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Tilings of the Sphere by Congruent Quadrilaterals I:
Edge Combination a?bc*
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Abstract Edge-to-edge tilings of the sphere by congruent a?bc-quadrilaterals are classified
as 3 classes: (1) A 1-parameter family of quadrilateral subdivisions of the octahedron with
24 tiles, and a flip modification for one special parameter; (2) a 2-parameter family of 2-
layer earth map tilings with 2n tiles for each n > 3; (3) a 3-layer earth map tiling with 8n
tiles for each n > 2, and two flip modifications for each odd n. The authors also describe
the moduli of parameterized tilings and provide the full geometric data for all tilings.
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2000 MR Subject Classification 52C20, 056B45

1 Introduction

Tiling has been part of human civilization for thousands of years. The mathematical study
of tiling can be traced back to Platonic solids. However, a full classification of monohedral
convex tilings of the plane has been completed only recently. See [7] for the hardest pentagon
case and see [15] for a recent survey. There are not as many studies on spherical tilings as the
planar ones. In this paper, we study edge-to-edge tilings of the sphere by congruent simple
polygons, such that all vertices have degree > 3. In such a tiling, the tile must be triangle,
quadrilateral, or pentagon (see [10], for example). The study of triangular case was started by
Sommerville [9] in 1924, initially classified by Davies [4] in 1967, and completed with full details
by Ueno and Agaoka [11] in 2002. Recent works of Wang, Yan and Akama [2, 12-14] studied
pentagonal case.

However, earlier explorations (see [1, 8, 10]) suggested that the quadrilateral case might
be the most difficult. We will give the full classification of quadrilateral tilings in a series of
three papers, of which this paper is the first one (see [5-6] for the later two). We notice the
independent complete classification work by Cheung, Luk and Yan [3] using quite different
strategies.

In this paper, we classify edge-to-edge tilings of the sphere by congruent simple quadrilaterals

(see Figure 1) with edge lengths a, a, b, ¢, where a, b, ¢ have distinct length values, and all vertices
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have degree > 3. We will simply call such tilings a?bc-tilings. We also denote the a?-angle,
ab-angle, ac-angle and bc-angle by «, 3,7, 4.

Figure 1 Quadrilaterals with the edge combination a?bc.

Besides a2bc-tilings, the other possible edge length combinations suitable for tilings are
a®b?,ab,a* (see [10] or our Lemma 2.3). Sakano and Akama [8] classified a?b>-tilings and a*-
tilings, which can be reduced to triangular tilings in [11]. Akama and Cleemput [1] had some
partial study for convex a®b-tilings. We will classify a3b-tilings, including non-convex ones, in
the subsequent papers [5—6] of this series.

The following summarizes all a®be-tilings. We denote the total number of tiles by f.

Main Theorem There are exactly three classes of a?bc-tilings:

(1) A 1-parameter family of quadrilateral subdivisions of the octahedron T (8a3,123%42,66%)
with f = 24. Moreover, for the case 3 = %, the tiling has a flip modification T (203, 6072, 60232,
65°72,60%);

(2) a 2-parameter family of 2-layer earth map tilings T(f 579, 2(1%), for each even f > 6;

(3) a 3-layer earth map tiling T(%a’yQ, %onBQ, {54, 26%) by a unique quadrilateral, for each
f > 16 satisfying f =0 (mod 8). Moreover, if f =8 (mod 16), the tiling has two flip modifi-

cations T(%a’yQ, %azﬁ{ %54,4a5%), T(%a’y{ %oﬂﬂz, %(54, 2aﬁ%,2ﬂ%vz).

The notation T'( f 34, 2a£) means that the tiling has exactly f vertices 5v¢d and 2 vertices
L . . .
2z, and is uniquely determined by them.

@

The first and third classes are related to pentagonal tilings in an interesting way. Since all
vertices 0 - - - are 64, we may remove all b-edges and get a tiling by symmetric almost equilateral
pentagons with edge lengths a,a,a,a,2c. In fact, all such pentagonal tilings are obtained in
this way. For example, 3-layer quadrilateral earth map tilings induce pentagonal earth map

tilings in the right.

S
I

Figure 2 The induced tilings by congruent symmetric pentagons.
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The a?be-quadrilateral with o = %’r,ﬁ =3,7= 2?”,(5 = 5 appears in both the first and

third classes. This gives five different tilings, all inducing the regular dodecahedron tiling. In
particular, the quadrilateral is half of the pentagonal face of the regular dodecahedron, which
determines all edge lengths a,b,c. The second to sixth pictures of Figure 3 show these five

different tilings.

Figure 3 Six types of a?be-tilings with f = 24.

e The first picture is a 2-layer earth map tiling: One timezone is outlined by the yellow line.
The picture shows 12 timezones, and in general the number of timezones can be any n = % > 3.
All a%-angles appear at the north/south poles. The 2n middle points of all b-edges and c-edges
distribute evenly on the equator with spacing F'F' = . The tiling is determined by D, E, F,
and is parameterized by the location of D.

e The second is a quadrilateral subdivision of the octahedron: The yellow triangle is one face
of the regular octahedron. The face is divided into 3 identical quadrilaterals, and the operation
is applied to all 8 faces in a compatible way. The tiling is parameterized by the location of P
on the yellow edge.

e The third is the flip modification of the second: When P in the second picture is at certain
location such that the dodecahedron underlying the quadrilateral tiling is regular, the red line
in the third picture divides the tiling into two identical halves. Then we may flip one half to
get a new tiling.

e The fourth is a 3-layer earth map tiling: One timezone is symmetric and outlined by the
yellow line. The picture shows 3 timezones, and in general the number of timezones can be any
integer > 2.

e The fifth and sixth are two flip modifications of the fourth: When the number of timezones
is odd, two red lines divide the tiling into two identical halves in different ways. In each case,

we may flip one half to get new tilings.
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The key technique used in this paper is the analysis of the neighborhood of a special tile
(see Lemma 2.1) with four vertices of degree 333d, 334d, 335d or 344d. On the other hand,
our subsequent papers [5-6] on the classification of ab-tilings rely on allowable combinations
of angles at degree 3 and 4 vertices, and will apply interesting new techniques of cyclotomic
field and trigonometric Diophantine equation.

This paper is organized as follows. Section 2 develops basic techniques needed for the clas-
sification work. This includes general results for all quadrilateral tilings of the sphere and some
technical results specific to a?be. All other sections analyze the neighborhood of a special tile
and complete the classification. Along the way we describe the moduli of 2-layer earth map
tilings and the quadrilateral subdivisions, and also provide exact calculations for the unique

quadrilaterals in the 3-layer earth map tilings.
2 Basic Facts

2.1 Vertex

Let v, e, f be the numbers of vertices, edges, and tiles, respectively. Let v4y be the number
of vertices of degree d. We have Euler’s formula and basic counting equalities:

2=v—e+f,

2e=4f = dvg=3vs +4vs +5v5 + -+,
d=3

oo
U:Zvd:v3+v4+v5+---.
d=3

Then it is easy to derive v = f + 2 and

F=6+> (d—3)va=6+v1+2v5+3v6+-, (2.1)
d=4

v3 =8+ (d—4)vg=8+vs +2v6+ 307+ . (2.2)
d=5

These equalities imply f > 6, v3 > 8, and there are many more degree 3 vertices than vertices
of degree > 5.

For a?be-tilings, each b-edge is shared by exactly two tiles. Then f is twice of the number
of b-edges, and is therefore even.

Lemma 2.1 In an edge-to-edge quadrilateral tiling of the sphere with all vertices having
degree > 3, there is a tile, such that the four vertices have degree 333d (d > 3), 334d (4 <d <
11), 335d (d = 5,6,7) or 344d (d = 4,5).

Proof Denote the degrees of four vertices of any tile T by d1, ds, ds, ds. Counting the total

number of vertices via each tile’s contribution, we get

1 1 1 1
> (—+—+—+—)=v=f+2>f.
all f tiles di dy ds dy
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This implies the existence of a special tile T" such that d—ll + d—12 + d—13 + d—14 > 1. The integer
solutions dy, da, d3, ds > 3 of the inequality are exactly 333d (d > 3), 334d (4 < d <11), 335d
(d=5,6,7) or 344d (d=4,5).

2.2 Angle

The sum of all angles (angle sum) at a vertex is 2m. The following is the angle sum for

quadrilateral.

Lemma 2.2 If all tiles in a tiling of the sphere by f quadrilaterals have the same four
angles «, B,7,6, then

atBry+i= (24—;)#

ranging in (271', %7‘(]. In particular no vertex contains all four angles.

Proof The sum of all angles at a vertex is 27, and the total sum of all angles in the tiling
is 2rv. The sum of all four angles in a tile is ¥ = o+ 8+ v+ J, and the total sum of all angles
in the tiling is X f. Therefore 27v = X f. By v = f + 2, we get the equality in the lemma.
Moreover, by f > 6, we get 2m < ¥ < %w.

