + a3 + b4.

Proof Assume that there is a pair (i1, y1) ∈ Rℓ(a
∗) with y1 ≥ 2. If at least two vertices

of A∗ are adjacent to B∗, then B0 has no neighbor in G∗. Otherwise, G contains a copy of

Da∗,b∗,0
xℓ,xℓ

, by Lemma 3.2(2), G contains a copy of Fℓ, a contradiction. Thus a3 = b4 = 0 and

e(G∗
a −A∗) = 0. Hence e(G∗

a) ≤ a∗b1 + (a∗ − 1)b2, the claim holds. If only one vertex u∗ ∈ A∗

is adjacent to B∗, then NG(A
∗ − {u∗}) ∩ B0 has no neighbor in G∗. Otherwise, G contains a

copy of Da∗,b∗,0
xℓ,xℓ

, by Lemma 3.2(2), it is a contradiction. By (3.8), we have a∗ ≥ 3 (since y1 ≥ 2

and a∗ 6= 2). Let b′2 be the number of vertices of B0 with degree at least one in G∗. Since G∗

is Pkℓ
-free and rℓ = 2, by Corollary 1.1, we have e(G∗

a − A∗) ≤ b′2 + a3 + b4. Thus by a∗ ≥ 3

and b′2 ≥ b2, e(G
∗
a) ≤ a∗b1 +(a∗ − 1)(b2 − b′2)+ b′2 +(a3 + b′2+ b4) ≤ a∗b1 +(a∗ − 1)b2+ a3 + b4,

the claim holds.
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Assume that y = 1 for any pair (i, y) ∈ Rℓ(a
∗). If a∗ = 1, then b2 = a3 = b4 = 0 (by

(3.9)). Thus e(G∗
a) ≤ b1, the claim holds. If a∗ ≥ 3, then any neighbor of B0 in G∗ has degree

exact one in G∗. Otherwise, suppose that u1 ∈ NG∗(B0) has two neighbors v1, v2 ∈ V (G∗)

with v1 ∈ B0. Since a∗ ≥ 3 and (i, 1) ∈ Rℓ(a
∗), there is a subset ∅ 6= I1 ⊂ [ℓ] \ {i} such that

a∗ = 1 +
∑

i∈I1

ri. For any integer j ∈ I1, G contains a path P 1 of order 2(rj − 1) + 1 whose

an end vertex is v1 such that |V (P 1) ∩ A∗| = rj − 1. So G contains a path P 2 = P 1v1u1v2

of order 2rj + 1 ≥ kj with |V (P 2) ∩ A∗| = rj − 1. It is clearly that G − P 2 contains a copy

of D
a∗−rj+1,b∗

xℓ−kj ,xℓ−kj
, so G − P 2 contains a copy of Fℓ − Pkj

(since D
a∗−rj+1,b∗

xℓ−kj ,xℓ−kj
contains a copy of

Fℓ −Pkj
by Lemma 3.2(1)). Hence, G contains a copy of Fℓ, a contradiction. Thus, b4 = 0 and

e(G∗
a −A∗) ≤ a3. Hence e(G∗

a) ≤ a∗b1 + (a∗ − 1)b2 + a3, the claim holds.

Similarly, we have e(G∗
b) ≤ b∗a1+(b∗− 1)a2+ b3+a4. Then since Gr is Pkℓ

-free and rℓ = 2,

e(Gr) ≤ ar + br by Corollary 1.1. Thus since La∗,b∗

m,n is Fℓ-free, by Lemma 3.3, we have

e(G) = e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b ) + e(Gr)

≤ a∗b∗ + a∗b1 + (a∗ − 1)b2 + a3 + b4 + b∗a1 + (b∗ − 1)a2 + b3 + a4 + e(Gr)

= a∗n+ b∗m− a∗b∗ − (a2 + b2)− (a∗ − 1)(b3 + b4)− (b∗ − 1)(a3 + a4)

− a∗br − b∗ar + e(Gr) (3.10a)

≤ a∗n+ b∗m− a∗b∗ − (a2 + b2)− (a∗ − 1)(b3 + b4 + br)− (b∗ − 1)(a3 + a4 + ar)

≤ e(La∗,b∗

m,n ) ≤ f(m,n;Xℓ). (3.10)

Moreover, the equality holds only when a2 = b2 = a3 = b3 = a4 = b4 = ar = br = 0, and

G = La∗,b∗

m,n ∈ F(m,n;Xℓ). This completes the moreover part of the lemma in Case 1.

Since La∗,b∗

m,n is Fℓ-free, Lemma 3.3 implies that

e(G) = f(m,n;Xℓ)−∆1 ≥ a∗n+ b∗m− a∗b∗ −∆1. (3.11)

Thus by (3.10a) and (3.10)–(3.11),

{

a2 + b2 + (a∗ − 1)(b3 + b4) + (b∗ − 1)(a3 + a4) + a∗br + b∗ar ≤ ∆1, if e(Gr) = 0;

a2 + b2 + (a∗ − 1)(b3 + b4 + br) + (b∗ − 1)(a3 + a4 + ar) ≤ ∆1, if e(Gr) ≥ 0.
(3.12)

Hence, if a∗, b∗ ≥ 2, then by (3.12), b2+ b3+ b4+ br+a2+a3+a4+ar ≤ ∆1. Thus since n ≥ m

and m is sufficient large, a1 ≥ m− a∗ −∆1 ≥ m
2 and b1 ≥ n− b∗ −∆1 ≥ n

2 , this is, (A
∗, B∗) is

an (n2 ,
m
2 )-core of G with Type A. The lemma holds by setting A∗

2 = A∗, B∗
2 = B∗ and ξ = 1

2 .

