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Abstract Edge-to-edge tilings of the sphere by congruent a2bc-quadrilaterals are classified
as 3 classes: (1) A 1-parameter family of quadrilateral subdivisions of the octahedron with
24 tiles, and a flip modification for one special parameter; (2) a 2-parameter family of 2-
layer earth map tilings with 2n tiles for each n ≥ 3; (3) a 3-layer earth map tiling with 8n
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1 Introduction

Tiling has been part of human civilization for thousands of years. The mathematical study

of tiling can be traced back to Platonic solids. However, a full classification of monohedral

convex tilings of the plane has been completed only recently. See [7] for the hardest pentagon

case and see [15] for a recent survey. There are not as many studies on spherical tilings as the

planar ones. In this paper, we study edge-to-edge tilings of the sphere by congruent simple

polygons, such that all vertices have degree ≥ 3. In such a tiling, the tile must be triangle,

quadrilateral, or pentagon (see [10], for example). The study of triangular case was started by

Sommerville [9] in 1924, initially classified by Davies [4] in 1967, and completed with full details

by Ueno and Agaoka [11] in 2002. Recent works of Wang, Yan and Akama [2, 12–14] studied

pentagonal case.

However, earlier explorations (see [1, 8, 10]) suggested that the quadrilateral case might

be the most difficult. We will give the full classification of quadrilateral tilings in a series of

three papers, of which this paper is the first one (see [5–6] for the later two). We notice the

independent complete classification work by Cheung, Luk and Yan [3] using quite different

strategies.

In this paper, we classify edge-to-edge tilings of the sphere by congruent simple quadrilaterals

(see Figure 1) with edge lengths a, a, b, c, where a, b, c have distinct length values, and all vertices
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have degree ≥ 3. We will simply call such tilings a2bc-tilings. We also denote the a2-angle,

ab-angle, ac-angle and bc-angle by α, β, γ, δ.

Figure 1 Quadrilaterals with the edge combination a2bc.

Besides a2bc-tilings, the other possible edge length combinations suitable for tilings are

a2b2, a3b, a4 (see [10] or our Lemma 2.3). Sakano and Akama [8] classified a2b2-tilings and a4-

tilings, which can be reduced to triangular tilings in [11]. Akama and Cleemput [1] had some

partial study for convex a3b-tilings. We will classify a3b-tilings, including non-convex ones, in

the subsequent papers [5–6] of this series.

The following summarizes all a2bc-tilings. We denote the total number of tiles by f .

Main Theorem There are exactly three classes of a2bc-tilings:

(1) A 1-parameter family of quadrilateral subdivisions of the octahedron T (8α3, 12β2γ2, 6δ4)

with f = 24. Moreover, for the case β = π
3 , the tiling has a flip modification T (2α3, 6αγ2, 6α2β2,

6β2γ2, 6δ4);

(2) a 2-parameter family of 2-layer earth map tilings T (fβγδ, 2α
f
2 ), for each even f ≥ 6;

(3) a 3-layer earth map tiling T ( f2αγ
2, f

4α
2β2, f

4 δ
4, 2β

f
4 ) by a unique quadrilateral, for each

f ≥ 16 satisfying f ≡ 0 (mod 8). Moreover, if f ≡ 8 (mod 16), the tiling has two flip modifi-

cations T ( f2αγ
2, f−8

4 α2β2, f
4 δ

4, 4αβ
f+8

8 ), T ( f−4
2 αγ2, f

4α
2β2, f

4 δ
4, 2αβ

f+8

8 , 2β
f−8

8 γ2).

The notation T (fβγδ, 2α
f
2 ) means that the tiling has exactly f vertices βγδ and 2 vertices

α
f
2 , and is uniquely determined by them.

The first and third classes are related to pentagonal tilings in an interesting way. Since all

vertices δ · · · are δ4, we may remove all b-edges and get a tiling by symmetric almost equilateral

pentagons with edge lengths a, a, a, a, 2c. In fact, all such pentagonal tilings are obtained in

this way. For example, 3-layer quadrilateral earth map tilings induce pentagonal earth map

tilings in the right.

Figure 2 The induced tilings by congruent symmetric pentagons.
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The a2bc-quadrilateral with α = 2π
3 , β = π

3 , γ = 2π
3 , δ = π

2 appears in both the first and

third classes. This gives five different tilings, all inducing the regular dodecahedron tiling. In

particular, the quadrilateral is half of the pentagonal face of the regular dodecahedron, which

determines all edge lengths a, b, c. The second to sixth pictures of Figure 3 show these five

different tilings.

Figure 3 Six types of a2bc-tilings with f = 24.

• The first picture is a 2-layer earth map tiling: One timezone is outlined by the yellow line.

The picture shows 12 timezones, and in general the number of timezones can be any n = f
2 ≥ 3.

All a2-angles appear at the north/south poles. The 2n middle points of all b-edges and c-edges

distribute evenly on the equator with spacing EF = π
n
. The tiling is determined by D,E, F ,

and is parameterized by the location of D.

• The second is a quadrilateral subdivision of the octahedron: The yellow triangle is one face

of the regular octahedron. The face is divided into 3 identical quadrilaterals, and the operation

is applied to all 8 faces in a compatible way. The tiling is parameterized by the location of P

on the yellow edge.

• The third is the flip modification of the second: When P in the second picture is at certain

location such that the dodecahedron underlying the quadrilateral tiling is regular, the red line

in the third picture divides the tiling into two identical halves. Then we may flip one half to

get a new tiling.

• The fourth is a 3-layer earth map tiling: One timezone is symmetric and outlined by the

yellow line. The picture shows 3 timezones, and in general the number of timezones can be any

integer ≥ 2.

• The fifth and sixth are two flip modifications of the fourth: When the number of timezones

is odd, two red lines divide the tiling into two identical halves in different ways. In each case,

we may flip one half to get new tilings.
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The key technique used in this paper is the analysis of the neighborhood of a special tile

(see Lemma 2.1) with four vertices of degree 333d, 334d, 335d or 344d. On the other hand,

our subsequent papers [5–6] on the classification of a3b-tilings rely on allowable combinations

of angles at degree 3 and 4 vertices, and will apply interesting new techniques of cyclotomic

field and trigonometric Diophantine equation.

This paper is organized as follows. Section 2 develops basic techniques needed for the clas-

sification work. This includes general results for all quadrilateral tilings of the sphere and some

technical results specific to a2bc. All other sections analyze the neighborhood of a special tile

and complete the classification. Along the way we describe the moduli of 2-layer earth map

tilings and the quadrilateral subdivisions, and also provide exact calculations for the unique

quadrilaterals in the 3-layer earth map tilings.

2 Basic Facts

2.1 Vertex

Let v, e, f be the numbers of vertices, edges, and tiles, respectively. Let vd be the number

of vertices of degree d. We have Euler’s formula and basic counting equalities:

2 = v − e + f,

2e = 4f =

∞
∑

d=3

dvd = 3v3 + 4v4 + 5v5 + · · · ,

v =

∞
∑

d=3

vd = v3 + v4 + v5 + · · · .

Then it is easy to derive v = f + 2 and

f = 6 +
∞
∑

d=4

(d− 3)vd = 6 + v4 + 2v5 + 3v6 + · · · , (2.1)

v3 = 8 +

∞
∑

d=5

(d− 4)vd = 8 + v5 + 2v6 + 3v7 + · · · . (2.2)

These equalities imply f ≥ 6, v3 ≥ 8, and there are many more degree 3 vertices than vertices

of degree ≥ 5.

For a2bc-tilings, each b-edge is shared by exactly two tiles. Then f is twice of the number

of b-edges, and is therefore even.

Lemma 2.1 In an edge-to-edge quadrilateral tiling of the sphere with all vertices having

degree ≥ 3, there is a tile, such that the four vertices have degree 333d (d ≥ 3), 334d (4 ≤ d ≤
11), 335d (d = 5, 6, 7) or 344d (d = 4, 5).

Proof Denote the degrees of four vertices of any tile T by d1, d2, d3, d4. Counting the total

number of vertices via each tile’s contribution, we get

∑

all f tiles

( 1

d1
+

1

d2
+

1

d3
+

1

d4

)

= v = f + 2 > f.
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This implies the existence of a special tile T such that 1
d1

+ 1
d2

+ 1
d3

+ 1
d4

> 1. The integer

solutions d1, d2, d3, d4 ≥ 3 of the inequality are exactly 333d (d ≥ 3), 334d (4 ≤ d ≤ 11), 335d

(d = 5, 6, 7) or 344d (d = 4, 5).

2.2 Angle

The sum of all angles (angle sum) at a vertex is 2π. The following is the angle sum for

quadrilateral.

Lemma 2.2 If all tiles in a tiling of the sphere by f quadrilaterals have the same four

angles α, β, γ, δ, then

α+ β + γ + δ =
(

2 +
4

f

)

π

ranging in
(

2π, 83π
]

. In particular no vertex contains all four angles.

Proof The sum of all angles at a vertex is 2π, and the total sum of all angles in the tiling

is 2πv. The sum of all four angles in a tile is Σ = α+ β+ γ+ δ, and the total sum of all angles

in the tiling is Σf . Therefore 2πv = Σf . By v = f + 2, we get the equality in the lemma.

Moreover, by f ≥ 6, we get 2π < Σ ≤ 8
3π.

Henceforth we often use this angle sum lemma without mentioning it.

2.3 Edge

The following describes all the possible edge length combinations of the quadrilateral in a

tiling and their arrangements. The result appeared in Ueno and Agaoka [10].

Lemma 2.3 In a tiling of the sphere by congruent quadrilaterals, the edge lengths of any

tile are arranged in one of the four ways in Figure 4, with distinct edge lengths a, b, c.

Figure 4 Edge arrangements suitable for tiling.