Henceforth we often use this angle sum lemma without mentioning it.

2.3 Edge

The following describes all the possible edge length combinations of the quadrilateral in a

tiling and their arrangements. The result appeared in Ueno and Agaoka [10].

Lemma 2.3 In a tiling of the sphere by congruent quadrilaterals, the edge lengths of any

tile are arranged in one of the four ways in Figure 4, with distinct edge lengths a, b, c.

b a’be a’b’ a’b al

Figure 4 Edge arrangements suitable for tiling.

Proof There are five possible edge combinations (a, b, ¢, d are distinct)
abed, a’be, a®b?, a3b, .

For abcd, without loss of generality, we may assume that the edges are arranged as in the first
of Figure 5. Moreover, by vs > 8, we may assume that the vertex shared by b, ¢ has degree 3.
Let x be the third edge at the vertex. Then x,b are adjacent in a tile, and x, ¢ are adjacent in
another tile. Since there is no edge in the quadrilateral that is adjacent to both b and ¢, we get

a contradiction.
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Figure 5 Not suitable for tiling.

For a?be, we need to consider two possible arrangements: The case that two a are adjacent
is the first of Figure 4; the case that two a are separated is the second of Figure 5. In the second
of Figure 5, we get a similar contradiction that there is no edge adjacent to both a and b.

For a?b?, the edges are arranged either as the second of Figure 4, or as the third of Figure
5. The third of Figure 5 leads to a similar contradiction.

For ab and a*, the edges can only be arranged as the third and fourth of Figure 4.

2.4 Basic techniques

We use the notations and techniques in [12, Section 2], and add some discussion specific to

a’be.
Lemma 2.4 For an a®bc-quadrilateral in Figure 1, B =~ if and only if § = 7.

Proof If § = 7, then the quadrilateral becomes the isosceles triangle in the first picture of
Figure 6. This implies 8 = ~.

Conversely, suppose § = v. By AB = AC, we get ZABC = ZACB. Then =~ implies
/ZDBC = £ZDCB. If § # 7, then this implies b = BD = CD = ¢, a contradiction.

b+ c

Figure 6 For the proof of Lemmas 2.4-2.5.

Lemma 2.5 If the a’bc-quadrilateral in Figure 1 is conver, then o+ 28 > m, o+ 27y > 7.

Proof By the convexity assumption, the line BC' is inside the quadrilateral in the second
picture of Figure 6. Thus 6 < 3,~. Since the sum of three angles in a spherical triangle is > m,
we get a+28>a+20>mand o+ 2y > a+20 > 7.

Lemma 2.6 (Parity Lemma) In an a®bc-tiling, the respective numbers of 3,7,0 at any

verter have the same parity.

We call a vertex even or odd whenever the numbers of 3, , d are even or odd. Then Lemma
2.2 implies that any vertex a--- is always even. In other words, a--- = a®p!y™6", where

l,m,n are even.
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Proof The total number of 3,6 together at a vertex is twice the number of b-edges at the
vertex. Then the respective numbers of 5 and § must have the same parity. Similar argument

applies to 7, 6.
Lemma 2.7 In an a?be-tiling, a vertex without 3,~ must be o or ™.

Proof If a vertex has only a-edge, then it has only a’-angles . Therefore the vertex is a*.

If a vertex has no a-edge, then it has only bec-angle §. Therefore the vertex is §”. In all other
cases, it has ab-angle 8 or ac-angle ~.

The proof above uses the characterization of «, 3,v,8 as a?-angle, ab-angle, ac-angle, bc-
angle. The characterization can be used to distinguish the four angles. Then each of «, 5,7, 9
appears f times in the tile. Therefore, if one vertex has more « than 3, there must exist another

vertex with more 8 than a. Such global counting induces many interesting and useful results.

Lemma 2.8 (Balance Lemma) In an a2bc-tiling, one of 32+, 4%+, §2--

- s a vertex if
and only if all three are vertices. Moreover, if all three are not vertices, then ot and Bv9 are

the only vertices.

Proof If B2--. is not a vertex, then any vertex a*3'4y™¢™ has | = 0,1. Then by Parity
Lemma, we have m > [ at every vertex. Since the sum of m at all vertices is f, and the sum of
[ at all vertices is also f, this implies m = [ < 1 at every vertex. This means that v2--- is not
a vertex. Similar argument works for any two angles from ,~, d, and this proves the first part
of the lemma.

If82... ,~%...,8%.-. are not vertices, then [,m,n < 1. By Parity Lemma, we get | = m =
n=0orl=m=n=1. In the first case, the vertex is . In the second case, by Lemma 2.2,
we get that k = 0, and the vertex is $vd. By substituting ka = 5+ v + 6 = 27 into Lemma

2.2, we get k = %
Lemma 2.9 In an a?be-tiling, there are only four possible degree 3 vertices o, af3?, ay?

and B8 shown in Figure 7.

Figure 7 Four possible degree 3 vertices.

Proof Since there is neither b2-angle nor c?-angle, the 3 edges at any degree 3 vertex must

be aaa, aab, aac or abc in Figure 7, which determine four degree 3 vertices uniquely.

Lemma 2.10 In an a?bc-tiling, besides o, 8%, v%, 6%, there are only five possible degree 4
vertices o232, a?~?, 2+2, 8262, 262 shown in Figure 8. Each of them is uniquely determined

by two different angles in it.
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Figure 8 Five possible degree 4 vertices with two different angles.

Proof By Parity Lemma, a degree 4 odd vertex is af8vd, contradicting Lemma 2.2. There-
fore a degree 4 vertex is even. This means that the vertex is 6% or #2¢2. Moreover, by Lemma
2.7, we know that a?62 is not a vertex. Then we get all the degree 4 vertices as claimed in the

lemma.

Proposition 2.1 There is no a®be-tiling such that both of8% and ay? are vertices.

Proof If both af? and ay? are vertices, then 3 = 4. By Lemma 2.4, we get § = .
Therefore 62--- is not a vertex. By Balance Lemma, we know that o and B~d are the only
vertices, a contradiction.

The very useful tool adjacent angle deduction (abbreviated as AAD) was introduced in [12,
Section 2.5]. The following is the same as in [12, Lemma 10].

Lemma 2.11 The AAD of o has the following properties:
o If1BIAL--- or inlyi--- is not a vertex, then o* has the unique AAD 1PaPa|Ba]. ...
o If k is odd, then we have the AAD 1°a71%a7| at oF.

We remark that, for 8 = [*8°1, [%4%} or 1767, the vertex 0" has a unique AAD.

Lemma 2.12 In an a®be-tiling, if 3 > 5,8 +0d > m, then 1518l - -+ is not a vertex. If
6> %,64+06>m, then 16i61 - - - is not a vertex.

Proof We have 1513l --- = 01318lp--- with 0, p = 3 or §, where 0, p are not the same angle
(i.e., the vertex is not degree 3). Then by 8 > T and 8+ d > =, the angle sum is > 27, a

contradiction. The case 16161 - - is similar.

Lemma 2.13 In an a’be-tiling, if ay? is a vertex, then o--- = ay? or o 3%, Furthermore,

a*B% for some k > 1,t > 0 must appear.

Proof Recall that a vertex o - - - = of Bl4™8"™, where I, m, n are even. Since a~y? is a vertex,
we get a--- = ay? or B, If n > 2, then by Lemma 2.7, we get [ > 2 in oFp!6™. This
implies a + 26 4+ 2§ < 27. Combining a + 2y = 27, we get o + S + v + d < 27, contradicting
Lemma 2.2. Therefore n =0 in o*f6", and a--- = ay? or a¥ 3.

Since the total numbers of a and + in the tiling are the same, the vertex ay? implies that
there is a vertex with strictly more o than v. By a--- = ay? or o8, this means that o*j3! is
a vertex for some k > 1 and some even [ > 0.

We will use Lemma/Proposition n’ to denote Lemma /Proposition n after exchanging 5 < .
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3 333d-Tile

This section classifies all tilings with a special 333d-tile. To facilitate discussion, we denote
by T; the tile labeled i, by F;; the edge shared by T3,7T;. We denote by 0; the angle 6 in Tj.
We say a tile being determined when we know all the edges and angles of the tile.

Proposition 3.1 For an a?bc-tiling, the following statements are equivalent:
(1) Every tile is a 333d-tile.

(2) There exists a 333d-tile.

(3) The bc-angle § appears at some degree 3 vertex (i.e., 79 is a vertex).

(4) It is the 2-layer earth map tiling T (2dB~6,2a?) (d > 3) in Figure 9.

We remark that d = g

Proof (1) = (2) is trivial.