If a∗ = 1 or b∗ = 1, without loss of generality, we may assume that a∗ = 1 and b∗ = sℓ − 1.

Then b2 = a3 = b4 = 0. Since ki is odd for any pair (i, y) ∈ Rℓ(1) (by Lemma 3.2(3)), kℓ = 5

and Xℓ is odd. By (3.12) and b∗ = sℓ − 1 ≥ 3, we have a2 + b2 + a3 + a4 + ar ≤ ∆1. Thus

a1 ≥ m− a∗ −∆1 ≥ m
2 .

We will show that any neighbor of A0 in G∗ has degree exact one in G∗. Otherwise, G∗

contains a copy of P3 with an end vertex in A0. Hence G contains a copy of P5 containing one
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vertex of B∗ and a copy of Fℓ − P5 containing sℓ − 2 = sℓ−1 vertices of B∗, a contradiction.

Thus a4 = 0.

Furthermore, for any vertex v∗ ∈ B∗, there is at most one vertex in NG(v
∗) ∩ A0 which

has neighbors in G∗. Otherwise, G contains a copy of P5 containing only one vertex v∗ in B∗

and four vertices of G∗, then G contains a copy of Fℓ, a contradiction. Thus there are at most

b∗ = sℓ − 1 vertices of A0 have neighbors in G∗. Hence, there is one vertex of A0 has degree at

least b3
(sℓ−1) .

(i) If br = 0 or ar = 0, then e(Gr) = 0. Since a∗ = 1 and b2 = a3 = b4 = a4 = 0, by (3.12),

a2 + a∗br + b∗ar ≤ ∆1. Then there is a vertex u∗
1 ∈ A has degree at least max{b1,

b3
sℓ−1} ≥

n−a∗−∆1

sℓ
≥ n

sℓ+1 (since n is sufficient large). Thus ({u∗
1}, B

∗) is an ( n
sℓ+1 ,

m
2 )-core of G with

Type A. The lemma holds by setting A∗
2 = {u∗

1}, B
∗
2 = B∗ and ξ = 1

sℓ+1 .

(ii) If br ≥ 1 and ar ≥ 1, then e(Gr) ≥ 0. Since a∗ = 1 and b2 = a3 = b4 = a4 = 0, by

(3.12), a2 + ar ≤ ∆1.

By (3.10)–(3.12), we have

e(Gr) = e(G)− (e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b))

≥ a∗n+ b∗m− a∗b∗ −∆1 − (a∗n+ b∗m− a∗b∗) + a2 + b2 + (a∗ − 1)(b3 + b4)

+ (b∗ − 1)(a3 + a4) + a∗br + b∗ar

≥ ar + br − (∆1 − (a2 + b2 + (a∗ − 1)(b3 + b4 + br) + (b∗ − 1)(a3 + a4 + ar)))

≥ ex(ar, br;Pkℓ
)−∆1.

Since the number of K2,2 in Gr is at most ar

2 ≤ ∆1

2 , Lemma 3.1 implies that there is a

constant ε such that there is a vertex of V (Gr)∩A with degree at least ε(br −∆1). Thus there

is a vertex u∗
2 ∈ A with dG(u

∗
2) ≥ max

{

b1,
b3

sℓ−1 , ε(br −∆1)
}

≥ (n− a∗ −∆1)
ε

ε(sℓ−1)+1 ≥ εn
εsℓ+2

(since n is sufficient large). Hence ({u∗
2}, B

∗) is an
(

εn
εsℓ+2 ,

m
2

)

-core with Type A or Type B.

The lemma holds by setting A∗
2 = {u∗

2}, B
∗
2 = B∗ and ξ = ε

εsℓ+2 .

Case 2 (A∗, B∗) is an (xℓ, xℓ)-core of G with Type B. That is, a∗ =
∑

i∈Ia

ri + rℓ − 1 and

b∗ =
∑

i∈Ib

ri + rℓ − 1 with eG(A
∗, B∗) = 0, where (Ia, Ib) is a partition of [ℓ − 1].

Then any neighbor of B0 in G∗ has degree exact one in G∗. Otherwise, G∗ contains a copy

of P3 with one end vertex in B0, then one can find a copy of Pkℓ
containing rℓ − 1 vertices of

A∗. By the condition of Case 2, G contains a copy of Fℓ, a contradiction. Thus b4 = 0, and

e(G∗
a) ≤ a∗b1 + (a∗ − 1)b2 + a3. Similarly, we have that any neighbor of A0 in G∗ has degree

exact one in G∗, a4 = 0 and e(G∗
b ) ≤ b∗a1 + (b∗ − 1)a2 + b3.

By Corollary 1.1, we have e(Gr) ≤ ex(ar, br;Pkℓ
) ≤ (rℓ − 1)(ar + br) for any ar ≥ 0, br ≥ 0

and kℓ ≥ 4. Thus

e(G) = e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b ) + e(Gr)

≤ a∗b1 + (a∗ − 1)b2 + a3 + b∗a1 + (b∗ − 1)a2 + b3 + e(Gr)



Turán Numbers of Linear Forests in Bipartite Graphs 725

= a∗n+ b∗m− 2a∗b∗ − (a2 + b2)− (a∗ − 1)b3 − (b∗ − 1)a3

− a∗br − b∗ar + e(Gr) (3.13a)

≤ a∗n+ b∗m− 2a∗b∗ − (a2 + b2)− (a∗ − 1)b3 − (a∗ − rℓ + 1)br − (b∗ − 1)a3

− (b∗ − rℓ + 1)ar

≤ e(Ka∗,b∗

m,n ) ≤ f(m,n;Xℓ). (3.13)

Moreover, the equality holds only when a2 = b2 = a3 = b3 = ar = br = 0 and G = Ksℓ−1,rℓ−1
m,n ∈

F(m,n;Xℓ). This completes the moreover part of the lemma in Case 2.