Proof There are five possible edge combinations (a, b, c, d are distinct)

abcd, a2bc, a2b2, a3b, a4.

For abcd, without loss of generality, we may assume that the edges are arranged as in the first

of Figure 5. Moreover, by v3 ≥ 8, we may assume that the vertex shared by b, c has degree 3.

Let x be the third edge at the vertex. Then x, b are adjacent in a tile, and x, c are adjacent in

another tile. Since there is no edge in the quadrilateral that is adjacent to both b and c, we get

a contradiction.
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Figure 5 Not suitable for tiling.

For a2bc, we need to consider two possible arrangements: The case that two a are adjacent

is the first of Figure 4; the case that two a are separated is the second of Figure 5. In the second

of Figure 5, we get a similar contradiction that there is no edge adjacent to both a and b.

For a2b2, the edges are arranged either as the second of Figure 4, or as the third of Figure

5. The third of Figure 5 leads to a similar contradiction.

For a3b and a4, the edges can only be arranged as the third and fourth of Figure 4.

2.4 Basic techniques

We use the notations and techniques in [12, Section 2], and add some discussion specific to

a2bc.

Lemma 2.4 For an a2bc-quadrilateral in Figure 1, β = γ if and only if δ = π.

Proof If δ = π, then the quadrilateral becomes the isosceles triangle in the first picture of

Figure 6. This implies β = γ.

Conversely, suppose β = γ. By AB = AC, we get ∠ABC = ∠ACB. Then β = γ implies

∠DBC = ∠DCB. If δ 6= π, then this implies b = BD = CD = c, a contradiction.

Figure 6 For the proof of Lemmas 2.4–2.5.

Lemma 2.5 If the a2bc-quadrilateral in Figure 1 is convex, then α+ 2β > π, α+ 2γ > π.

Proof By the convexity assumption, the line BC is inside the quadrilateral in the second

picture of Figure 6. Thus θ < β, γ. Since the sum of three angles in a spherical triangle is > π,

we get α+ 2β > α+ 2θ > π and α+ 2γ > α+ 2θ > π.

Lemma 2.6 (Parity Lemma) In an a2bc-tiling, the respective numbers of β, γ, δ at any

vertex have the same parity.

We call a vertex even or odd whenever the numbers of β, γ, δ are even or odd. Then Lemma

2.2 implies that any vertex α · · · is always even. In other words, α · · · = αkβlγmδn, where

l,m, n are even.
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Proof The total number of β, δ together at a vertex is twice the number of b-edges at the

vertex. Then the respective numbers of β and δ must have the same parity. Similar argument

applies to γ, δ.

Lemma 2.7 In an a2bc-tiling, a vertex without β, γ must be αk or δn.

Proof If a vertex has only a-edge, then it has only a2-angles α. Therefore the vertex is αk.

If a vertex has no a-edge, then it has only bc-angle δ. Therefore the vertex is δn. In all other

cases, it has ab-angle β or ac-angle γ.

The proof above uses the characterization of α, β, γ, δ as a2-angle, ab-angle, ac-angle, bc-

angle. The characterization can be used to distinguish the four angles. Then each of α, β, γ, δ

appears f times in the tile. Therefore, if one vertex has more α than β, there must exist another

vertex with more β than α. Such global counting induces many interesting and useful results.

Lemma 2.8 (Balance Lemma) In an a2bc-tiling, one of β2 · · · , γ2 · · · , δ2 · · · is a vertex if

and only if all three are vertices. Moreover, if all three are not vertices, then α
f
2 and βγδ are

the only vertices.

Proof If β2 · · · is not a vertex, then any vertex αkβlγmδn has l = 0, 1. Then by Parity

Lemma, we have m ≥ l at every vertex. Since the sum of m at all vertices is f , and the sum of

l at all vertices is also f , this implies m = l ≤ 1 at every vertex. This means that γ2 · · · is not

a vertex. Similar argument works for any two angles from β, γ, δ, and this proves the first part

of the lemma.

If β2 · · · , γ2 · · · , δ2 · · · are not vertices, then l,m, n ≤ 1. By Parity Lemma, we get l = m =

n = 0 or l = m = n = 1. In the first case, the vertex is αk. In the second case, by Lemma 2.2,

we get that k = 0, and the vertex is βγδ. By substituting kα = β + γ + δ = 2π into Lemma

2.2, we get k = f
2 .

Lemma 2.9 In an a2bc-tiling, there are only four possible degree 3 vertices α3, αβ2, αγ2

and βγδ shown in Figure 7.

Figure 7 Four possible degree 3 vertices.

Proof Since there is neither b2-angle nor c2-angle, the 3 edges at any degree 3 vertex must

be aaa, aab, aac or abc in Figure 7, which determine four degree 3 vertices uniquely.

Lemma 2.10 In an a2bc-tiling, besides α4, β4, γ4, δ4, there are only five possible degree 4

vertices α2β2, α2γ2, β2γ2, β2δ2, γ2δ2 shown in Figure 8. Each of them is uniquely determined

by two different angles in it.
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Figure 8 Five possible degree 4 vertices with two different angles.

Proof By Parity Lemma, a degree 4 odd vertex is αβγδ, contradicting Lemma 2.2. There-

fore a degree 4 vertex is even. This means that the vertex is θ4 or θ2φ2. Moreover, by Lemma

2.7, we know that α2δ2 is not a vertex. Then we get all the degree 4 vertices as claimed in the

lemma.

Proposition 2.1 There is no a2bc-tiling such that both αβ2 and αγ2 are vertices.

Proof If both αβ2 and αγ2 are vertices, then β = γ. By Lemma 2.4, we get δ = π.

Therefore δ2 · · · is not a vertex. By Balance Lemma, we know that α
f
2 and βγδ are the only

vertices, a contradiction.

The very useful tool adjacent angle deduction (abbreviated as AAD) was introduced in [12,

Section 2.5]. The following is the same as in [12, Lemma 10].

Lemma 2.11 The AAD of αk has the following properties :

• If β β · · · or γ γ · · · is not a vertex, then αk has the unique AAD βαγ βαγ βαγ · · · .
• If k is odd, then we have the AAD βαγ βαγ at αk.

We remark that, for θ = αβδ , αγδ or βδγ , the vertex θn has a unique AAD.

Lemma 2.12 In an a2bc-tiling, if β > π
2 , β + δ > π, then β β · · · is not a vertex. If

δ > π
2 , β + δ > π, then δ δ · · · is not a vertex.

Proof We have β β · · · = θ β β ρ · · · with θ, ρ = β or δ, where θ, ρ are not the same angle

(i.e., the vertex is not degree 3). Then by β > π
2 and β + δ > π, the angle sum is > 2π, a

contradiction. The case δ δ · · · is similar.

Lemma 2.13 In an a2bc-tiling, if αγ2 is a vertex, then α · · · = αγ2 or αkβ2t. Furthermore,

αkβ2t for some k ≥ 1, t ≥ 0 must appear.

Proof Recall that a vertex α · · · = αkβlγmδn, where l,m, n are even. Since αγ2 is a vertex,

we get α · · · = αγ2 or αkβlδn. If n ≥ 2, then by Lemma 2.7, we get l ≥ 2 in αkβlδn. This

implies α + 2β + 2δ ≤ 2π. Combining α + 2γ = 2π, we get α + β + γ + δ ≤ 2π, contradicting

Lemma 2.2. Therefore n = 0 in αkβlδn, and α · · · = αγ2 or αkβl.

Since the total numbers of α and γ in the tiling are the same, the vertex αγ2 implies that

there is a vertex with strictly more α than γ. By α · · · = αγ2 or αkβl, this means that αkβl is

a vertex for some k ≥ 1 and some even l ≥ 0.

We will use Lemma/Proposition n′ to denote Lemma/Proposition n after exchanging β ↔ γ.
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3 333d-Tile

This section classifies all tilings with a special 333d-tile. To facilitate discussion, we denote

by Ti the tile labeled i, by Eij the edge shared by Ti, Tj. We denote by θi the angle θ in Ti.

We say a tile being determined when we know all the edges and angles of the tile.

Proposition 3.1 For an a2bc-tiling, the following statements are equivalent :

(1) Every tile is a 333d-tile.

(2) There exists a 333d-tile.

(3) The bc-angle δ appears at some degree 3 vertex (i.e., βγδ is a vertex).

(4) It is the 2-layer earth map tiling T (2dβγδ, 2αd) (d ≥ 3) in Figure 9.

We remark that d = f
2 .

Proof (1) ⇒ (2) is trivial.

(2) ⇒ (3) If δ does not appear at degree 3 vertices, then in a special 333d-tile, the δ-vertex

has degree d. This implies that both β-vertex and γ-vertex have degree 3. Since there is no δ at

degree 3 vertices and Lemma 2.9, the β-vertex is αβ2, and the γ-vertex is αγ2. This contradicts

Proposition 2.1.

(3) ⇒ (4) By Lemma 2.9, a degree 3 vertex δ · · · = βγδ.

Next we show βδ · · · = βγδ. Let βδ · · · = αkβlγmδn. If m ≥ 1, we have βδ · · · = βγδ. If

m = 0, by Parity Lemma, we get l, n ≥ 2. Then we have β + δ ≤ π. By βγδ, we get γ ≥ π.

However, the unique AAD βδγ γδβ · · · of αkβlδn gives γ2 · · · , a contradiction. Therefore,

βδ · · · = βγδ.

Similarly, γδ · · · = βγδ. In Figure 9, β1γ3δ2 determines T1, T2, T3. Then γ2δ3 · · · = β4γ2δ3

determines T4; β3δ4 · · · = β3γ5δ4 determines T5. The argument started at β1γ3δ2 can be

repeated at β3γ5δ4. More repetitions give the unique tiling of f = 2d tiles with 2αd (d ≥ 3)

and 2dβγδ.