(2) = (3) If 0 does not appear at degree 3 vertices, then in a special 333d-tile, the d-vertex
has degree d. This implies that both S-vertex and y-vertex have degree 3. Since there is no § at
degree 3 vertices and Lemma 2.9, the 8-vertex is a2, and the y-vertex is ay?. This contradicts
Proposition 2.1.

(3) = (4) By Lemma 2.9, a degree 3 vertex §--- = 5+4.

Next we show 36 --- = 3v5. Let 36--- = oFBly™s™. If m > 1, we have 36--- = Bv6. If
m = 0, by Parity Lemma, we get [,n > 2. Then we have 5+ ¢ < 7. By 74, we get v > .
However, the unique AAD 156717681+ of akpBlsm gives 42 ---, a contradiction. Therefore,
B = Bv6.

Similarly, v --- = 8vd. In Figure 9, 517302 determines 17,75, T5. Then v2d3 - - = 47203
determines Ty; B304+ = [B37504 determines T5. The argument started at (17362 can be
repeated at 337s504. More repetitions give the unique tiling of f = 2d tiles with 2a? (d > 3)
and 2d3~0.

Figure 9 The 2-layer earth map tiling T'(f/3v9, 2045).

(4) = (1) Any tile in the 2-layer earth map tiling is a 333d-tile.

Proposition 3.2 For an a®be-tiling, if 6 = m (or equivalently 3 = 7), then it is a 2-layer

earth map tiling.

Proof By Lemma 2.4, 3 = ~ if and only if § = «r. This implies that §2--- is not a vertex.
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Then by Balance Lemma, § - - - = 8vd. By Proposition 3.1, this determines a 2-layer earth map
tiling.

After Proposition 3.1, we may assume that J never appears in any degree 3 vertex. In this
case, we have the following result.

Lemma 3.1 In an a?be-tiling, if ByS is not a verter (i.e., § never appears in degree 3
vertices), then a2 ---, B2.-- 4%... 6%... appear as vertices. In particular, the quadrilateral

is convexr and 3 # .

Proof If 3vd is not a vertex, then by Balance Lemma, 5% ---, v2---, §2--. are all vertices.
If o2 - -- is not a vertex, then by Lemma 2.9 and Proposition 2.1, either o32 is the only degree
3 vertex, or ay? is the only degree 3 vertex. Assume that ay? is a vertex. Then by Lemma
2.13 and no a? - - -, we know that 3% (t > 2) must appear. However a3%" = 8|93 .. implies
a vertex o - - -, a contradiction. The vertex a3? leads to a similar contradiction.

The vertices a?---, 8%2---, 2., §2- - imply that all angles are < 7. Then we have 3 # v
by Lemma 2.4.

3.1 Geometric realization and the moduli of T'(f3~9, Za%)

Two poles of the 2-layer earth map tiling in Figure 9 are a?. This implies that the 2d

middle points of all b-edges and c-edges distribute evenly on the equator with spacing 7. It
suggests the following geometric construction in Figure 10. Fix a point A on the sphere as the
north pole, and take two points E, F' on the equator (i.e., AFE = AF = g) with EF' = Z. The
quadrilateral is then determined by the location of D: Extend DFE to B, such that FE is the
middle point of DB (b-edge); extend DF to C, such that F is the middle point of DC (c-edge);
connect A to B, C to form the quadrilateral JABDC. The moduli of 2-layer earth map tilings
is the possible locations of D such that the boundary of JABDC has no self intersection, i.e.,

OABDC is simple.

Figure 10 Quadrilateral JABDC.

In Figure 10, we denote the south pole by A’. Extend FE to P, such that PE = 7. Extend
EF to @, such that FFQ = 5. Then we get the triangle AA’PQ with PEFQ as one edge. We
will show that JABDC is simple if and only if D lies in the interior of AAEF U AA'PQ.
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Figures 11-12 describe JABDC for various locations of D. Figure 11 is the stereographic
projection from the antipode of the middle point of EF. Figure 12 shows the cases that
OABDC is simple and also gives the 3D pictures of the tilings. We study all possibilities as

follows.

Figure 11 Quadrilaterals corresponding to 4 positions of D.

Figure 12 2-layer earth map tilings.

(1) If D lies in the interior of AAEF, then OABDC is simple and concave with § > 7. See
the first picture of Figures 11-12.

(2) If D is in the northern hemisphere and outside AAEF, then either AB intersects DC,
or AC intersects DB. See the second picture of Figure 11.

(3) If D lies in the interior of AA’EF, then OABDC is simple and convex. See the third
picture of Figure 11 and the second picture of Figure 12.
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(4) If D is in the southern hemisphere and outside AA’EF, then DB and DC are the only
pair of edges in (JABDC' which can possibly intersect. The key fact is that any two great arcs
(< 2m) starting from D either intersect at its antipode D’ or never intersect. In the fourth
picture of Figure 11, D is on the left of the longitude AEA’, and we have DF > DE, § > .
If DE < %, then DB < 7 and it is too short to reach D’. Then DB does not intersect DC'. If
DE > 3, then DB > 7 and DC =2DF > 2DFE > w. Then DB meets DC at D’. All such D’s
satisfying DE = 7 form the great arc A’P. Then JABDC is simple and concave with § > 7
if and only if D lies in the interior of AA’EP. Symmetrically, JABDC is simple and concave
with v > 7 if and only if D lies in the interior of AA’F@Q. The quadrilateral may have one edge
> 7, as shown in the third picture of Figure 12.

(5) If D lies in the interior of EF, A’E or A'F, then JABDC degenerates to a simple
triangle with § = 7, 8 = 7 or v = 7, respectively.

(6) If D lieson AE, AF or EPQF, then /ZDBA =0, ZDCA = 0or ZBDC = 0, respectively.
The quadrilateral is not simple.

In summary, OABDC is simple in the cases (1) and (3)—(5) above. The cases combine to

form the region in the theorem below.

Theorem 3.1 The quadrilateral DABDC' in Figure 10 is simple if and only if D lies in
the interior of NAEFUNA'PQ in Figure 13. Furthermore, JABDC degenerates to a triangle
if and only if D lies in the interior of EF (§ =x), or A’E (8 =), or A'F (v = 7).

Figure 13 The moduli (AAEF U AA'PQ)°.

Figure 13 is the stereographic projection from the antipode of the middle point of EF.
The first picture shows the moduli of T(2a3,6376), and the dotted curves inside the moduli
represent reductions of the quadrilateral from type a2bc to type a?b? (b = ¢), type a®b (a = b
or a = ¢) and type a* (a = b = ¢). The second and third pictures of Figure 13 are for f = 8
and f > 10, respectively, where the reduction curves have different positions inside the moduli.
In the next two papers [5-6] of this series, it turns out that most a3b-tilings of the sphere come
from these 2-layer earth map tilings on the reduction curves, together with their modifications
under extra conditions. Thus the detailed study of the reduction curves will be shown in [6].

We remark that three tilings in Figure 12 all have the same vertices distributed on the



Tilings of the Sphere by Congruent Quadrilaterals I: Edge Combination a?bc 745

sphere. These three different quadrilaterals are closely related to each other, generalizing the

notion “companion” in [13-14].

4 334d-Tile and 335d-Tile

We classify a?be-tilings under the assumption that there is a special 334d-tile or 335d-tile.
Since the tiling in Proposition 3.1 has no such special tile, we know that  does not appear in
degree 3 vertices. By Lemma 2.9 and Proposition 2.1, either o3, a? are all degree 3 vertices,
or a3, ary? are all degree 3 vertices.

Let us look at the neighborhood of a special 334d-tile or 335d-tile. Up to the symmetry
of exchanging 3 ¢+ 7, we may assume that o, ay? are all degree 3 vertices. This means that
B and § do not appear in degree 3 vertices. Then we get 4 possibilities for the special tile in
Figure 14. We denote the degree d vertex by H and indicate it by e.

“ B
B
v 0
o y P
®
yloa B
3 d 3 4 3 d e
4<d <1l 5<d <11 d=5,67 d=6,7 95 2P

Figure 14 Special 334d, 335d-tiles and their common partial neighborhood.

The fifth picture of Figure 14 shows the common partial neighborhood of these 334d-tiles
and 335d-tiles: The degree 3 vertex v; - -- = ay? = a3vy17y2 determines T5 and a3. By a3, the

degree 3 vertex ag - - # a3. Then aq - - - = ay? determines T3, T}.

Proposition 4.1 Tilings with the 1st special tile in Figure 14 are the following:

(1) The flip modification of a unique quadrilateral subdivision of the octahedron T (23, 6ay?,
60232,63%72,66%) with 24 tiles;

(2) a 3-layer earth map tiling T(%a’yQ, %oﬂﬂz, %(54, 2B£) by a unique quadrilateral, for each
f > 16 satisfying f =0 (mod 8). Moreover, if f =8 (mod 16), the tiling has two flip modifi-
cations T(%a’yQ, f%SQQBQ, %54,4(16%) and T(%a”ﬂ, {aQﬁQ, %54, 2(16%,25%72).