Since

e(G) = f(m,n;Xℓ)−∆1 ≥ a∗n+ b∗m− 2a∗b∗ −∆1, (3.14)

by (3.13a) and (3.13),











a2 + b2 + (a∗ − 1)b3 + (b∗ − 1)a3 + a∗br + b∗ar ≤ ∆1, if e(Gr) = 0;

a2 + b2 + (a∗ − 1)b3 + (a∗ − rℓ + 1)br + (b∗ − 1)a3

+(b∗ − rℓ + 1)ar ≤ ∆1, if e(Gr) ≥ 0.

(3.15)

Hence, if a∗, b∗ ≥ rℓ ≥ 2, then by (3.15), b2 + b3 + br + a2 + a3 + +ar ≤ ∆1. Thus since

n ≥ m and m is sufficient large, a1 ≥ m − a∗ − ∆1 ≥ m
2 and b1 ≥ n − b∗ − ∆1 ≥ n

2 . Hence

(A∗, B∗) is an
(

n
2 ,

m
2

)

-core of G with Type B. The lemma holds by setting A∗
2 = A∗, B∗

2 = B∗

and ξ = 1
2 .

If a∗ = rℓ − 1 or b∗ = rℓ − 1, without loss of generality, we may assume that b∗ = rℓ − 1 and

a∗ = sℓ − 1. By (3.15), a2 + b2 + b3 + br ≤ ∆1, so b1 ≥ n − a∗ −∆1 ≥ n
2 (since n is sufficient

large). Then we consider the following two subcases.

Subcase 2.1 If kℓ ∈ {4, 5}, then b∗ = 1 and a2 = 0. (a) If Xℓ is not odd, then B0 has

no neighbor in G∗. Otherwise, G contains a copy of an even path Pki
containing exact ri − 1

vertices of A∗, then G − Pki
contains a copy of Fℓ − Pki

containing sℓ − 1 − ri + 1 = sℓ − ri

vertices of A∗. Thus G contains a copy of Fℓ, a contradiction. Hence a3 = 0. (b) If Xℓ is odd,

then kℓ = 5. We claim that for any vertex u∗ ∈ A∗, there is at most one vertex in NG(u
∗)∩B0

with neighbors in G∗. Otherwise, G contains a copy of P5 containing only one vertex u∗ in A∗

and four vertices of G∗, then G contains a copy of Fℓ, a contradiction. Thus there are at most

a∗ = sℓ − 1 vertices of B0 with neighbors in G∗. Hence, there is one vertex of B0 has degree at

least a3

sℓ−1 .

(i) If br = 0 or ar = 0, then e(Gr) = 0. Since b∗ = rℓ − 1 = 1 and a2 = a4 = b4 = 0, by

(3.15), b2 + b3 + br + ar ≤ ∆1. If Xℓ is not odd, then a3 = 0 implies a1 ≥ m − a∗ −∆1 ≥ m
2

(since m is sufficient large). So (A∗, B∗) is an
(

n
2 ,

m
2

)

-core of G of Type B. If Xℓ is odd with

kℓ = 5, then there is a vertex v∗1 of B with degree at least max
{

a1,
a3

sℓ−1

}

≥ m
sℓ+1 since m is

sufficient large. Thus (A∗, {v∗1}) is an
(

n
2 ,

m
sℓ+1

)

-core of G with Type A or Type B. The lemma

holds by setting A∗
2 = A∗, B∗

2 = {v∗1} and ξ = 1
sℓ+1 .
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(ii) If br ≥ 1 and ar ≥ 1, then e(Gr) ≥ 0. By (3.15), a2+b2+b3+br ≤ ∆1. By (3.13)–(3.15),

e(Gr) = e(G)− (e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b))

≥ a∗n+ b∗m− 2a∗b∗ −∆1 − (a∗n+ b∗m− 2a∗b∗) + a2 + b2 + (a∗ − 1)b3

+ (b∗ − 1)a3 + a∗br + b∗ar

≥ ar + br − (∆1 − (a2 + b2 + (a∗ − 1)(b3 + br) + (b∗ − 1)(a3 + ar)))

≥ ex(ar, br;Pkℓ
)−∆1.

When kℓ = 5, the number of K2,2 in Gr is at most br
2 ≤ ∆1

2 . So, by Lemma 3.1, there is a

constant ε and a vertex of V (Gr) ∩B with degree at least ε(ar −∆1). Thus if Xℓ is not odd,

then there is a vertex v∗2 ∈ B with dG(v
∗
2) ≥ max{a1, ε(ar −∆1)} ≥ (m−a∗−∆1)ε

ε+1 ≥ εm
ε+2 since

m is sufficient large. Thus (A∗, {v∗2}) is an (n2 ,
εm
ε+2 )-core of G of Type B, the lemma holds by

setting A∗
2 = A∗, B∗

2 = {v∗2} and ξ = ε
ε+2 . If Xℓ is odd with kℓ = 5, then there is a vertex

v∗3 ∈ B with dG(v
∗
3) ≥ max

{

a1,
a3

sℓ−1 , ε(ar −∆1)
}

≥ (m−a∗−∆1)ε
ε(sℓ−1)+1 ≥ εm

εsℓ+2 (since m is sufficient

large). Thus (A∗, {v∗3}) is an (n2 ,
εm

εsℓ+2 )-core of G of Type A or Type B, the lemma holds by

setting A∗
2 = A∗, B∗

2 = {v∗3} and ξ = ε
εsℓ+2 .