Figure 9 The 2-layer earth map tiling T (fβγδ, 2α
f
2 ).

(4) ⇒ (1) Any tile in the 2-layer earth map tiling is a 333d-tile.

Proposition 3.2 For an a2bc-tiling, if δ = π (or equivalently β = γ), then it is a 2-layer

earth map tiling.

Proof By Lemma 2.4, β = γ if and only if δ = π. This implies that δ2 · · · is not a vertex.
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Then by Balance Lemma, δ · · · = βγδ. By Proposition 3.1, this determines a 2-layer earth map

tiling.

After Proposition 3.1, we may assume that δ never appears in any degree 3 vertex. In this

case, we have the following result.

Lemma 3.1 In an a2bc-tiling, if βγδ is not a vertex (i.e., δ never appears in degree 3

vertices), then α2 · · · , β2 · · · , γ2 · · · , δ2 · · · appear as vertices. In particular, the quadrilateral

is convex and β 6= γ.

Proof If βγδ is not a vertex, then by Balance Lemma, β2 · · · , γ2 · · · , δ2 · · · are all vertices.
If α2 · · · is not a vertex, then by Lemma 2.9 and Proposition 2.1, either αβ2 is the only degree

3 vertex, or αγ2 is the only degree 3 vertex. Assume that αγ2 is a vertex. Then by Lemma

2.13 and no α2 · · · , we know that αβ2t (t ≥ 2) must appear. However αβ2t = βα αβ · · · implies

a vertex α2 · · · , a contradiction. The vertex αβ2 leads to a similar contradiction.

The vertices α2 · · · , β2 · · · , γ2 · · · , δ2 · · · imply that all angles are < π. Then we have β 6= γ

by Lemma 2.4.

3.1 Geometric realization and the moduli of T (fβγδ, 2α
f
2 )

Two poles of the 2-layer earth map tiling in Figure 9 are αd. This implies that the 2d

middle points of all b-edges and c-edges distribute evenly on the equator with spacing π
d
. It

suggests the following geometric construction in Figure 10. Fix a point A on the sphere as the

north pole, and take two points E,F on the equator
(

i.e., AE = AF = π
2

)

with EF = π
d
. The

quadrilateral is then determined by the location of D: Extend DE to B, such that E is the

middle point of DB (b-edge); extend DF to C, such that F is the middle point of DC (c-edge);

connect A to B, C to form the quadrilateral �ABDC. The moduli of 2-layer earth map tilings

is the possible locations of D such that the boundary of �ABDC has no self intersection, i.e.,

�ABDC is simple.

Figure 10 Quadrilateral �ABDC.

In Figure 10, we denote the south pole by A′. Extend FE to P , such that PE = π
2 . Extend

EF to Q, such that FQ = π
2 . Then we get the triangle △A′PQ with PEFQ as one edge. We

will show that �ABDC is simple if and only if D lies in the interior of △AEF ∪△A′PQ.
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Figures 11–12 describe �ABDC for various locations of D. Figure 11 is the stereographic

projection from the antipode of the middle point of EF . Figure 12 shows the cases that

�ABDC is simple and also gives the 3D pictures of the tilings. We study all possibilities as

follows.

Figure 11 Quadrilaterals corresponding to 4 positions of D.

Figure 12 2-layer earth map tilings.

(1) If D lies in the interior of △AEF , then �ABDC is simple and concave with δ > π. See

the first picture of Figures 11–12.

(2) If D is in the northern hemisphere and outside △AEF , then either AB intersects DC,

or AC intersects DB. See the second picture of Figure 11.

(3) If D lies in the interior of △A′EF , then �ABDC is simple and convex. See the third

picture of Figure 11 and the second picture of Figure 12.
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(4) If D is in the southern hemisphere and outside △A′EF , then DB and DC are the only

pair of edges in �ABDC which can possibly intersect. The key fact is that any two great arcs

(< 2π) starting from D either intersect at its antipode D′ or never intersect. In the fourth

picture of Figure 11, D is on the left of the longitude AEA′, and we have DF > DE, β > π.

If DE < π
2 , then DB < π and it is too short to reach D′. Then DB does not intersect DC. If

DE ≥ π
2 , then DB ≥ π and DC = 2DF > 2DE ≥ π. Then DB meets DC at D′. All such D’s

satisfying DE = π
2 form the great arc A′P . Then �ABDC is simple and concave with β > π

if and only if D lies in the interior of △A′EP . Symmetrically, �ABDC is simple and concave

with γ > π if and only if D lies in the interior of △A′FQ. The quadrilateral may have one edge

> π, as shown in the third picture of Figure 12.

(5) If D lies in the interior of EF , A′E or A′F , then �ABDC degenerates to a simple

triangle with δ = π, β = π or γ = π, respectively.

(6) IfD lies onAE, AF orEPQF , then ∠DBA = 0, ∠DCA = 0 or ∠BDC = 0, respectively.

The quadrilateral is not simple.

In summary, �ABDC is simple in the cases (1) and (3)–(5) above. The cases combine to

form the region in the theorem below.

Theorem 3.1 The quadrilateral �ABDC in Figure 10 is simple if and only if D lies in

the interior of △AEF ∪△A′PQ in Figure 13. Furthermore, �ABDC degenerates to a triangle

if and only if D lies in the interior of EF (δ = π), or A′E (β = π), or A′F (γ = π).

�

Figure 13 The moduli (△AEF ∪△A′PQ)◦.

Figure 13 is the stereographic projection from the antipode of the middle point of EF .

The first picture shows the moduli of T (2α3, 6βγδ), and the dotted curves inside the moduli

represent reductions of the quadrilateral from type a2bc to type a2b2 (b = c), type a3b (a = b

or a = c) and type a4 (a = b = c). The second and third pictures of Figure 13 are for f = 8

and f ≥ 10, respectively, where the reduction curves have different positions inside the moduli.

In the next two papers [5–6] of this series, it turns out that most a3b-tilings of the sphere come

from these 2-layer earth map tilings on the reduction curves, together with their modifications

under extra conditions. Thus the detailed study of the reduction curves will be shown in [6].

We remark that three tilings in Figure 12 all have the same vertices distributed on the
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sphere. These three different quadrilaterals are closely related to each other, generalizing the

notion “companion” in [13–14].

4 334d-Tile and 335d-Tile

We classify a2bc-tilings under the assumption that there is a special 334d-tile or 335d-tile.

Since the tiling in Proposition 3.1 has no such special tile, we know that δ does not appear in

degree 3 vertices. By Lemma 2.9 and Proposition 2.1, either α3, αβ2 are all degree 3 vertices,

or α3, αγ2 are all degree 3 vertices.

Let us look at the neighborhood of a special 334d-tile or 335d-tile. Up to the symmetry

of exchanging β ↔ γ, we may assume that α3, αγ2 are all degree 3 vertices. This means that

β and δ do not appear in degree 3 vertices. Then we get 4 possibilities for the special tile in

Figure 14. We denote the degree d vertex by H and indicate it by •.

� � � �

Figure 14 Special 334d, 335d-tiles and their common partial neighborhood.

The fifth picture of Figure 14 shows the common partial neighborhood of these 334d-tiles

and 335d-tiles: The degree 3 vertex γ1 · · · = αγ2 = α3γ1γ2 determines T2 and α3. By α3, the

degree 3 vertex α1 · · · 6= α3. Then α1 · · · = αγ2 determines T3, T4.

Proposition 4.1 Tilings with the 1st special tile in Figure 14 are the following :

(1) The flip modification of a unique quadrilateral subdivision of the octahedron T (2α3, 6αγ2,

6α2β2, 6β2γ2, 6δ4) with 24 tiles ;

(2) a 3-layer earth map tiling T ( f2αγ
2, f

4α
2β2, f

4 δ
4, 2β

f
4 ) by a unique quadrilateral, for each

f ≥ 16 satisfying f ≡ 0 (mod 8). Moreover, if f ≡ 8 (mod 16), the tiling has two flip modifi-

cations T
(

f
2αγ

2, f−8
4 α2β2, f

4 δ
4, 4αβ

f+8

8

)

and T
(

f−4
2 αγ2, f

4α
2β2, f

4 δ
4, 2αβ

f+8

8 , 2β
f−8

8 γ2
)

.

Proof In the partial neighborhood given by the fifth picture of Figure 14, by Lemma 2.10,

the degree 4 vertex δ1δ2 · · · = β2δ2 or δ4. This determines T5, T6 in the two pictures in Figure

15.

By Lemma 2.13, H = α4β1δ6 · · · in the first of Figure 15 is a contradiction. Moreover, we

have H = α4β1β6 · · · = αkβ2t (k, t ≥ 1) in the second of Figure 15. If k ≥ 2 and t ≥ 2, we have

2α + 4β ≤ 2π. By αγ2 and δ4, we get 4(α + β + γ + δ) = 2(α + 2γ) + 4δ + (2α + 4β) ≤ 8π,

contradicting Lemma 2.2. Therefore t = 1 and H = αd−2β2(4 ≤ d ≤ 11), or k = 1 and

H = αβd−1(d = 5, 7, 9, 11).
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� � �� � �

Figure 15 Partial neighborhoods of the 1st special tile.

4.1 H = αd−2β2 (4 ≤ d ≤ 11)

By αγ2, δ4 and αd−2β2, we get

α =
π

d− 3
− 8π

(d− 3)f
, β =

π

2
− π

2(d− 3)
+

4(d− 2)π

(d− 3)f
,

γ = π − π

2(d− 3)
+

4π

(d− 3)f
, δ =

π

2
.