Proof In the partial neighborhood given by the fifth picture of Figure 14, by Lemma 2.10,

the degree 4 vertex 6105 - - - = 3262 or 6*. This determines T5,Tg in the two pictures in Figure
15.

By Lemma 2.13, H = a4f1d6 - -+ in the first of Figure 15 is a contradiction. Moreover, we
have H = o316 - - - = a*B?* (k,t > 1) in the second of Figure 15. If k > 2 and ¢ > 2, we have

200+ 48 < 2m. By ay? and 6%, we get 4(a+ B+ +0) = 2(a + 27y) + 46 + (2a + 48) < 8,
contradicting Lemma 2.2. Therefore t = 1 and H = ¢ 232(4 < d < 11), or k = 1 and
H=ap?Y(d=5,7,9,11).
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018 +vr =4

Figure 15 Partial neighborhoods of the 1st special tile.

41 H=a9728%2(4<d <11)

By av?, §* and a?725%, we get

T 8w T T 4(d — 2)w
C=TT3 e P72 2a—s) T d-ap
T 47 7
V=T samy Tameyy 0T

Ifd > 5, then a < Z, B> %,y > 2. Moreover, the AAD of H = Ilglalalal-- - implies
that Sly--- or yly--- is a vertex. By v > %, v+ 6 > 7 and Lemma 2.12’, we know that
~ly--- is not a vertex. By B+ v > m, we know that Blv--- is an odd vertex. Then by
R(Bvd---) < T < fB,7,6, and Lemma 2.2, we get Sly--- = yd. This contradicts Proposition
3.1.

We conclude d = 4, and « = (1 — %)W, B = 87”, v = (% + %)W, 0 = 5. Now we show
f>16. If f <16, weget « < 5, 3 > 2, v > 3% § = Z. This implies 8%--- = o232
Then by Lemma 2.13, we further get a3--- = a8?--- = a?$2. Then asf3--- = azarB33, and
B2Bs5 - -+ = arafsfs in the second picture of Figure 15. We get two « in 17, a contradiction.

By f > 16, we have a > 5,8 < 5,5 <7y < %T”,(S =3. If akfply™e™ is a vertex, then we
have k <4, m <3, n <4, and

(1—?)k+;l+ (%+%)m+%n:2.
We substitute the finitely many combinations of exponents satisfying the bounds into the equa-
tion above and solve for even f > 16. By the angle values and the edge length consideration,
we get all possible vertices in Table 1. The first row “f = all” means that the vertices may
appear for all f.

Claim For any a?bc-tiling with the AVC (for “anglewise vertex combination”) in Table 1,
if BT is a vertex, and a3, a?, 3%2 are not vertices, then it is the 3-layer earth map tiling in

Figure 16.
By no a3,a4,ﬁ552 and the AVC in Table 1, we get o?--- = o282, ay--- = ay? and
4% ... = §*. In Figure 16, ﬁ§ = 1511351 - - determines T}, 7. Then oo - - - = ayan 354 deter-

mines T3, Ty; azyy -+ - = agy1ys determines Ts; agy - - - = as¥2ys determines Tg; 8364 - - - = 8%
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Table 1 The AVC for H = o232 and f > 16.

f vertex
all ay?, a2, 0%
16s —4,s=2,3,--- B257 18
16 at, g4, g2
16s,5s =2,3,--- BAs, 32562
24 of, 3%, a B, 3
165—|—8,S=2,3,-~- aﬁ2s+2,64s+2,ﬁ2372
B B B B
@ @ ®» | @
o Y ala Y S5 Y ajla YV §
O VNeBIBAHYSS VBB YT
o) [ON6] (GlE)] ([DIC)
BovslsNaBlBaysls vaB
a VY o6lo Y ala VY Hl6 YV «a
@|16® | @ |
B B B B

Figure 16 The 3-layer earth map tiling T(%oz*yz7 %aQﬂQ, £547 2B£).

determines T7,Tg. The tiles 17, --- ,Tg together form a time zone. Similarly, we can determine

Ty, .-+, Tg. By repeating the process, we get the 3-layer earth map tiling.

Remark 4.1 The proof above actually shows that 1811821 determines 11, - - - , Tz. This fact

will be very useful to deduce other possible tilings.

4.2 Calculate the quadrilaterals in 3-layer earth map tilings

By Figure 16 and o + 8 = 20 = m, the two poles are connected by a great arc consisting of

one a-edge and two b-edges. Therefore, a + 2b = 7.

Figure 17 The quadrilateral in the 3-layer earth map tiling.

In Figure 17, we divide the quadrilateral into two triangles, where n = g > 2 is the number

of timezones in Figure 16. By a2, o?32, 82", §*, we get

-1 1
S e O S SR NI s 0 L SOV S
n n 2n 2
Then we have
2 (n—Dm 2 2

. . ™
COSbCOSC:COS{E:COSZG—f—SIH aQCOS — = COS™ a4 — SIn” a Cos —,
n n
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n—1)mw ™
cosa:cotﬂcot!:cowtan—,
2n 2n
siny’ 1
sinb ~ sinz’
sinf sin(n_Tl)7T _ sin = sin 4/
sina sinx sinb
Then we have
. sina . w | L . n+1)mr
sinf = — sm—smﬂy’:Zsm—cosbsm(!—9)
sinb n n 2n

= 2sinﬁcosb(cos9cosl —I—Sin@sinl)
n 2n 2n

. . ™ ™ . . T
= 2sin — cos b|( sin # cos a cot — cos — + sin  sin —
n 2n 2n

2n
= 4sin 6 cos T cosb(cosacos2 T + sin? L)
2n 2n 2n
s s s
= 4sinfcos - cosb((1 - 2cos? b) cos® - +sin” 7).
sinf cos o cos ( cos” b) cos 2n+sm 5

Dividing by sin @, we get 8t3 — 4t +1 = 0 for ¢ = cos 5-cosb. Thus t = %, i*/f_l. Note that

2b < a+2b=m implies cosb > 0. Then t > 0. If t = %, then by — cos2b = cosa = cot 0 tan o,

we get 0 = T. However ' = = — 6 = 0, a contradiction. Therefore, we get a unique solution
t= ‘/54_1, and

V5 -1 (3 —v/5)cos® = + 5 —2
—, a=m—2b, c=arccos -1 .
4 cos 5~ COS 5~

b = arccos

For f=16, weget a=0=0= 3,7 = 37”, a =~ 0.28797, b ~ 0.35607, ¢ =~ 0.16157.

For f =24, weget a =~ = %’T, =%,0=73,a~0.2323m, b~ 0.38387, c ~ 0.11617. This
quadrilateral also gives the first tiling in Proposition 4.1.

As f=8n— o0, weget a /m, BN\0,7\ 7, a\%,b/‘%’r,c\(). In summary a,b, ¢
are distinct for all n > 2 and the quadrilateral is indeed of type a®bec.

Let us deduce all possible tilings based on the AVC of Table 1. If AVC = {an?, o232, 5},

then we get the following contradiction:

f=#o=Hor? + 240’6 = LA+ #H = .

Therefore, we just need to consider the following three cases.

Case f = 16s — 4 We know AVC = {av?, o232, 5%, 32~ 16}. Since there is no tiling for
AVC = {an?, 0?52, 6%}, 25~ 140 must appear. In the first of Figure 18, 82° =178 = 15,1y5idsl - - -
determines 17, T5,T3. Then ajas - - - = ayas 8 determines Ty; ayfs - - - = g2 85 determines
Ts. We get 36205 - - -, contradicting the AVC.

Case f = 16s, including f = 16 We know AVC = {av?, a*, o232, 6%, 4, 32962}, If o
appears, then its AAD gives a vertex 8ly--- or yly---, contradicting the AVC.

If 32562 appears, then 82562 = 1311651051341 - -+ in the second of Figure 18, which deter-
mines T4, Ty, T3, Ty. Then 611851 -+ = 161821851 - - determines Ts; i6,185] - - = i6,185151 - - -
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Figure 18 827148 or %462 appears.

determines Ts. By the AVC, 273 - - - = a7y2y3. By ar, either asas -+ or asag -+ is a2y - -,
contradicting the AVC.
Therefore, AVC = {av?, o232, 5%, 34*}. Since there is no tiling for AVC = {ar?, o252, 64},
(4 must appear. By the Claim after Table 1, we get the 3-layer earth map tiling in Figure 16.
Case f = 165+8, including f = 24 We know AVC = {a?, a2, a?p2, 6%, aB?s+2, gts+2
B%~42}. We divide our discussions into two subcases.
Subcase a3 appears This subcase means f = 24. By no i’y|’yi--- in the AVC, we
get the unique AAD 17aP17aP17aPl of a. This determines T}, T5, T3 in Figure 19. Then

51--':52---:(53---:54 determines T4,T5,-'- ,Tlg.