Subcase 2.2 If kℓ ≥ 6, then b∗ = rℓ − 1 ≥ 2.

(i) If br = 0 or ar = 0, then e(Gr) = 0. By (3.15), a2 + b2 + b3 + br + a3 + ar ≤ ∆1. Since

n ≥ m and m is sufficient large, a1 ≥ m − a∗ − ∆1 ≥ m
2 and b1 ≥ n − b∗ − c ≥ n

2 . This is,

(A∗, B∗) is an (n2 ,
m
2 )-core of G of Type B. The lemma holds by setting A∗

2 = A∗, B∗
2 = B∗

and ξ = 1
2 .

(ii) If br ≥ 1 and ar ≥ 1, then by (3.15), a2 + b2 + b3 + br + a3 ≤ ∆1. By (3.13)–(3.15),

e(Gr) = e(G)− (e(G[A∗, B∗]) + e(G∗
a) + e(G∗

b))

≥ a∗n+ b∗m− 2a∗b∗ −∆1 − (a∗n+ b∗m− 2a∗b∗) + a2 + b2 + (a∗ − 1)b3

+ (b∗ − 1)a3 + a∗br + b∗ar

≥ (rℓ − 1)(ar + br)− (∆1 − (a2 + b2 + (a∗ − 1)b3 + (a∗ − rℓ + 1)br

+ (b∗ − 1)a3 + (b∗ − rℓ + 1)ar))

≥ ex(ar, br;Pkℓ
)−∆1.

Then by Lemma 3.1, there is a subset B∗
1 ⊂ B with |B∗

1 | = rℓ−1 and a constant ε such that

dG∗(B∗
1 ) ≥ max{a1, εar} ≥ m−a∗−∆1

ε+1 ≥ m
ε+2 (since m is sufficient large). Hence (A∗, B∗

1 ) is an

(n2 ,
m
ε+2 )-core of G of Type B, the lemma holds by setting A∗

2 = A∗, B∗
2 = B∗

1 and ξ = 1
ε+2 .

This completes the proof of Lemma 3.4.

Lemma 3.5 Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n. Let

ℓ ≥ 2 and kℓ ≥ 4. Let ∆2 ≥ 0 and δ2 ≥ 0. Let n ≥ m and m be sufficiently large than xℓ, ∆2

and δ2. Suppose that G contains a copy of Fℓ−1 = Pk1
∪ · · · ∪ Pkℓ−1

. Let A0 = A − V (Fℓ−1),
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B0 = B − V (Fℓ−1). If eG(x, y) ≥ sℓ + rℓ − 2 for each x ∈ A0 − A′
0 and y ∈ B0 − B′

0 with

|A′
0|, |B

′
0| ≤ δ2 and

e(G) ≥ f(m,n;Xℓ)−∆2,

then there is a pair of subsets (A∗
2, B

∗
2) with A∗

2 ⊂ A and B∗
2 ⊂ B which is an (xℓ, xℓ)-core of

G.

Proof Let G = G(A,B) be an Fℓ-free bipartite graph with |A| = m and |B| = n. Let ℓ ≥ 2

and kℓ ≥ 4. Let ∆2 ≥ 0 and δ2 ≥ 0. Let

n ≥ m and m be larger enough than xℓ,∆2 and δ2. (3.16)

Let

e(G) ≥ f(m,n;Xℓ)−∆2. (3.17)

Suppose that G contains a copy of Fℓ−1. Let A0 = A − V (Fℓ−1), B0 = B − V (Fℓ−1),

A1 = A− A0, B1 = B − B0 and G0 = G(A0, B0). Let |A0| = m0 and |B0| = n0. Let A
′
0 ⊂ A0

and B′
0 ⊂ B0 with |A′

0|, |B
′
0| ≤ δ2. Assume that

eG(x, y) ≥ sℓ + rℓ − 2 for each x ∈ A0 −A′
0 and y ∈ B0 −B′

0. (3.18)

Since G is Fℓ-free, G
0 is Pkℓ

-free. Noting that m0 ≥ m − xℓ−1 and n0 ≥ n − xℓ−1, by (3.16),

m0 and n0 are sufficient large. It follows from Corollary 1.1 that

e(G0) ≤ ex(m0, n0;Pkℓ
) ≤ (rℓ − 1)(m0 + n0). (3.19)

Note that

f(m,n;Xℓ) =







(sℓ − 1)(n− 1) +m, if Xℓ is odd with kℓ = 5;
6m− 9, if Fℓ = P9 ∪ P4 with m = n;
(sℓ − 1)(n− rℓ + 1) + (rℓ − 1)(m− sℓ + 1), otherwise.