If d ≥ 5, then α < π
2 , β > π

4 , γ > 3π
4 . Moreover, the AAD of H = β β α α α · · · implies

that β γ · · · or γ γ · · · is a vertex. By γ > π
2 , γ + δ > π and Lemma 2.12′, we know that

γ γ · · · is not a vertex. By β + γ > π, we know that β γ · · · is an odd vertex. Then by

R(βγδ · · · ) < π
4 < β, γ, δ, and Lemma 2.2, we get β γ · · · = βγδ. This contradicts Proposition

3.1.

We conclude d = 4, and α =
(

1 − 8
f

)

π, β = 8π
f
, γ =

(

1
2 + 4

f

)

π, δ = π
2 . Now we show

f ≥ 16. If f < 16, we get α < π
2 , β > π

2 , γ > 3π
4 , δ = π

2 . This implies β2 · · · = α2β2.

Then by Lemma 2.13, we further get αβ · · · = αβ2 · · · = α2β2. Then α2β3 · · · = α2α7β3β, and

β2β5 · · · = α7αβ2β5 in the second picture of Figure 15. We get two α in T7, a contradiction.

By f ≥ 16, we have α ≥ π
2 , β ≤ π

2 ,
π
2 < γ ≤ 3π

4 , δ = π
2 . If αkβlγmδn is a vertex, then we

have k ≤ 4, m ≤ 3, n ≤ 4, and

(

1− 8

f

)

k +
8

f
l +

(1

2
+

4

f

)

m+
1

2
n = 2.

We substitute the finitely many combinations of exponents satisfying the bounds into the equa-

tion above and solve for even f ≥ 16. By the angle values and the edge length consideration,

we get all possible vertices in Table 1. The first row “f = all” means that the vertices may

appear for all f .

Claim For any a2bc-tiling with the AVC (for “anglewise vertex combination”) in Table 1,

if β
f
4 is a vertex, and α3, α4, β

f
8 δ2 are not vertices, then it is the 3-layer earth map tiling in

Figure 16.

By no α3, α4, β
f
8 δ2 and the AVC in Table 1, we get α2 · · · = α2β2, αγ · · · = αγ2 and

δ2 · · · = δ4. In Figure 16, β
f
4 = β1 β2 · · · determines T1, T2. Then α1α2 · · · = α1α2β3β4 deter-

mines T3, T4; α3γ1 · · · = α3γ1γ5 determines T5; α4γ2 · · · = α4γ2γ6 determines T6; δ3δ4 · · · = δ4



Tilings of the Sphere by Congruent Quadrilaterals I : Edge Combination a2bc 747

Table 1 The AVC for H = α2β2 and f ≥ 16.

f vertex
all αγ2, α2β2, δ4

16s− 4, s = 2, 3, · · · β2s−1γδ

16 α4, β4, β2δ2

16s, s = 2, 3, · · · β4s, β2sδ2

24 α3, β2γ2, αβ4, β6

16s+ 8, s = 2, 3, · · · αβ2s+2, β4s+2, β2sγ2

Figure 16 The 3-layer earth map tiling T
(

f

2
αγ2, f

4
α2β2, f

4
δ4, 2β

f
4

)

.

determines T7, T8. The tiles T1, · · · , T8 together form a time zone. Similarly, we can determine

T1′ , · · · , T8′ . By repeating the process, we get the 3-layer earth map tiling.

Remark 4.1 The proof above actually shows that β1 β2 determines T1, · · · , T8. This fact

will be very useful to deduce other possible tilings.

4.2 Calculate the quadrilaterals in 3-layer earth map tilings

By Figure 16 and α+ β = 2δ = π, the two poles are connected by a great arc consisting of

one a-edge and two b-edges. Therefore, a+ 2b = π.

Figure 17 The quadrilateral in the 3-layer earth map tiling.

In Figure 17, we divide the quadrilateral into two triangles, where n = f
8 ≥ 2 is the number

of timezones in Figure 16. By αγ2, α2β2, β2n, δ4, we get

α =
(n− 1)π

n
, β =

π

n
= θ + β′, γ =

(n+ 1)π

2n
= θ + γ′, δ =

π

2
.

Then we have

cos b cos c = cosx = cos2 a+ sin2 a cos
(n− 1)π

n
= cos2 a− sin2 a cos

π

n
,
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cos a = cot θ cot
(n− 1)π

2n
= cot θ tan

π

2n
,

sin γ′

sin b
=

1

sinx
,

sin θ

sin a
=

sin (n−1)π
n

sinx
=

sin π
n
sin γ′

sin b
.

Then we have

sin θ =
sina

sin b
sin

π

n
sin γ′ = 2 sin

π

n
cos b sin

((n+ 1)π

2n
− θ

)

= 2 sin
π

n
cos b

(

cos θ cos
π

2n
+ sin θ sin

π

2n

)

= 2 sin
π

n
cos b

(

sin θ cos a cot
π

2n
cos

π

2n
+ sin θ sin

π

2n

)

= 4 sin θ cos
π

2n
cos b

(

cos a cos2
π

2n
+ sin2

π

2n

)

= 4 sin θ cos
π

2n
cos b

(

(1− 2 cos2 b) cos2
π

2n
+ sin2

π

2n

)

.

Dividing by sin θ, we get 8t3 − 4t + 1 = 0 for t = cos π
2n cos b. Thus t = 1

2 ,
±
√
5−1
4 . Note that

2b < a+2b = π implies cos b > 0. Then t > 0. If t = 1
2 , then by − cos 2b = cos a = cot θ tan π

2n ,

we get θ = π
n
. However β′ = π

n
− θ = 0, a contradiction. Therefore, we get a unique solution

t =
√
5−1
4 , and

b = arccos

√
5− 1

4 cos π
2n

, a = π − 2b, c = arccos
(3−

√
5) cos2 π

2n +
√
5− 2

cos π
2n

.

For f = 16, we get α = β = δ = π
2 , γ = 3π

4 , a ≈ 0.2879π, b ≈ 0.3560π, c ≈ 0.1615π.

For f = 24, we get α = γ = 2π
3 , β = π

3 , δ = π
2 , a ≈ 0.2323π, b ≈ 0.3838π, c ≈ 0.1161π. This

quadrilateral also gives the first tiling in Proposition 4.1.

As f = 8n → ∞, we get α ր π, β ց 0, γ ց π
2 , a ց π

5 , b ր 2π
5 , c ց 0. In summary a, b, c

are distinct for all n ≥ 2 and the quadrilateral is indeed of type a2bc.

Let us deduce all possible tilings based on the AVC of Table 1. If AVC = {αγ2, α2β2, δ4},
then we get the following contradiction:

f = #α = #αγ2 + 2#α2β2 =
1

2
#γ +#β =

3

2
f.

Therefore, we just need to consider the following three cases.

Case f = 16s − 4 We know AVC = {αγ2, α2β2, δ4, β2s−1γδ}. Since there is no tiling for

AVC = {αγ2, α2β2, δ4}, β2s−1γδ must appear. In the first of Figure 18, β2s−1γδ = β1 γ2 δ3 · · ·
determines T1, T2, T3. Then α1α2 · · · = α1α2β4β determines T4; α4β2 · · · = α4αβ2β5 determines

T5. We get γ3δ2δ5 · · · , contradicting the AVC.

Case f = 16s, including f = 16 We know AVC = {αγ2, α4, α2β2, δ4, β4s, β2sδ2}. If α4

appears, then its AAD gives a vertex β γ · · · or γ γ · · · , contradicting the AVC.

If β2sδ2 appears, then β2sδ2 = β1 δ2 δ3 β4 · · · in the second of Figure 18, which deter-

mines T1, T2, T3, T4. Then δ1 β2 · · · = δ1 β2 β5 · · · determines T5; δ4 β3 · · · = δ4 β3 β6 · · ·
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Figure 18 β2s−1γδ or β2sδ2 appears.

determines T6. By the AVC, γ2γ3 · · · = α7γ2γ3. By α7, either α2α5 · · · or α3α6 · · · is α2γ · · · ,
contradicting the AVC.

Therefore, AVC = {αγ2, α2β2, δ4, β4s}. Since there is no tiling for AVC = {αγ2, α2β2, δ4},
β4s must appear. By the Claim after Table 1, we get the 3-layer earth map tiling in Figure 16.

Case f = 16s+8, including f = 24 We know AVC = {α3, αγ2, α2β2, δ4, αβ2s+2, β4s+2,

β2sγ2}. We divide our discussions into two subcases.

Subcase α3 appears This subcase means f = 24. By no γ γ · · · in the AVC, we

get the unique AAD γαβ γαβ γαβ of α3. This determines T1, T2, T3 in Figure 19. Then

δ1 · · · = δ2 · · · = δ3 · · · = δ4 determines T4, T5, · · · , T12.

Figure 19 Tilings when α3 appears.

We have α4α5 · · · = α3 or α2β2. In the first of Figure 19, α4α5 · · · = α3. Then the unique

AAD of α3 determines T13. Then δ13 · · · = δ4 determines T14, T15, T16. In the second of Figure

19, α4α5 · · · = α4α5β13β14 determines T13, T14. Then δ13δ14 · · · = δ4 determines T15, T16.

Similarly, we have α6α7 · · · = α3 or α2β2, and α8α9 · · · = α3 or α2β2. We also get the

induced four tiles similar to T13, T14, T15, T16. For all the induced tiles to be compatible and
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produce a tiling, we must have α4α5 · · · = α6α7 · · · = α8α9 · · · = α3, or α4α5 · · · = α6α7 · · · =
α8α9 · · · = α2β2. Then we get two tilings in Figure 19. The first tiling is the quadrilateral

subdivision of the octahedron. Each tile is a 3444-tile, and the tiling actually belongs to later

Proposition 5.3. The tiling is divided into two identical halves along the shaded edges. The left

of Figure 20 gives the angles along the shaded edges.

The second tiling is also divided into two identical halves along the shaded edges. The right

of Figure 20 gives the angles along the shaded edges. The two tilings have the same inside

halves, and two outside halves are related by the flip with respect to the line L. In fact, the

second tiling can also be obtained from the first by the flip of the inside half with respect to

the line L.