Figure 19 Tilings when o appears.

3 or a?/%. In the first of Figure 19, asas - -- = 3. Then the unique

We have agas - = «
AAD of o determines T}3. Then d;3--- = §* determines T4, T15, T16. In the second of Figure
19, ayuars - - - = auas P13514 determines T3, Tig. Then 813614 - - - = 0% determines Tis, Th.

Similarly, we have agar--- = a3 or o282, and agag--- = o or a?3%. We also get the

induced four tiles similar to 113,714,115, T16. For all the induced tiles to be compatible and
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produce a tiling, we must have ayas -+ = agar -+ = agag--- = &, or agas - = Qg - =
agag -+ = a?B%. Then we get two tilings in Figure 19. The first tiling is the quadrilateral
subdivision of the octahedron. Each tile is a 3444-tile, and the tiling actually belongs to later
Proposition 5.3. The tiling is divided into two identical halves along the shaded edges. The left
of Figure 20 gives the angles along the shaded edges.

The second tiling is also divided into two identical halves along the shaded edges. The right
of Figure 20 gives the angles along the shaded edges. The two tilings have the same inside
halves, and two outside halves are related by the flip with respect to the line L. In fact, the
second tiling can also be obtained from the first by the flip of the inside half with respect to
the line L.

fiipped B

Figure 20 Flip modification of a quadrilateral subdivision.

We will calculate the geometric data for the quadrilateral in the proof of Proposition 5.3.

Subcase a?® is not vertex We know AVC = {an?, %2, 64, o212, g1s+2 g2s42]

If 34512 appears, then by the Claim after Table 1, the tiling is the 3-layer earth map tiling
in Figure 16.

If 3%5+2 is not a vertex, then AVC = {av? o252, 6%, aB?*+2 32542}, Assume that a325+2
appears. Its AAD is 18lalBlsIAl - - - 18181, The 18lalBl part of the vertex determines T4, Th, T3
in the left of Figure 21. By the remark after the Claim, the remaining part 15151 - - - 15151 of the

vertex determines s timezones consisting of 8s tiles, including Ty, T5. Moreover, d1 --- = 3 -+ =
0% determines T, T7, and a7z - - - = ay? determines Ts. Then £4f35--- = 8%°--- = af>*+2 or
B2+2, shown in Figure 21 and 23, respectively.

In Figure 21, B4fs--- = aB%°T2. Then we get E910 = aorb. If Egi19 = b, then we
determine Ty, T1g in the right of Figure 21. Then we have a7fs7vg - - -, contradicting the AVC.
Therefore, Eg10 = a as in the left picture. Then by B485 -+ = aB%*2 and no arBsyy -,
we can determine Ty, Tio,T11. Then d196171 - = d* determines Tho, T3, and aqgYe - -+ = ay?
determines Ti4. Moreover 18olaylBlssl- - = aB?5T2. The complement B7--- of 18glaulsl

determines 8s tiles consisting of 15,73, 7T7,Tg and P. We obtain the first flip modification of
the 3-layer earth map tiling, as explained in Figure 22.
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T((8s +4) o’y,4s o B2 (4s +2) &' 4o B>+ Eg10=0
Figure 21 «o3?°*? appears, 45 - - - = af>12.
Ly
OCB BZs+1 (Zﬁ B2$+1

B28+1 o ﬁ

&8 fiipped

o B B2s+1
B28+1 o B B2s+1 o B
Figure 22 First flip of 3-layer earth map tiling with f = 16s + 8.

The shaded edges in Figure 21 form a full great circle, and the angles along it are indicated
in the right of Figure 22. The left of Figure 22 gives the angles along the circle for the 3-layer
earth map tiling in Figure 16. The two tilings have the same outside hemispheres, and the two

inside hemispheres are related by the flip with respect to the line L;.
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Figure 23 «3%*%2 appears, and S4fs - -- = 24>

In Figure 23, B4f05--- = B?°+2. This determines Ty, Tho. Then I8glazlfsl - = ap?1+2.
This determines the part of 8s tiles labeled by P. We obtain the second flip modification of the

3-layer earth map tiling, as explained in Figure 24.
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The tiling in Figure 23 is divided into two identical halves along the shaded edges. The right
of Figure 24 gives the angles along the shaded edges. The left of Figure 24 gives the angles
along the shaded edges for the 3-layer earth map tiling in Figure 16. The two tilings have the
same outside halves, and the two inside halves are related by the flip with respect to the line
Lo.

Figure 24 Second flip of 3-layer earth map tiling with f = 16s + 8.

If 8412 and %2 are not vertices, then AVC = {av?, a?3?, 5%, 32~2}. Since there is no
tiling for AVC = {an?,a?32, 0%}, 3242 must appear. In Figure 25, 32592 = 18,1ysiulBal - - -
determines Ty, T, T3, Ty. Then 836, - - - = 6* determines Tk, Ts; aqos - - - = ayasfB7 3 determines
Ty, and a7f3835--- = arasfsfBs. By as and no yly---, we get iy7l--- = iy713sl - -+, which
determines Tg. Then asvys -+ = as7vsyy determines Ty; asay -+ = agayfr9f determines T,
and a108436 - - = 1011 848s. By @11, we have agfg - - - # o? 32, contradicting the AVC.

Figure 25 (32°~% appears.

43 H=apB41(d=5,7,9,11)
By a2, 6%, a4, we get

27 8(d— )
oa=T— +

d—3  (d-3)f"

ﬁ: i - 7’}/:_—’_ - )
d—3 (d—3)f 2" d-3 (d-3)f
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By Lemma 3.1, we have o < 7, which implies f > 4(d—1). Then a+28 > 7, 775 < 8 < 73,
7 <7v<3+ 5

Suppose v2--- = a¥Bly™m§". By R(y?---) < v+ and Parity Lemma, we know that v2- - -
is even. By v > 5 and 2v+20 > 27, we get m = 2 and n = 0. By a+2y = 27, we get k =0 or
L Ifk=1,then~*-- - =ay® If k=0,by 5 < < 75,5 <7 < § + 755, we deduce that
d—5 < 1 < d—1, which forces [ = d—3. Therefore, 2 - - - = ay? or 27342, If 397342 is a vertex,
we get o = %, =I5, 7= % for d =5,7,9,11. Then @ =(2,1,2), (3,12,
(g, %, %) or (%, %, g) These cases have exactly the same AVC as the Case f = 165+ 8 in page
749 for s = 1,2, 3,4, which has been classified. Therefore, we may assume that 34342 is not a

vertex. Then 72--- = ay?. By Lemma 2.13, a - -- = ay? or o*3?t. Therefore, ay- - = ay?. If
k > 2, then by o + 283 > 7, we get t = 0 or 1. Therefore, o?--- = o or o p2.

By Parity Lemma and v > § = §, we get olot- - = 4.

We extend the 2nd picture of Figure 15 to Figure 26. We have v5v -+ = a7ys576. By

H = ap? !, we determine Ty, To. By ar, agag--- is not o and must be o*32(k > 2). We

discuss two cases k = 2 and k > 3.

Figure 26 H = o891

In the first of Figure 26, agasg--- = o242, This determines T%,T19. Then asyr--- = a2,
and 1671610t - - - = 5%, Therefore, T7 is a special 3344-tile, which has been discussed in page 746
for H= %23 withd =4 .

In the second of Figure 26, agas --- = a*3? (k > 3). By az, we determine T% and get aqo.

Then 6gldq! - - - = §* determines T}. By a9, we have ys711 - - - # a2, a contradiction.
Proposition 4.2 There is no tiling with the 2nd special tile in Figure 14.

Proof Let the second of Figure 14 be the center tile 77 in the partial neighborhood in

Figure 27. By Lemma 2.10, the degree 4 vertex auf; - - - = o282 = asas 1 3. This determines
Ts and as.
Suppose H = §1020 - - - = aF3ly™d™. Since a?B? implies a« + =7 and v+ 6 = (1 + %)W,

wegetm < 1. If m =1, His odd and [ > 1. Then we have 8+~ + 36 < 27. By o232 and a~y?,
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Figure 27 Partial neighborhood of the 2nd special tile.

we get 3(a+ B +v+0) = 2a+28) + (a+2y) + (B+ v+ 3J) < 6, contradicting Lemma 2.2.
Therefore, we have m = 0, H is even and n > 4. If | > 2, we have 28 + 4§ < 27. By o?/? and
ay?, we get 4(a+ B+ +6) = (2a+28) +2(a+ 27) + (28 + 46) < 8, contradicting Lemma
2.2. Therefore, we have [ = 0. By Lemma 2.7, we get H = 6%, d = 6,8,10. This determines
Ty, T.