(3.20)

Since e(G(A1, B0))+e(G(A0, B1)) = e(G)−e(G0)−e(G(A1, B1)) ≥ f(m,n;Xℓ)−∆2−e(G0)−

e(G(A1, B1)), combining (3.19)–(3.20) and e(G(A1, B1)) ≤
(xℓ−1

2

)2
, we have

e(G(A1, B0)) + e(G(A0, B1)) ≥ sℓ−1n− η1,

where η1 = 2(rℓ − 1)(sℓ − 1) +
(xℓ−1

2

)2
+∆2. By (3.16), we may assume that e(G(A1, B0)) =

c1n− η1 and e(G(B1, A0)) = c2n− η1 with c1 + c2 ≥ sℓ−1. By Lemma 2.1, there exist A2 ⊆ A1

with |A2| = ⌈c1⌉ and B2 ⊆ B1 with |B2| = sℓ−1 − ⌈c1⌉ and a constant 0 < δ ≤ 1 from Lemma

2.1 such that

dcG(A2) ≥ δn and dcG(B2) ≥ δn. (3.21)

Let |A2| = a2, |B2| = b2 andG′ = G(A−A2, B−B2). So a2+b2 = sℓ−1, and |V (G′)∩A| = m−a2

and |V (G′) ∩B| = n− b2 are sufficient large by (3.16).
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Let X1 = N c
G(A2) ∩ (B0 −B′

0) and Y1 = N c
G(B2) ∩ (A0 −A′

0). Thus

|X1| ≥ δn− xℓ−1 − δ2 and |Y1| ≥ δn− xℓ−1 − δ2. (3.22)

Claim 3.3 If G′ is Pkℓ
-free, then there is a constant η2 such that |X1|, |Y1| ≥ n− η2 and

m ≤ n ≤ m + η2. Moreover, there are two subsets of A′
2 ⊂ A − A2 and B′

2 ⊂ B − B2 with

|A′
2| = |B′

2| = rℓ − 1 such that dcG(A2 ∪ A′
2) ≥ xℓ and dcG(B2 ∪B′

2) ≥ xℓ.

Proof Suppose that G′ is Pkℓ
-free, by Corollary 1.1, we have

e(G′) ≤ ex(m− a2, n− b2;Pkℓ
) ≤ (rℓ − 1)(m+ n− sℓ−1). (3.23)

Then

e(G(A2, B −B2)) + e(G(A−A2, B2)) ≥ e(G)− e(G′)− e(G(A2, B2)) ≥ sℓ−1n− η′2,

where η′2 ≤ 2(rℓ−1)(sℓ−1)+
( sℓ−1

2

)2
+∆2. By |A−A2| ≤ m, |B−B2| ≤ n and a2+ b2 = sℓ−1,

each vertex in A2 and B2 has degree at least n− η′2. Let η2 = η′2 + δ2. Thus |X1| ≥ n− η2 and

|Y1| ≥ n− η2, and m ≤ n ≤ m+ η2.

Since e(G′) = e(G)− e(G(A2, B))− e(G(A−A2, B2)) ≥ e(G)− sℓ−1n+ b2(n−m+ a2), by

(3.20) and Corollary 1.1,

e(G′) ≥ (rℓ − 1)(m+ n− sℓ−1)− (2(rℓ − 1)(sℓ − 1) + ∆2)

≥ ex(m− a2, n− b2;Pkℓ
)− (2(rℓ − 1)(sℓ − 1) + ∆2). (3.24)

Note that for kℓ = 5, there are at most one copies of K2,2 in G(X1, Y1) (otherwise one can

find a copy fo Fℓ). Thus there are at most η2

2 copies of K2,2 in G′. Thus by Lemma 3.1 and

(3.24), we have that for kℓ ≥ 4, there are two subsets A′
2 ⊂ A − A2 and B′

2 ⊂ B − B2 with

|A′
2| = |B′

2| = rℓ − 1 and a constant γ such that dcG′(A′
2) ≥ γn and dcG′(B′

2) ≥ γn.

Moreover, noting that dcG(A2) ≥ |X1| ≥ n − η2 and dcG(A
′
2) ≥ dcG′(A′

2) ≥ γn, by (3.16),

dcG(A2 ∪ A′
2) ≥ γn− η2 ≥ xℓ. Similarly, we have dcG(B2 ∪B′

2) ≥ γn− η2 ≥ xℓ.

Claim 3.4 a2 is Rℓ−1-sum-free.

Proof Suppose that a2 is not Rℓ−1-sum-free. Then there is a partition (I2a , I
2
b ) of [ℓ − 1]

such that a =
∑

i∈I2
a

ri and b2 =
∑

i∈I2

b

ri. And we claim that G′ is Pkℓ
-free. Otherwise, G′ contains

a copy of Pkℓ
, then G − Pkℓ

contains a copy of Da2,b2
δn,δn (when e(G[A2, B2]) ≥ 1) or a copy of

Ka2,b2
δn,δn (when e(G[A2, B2]) = 0). Since a2 is not Rℓ−1-sum-free, by Lemma 3.2(3) and the

definition of Ka2,b2
δn,δn, we have that G− Pkℓ

contains a copy of Fℓ−1. That is, G contains a copy

of Fℓ, a contradiction.

By Claim 3.1, we have that there are two subsets of U1 ⊂ A − A2 and U1 ⊂ B − B2 with

|U1| = |V1| = rℓ − 1 such that dcG(A2 ∪ U1) ≥ xℓ and dcG(B2 ∪ V1) ≥ xℓ.
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Note that |A2∪U1| =
∑

i∈I2
a

ri+rℓ−1 and |B2∪V1| =
∑

i∈I2

b

ri+rℓ−1. If e(G[A2, B2]) ≥ 1, then

G contains a copy of Da2+rℓ−1,b2+rℓ−1
xℓ,xℓ

. If rℓ ≥ 3, then a2+rℓ−1+b2+rℓ−1 = sℓ+rℓ−2 ≥ sℓ+1.