Figure 20 Flip modification of a quadrilateral subdivision.

We will calculate the geometric data for the quadrilateral in the proof of Proposition 5.3.

Subcase α3 is not vertex We know AVC = {αγ2, α2β2, δ4, αβ2s+2, β4s+2, β2sγ2}.
If β4s+2 appears, then by the Claim after Table 1, the tiling is the 3-layer earth map tiling

in Figure 16.

If β4s+2 is not a vertex, then AVC = {αγ2, α2β2, δ4, αβ2s+2, β2sγ2}. Assume that αβ2s+2

appears. Its AAD is β α β β β · · · β β . The β α β part of the vertex determines T1, T2, T3

in the left of Figure 21. By the remark after the Claim, the remaining part β β · · · β β of the

vertex determines s timezones consisting of 8s tiles, including T4, T5. Moreover, δ1 · · · = δ3 · · · =
δ4 determines T6, T7, and α3γ2 · · · = αγ2 determines T8. Then β4β5 · · · = β2s · · · = αβ2s+2 or

β2sγ2, shown in Figure 21 and 23, respectively.

In Figure 21, β4β5 · · · = αβ2s+2. Then we get E9,10 = a or b. If E9,10 = b, then we

determine T9, T10 in the right of Figure 21. Then we have α7β8γ9 · · · , contradicting the AVC.

Therefore, E9,10 = a as in the left picture. Then by β4β5 · · · = αβ2s+2 and no α7β8γ9 · · · ,
we can determine T9, T10, T11. Then δ10δ11 · · · = δ4 determines T12, T13, and α10γ9 · · · = αγ2

determines T14. Moreover β9 α4 β β7 · · · = αβ2s+2. The complement β7 · · · of β9 α4 β

determines 8s tiles consisting of T2, T3, T7, T8 and P . We obtain the first flip modification of

the 3-layer earth map tiling, as explained in Figure 22.
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Figure 21 αβ2s+2 appears, β4β5 · · · = αβ2s+2.

Figure 22 First flip of 3-layer earth map tiling with f = 16s+ 8.

The shaded edges in Figure 21 form a full great circle, and the angles along it are indicated

in the right of Figure 22. The left of Figure 22 gives the angles along the circle for the 3-layer

earth map tiling in Figure 16. The two tilings have the same outside hemispheres, and the two

inside hemispheres are related by the flip with respect to the line L1.

Figure 23 αβ2s+2 appears, and β4β5 · · · = β2sγ2.

In Figure 23, β4β5 · · · = β2sγ2. This determines T9, T10. Then β8 α7 β9 · · · = αβ2s+2.

This determines the part of 8s tiles labeled by P . We obtain the second flip modification of the

3-layer earth map tiling, as explained in Figure 24.
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The tiling in Figure 23 is divided into two identical halves along the shaded edges. The right

of Figure 24 gives the angles along the shaded edges. The left of Figure 24 gives the angles

along the shaded edges for the 3-layer earth map tiling in Figure 16. The two tilings have the

same outside halves, and the two inside halves are related by the flip with respect to the line

L2.

Figure 24 Second flip of 3-layer earth map tiling with f = 16s + 8.

If β4s+2 and αβ2s+2 are not vertices, then AVC = {αγ2, α2β2, δ4, β2sγ2}. Since there is no

tiling for AVC = {αγ2, α2β2, δ4}, β2sγ2 must appear. In Figure 25, β2sγ2 = β1 γ3 γ4 β2 · · ·
determines T1, T2, T3, T4. Then δ3δ4 · · · = δ4 determines T5, T6; α1α3 · · · = α1α3β7β determines

T7, and α7β3β5 · · · = α7α8β3β5. By α8 and no γ γ · · · , we get γ7 · · · = γ7 β8 · · · , which
determines T8. Then α5γ8 · · · = α5γ8γ9 determines T9; α2α4 · · · = α2α4β10β determines T10,

and α10β4β6 · · · = α10α11β4β6. By α11, we have α6β9 · · · 6= α2β2, contradicting the AVC.

Figure 25 β2sγ2 appears.

4.3 H = αβd−1 (d = 5, 7, 9, 11)

By αγ2, δ4, αβd−1, we get

α = π − 2π

d− 3
+

8(d− 1)π

(d− 3)f
, β =

π

d− 3
− 8π

(d− 3)f
, γ =

π

2
+

π

d− 3
− 4(d− 1)π

(d− 3)f
, δ =

π

2
.
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By Lemma 3.1, we have α < π, which implies f > 4(d−1). Then α+2β > π, π
d−1 < β < π

d−3 ,
π
2 < γ < π

2 + π
d−3 .

Suppose γ2 · · · = αkβlγmδn. By R(γ2 · · · ) < γ + δ and Parity Lemma, we know that γ2 · · ·
is even. By γ > π

2 and 2γ+2δ > 2π, we get m = 2 and n = 0. By α+2γ = 2π, we get k = 0 or

1. If k = 1, then γ2 · · · = αγ2. If k = 0, by π
d−1 < β < π

d−3 ,
π
2 < γ < π

2 + π
d−3 , we deduce that

d−5 < l < d−1, which forces l = d−3. Therefore, γ2 · · · = αγ2 or βd−3γ2. If βd−3γ2 is a vertex,

we get α = (d−3)π
d−2 , β = π

d−2 , γ = (d−1)π
2(d−2) for d = 5, 7, 9, 11. Then (α,β,γ)

π
=

(

2
3 ,

1
3 ,

2
3

)

,
(

4
5 ,

1
5 ,

3
5

)

,
(

6
7 ,

1
7 ,

4
7

)

or
(

8
9 ,

1
9 ,

5
9

)

. These cases have exactly the same AVC as the Case f = 16s+ 8 in page

749 for s = 1, 2, 3, 4, which has been classified. Therefore, we may assume that βd−3γ2 is not a

vertex. Then γ2 · · · = αγ2. By Lemma 2.13, α · · · = αγ2 or αkβ2t. Therefore, αγ · · · = αγ2. If

k ≥ 2, then by α+ 2β > π, we get t = 0 or 1. Therefore, α2 · · · = αk or αkβ2.

By Parity Lemma and γ > δ = π
2 , we get δ δ · · · = δ4.

We extend the 2nd picture of Figure 15 to Figure 26. We have γ5γ6 · · · = α7γ5γ6. By

H = αβd−1, we determine T8, T9. By α7, α6α8 · · · is not αk and must be αkβ2(k ≥ 2). We

discuss two cases k = 2 and k ≥ 3.

Figure 26 H = αβd−1.

In the first of Figure 26, α6α8 · · · = α2β2. This determines T7, T10. Then α5γ7 · · · = αγ2,

and δ7 δ10 · · · = δ4. Therefore, T7 is a special 3344-tile, which has been discussed in page 746

for H = αd−2β2 with d = 4 .

In the second of Figure 26, α6α8 · · · = αkβ2 (k ≥ 3). By α7, we determine T7 and get α10.

Then δ8 δ9 · · · = δ4 determines T11. By α10, we have γ8γ11 · · · 6= αγ2, a contradiction.

Proposition 4.2 There is no tiling with the 2nd special tile in Figure 14.

Proof Let the second of Figure 14 be the center tile T1 in the partial neighborhood in

Figure 27. By Lemma 2.10, the degree 4 vertex α4β1 · · · = α2β2 = α4α5β1β6. This determines

T6 and α5.

Suppose H = δ1δ2δ6 · · · = αkβlγmδn. Since α2β2 implies α+ β = π and γ + δ =
(

1 + 4
f

)

π,

we get m ≤ 1. If m = 1, H is odd and l ≥ 1. Then we have β+ γ+3δ ≤ 2π. By α2β2 and αγ2,
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Figure 27 Partial neighborhood of the 2nd special tile.

we get 3(α+ β + γ + δ) = (2α+ 2β) + (α+ 2γ) + (β + γ + 3δ) ≤ 6π, contradicting Lemma 2.2.

Therefore, we have m = 0, H is even and n ≥ 4. If l ≥ 2, we have 2β + 4δ ≤ 2π. By α2β2 and

αγ2, we get 4(α+ β + γ + δ) = (2α+ 2β) + 2(α+ 2γ) + (2β + 4δ) ≤ 8π, contradicting Lemma

2.2. Therefore, we have l = 0. By Lemma 2.7, we get H = δd, d = 6, 8, 10. This determines

T7, T9.

The angle sum at H = δd further implies

α =
4π

d
− 8π

f
, β = π − 4π

d
+

8π

f
, γ = π − 2π

d
+

4π

f
, δ =

2π

d
.

Then we have β > π
3 , γ > 2π

3 , π
5 ≤ δ ≤ π

3 . By the angle values, the edge length consideration

and Lemma 2.13, we get

AVC = {αγ2, α2β2, β4, β2δ2, αk, δd}.

Then α2β3 · · · = α2α10β3β. By α10, β2β7 · · · = β2β7β10β11 determines T10, T11. By αγ2, α2β2,

β4, we get α = β = π
2 , γ = 3π

4 . This implies δ = 2π
d

=
(

1
4 + 4

f

)

π > π
4 . Then we get d = 6,

δ = π
3 and

AVC = {αγ2, α4, α2β2, β4, δ6}.

Then H = δ6 determines T8, and γ7γ8 · · · = α13γ7γ8. By α13, α7α11 · · · = α7α11β12β13 deter-

mines T12, T13; α8γ13 · · · = α8γ13γ14 determines T14. Then α14β8β9 · · · = α14α15β8β9. By α5,

we get β4 · · · = β4, which determines T5. Then α6γ5 · · · = α6γ5γ16 determines T16. By α15,

we have α9β16 · · · 6= α2β2, contradicting the AVC.