The angle sum at H = §¢ further implies

4r 8w 3 4am n 8 2T n 4am 5 27
a=——-— =T — =4+ — =7—— 4+ — = —.
d f 3 d f ) ’Y d f 3 d
Then we have > Z,v > %’T,% < 0 < 3. By the angle values, the edge length consideration

and Lemma 2.13, we get
AVC = {a®, 0B, 8%, 5%6°, a", 67}

Then azf3 - -+ = agon0fsf. By aio, B2f7 -+ = B2f7610611 determines Tho, Ti1. By avy?, o? 32,
B, we get « = B =Z, v = 2Z. This implies § = 2F = (1 + %)77 > Z. Then we get d = 6,
6 =% and

AVC = {an?, o, a?p%, 54,65},

Then H = 6% determines Tg, and v77s - - - = a13Y7Ys. By Q13, arony - - - = apaqy f12513 deter-
mines T1o,T13; agy13--- = agy13714 determines Th4. Then a14838 - -+ = aga156869. By as,
we get 1841 -+ = B%, which determines T5. Then ag7s - -- = agysy16 determines Tig. By ags,

we have agf16 - - - # 32, contradicting the AVC.
Proposition 4.3 There is no tiling with the 3rd special tile in Figure 14.

Proof Let the third of Figure 14 be the center tile T3 in the partial neighborhood in Figure
28.
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Figure 28 Partial neighborhood of the 3rd special tile.

By the edge length consideration, the degree 5 vertex d,d - - - = a8262 or Byd3. If o822 is a
vertex, by ay?, then 2(a++v+0) = 4, contradicting Lemma 2.2. Therefore, 6195 - - - = Bv5°.
By Lemma 2.13 and a2, we get auf; --- = oF %", This determines Ts, Ty, Ty. If k > 2, then
2a+28 < 27. By ay? and $v53, we get 3(a+B+7+6) = (a+27)+(B+7+38)+(2a+28) < 6,
contradicting Lemma 2.2. Therefore, H = af%1, d =5,7.

By Lemma 3.1, o - - - is a vertex and must be even. By a2, 36 and Lemma 2.2, we get
a+pf=(1+ ?)77 > 7 and a + 7 > 7. This implies R(a?---) < 23,2y. Then by Lemma 2.7,
we get o2 --- = aF. By o, a4, we get 3a < 27 and a + 48 < 27. This implies o + 3 < 7,
contradicting o+ 3 = (1+ ).

Proposition 4.4 There is no tiling with the 4th special tile in Figure 14.
Proof Let the fourth of Figure 14 be the center tile T3 in the partial neighborhoods in Figure

29. By the edge length consideration and Lemma 2.13, the degree 5 vertex ayf3; - -- = o232 or

aB*, shown in the first and second pictures of Figure 29.

Figure 29 Partial neighborhoods of the 4th special tile.

Case a1 -+ = a®B2% The vertex laylpl - - = 181187 laglaslayl determines Ty, Suppose
H = 610267 - = o*Bly™ms™. If m > 1, by Parity Lemma, we get H = Bv5%--- or 425%---.
Then by av?, o332, we have

a+B8+y+0) <(a+2y)+ Ba+28)+ (8+~v+ 30) < 6m,
2@+ B+v+9) < Ba+28) + (27 +49) < 4n.



756 Y. X. Liao, P. R. Qian, E. X. Wang and Y. Y. Xu

Both contradict Lemma 2.2. Therefore, m = 0 and H must be even. If [ > 0, we get H =
p25% ... Then we get

dla+B+v+0) <2(a+2y)+ Ba+28)+ (28 + 46) < 8,

contradicting Lemma 2.2. Therefore, [ = 0. By Lemma 2.7, we have H = §%. By an?, o?32, 65,
wegeta= (5 )m o= (3+ my=(3+Hmo= 5.
The AAD of laglaslagl - -+ implies 18144 - -+ or iylyi---. By R(I8ly---) < 2 <y, we get

1814 - = 18l~i6l - - . Then by R(876) = (3 - %)w < all angles, we know that 574 is a vertex,
a contradiction. Moreover, by R(iylyi--.) < 5 <7, 0, we also get a contradiction.
Case a1 - -+ = aff* The vertex laylpil- - - = aB* determines Ty, Ts, T7. By Lemma 3.1,

we have a < m. Then by a3*,ay?, we get 3 > X, v > Z. Moreover by ay?, a3* and Lemma
2.2,Weget5=§—%+47ﬂ>§.
By Lemma 2.13, H = §® - -- hasno a. Ifdeg H = 7, then by Parity Lemma, H = §;0267 - - - =
B3~83, Bv363 or py6°. By 5,6 > 7 and v > 3, all have angle sums > 27, a contradiction.
Therefore, deg H = 6. By Parity Lemma and 2 + 46 > 27, we get H = 326 or §°. By
av?, aB* and H, we get

H=B254:a=(§+%)w, ﬁZ(%—%)w, 'y:(g_%)m 52(%—1—%)73
5=12.
3

I N A

Both imply R(agar---) < a, 2f, contradicting Lemma 2.13.

5 344d-Tile

We classify abe-tilings under the assumption that there is a special 344d-tile, d = 4,5. By
Proposition 3.1, § does not appear in degree 3 vertices. Then up to the symmetry of exchanging
B <> 7, there are 7 different configurations in Figure 30. The first two cases have d = 4, and all
other five cases have d = 5. We first prove two useful propositions before studying each special

tile.

4 4 4 4 4 5 5 4 4 5 5 4 4 4

Y8 YOS Y S
a B a B

Y4

« B

3 4 4 3 3 4 3 4 4 3 4 3 5 3
Figure 30 Special tiles with vertex degrees 344d, d = 4, 5.

Proposition 5.1 There is no a’be-tiling with vertices o, B, v262.
27
3

have v > %. By Lemma 2.11, the AAD of o gives a vertex fy--- = oFplymon. If k > 1,

Proof If o, 3%, 7262 are vertices, we have a = = 5,7+ 0 = 7. By Lemma 2.5, we
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then 8v--- = afvy--- must be even. Therefore, I,m > 2. By a+ 28 + 2y > 27, we get a
contradiction.

Therefore, k = 0. If n = 0, the vertex 3v--- is even. Then by 8 = 5,7 > ¢, we

get By--- = 242 or B%4*. However 3242 and B* imply B = v, contradicting Lemma 3.1.
_ 32,4 2.4 P _3 _5

Therefore, B --- = 8<y". The angle sum of 3°v* further implies § = °f > 3,8+ 0 = °F > 7.

By Lemma 2.12, 16161 - - - is not a vertex. However 2y* = [24019y2] ... gives a vertex 1816l - - -,

a contradiction.
Therefore, n > 0. This means Sv--- = 570 ---. We know that the vertex has no a. Then
by R(Bv6---) = § = f < v+ ¢ and Parity Lemma, we get fy--- = y™0 or fyd"™. Since §

does not appear in degree 3 vertices, we have m,n > 3.

If By™6 is a vertex, by 8 = 3,7y +6 = 7, we get v = m < Zand 0 > %’T. By
Lemma 2.12, 16i51--- is not a vertex. However Sy™6 = 4%i0~... gives a vertex 161l---, a
contradiction.

If By6™ is a vertex, then similarly we get v > 25,5 < Z. Then Byé" = 19571761 - - gives
a vertex lyiyl--- = Olvyiylp---, where 6,p = o, 8 or 4. By a = ZB=7%v>3 wegeta
contradiction.

Proposition 5.2 There is no a®bc-tiling with vertices o, 52~2, 7262, 18181 - - - .

Proof If a3, 324* and 7262 are vertices, we have v = 28,y = (£ — %)77, B=0=(3+ %)77.
Let 18181 --- = a*Bly™sm. By 8242 = IB13lyinl, we get m < 1. If m = 1, then it is odd and

[>3,n>1. Then we get 36+~v+9 = (2 + %)77 > 2, a contradiction. Therefore, m = 0 and
the vertex is even. By edge length consideration, we have [+n > 4. By a+48 =a+28+20 =
(2+ %)W > 27, we get k = 0. Then we have IBIal--- = g'6™ for some even I, n. If [ +n > 6,
we get IS +nd = (I + n)(% + %)w > 27, a contradiction. Therefore [ +n =4 and f =6 = 3.
By 3%4%, we get v = § = f3, contradicting Lemma 3.1.

Proposition 5.3 Tilings with the 1st special tile in Figure 30, and without 334d-tile, s a
1-parameter family of quadrilateral subdivisions of the octahedron T(8a?,123%~2, 65%) with 24

tiles.

Proof Let the first of Figure 30 be the center tile T} in the partial neighborhoods in Figure

31. In the first picture, we assume Fsg #* a. If Fog = ¢, then T5 is determined. By Lemma

2.10, the degree 4 vertex agy; --- = o242, contradicting a;1y27s. If Eag = b, we get a similar
contradiction at §; - - -. Therefore, Fag = a, and o --- = o®. Then Es3 = b or c.