By Lemma 3.2(1), Da2+rℓ−1,b2+rℓ−1
xℓ,xℓ

contains a copy of Fℓ. Thus rℓ = 2. Hence (A2∪U1, B2∪V1)

is a (xℓ, xℓ)-core of G with Type A. The lemma holds by setting A∗
2 = A2∪U1 and B∗

2 = B2∪V1.

If e(G[A2, B2]) = 0, then (A2 ∪ U1, B2 ∪ V1) is a (xℓ, xℓ)-core of G with Type B. The lemma

holds by setting A∗
2 = A2 ∪ U1 and B∗

2 = B2 ∪ V1.

Claim 3.5 e(G[A2, B2]) = 0.

Proof Let θ =
(

⌈kℓ⌉
rℓ−1

)

and µ = xℓθ. Suppose that e(G[A2, B2]) ≥ 1. By (3.22) and (3.16),

we have |X1| ≥ µ and |Y1| ≥ µ. We consider two cases.

(a) G′ is Pkℓ
-free. By Claim 3.3, there is a constant η2 such that |X1|, |Y1| ≥ n − η2,

n = m+ η2 and there are two subsets U2 ⊂ A−A2 and V2 ⊂ B −B2 with |U2| = |V2| = rℓ − 1

such that dcG(A2 ∪ U2) ≥ xℓ and dcG(B2 ∪ V2) ≥ xℓ.

If kℓ ∈ {4, 5}, then since e(G[A2, B2]) ≥ 1, (A2 ∪ U2, B2 ∪ V2) is an (xℓ, xℓ)-core of G with

Type A. Thus the lemma holds by setting A∗
2 = A2 ∪ U2 and B∗

2 = B2 ∪ V2. If kℓ ≥ 6, then

a∗2 + b∗2 = sℓ + rℓ − 2 ≥ sℓ + 1. Since G contains a copy of D
a∗

2
,b∗

2

xℓ,xℓ
, Lemma 3.2(1) implies that

G contains a copy of Fℓ, a contradiction.

(b) G′ contains a copy of Pkℓ
. Then G− V (Pkℓ

) is Fℓ−1-free. Since e(G[A2, B2]) ≥ 1, each

vertex of X1 can only be adjacent to vertices of V (Pkℓ
)∪A2 and each vertex of Y1 can only be

adjacent to vertices of V (Pkℓ
)∪B2. Otherwise, G−V (Pkℓ

) contains both a copy of Da2,b2,1
xℓ,xℓ

and

a copy of Da2,b2,0
xℓ,xℓ

. By Claim 3.4, a2 is Rℓ−1-sum-free, so Rℓ−1(a) 6= ∅. Lemma 3.2(2) implies

that G− V (Pkℓ
) contains a copy of Fℓ−1. Thus G contains a copy of Fℓ, it is a contradiction.

Hence, by (3.18), each pair (x, y) with x ∈ X1 and y ∈ Y1 is adjacent to at least 2rℓ− 2 vertices

of V (Pkℓ
).

If kℓ ∈ {4, 5}, then 2rℓ − 2 = 2. Thus there are two subsets U3 ⊂ V (Pkℓ
) ∩ A and V3 ⊂

V (Pkℓ
) ∩ B with |U3| + |V3| = 2 such that |N c

G(U3) ∩ X1| ≥
|X1|
θ

≥ xℓ and |N c
G(V3) ∩ Y1| ≥

|Y1|
θ

≥ xℓ. Thus dcG(A2 ∪ U3) ≥ |N c
G(U3) ∩ X1| ≥ xℓ and dcG(B2 ∪ V3) ≥ |N c

G(V3) ∩ Y1| ≥ xℓ.

Hence (A2 ∪ U3, B2 ∪ V3) is an (xℓ, xℓ)-core of G with Type A. The lemma holds by setting

A∗
2 = A2 ∪ U3 and B∗

2 = B2 ∪ V3.

We may assume that kℓ ≥ 6. If there are more than rℓ vertices of X1 have degree at least

rℓ vertices in V (Pkℓ
) ∩ A, then G contains a path of order kℓ (say P ′

kℓ
) containing rℓ vertices

in V (Pkℓ
) ∩ A and kℓ − rℓ vertices in X1. Since 2rℓ − 2 ≥ rℓ + 1, X1 ∪ Y1 has at least one

neighbor in V (G∗) \ V (P ′
kℓ
). Then G − P ′

kℓ
contains a copy of Fℓ−1 and G contains a copy of

Fℓ, a contradiction. Similarly, the number of vertices in Y1 which are adjacent to at least rℓ

vertices of V (Pkℓ
) ∩B is at most rℓ.

However, if there is a vertex x ∈ X1 such that dV (Pkℓ
)(x) ≤ rℓ − 2, then each vertex of Y1

is adjacent to at least rℓ vertices in V (Pkℓ
). Thus any vertex of X1 ∪ Y1 is adjacent to at least

rℓ − 1 vertices of V (Pkℓ
). So there exist subsets U4 ⊂ V (Pkℓ

) ∩ A and V4 ⊂ V (Pkℓ
) ∩ B with
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|U4| = |V4| = rℓ − 1 such that |N c
G(U4) ∩X1| ≥

|X1|
θ

≥ xℓ and |N c
G(V4) ∩ Y1| ≥

|Y1|
θ

≥ xℓ. Then

G contains a copy of Da2+rℓ−1,b2+rℓ−1
xℓ,xℓ

. Since a2 + b2 + 2rℓ − 2 ≥ sℓ + 1, by Lemma 3.2(1), G

contains a copy of Fℓ, a contradiction. The proof of Claim 3.5 is complete.