Proposition 4.3 There is no tiling with the 3rd special tile in Figure 14.

Proof Let the third of Figure 14 be the center tile T1 in the partial neighborhood in Figure

28.



Tilings of the Sphere by Congruent Quadrilaterals I : Edge Combination a2bc 755

Figure 28 Partial neighborhood of the 3rd special tile.

By the edge length consideration, the degree 5 vertex δ1δ2 · · · = αβ2δ2 or βγδ3. If αβ2δ2 is a

vertex, by αγ2, then 2(α+β+γ+δ) = 4π, contradicting Lemma 2.2. Therefore, δ1δ2 · · · = βγδ3.

By Lemma 2.13 and αγ2, we get α4β1 · · · = αkβ2t. This determines T5, T6, T7. If k ≥ 2, then

2α+2β ≤ 2π. By αγ2 and βγδ3, we get 3(α+β+γ+δ) = (α+2γ)+(β+γ+3δ)+(2α+2β) ≤ 6π,

contradicting Lemma 2.2. Therefore, H = αβd−1, d = 5, 7.

By Lemma 3.1, α2 · · · is a vertex and must be even. By αγ2, βγδ3 and Lemma 2.2, we get

α+ β =
(

1 + 6
f

)

π > π and α + γ > π. This implies R(α2 · · · ) < 2β, 2γ. Then by Lemma 2.7,

we get α2 · · · = αk. By αk, αβd−1, we get 3α ≤ 2π and α+ 4β ≤ 2π. This implies α + β ≤ π,

contradicting α+ β =
(

1 + 6
f

)

π.

Proposition 4.4 There is no tiling with the 4th special tile in Figure 14.

Proof Let the fourth of Figure 14 be the center tile T1 in the partial neighborhoods in Figure

29. By the edge length consideration and Lemma 2.13, the degree 5 vertex α4β1 · · · = α3β2 or

αβ4, shown in the first and second pictures of Figure 29.

Figure 29 Partial neighborhoods of the 4th special tile.

Case α4β1 · · · = α3β2 The vertex α4 β1 · · · = β1 β7 α6 α5 α4 determines T7. Suppose

H = δ1δ2δ7 · · · = αkβlγmδn. If m ≥ 1, by Parity Lemma, we get H = βγδ3 · · · or γ2δ4 · · · .
Then by αγ2, α3β2, we have

3(α+ β + γ + δ) < (α+ 2γ) + (3α+ 2β) + (β + γ + 3δ) ≤ 6π,

2(α+ β + γ + δ) < (3α+ 2β) + (2γ + 4δ) ≤ 4π.
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Both contradict Lemma 2.2. Therefore, m = 0 and H must be even. If l > 0, we get H =

β2δ4 · · · . Then we get

4(α+ β + γ + δ) < 2(α+ 2γ) + (3α+ 2β) + (2β + 4δ) ≤ 8π,

contradicting Lemma 2.2. Therefore, l = 0. By Lemma 2.7, we have H = δ6. By αγ2, α3β2, δ6,

we get α =
(

1
3 − 4

f

)

π, β =
(

1
2 + 6

f

)

π, γ =
(

5
6 + 2

f

)

π, δ = π
3 .

The AAD of α4 α5 α6 · · · implies β γ · · · or γ γ · · · . By R( β γ · · · ) < 2π
3 < γ, we get

β γ · · · = β γ δ · · · . Then by R(βγδ) = (13 − 8
f
)π < all angles, we know that βγδ is a vertex,

a contradiction. Moreover, by R( γ γ · · · ) < π
3 ≤ γ, δ, we also get a contradiction.

Case α4β1 · · · = αβ4 The vertex α4 β1 · · · = αβ4 determines T5, T6, T7. By Lemma 3.1,

we have α < π. Then by αβ4, αγ2, we get β > π
4 , γ > π

2 . Moreover by αγ2, αβ4 and Lemma

2.2, we get δ = π
2 − α

4 + 4π
f

> π
4 .

By Lemma 2.13,H = δ3 · · · has no α. If degH = 7, then by Parity Lemma, H = δ1δ2δ7 · · · =
β3γδ3, βγ3δ3 or βγδ5. By β, δ > π

4 and γ > π
2 , all have angle sums > 2π, a contradiction.

Therefore, degH = 6. By Parity Lemma and 2γ + 4δ > 2π, we get H = β2δ4 or δ6. By

αγ2, αβ4 and H , we get

H = β2δ4 : α =
(2

3
+

32

3f

)

π, β =
(1

3
− 8

3f

)

π, γ =
(2

3
− 16

3f

)

π, δ =
(1

3
+

4

3f

)

π;

H = δ6 : α
(2

3
+

16

f

)

π, β =
(1

3
− 4

f

)

π, γ =
(2

3
− 8

f

)

π, δ =
π

3
.

Both imply R(α6α7 · · · ) < α, 2β, contradicting Lemma 2.13.

5 344d-Tile

We classify a2bc-tilings under the assumption that there is a special 344d-tile, d = 4, 5. By

Proposition 3.1, δ does not appear in degree 3 vertices. Then up to the symmetry of exchanging

β ↔ γ, there are 7 different configurations in Figure 30. The first two cases have d = 4, and all

other five cases have d = 5. We first prove two useful propositions before studying each special

tile.

Figure 30 Special tiles with vertex degrees 344d, d = 4, 5.

Proposition 5.1 There is no a2bc-tiling with vertices α3, β4, γ2δ2.

Proof If α3, β4, γ2δ2 are vertices, we have α = 2π
3 , β = π

2 , γ + δ = π. By Lemma 2.5, we

have γ > π
6 . By Lemma 2.11, the AAD of α3 gives a vertex βγ · · · = αkβlγmδn. If k ≥ 1,
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then βγ · · · = αβγ · · · must be even. Therefore, l,m ≥ 2. By α + 2β + 2γ > 2π, we get a

contradiction.

Therefore, k = 0. If n = 0, the vertex βγ · · · is even. Then by β = π
2 , γ > π

6 , we

get βγ · · · = β2γ2 or β2γ4. However β2γ2 and β4 imply β = γ, contradicting Lemma 3.1.

Therefore, βγ · · · = β2γ4. The angle sum of β2γ4 further implies δ = 3π
4 > π

2 , β + δ = 5π
4 > π.

By Lemma 2.12, δ δ · · · is not a vertex. However β2γ4 = αγδ δγα · · · gives a vertex δ δ · · · ,
a contradiction.

Therefore, n > 0. This means βγ · · · = βγδ · · · . We know that the vertex has no α. Then

by R(βγδ · · · ) = π
2 = β < γ + δ and Parity Lemma, we get βγ · · · = βγmδ or βγδn. Since δ

does not appear in degree 3 vertices, we have m,n ≥ 3.

If βγmδ is a vertex, by β = π
2 , γ + δ = π, we get γ = π

2(m−1) ≤ π
4 and δ ≥ 3π

4 . By

Lemma 2.12, δ δ · · · is not a vertex. However βγmδ = γδ δγ · · · gives a vertex δ δ · · · , a
contradiction.

If βγδn is a vertex, then similarly we get γ ≥ 3π
4 , δ ≤ π

4 . Then βγδn = βδγ γδβ · · · gives

a vertex γ γ · · · = θ γ γ ρ · · · , where θ, ρ = α, β or γ. By α = 2π
3 , β = π

2 , γ ≥ 3π
4 , we get a

contradiction.

Proposition 5.2 There is no a2bc-tiling with vertices α3, β2γ2, γ2δ2, β β · · · .

Proof If α3, β2γ2 and γ2δ2 are vertices, we have α = 2π
3 , γ =

(

2
3 − 4

f

)

π, β = δ =
(

1
3 +

4
f

)

π.

Let β β · · · = αkβlγmδn. By β2γ2 = β β γ γ , we get m ≤ 1. If m = 1, then it is odd and

l ≥ 3, n ≥ 1. Then we get 3β + γ + δ =
(

2+ 12
f

)

π > 2π, a contradiction. Therefore, m = 0 and

the vertex is even. By edge length consideration, we have l+n ≥ 4. By α+4β = α+2β+2δ =
(

2 + 16
f

)

π > 2π, we get k = 0. Then we have β β · · · = βlδn for some even l, n. If l + n ≥ 6,

we get lβ + nδ = (l + n)
(

1
3 + 4

f

)

π > 2π, a contradiction. Therefore l + n = 4 and β = δ = π
2 .

By β2γ2, we get γ = π
2 = β, contradicting Lemma 3.1.

Proposition 5.3 Tilings with the 1st special tile in Figure 30, and without 334d-tile, is a

1-parameter family of quadrilateral subdivisions of the octahedron T (8α3, 12β2γ2, 6δ4) with 24

tiles.

Proof Let the first of Figure 30 be the center tile T1 in the partial neighborhoods in Figure

31. In the first picture, we assume E28 6= a. If E28 = c, then T2 is determined. By Lemma

2.10, the degree 4 vertex α2γ1 · · · = α2γ2, contradicting α1γ2γ8. If E28 = b, we get a similar

contradiction at β1 · · · . Therefore, E28 = a, and α1 · · · = α3. Then E23 = b or c.

Case E23 = c This edge determines T2. By Lemma 2.10, the degree 4 vertex γ1γ2 · · · = γ4

or γ2δ2. This determines T3, T4 in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex δ1 δ4 · · · = β2δ2 or δ4. By

Proposition 5.1′, we know β2δ2 is not a vertex. Then δ1δ4 · · · = δ4, which determines T5, T6.

By α8, the degree 4 vertex β1β6 · · · = β4 or β2γ2. By γ4, we get β = γ, contradicting Lemma
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Figure 31 Partial neighborhoods of the 1st special tile.

3.1.

In the third picture, by Lemma 2.10, the degree 4 vertex γ4δ1 · · · = γ2δ2 determines T5, T6.