Case E3 = ¢ This edge determines T». By Lemma 2.10, the degree 4 vertex v17yz - - - = v*
or 4262, This determines T3, Ty in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex 16;id,1--- = 5262 or §%. By
Proposition 5.1, we know 3262 is not a vertex. Then 816, --- = §*, which determines Tf, T.

By as, the degree 4 vertex 5136 --- = 8* or 242. By ~v*, we get 8 = +, contradicting Lemma,



758 Y. X. Liao, P. R. Qian, E. X. Wang and Y. Y. Xu

B HB_ o a Hs A4 74 _QB_ 9
®|].@1® ®1® |6 ONRON N6
o_ v o ) v desnrd e Ay qo
5®V7’®56@V 5®VV®55©V \6®BV®(55©V
ada BB« ada BB o | do HAB «
x x_ 77« | IR
A @ b5 ©5:24 s ©5,9
Esx =c Es =c¢ Eos=0b
Figure 31 Partial neighborhoods of the 1st special tile.
3.1.
In the third picture, by Lemma 2.10, the degree 4 vertex 481 - - - = ¥262 determines T}, T.
By ag, the degree 4 vertex 518 --- = 8* or 242. By Proposition 5.1, we know 3% is not a
vertex. Then B18s--- = B?v2, which determine T%,Ts. Therefore, o, 32v2, 7262, 18218zl - - -

are vertices, contradicting Proposition 5.2.

Case FE23 = b This edge determines 75 in the fourth picture. By Lemma 2.10, the degree
4 vertex fBay; --- = 3242 determines T3, Ty. By the symmetry of exchanging 8 <+ v, the case
FErg = bis also discussed as the previous case Es3 = ¢. Therefore it remains to consider Frg = c.
This determines Tg, which further determines 77, Tg, T5.

By o3, %242, 6%, we get o = %’T,ﬁ—i—'y =md=7%,f=24 Bya= %’T,ﬂ,'y,& < m and Lemma
2.5, we have 3, > &. By the symmetry of exchanging 3 <> v and Lemma 3.1, we may assume
B < . Then the AVC is derived as shown in Table 2.

Table 2 A\/Cforoez2[7”7B—|—fy:7rvvith%<B<'y76:E

P

B vertex

all a3, B32~2, 8%

g 810

% 338, 3162, 8
g an?, 0?2, a8, g8

For 8 = 7, we have

H#B = 2#8%Y° + 3#B°0 + A #B%0° + 8 #°,
#y = 2#B°7 + #8°46.

By #3 = f = #r, the equalities above imply #3376 = #3%*6% = #8% = 0. This means that
B3~d, 3452, 8% are not vertices. By a similar argument, we know that 30 is not a vertex for
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B =%, and a3% is not a vertex for § = %’T. Moreover, for 8 = %, we know that a? is a vertex
if and only if one of o282, aB4, f% is a vertex.

In the first of Figure 32, a1y2y3 = |7a'f|o"yg|57§‘| determines Ty, T, T3. Then by agy; -+ =
av?, 8363+ = 6%, Bz = o?B2, 8242, aB* or B¢, we know that T3 is a 334d-tile, which has

been discussed in Section 4.

® B
@
v
(5@ af -
\\ Y
| @
N B

Figure 32 a? and quadrilateral subdivision of a triangle.

In conclusion, we only need to consider AVC = {a?, 3242, §%}. By the argument in “Subcase
a? appears” on page 1.7, we get the quadrilateral subdivision of the octahedron in the first
picture of Figure 19.

5.1 Moduli of the quadrilateral subdivision of the octahedron
The second picture of Figure 32 shows a quadrilateral subdivision of one triangular face of
the regular octahedron. We have MN = NP = a, BM = b, BP = ¢, and

= — == 6_—_ b = —.
o B+~y=m, 5 +c 5

By B<~vyand B+vy=m weget 3 <5 <~ By ZNPM = ZNMP, we get ZBPM > ZBMP.
Therefore, b > ¢. By b+c = 7, we have ¢ € (0, 7). Then by applying the cosine law to AM N P
and ABMP, we get

cos? a + sin® a cos @ = cos M P = cosbcos ¢ = sin ccosc.
Solving the above equation, we get
V3cosa = sinc + cosc. (5.1)
Similarly, the cosine laws for ABM N and ABN P give
cosacosb + sinasinbcos 8 = cos BN = cosa cos ¢ + sinasin ¢ cos 7.
Then by 8+~ = m,b+ ¢ = 7, this implies

cosa(cosc —sinc)  cosc—sinc
cosff = — - = - . (5.2)
sina(cosc+sine) /2 —sin 2¢
The flip modification in Proposition 4.1 requires 5 = §. Then by (5.2), we get sin2c = %
Then

c= % arcsin% ~ 0.116w, b= T_ c~ 0.383m, a = arccos \/?5 ~ 0.2327.
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The quadrilateral reduces to type a®b if a = c¢. By (5.1), we get

a=c=arctan(V3 — 1) = 0.2017, b= g — ¢~ 0.2987.

By (5.2), we get 3 = arccos 2= f ~ 0.432m, v = m — 8 =~ 0.5677. The reduced case a = b is
obtained from the case a = ¢ by exchanging b < c.

We remark that the quadrilateral reduces to type a2b?
B=v=7% anda—arccos‘/_~01957r

We conclude that a?be-tilings with the first special tile in Figure 30 are parameterized by

ce (O, g)\{arctan(\/g -1}

for b =c = 7. In this case we have

Proposition 5.4 There is no tiling with the 2nd special tile in Figure 30, and without
3344-tile.

Proof Let the second of Figure 30 be the center tile T3 in the partial neighborhoods in Figure
33. By Lemma 2.9, the degree 3 vertex f31 - - - = o312 determines T5. This implies that o232
is not a vertex. Then by a3 and Lemma 2.10, the degree 4 vertex aj --- = 4% = ayasv374,
which determines T3,7Ts. Then Esg = b or c.

Y ala o o o o ala

0" 0"’ CoNoN KE' o'[’o

5_5 F IR C- I Vs MY o

:6@3 ®6 6®V 6@V ®56®V 6@7’7’@65 © Va

'y ala BB B~ o Bl B B~ ala BB 4

a@wv@ a@)ﬁy@a a@ y\\y\\a®3ﬁ

B 85 N 8 N 8 PR Pl
Ess = b Es = ¢ Es = ¢

Figure 33 Partial neighborhoods of the 2nd special tile.

Case E5¢ = b This edge determines T5 in the first picture. By Lemma 2.10, the degree 4
vertex P51 - - - = 329% determines Tg, T7. Then the degree 4 vertex 816207 - - - = 6% determines
Ts. By af?, a2'y2 B242, 6%, we get o = 8 = 3 5,7 = 5,0 = 5. Then by the edge length
consideration, we get afs--- = a3, 6304 --- = §*. Then T3 is a special 3344-tile, which has
been discussed in Section 4.

Case Es¢ = ¢ This edge determines T5. By Lemma 2.10, the degree 4 vertex v17s - - - = v*
or 4262, This determines Tg, T7 in the second and third pictures.

In the second picture, the degree 4 vertex 610207 - - - = 6* determines Ts. By a32, o242, v4, 84,
wegeta=v=0=73,8= ‘QQT”. Then by the edge length consideration, we get agfs - -- = a3?,
1651061 - - - = 6. Then T; is a special 3344-tile, which has been discussed in Section 4.

In the third picture, the degree 4 vertex 7616z - - - = 4262 determines Tx. By 3% and Parity
Lemma, we get asf3 -+ = s B389, which determines Tg. Then agy2ds - -+ contradicts Lemma

2.13'.

Proposition 5.5 There is no tiling with the 3rd special tile in Figure 30.
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Proof Let the third of Figure 30 be the center tile T3 in the partial neighborhoods in Figure

34. For the same reason as Proposition 5.3, we have Eag = a,aq --- = 3. Then Ea3 = b or c.
///y
// a
IR I i® B da_f a Ap_«
24 v@a}’a/@’ 6247 D452
; s B v aB o VY ) Y a6
RONNON NE) ® | O @ | O
: o & B é _ 7? o a B oo B ﬁ
! % a a3y
Ly ©), ©) ©), ‘
Ex =0 Esxs =c Ex =c

Figure 34 Partial neighborhoods of the 3rd special tile.

Case E33 = b This edge determines T5 in the first picture. By Lemma 2.10, the degree
4 vertex fBoy1--- = B24? determines T3, Ty. By the edge length consideration, the degree 5
vertex 16,1041 - - = a3262 or $v6%. However o, 3242 and $~v6° imply 3(a+ 8 + v + ) = 6,
contradicting Lemma 2.2. Then 61d4--- = /3262, which determines T5,T%. Then by Lemma
2.10, the degree 4 vertex 8197 - - - = 5262, which contradicts o/3%62.