Claim 3.6 There is no edge between NV (G′)(A2) and NV (G′)(B2).

Proof Suppose that there are two vertices v0 ∈ NV (G′)(A2) and u0 ∈ NV (G′)(B2) such

that u0v0 is an edge of G′. Let H = G − (A2 ∪ B2 ∪ {u0, v0}). We claim that H is Pkℓ
-free.

Otherwise, H contains a copy of Pkℓ
. By Claim 3.4, a2 is Rℓ−1-sum-free, so Rℓ−1(a2) 6= ∅.

Thus there is a pair (i, y) ∈ Rℓ−1(a2). Then G contains a path of order 2ri +2 > ki containing

the edge u0v0 and y vertices of A2 and ri−y vertices of B2. Hence by (3.16) and (3.21), G−Pkℓ

contains a copy of Fℓ−1. Therefore, G contains a copy of Fℓ, a contradiction.

If there is a subset A3 ⊂ A2 with |A3| = a2 − 1 such that |N c
G(A3 ∪ {u0}) ∩ (A0 −A′

0)| ≥ µ

(or there is a subset B3 ⊂ B2 with |B3| = b2 − 1 such that |N c
G(B3 ∪ {v0}) ∩ (B0 −B′

0)| ≥ µ),

then by Claim 3.5 with A2 = A3 ∪ {u0} and B2 = B2 (or A2 = A2 and B2 = B3 ∪ {v0}), a

contradiction.

Then we may assume that for any subset A3 ⊂ A2 with |A3| = a2−1, |N c
G(A3∪{u0})∩(A0−

A′
0)| ≤ µ and for any subset B3 ⊂ B2 with |B3| = b2−1, |N c

G(B3∪{v0})∩(B0−B′
0)| ≤ µ. Since

|V (H)∩A|−|A0−A′
0| ≤ xℓ+δ2 and |V (H)∩B|−|B0−B′

0| ≤ xℓ+δ2, |N c
G(A2∪{u0})∩V (H)| ≤

µ+ xℓ + δ2 and |N c
G(B2 ∪ {v0}) ∩ V (H)| ≤ µ+ xℓ + δ2. Thus

e(G[A2 ∪ {u0}, B]) + e(G[A− (A2 ∪ u0), B2 ∪ {v0}]) ≤ a2n+ b2m+ 2(µ+ xℓ + δ2). (3.25)

Furthermore, since H is Pkℓ
-free, by Corollary 1.1, e(H) ≤ (rℓ − 1)(m+n− sℓ−1− 2). Thus

by (3.17) and (3.20),

e(G[A2 ∪ {u0}, B]) + e(G[A− (A2 ∪ u0), B2 ∪ {v0}]) = e(G)− e(H)

≥ (sℓ − 1)n+ (rℓ − 1)m− 2(rℓ − 1)(sℓ − 1)−∆2 − (rℓ − 1)(m+ n− sℓ−1 − 2)

≥ sℓ−1n− (∆2 + 2(rℓ − 1)(sℓ − 1)).

Hence

|N c
G(A2) ∩ V (H)| ≥ n− η3 and |N c

G(B2) ∩ V (H)| ≥ n− η3, (3.26)

where η3 = ∆2 + 2(rℓ − 1)(sℓ − 1) + µ+ xℓ + δ2 + a2µ+ b2µ.

Moreover, by (3.17), (3.20), (3.25) and Corollary 1.1,

e(H) = e(G)− e(G[A2 ∪ {u0}, B])− e(G[A− (A2 ∪ u0), B2 ∪ {v0}])

≥ (sℓ − 1)n+ (rℓ − 1)m− 2(rℓ − 1)(sℓ − 1)−∆2 − a2n− b2m− 2(µ+ xℓ + δ2)

≥ (rℓ − 1)(m+ n− sℓ − 2)− (∆2 + 2(rℓ − 1)(sℓ − 1) + 2(µ+ xℓ + δ2))

≥ ex(m− a2 − 1, n− b2 − 1;Pkℓ
)− η4, (3.27)

where η4 = ∆2 + 2(rℓ − 1)(sℓ − 1) + 2(µ+ xℓ + δ2).
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Note that for kℓ = 5, there are at most one copy ofK2,2 inG[N c
G(A2)∩V (H), N c

G(B2)∩V (H)]

(otherwise, one can find a copy of Fℓ in G). Thus by (3.26), there are at most η3

2 copies of

K2,2 in H . By (3.27) and Lemma 3.1, there are two subsets U5 ⊂ A − (A2 ∪ {u0}) and

V5 ⊂ B − (B2 ∪ {v0}) with |U5| = |V5| = rℓ − 1 such that dcH(U5), d
c
H(V5) ≥ εn.

Thus by (3.26) and (3.16), dcG(A2 ∪ U5) ≥ εn− η3 and dcG(B2 ∪ V5) ≥ εn− η3 ≥ xℓ. Since

|A2 ∪ U5| + |B2 ∪ V5| = sℓ + rℓ − 2 ≥ sℓ and there is the edge u0v0 between NV (G′)(A2) and

NV (G′)(B2), G contains a copy of Fℓ, it is a contradiction.

Combining Claims 3.4–3.6, we conclude that a2 is Rℓ−1-sum-free, e(G[A2, B2]) = 0 and

there is no edge between NV (G′)(A2) and NV (G′)(B2).