By α8, the degree 4 vertex β1β6 · · · = β4 or β2γ2. By Proposition 5.1, we know β4 is not a

vertex. Then β1β6 · · · = β2γ2, which determine T7, T8. Therefore, α3, β2γ2, γ2δ2, β2 β8 · · ·
are vertices, contradicting Proposition 5.2.

Case E23 = b This edge determines T2 in the fourth picture. By Lemma 2.10, the degree

4 vertex β2γ1 · · · = β2γ2 determines T3, T4. By the symmetry of exchanging β ↔ γ, the case

E78 = b is also discussed as the previous case E23 = c. Therefore it remains to consider E78 = c.

This determines T8, which further determines T7, T6, T5.

By α3, β2γ2, δ4, we get α = 2π
3 , β+γ = π, δ = π

2 , f = 24. By α = 2π
3 , β, γ, δ < π and Lemma

2.5, we have β, γ > π
6 . By the symmetry of exchanging β ↔ γ and Lemma 3.1, we may assume

β < γ. Then the AVC is derived as shown in Table 2.

Table 2 AVC for α = 2π
3
, β + γ = π with π

6
< β < γ, δ = π

2
.

β vertex

all α3, β2γ2, δ4

π

5
β10

2π

9
αβ6

π

4
β3γδ, β4δ2, β8

π

3
αγ2, α2β2, αβ4, β6

For β = π
4 , we have

#β = 2#β2γ2 + 3#β3γδ + 4#β4δ2 + 8#β8,

#γ = 2#β2γ2 +#β3γδ.

By #β = f = #γ, the equalities above imply #β3γδ = #β4δ2 = #β8 = 0. This means that

β3γδ, β4δ2, β8 are not vertices. By a similar argument, we know that β10 is not a vertex for
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β = π
5 , and αβ6 is not a vertex for β = 2π

9 . Moreover, for β = π
3 , we know that αγ2 is a vertex

if and only if one of α2β2, αβ4, β6 is a vertex.

In the first of Figure 32, α1γ2γ3 = γα
β
1

αγδ
2

δγα
3 determines T1, T2, T3. Then by α3γ1 · · · =

αγ2, δ2δ3 · · · = δ4, β3 · · · = α2β2, β2γ2, αβ4 or β6, we know that T3 is a 334d-tile, which has

been discussed in Section 4.

Figure 32 αγ2 and quadrilateral subdivision of a triangle.

In conclusion, we only need to consider AVC = {α3, β2γ2, δ4}. By the argument in “Subcase

α3 appears” on page 1.7, we get the quadrilateral subdivision of the octahedron in the first

picture of Figure 19.

5.1 Moduli of the quadrilateral subdivision of the octahedron

The second picture of Figure 32 shows a quadrilateral subdivision of one triangular face of

the regular octahedron. We have MN = NP = a,BM = b, BP = c, and

α =
2π

3
, β + γ = π, δ =

π

2
, b+ c =

π

2
.

By β < γ and β+γ = π, we get β < π
2 < γ. By ∠NPM = ∠NMP , we get ∠BPM > ∠BMP .

Therefore, b > c. By b+c = π
2 , we have c ∈ (0, π4 ). Then by applying the cosine law to △MNP

and △BMP , we get

cos2 a+ sin2 a cosα = cosMP = cos b cos c = sin c cos c.

Solving the above equation, we get

√
3 cos a = sin c+ cos c. (5.1)

Similarly, the cosine laws for △BMN and △BNP give

cos a cos b + sina sin b cosβ = cosBN = cos a cos c+ sin a sin c cos γ.

Then by β + γ = π, b+ c = π
2 , this implies

cosβ =
cos a(cos c− sin c)

sina(cos c+ sin c)
=

cos c− sin c√
2− sin 2c

. (5.2)

The flip modification in Proposition 4.1 requires β = π
3 . Then by (5.2), we get sin 2c = 2

3 .

Then

c =
1

2
arcsin

2

3
≈ 0.116π, b =

π

2
− c ≈ 0.383π, a = arccos

√
5

3
≈ 0.232π.
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The quadrilateral reduces to type a3b if a = c. By (5.1), we get

a = c = arctan(
√
3− 1) ≈ 0.201π, b =

π

2
− c ≈ 0.298π.

By (5.2), we get β = arccos 3−
√
3

6 ≈ 0.432π, γ = π − β ≈ 0.567π. The reduced case a = b is

obtained from the case a = c by exchanging b ↔ c.

We remark that the quadrilateral reduces to type a2b2 for b = c = π
4 . In this case we have

β = γ = π
2 and a = arccos

√
6
3 ≈ 0.195π.

We conclude that a2bc-tilings with the first special tile in Figure 30 are parameterized by

c ∈
(

0,
π

4

)

\{arctan(
√
3− 1)}.

Proposition 5.4 There is no tiling with the 2nd special tile in Figure 30, and without

3344-tile.

Proof Let the second of Figure 30 be the center tile T1 in the partial neighborhoods in Figure

33. By Lemma 2.9, the degree 3 vertex β1 · · · = α3β1β2 determines T2. This implies that α2β2

is not a vertex. Then by α3 and Lemma 2.10, the degree 4 vertex α1 · · · = α2γ2 = α1α5γ3γ4,

which determines T3, T4. Then E56 = b or c.

Figure 33 Partial neighborhoods of the 2nd special tile.

Case E56 = b This edge determines T5 in the first picture. By Lemma 2.10, the degree 4

vertex β5γ1 · · · = β2γ2 determines T6, T7. Then the degree 4 vertex δ1δ2δ7 · · · = δ4 determines

T8. By αβ2, α2γ2, β2γ2, δ4, we get α = β = 2π
3 , γ = π

3 , δ = π
2 . Then by the edge length

consideration, we get α2β3 · · · = αβ2, δ3δ4 · · · = δ4. Then T3 is a special 3344-tile, which has

been discussed in Section 4.

Case E56 = c This edge determines T5. By Lemma 2.10, the degree 4 vertex γ1γ5 · · · = γ4

or γ2δ2. This determines T6, T7 in the second and third pictures.

In the second picture, the degree 4 vertex δ1δ2δ7 · · · = δ4 determines T8. By αβ
2, α2γ2, γ4, δ4,

we get α = γ = δ = π
2 , β = 3π

4 . Then by the edge length consideration, we get α2β3 · · · = αβ2,

δ5 δ6 · · · = δ4. Then T3 is a special 3344-tile, which has been discussed in Section 4.

In the third picture, the degree 4 vertex γ7δ1δ2 · · · = γ2δ2 determines T8. By αβ2 and Parity

Lemma, we get α2β3 · · · = α2β3β9, which determines T9. Then α9γ2δ8 · · · contradicts Lemma

2.13′.

Proposition 5.5 There is no tiling with the 3rd special tile in Figure 30.
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Proof Let the third of Figure 30 be the center tile T1 in the partial neighborhoods in Figure

34. For the same reason as Proposition 5.3, we have E29 = a, α1 · · · = α3. Then E23 = b or c.

Figure 34 Partial neighborhoods of the 3rd special tile.

Case E23 = b This edge determines T2 in the first picture. By Lemma 2.10, the degree

4 vertex β2γ1 · · · = β2γ2 determines T3, T4. By the edge length consideration, the degree 5

vertex δ1 δ4 · · · = αβ2δ2 or βγδ3. However α3, β2γ2 and βγδ3 imply 3(α + β + γ + δ) = 6π,

contradicting Lemma 2.2. Then δ1δ4 · · · = αβ2δ2, which determines T5, T7. Then by Lemma

2.10, the degree 4 vertex β1δ7 · · · = β2δ2, which contradicts αβ2δ2.

Case E23 = c This edge determines T2. By Lemma 2.10, the degree 4 vertex γ1γ2 · · · = γ4

or γ2δ2. This determines T3, T4 in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex β1 · · · = β4, β2γ2 or β2δ2. If

β4 or β2γ2 is a vertex, by γ4, we get β = γ, contradicting Lemma 3.1. Then β1 · · · = β2δ2.

Therefore, α3, β2δ2, γ4 are vertices, contradicting Proposition 5.1′.

In the third picture, by Lemma 2.10, the degree 4 vertex β1 · · · = β4, β2γ2 or β2δ2. If β4

is a vertex, then α3, β4, γ2δ2 contradicts Proposition 5.1. If β2δ2 is a vertex, by γ2δ2, we get

β = γ, contradicting Lemma 3.1. Then β1 · · · = β2γ2, which determines T7. Then the degree

5 vertex γ4 δ1 δ7 · · · = αγ2δ2 or βγδ3. By γ2δ2, we get γ4δ1δ7 · · · = βγδ3. By α3, β2γ2, γ2δ2

and βγδ3, we get α = γ = 2π
3 , β = δ = π

3 , contradicting Lemma 2.2.

Proposition 5.6 There is no tiling with the 4th special tile in Figure 30.

Proof Let the fourth of Figure 30 be the center tile T1 in the partial neighborhoods in

Figure 35. If E27 = c in the first picture, then the degree 3 vertex α1 · · · = α1γ2γ7. This

determines T7. By Parity Lemma, the degree 5 vertex α7γ1 · · · must be even. This implies

α + 2γ < 2π, contradicting α1γ2γ7. If E27 = b, we get a similar contradiction at the degree 4

vertex α2β1 · · · . Therefore, E27 = a, α1 · · · = α3. Then E23 = b or c.

Case E23 = b This edge determines T2. By Lemma 2.10, the degree 4 vertex β1 β2 · · · =
β4 or β2δ2. This determines T3, T4 in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex δ1 δ4 · · · = γ2δ2 or δ4. However

α3, β4, γ2δ2 contradicts Proposition 5.1. Then δ1δ4 · · · = δ4, which determines T5, T6. By

α3, β4, δ4, we get α = 2π
3 , β = δ = π

2 , γ =
(

1
3 + 4

f

)

π. By α7 and Parity Lemma, the degree 5

vertex γ1 γ6 · · · = αβ2γ2, αγ4 or βγ3δ. All have angle sums > 2π, a contradiction.