Now we will give the proof of Lemma 3.5 by induction. When ℓ = 2, if a2 is Rℓ−1-sum-free,

then either e(G[A2, B2]) ≥ 1 or there is an edge between NV (G′)(A2) and NV (G′)(B2) with

e(G[A2, B2]) = 0 (since a2 + b2 = r1, A2 ⊂ A1 and B2 ⊂ B1). Thus the lemma holds.

Let ℓ ≥ 3. We claim that there exists an i∗ ∈ [ℓ − 1] such that |V (Pi∗) ∩ A2| ≥ ri∗ + 1

or |V (Pi∗) ∩ B2| ≥ ri∗ + 1. Otherwise, |V (PKi
) ∩ (A2 ∪ B2)| = ri for any i ∈ [ℓ − 1] (since

a2 + b2 = sℓ−1, A2 ⊂ A1 and B2 ⊂ B1). Then since a2 is Rℓ−1-sum-free, there is i1 ∈ [ℓ − 1]

such that V (Pki1
) ∩A2 6= ∅ and V (Pki1

) ∩B2 6= ∅. Thus either e(G[A2, B2]) ≥ 1 or there is an

edge between NV (G′)(A2) and NV (G′)(B2) with e(G[A2, B2]) = 0, a contradiction.

We may assume that |V (Pi∗) ∩ A2| ≥ ri∗ + 1. Let C1 ⊂ V (Pi∗) ∩ A2 with |C1| = ri∗ and

Gi∗ = G− C1. Let F
′
ℓ−1 =

⋃

i∈[ℓ]\i∗
Pki

and F ′
ℓ−2 =

⋃

i∈[ℓ−1]\i∗
Pki

.

Since dcG(C1) ≥ δn, Gi∗ is F ′
ℓ−1-free. Since C1 ⊂ V (Pi∗) and G contains a copy of Fℓ−1, G

i∗

contains a copy of F ′
ℓ−2. Thus by (3.17) and (3.20),

e(Gi∗) ≥ e(G)− ri∗n

≥ f(m,n;Xℓ)−∆2 − ri∗n

≥ f(m− ri∗ , n;Xℓ \ {i
∗})− η5, (3.28)

where η5 = ∆2 + ri∗(rℓ − 1), and for any x ∈ A0 −A′
0 and y ∈ B0 − V (Pki0

)− B′
0, eG(x, y) ≥

sℓ − ri0 + rℓ − 2.

By (3.16), m− ri∗ is sufficient large than |V (Pki0
)−B′

0| ≤ δ2+ ri0 and η5. By the induction

hypothesis, Lemma 3.5 holds for Gi∗ . Thus there is a pair of subsets (Ai∗ , Bi∗) with Ai∗ ⊂

V (Gi∗)∩A and Bi∗ ⊂ V (Gi∗)∩B being an (xℓ−ri∗ , xℓ−ri∗)-core of G
i∗ . From (3.28), Lemma

3.4 implies that e(Gi∗) ≤ f(m− ri∗ , n;Xℓ \ {ki∗}) and there is a pair of subsets (C∗, D∗) with

C∗ ⊂ A and D∗ ⊂ B and a constants ξ such that (C∗, D∗) is an (ξn, ξ(m− ri∗))-core of Gi∗ .

Since eG(C1, B) ≥ e(G)− e(Gi∗) ≥ f(m,n;Xℓ)−∆2− f(m− ri∗ , n;Xℓ \ {ki∗}) ≥ ri∗n− η5,

dcG(C1) ≥ n−η5. Hence d
c
G(C1∪C∗) ≥ ξn−η5 ≥ xℓ and dcG(D

∗) ≥ ξ(m−ri∗) ≥ xℓ. Therefore,

(C1 ∪C∗, D∗) is an (xℓ, xℓ)-core of G. Lemma 3.5 holds by setting A∗
2 = C1 ∪C∗ and B∗

2 = D∗.

This completes the proof of Lemma 3.5.

Proof of Lemma 2.2 Let G = G(A,B) be a bipartite extremal graph for Fℓ with classes
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A,B. Let |A| = m and |B| = n with n ≥ m ≥ m1 = m1(k1, · · · , kℓ). Let kℓ ≥ 4. From the

definitions of f(m,n;Xℓ) and F(m,n;Xℓ), we have

e(G) ≥ f(m,n;Xℓ).

Suppose thatG contains a copy of Fℓ−1. Let A0 = A−V (Fℓ−1), B0 = B−V (Fℓ−1), A1 = A−A0,

B1 = B −B0 and G0 = G(A0, B0). Let |A0| = m0 and |B0| = n0. Assume that

eG(x, y) ≥ sℓ + rℓ − 2 for each x ∈ A0 and y ∈ B0.

Then by Lemma 3.5 with setting ∆2 = δ2 = 0, we have that there is a pair of subsets

(A∗, B∗) with A∗ ⊂ A and B∗ ⊂ B being an (xℓ, xℓ)-core of G. Then by Lemma 3.4, we have

e(G) ≤ f(m,n;Xℓ), where equality holds only when G ∈ F(m,n;Xℓ). This completes the proof

of Lemma 2.2.
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[7] Lidický, B., Liu, H. and Palmer, C., On the Turán number of forests, Electron. J. Comb, 20(2), 2013, 13
pp.

[8] Yuan, L. and Zhang, X., Turán numbers for disjoint paths, J. Graph Theory, 98(3), 2021, 499–524.
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