762 Y. X. Liao, P. R. Qian, E. X. Wang and Y. Y. Xu

Figure 35 Partial neighborhoods of the 4th special tile.

In the third picture, by Lemma 2.10, the degree 4 vertex β4δ1 · · · = β2δ2. This determines

T5, T6. By α7 and Parity Lemma, the degree 5 vertex γ1 γ6 · · · = αβ2γ2, αγ4 or βγ3δ. By

α3, β2δ2, we get α = 2π
3 , β + δ = π, γ =

(

1
3 + 4

f

)

π. Then α + 4γ > 2π and β + 3γ + δ > 2π.

Therefore, γ1γ6 · · · = αβ2γ2 = γ6 γ1 β7 β8 α . This determines T7, T8. By αβ2γ2, we get

β =
(

1
3 − 4

f

)

π, δ =
(

2
3 + 4

f

)

π. Then by γ + δ > π, δ > π
2 and Lemma 2.12′, δ δ · · · is not a

vertex, contradicting δ7 δ8 · · · .

Case E23 = c This edge determines T2. By Lemma 2.10, the degree 4 vertex β1γ2 · · · =
β2γ2 determines T3, T4. Then the degree 4 vertex δ1 δ4 · · · = γ2δ2 in the fourth picture, or

δ1 δ4 · · · = δ4 in the fifth and sixth pictures. This determines T5, T6.

In the fourth picture, by α3, β2γ2, γ2δ2, we get α = 2π
3 , β = δ =

(

1
3 + 4

f

)

π, γ =
(

2
3 − 4

f

)

π.

By α7 and Parity Lemma, the degree 5 vertex γ1 δ6 · · · = β3γδ, βγ3δ or βγδ3. All have angle

sum > 2π, a contradiction.

Therefore, δ1 δ4 · · · = δ4. Then δ = π
2 . By α7, we get E78 = b or c. This determines T7 in

the fifth and sixth pictures.

In the fifth picture, by the edge length consideration, the degree 5 vertex β7γ1γ6 · · · = αβ2γ2

or βγ3δ. By β2γ2, we get β7γ1γ6 · · · = βγ3δ, which determines T8, T9. By α = 2π
3 , β +

γ = π, δ = π
2 and βγ3δ, we get β = 3π

4 , γ = π
4 . Then β5β6 · · · = β5β6γ10γ and α6α9 · · · =

α6α9α10 determine T10. Then by β + δ > π, β > π
2 and Lemma 2.12, β β · · · is not a vertex,

contradicting β9 β10 · · · .
In the sixth picture, by the edge length consideration, the degree 5 vertex γ1γ6γ7 · · · = αγ4

or βγ3δ. By α = 2π
3 , β + γ = π, δ = π

2 , we get β = 2π
3 , γ = π

3 for αγ4, or β = 3π
4 , γ = π

4 for

βγ3δ. Both imply β + δ > π, β > π
2 . By Lemma 2.12, β β · · · is not a vertex, contradicting
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β2 β7 · · · .

Proposition 5.7 There is no tiling with the 5th special tile in Figure 30.

Proof Let the fifth of Figure 30 be the center tile T1 in the partial neighborhood in Figure

36. By Lemma 2.9, the degree 3 vertex β1 · · · = α3β1β2 determines T2. By α3β1β2 and Lemma

2.10, the degree 4 vertex α1 · · · = α2γ2. This determines T3, T4. By Parity Lemma and Lemma

2.13′, the degree 5 vertex δ1 δ2 · · · has no α and must be odd. Then δ1 δ2 · · · = βγδ3. By

αβ2, α2γ2 and βγδ3, we get 3(α + β + γ + δ) = (α + 2β) + (2α + 2γ) + (β + γ + 3δ) = 6π,

contradicting Lemma 2.2.

Figure 36 Partial neighborhood of the 5th special tile.

Proposition 5.8 There is no tiling with the 6th special tile in Figure 30, and without

3344-tile.

Proof Let the sixth of Figure 30 be the center tile T1 in the partial neighborhoods in Figure

37. By Lemma 2.9, the degree 3 vertex β1 · · · = α3β1β2 determines T2. By α3β1β2 and Lemma

2.10, the degree 4 vertex α1 · · · = α2γ2. This determines T3, T4. Then by Lemma 2.10, the

degree 4 vertex δ1 δ2 · · · = γ2δ2 or δ4. This determines T5, T6 in Figure 37.

Figure 37 Partial neighborhoods of the 6th special tile.

In the first picture, by αβ2, α2γ2, γ2δ2, we get α = δ = 8π
f
, β =

(

1 − 4
f

)

π, γ =
(

1 − 8
f

)

π.

By γ > 0, we have f > 8. By α7 and the edge length consideration, the degree 5 vertex

γ1δ6 · · · = β3γδ, βγ3δ or βγδ3. However 3β+γ+δ > 2π, β+γ+3δ > 2π. Then γ1δ6 · · · = βγ3δ,

which determines T7, T8, T9 and implies α = δ = 4π
5 , β = 3π

5 , γ = π
5 . Then by β + δ > π, δ > π

2

and Lemma 2.12, δ δ · · · is not a vertex, contradicting δ3 δ4 · · · .
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In the second picture, by α7, the degree 5 vertex γ1γ6 · · · = αβ2γ2, αγ4 or βγ3δ. By αβ2,

αβ2γ2 is not a vertex. If γ1γ6 · · · = αγ4, by αβ2, α2γ2, δ4, αγ4, we get α = β = 2π
3 , γ = π

3 ,

δ = π
2 . If γ1γ6 · · · = βγ3δ, we get α = 5π

7 , β = 9π
14 , γ = 2π

7 , δ = π
2 . Both imply δ3δ4 · · · = δ4

and α2β3 · · · = αβ2. Then T3 is a special 3344-tile, which has been discussed in Section 4.

Proposition 5.9 There is no tiling with the 7th special tile in Figure 30, and without

3345-tile.

Proof Let the seventh of Figure 30 be the center tile T1 in the partial neighborhoods in

Figure 38. By Lemma 2.9, the degree 3 vertex β1 · · · = α7β1β2, which determines T2. Then by

Lemma 2.10, the degree 4 vertex δ1 δ2 · · · = γ2δ2 or δ4. This determines T3, T4 in Figure 38.

Figure 38 Partial neighborhoods of the 7th special tile.

In the first picture, by Lemma 2.10, the degree 4 vertex γ1δ4 · · · = γ2δ2 determines T5, T6.

By αβ2 and Lemma 2.13′, and α7, the degree 5 vertex α1α6 · · · = α3γ2, which determines

T7, T8. By αβ2, γ2δ2, α3γ2, we get α = 8π
f
, β =

(

1 − 4
f

)

π, γ =
(

1 − 12
f

)

π, δ = 12π
f
. If δ > π

2 ,

then by β+δ > π and Lemma 2.12, δ δ · · · is not a vertex, contradicting δ7 δ8 · · · . Therefore,
δ ≤ π

2 . Then we have f ≥ 24 and α ≤ π
3 , β ≥ 5π

6 , γ ≥ π
2 . By β > π

2 , β + δ > π and Lemma

2.12, β β · · · is not a vertex. Then by α9, we get β6 γ9 · · · = θ β6 γ9 ρ · · · , where θ = β or

δ and ρ = γ or δ, and θ, ρ are not the same angle. However we always have θ + β > π and

ρ+ γ ≥ π, a contradiction.

In the second picture, by αβ2 and Lemma 2.13′, and α7, the degree 5 vertex α1 · · · = αγ4

or α3γ2, which determines T7, T8.

If α1 · · · = αγ4, we get E56 = a and the degree 4 vertex γ1 γ4 · · · = α2γ2. By αβ2, α2γ2,

αγ4, δ4, we get α = β = 2π
3 , γ = π

3 , δ = π
2 .

If α1 · · · = α3γ2, then by αβ2, δ4 and α3γ2, we get α =
(

1
2− 4

f

)

π, β =
(

3
4+

2
f

)

π, γ =
(

1
4+

6
f

)

π.

By α3γ2, the degree 4 vertex γ1 γ4 · · · = β2γ2 or γ4. However β2γ2 contradicts β + γ > π.

Therefore, γ1γ4 · · · = γ4. Then f = 24 and α = π
3 , β = 5π

6 , γ = δ = π
2 .

Both possibilities imply α2β7 · · · = αβ2 and δ7 δ8 · · · = δ4. Then T7 is a special 3345-tile,

which has been discussed in Section 4.

Finally, we describe the tilings with more than one types of special tiles. Except quadrilateral

subdivisions of the octahedron, where every tile is 3444-tile, all other a2bc-tilings with a 344d-tile
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also have a 334d-tile:

• The flip of a special quadrilateral subdivision of the octahedron with f = 24 has a 3444-tile

and a 3344-tile: T (2α3, 6αγ2, 6α2β2, 6β2γ2, 6δ4);

• the 3-layer earth map tiling with f = 16 has a 3444-tile and a 3344-tile: T (8αγ2, 4α2β2, 2β4,

4δ4);

• the 1st flip of the 3-layer earth map tiling with f = 24 has a 3445-tile, a 3344-tile and a

3345-tile: T (12αγ2, 4α2β2, 6δ4, 4αβ4);

• the 2nd flip of the 3-layer earth map tiling with f = 24 has a 3444-tile, a 3445-tile, a

3344-tile and a 3345-tile: T (10αγ2, 6α2β2, 2β2γ2, 6δ4, 2αβ4).
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