Case FE33 = ¢ This edge determines 75. By Lemma, 2.10, the degree 4 vertex v,yg - - - = ~*
or 4262, This determines T3, Ty in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex B;--- = 8%, 3292 or p26%. If
B or %242 is a vertex, by v%, we get 8 = ~, contradicting Lemma 3.1. Then f;--- = 262.
Therefore, a3, 32§2,+* are vertices, contradicting Proposition 5.1".

In the third picture, by Lemma 2.10, the degree 4 vertex f;--- = %, 3242 or p26%. If p*

is a vertex, then a2, 3%, ~7262 contradicts Proposition 5.1. If 8262 is a vertex, by v262, we get

B = v, contradicting Lemma 3.1. Then 8; - -- = 822, which determines T%. Then the degree
5 vertex |v4i011671 - - - = ay262 or Bv0°. By 7262, we get 740107 - - - = 783, By o3, 8242, 4262
and 376%, we get « =y = Z¢, f = § = I, contradicting Lemma 2.2.

Proposition 5.6 There is no tiling with the 4th special tile in Figure 30.

Proof Let the fourth of Figure 30 be the center tile 77 in the partial neighborhoods in
Figure 35. If Es7 = c in the first picture, then the degree 3 vertex oy --- = ai7y277. This
determines T7. By Parity Lemma, the degree 5 vertex az7;--- must be even. This implies
a + 2y < 27, contradicting ayveyr. If Eor = b, we get a similar contradiction at the degree 4
vertex a3 - - -. Therefore, For = a, 0 --- = 3. Then FEa3 = b or c.

Case E33 = b This edge determines 7. By Lemma 2.10, the degree 4 vertex 181131 - -+ =
B% or 5262, This determines T3, Ty in the second and third pictures.

In the second picture, by Lemma 2.10, the degree 4 vertex {61184} - - - = 4262 or 6. However
a3, 84,7262 contradicts Proposition 5.1. Then §;64--- = 6%, which determines T5,7s. By
a3, Bt 6t wegeta=2, B=0=2,v=(3+ %)77. By a7 and Parity Lemma, the degree 5

vertex ly1iygl - - - = 8292, ay?t or By36. All have angle sums > 27, a contradiction.
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Figure 35 Partial neighborhoods of the 4th special tile.

In the third picture, by Lemma 2.10, the degree 4 vertex 461 - -- = $26%. This determines
Ts,Ts. By a7 and Parity Lemma, the degree 5 vertex lyiivgl - = af292, an* or 36, By
o3, 3%6% weget a = 2, B+ =1,y = (%4—%)#. Then o + 4y > 27 and 8 + 3y + § > 2.
Therefore, 1176 - -- = 8272 = lyiva|B718slal. This determines Ty, Ts. By af242, we get
B = (% — %)W, 0= (% + %)W. Then by v+ 6 > 7,0 > § and Lemma 2.12/, 16161 -+ is not a

vertex, contradicting (0718g! - - - .

Case FE33 = ¢ This edge determines T5. By Lemma 2.10, the degree 4 vertex fi17ys - =

32~2 determines T3, Ty. Then the degree 4 vertex {6,184} -+ = 4262 in the fourth picture, or
15,0841+ - - = 6% in the fifth and sixth pictures. This determines T%, T§.

In the fourth picture, by o, 27?7262, we get « = 2X, B =6 = (3 + %)77, v=(%- %)77.
By a7 and Parity Lemma, the degree 5 vertex ly,idgl--- = 83~8, 8738 or 8v6°. All have angle
sum > 27, a contradiction.

Therefore, 161164} - -+ = 64. Then 6§ = 5. By a7, we get E7g = b or c¢. This determines 7% in
the fifth and sixth pictures.

In the fifth picture, by the edge length consideration, the degree 5 vertex S7717s - - - = a2
or Bv36. By %42, we get Brvivs--- = Bv36, which determines Tg,Ty. By o = %’T,ﬂ +
v =6 =13 and Bv35, we get B = 2%,y = Z. Then B58 - = BsB67107 and agag -+ =

asagayg determine Tho. Then by 46 > w, 8 > 5 and Lemma 2.12, 18151 - - - is not a vertex,

contradicting 18l810l - -.

In the sixth picture, by the edge length consideration, the degree 5 vertex y1vs7y7 - - - = ay*

or fv36. Bya =28, 8+y=m06=73, weget =25, y=Z foray?, or f =35, v =12 for

By34. Both imply 46 > 7,3 > %. By Lemma 2.12, I8l - is not a vertex, contradicting
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15,1871 - - -
Proposition 5.7 There is no tiling with the 5th special tile in Figure 30.

Proof Let the fifth of Figure 30 be the center tile 77 in the partial neighborhood in Figure
36. By Lemma 2.9, the degree 3 vertex (1 - - - = a1 52 determines Ts. By 38182 and Lemma
2.10, the degree 4 vertex a; --- = a?y2. This determines T3, Ty. By Parity Lemma and Lemma
2.13', the degree 5 vertex 10;185¢ - -+ has no o and must be odd. Then ;185! --- = 8763, By
af?, a?y? and By63, we get 3(a+ B+ +6) = (a+28) + 2a +27) + (B + v + 35) = 6,
contradicting Lemma 2.2.

VR I
@a a@ |ﬁ®
o ¥ o
D5 pe

Figure 36 Partial neighborhood of the 5th special tile.

Proposition 5.8 There is no tiling with the 6th special tile in Figure 30, and without
3344-tile.

Proof Let the sixth of Figure 30 be the center tile 77 in the partial neighborhoods in Figure

37. By Lemma 2.9, the degree 3 vertex (3 - - - = a1 82 determines Ts. By a3f1 82 and Lemma
2.10, the degree 4 vertex aj--- = a?42. This determines T3,7;. Then by Lemma 2.10, the
degree 4 vertex 191001+ = ~262 or §*. This determines T, T in Figure 37.
\y\\
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® | ® ® - 1 e|6
AN - B A SR A R
s M7 4 Y ¥ 5 v
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| |
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Figure 37 Partial neighborhoods of the 6th special tile.

In the first picture, by af?, a?42, v262, we get o = § = 87”, g=(1- %)77, v=(1- %)77.

By v > 0, we have f > 8. By ay and the edge length consideration, the degree 5 vertex
Y186 - - = B376, B35 or By63. However 38+~v+8 > 2m, B+~v+36 > 21. Then v1d6 - - - = 736,
which determines T5,Tg, Ty and implies o = § = 4?”, = 3?”, v=%. Thenby B+ > 7,6 > 5

and Lemma 2.12, 16i61- - - is not a vertex, contradicting 185041 - - - .
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In the second picture, by a7, the degree 5 vertex v1vs - - - = a82y2, avy* or ﬁ'735 By of?,
aB?4? is not a vertex. If v175--- = ay?, by aﬁ2,a2’yz,54 avt, we get o = B = 3 y Y =35,
§=Z If vy =By, weget o =32, =92 =28 § =2 Both imply d304--- = 6%
and a3 -+ = aB?. Then T; is a special 3344-tile, which has been discussed in Section 4.

Proposition 5.9 There is no tiling with the Tth special tile in Figure 30, and without
3345-tile.

Proof Let the seventh of Figure 30 be the center tile T} in the partial neighborhoods in
Figure 38. By Lemma 2.9, the degree 3 vertex 1 - -+ = a731 82, which determines 75. Then by
Lemma 2.10, the degree 4 vertex O ~262 or §%. This determines T3, Ty in Figure 38.

Figure 38 Partial neighborhoods of the 7th special tile.

In the first picture, by Lemma 2.10, the degree 4 vertex ;84 --- = 262 determines Ty, Tg.
By of? and Lemma 2.13, and a7, the degree 5 vertex ajag--- = a3v?, which determines
Ty, Ts. By aB82,~4%6%,a3~2, we get a = 87”, 8= (1 — %)w, ¥ = ( — 1—]?)w 0= 12” Ifé>=Z
then by S+0 > 7 and Lemma 2.12, 1651 - - - is not a vertex, contradicting 16710l - - - . Therefore,
§ < Z. Then we have f >24and a < ,8> 22 4> Z By > g,ﬁ+5>ﬂandLemma
2.12, 181381 - - - is not a vertex. Then by g, we get |ﬁﬁ|'yg. o = OBsloip- - -, where 6 = 8 or
6 and p = v or 4, and 6, p are not the same angle. However we always have 6 + 3 > 7 and

p+ v > m, a contradiction.

In the second picture, by o3% and Lemma 2.13/, and a7, the degree 5 vertex oy --- = ay*
or a®y2, which determines T, T.

If ay --- = ay*, we get Fsg = a and the degree 4 vertex ly ivyl--- = a?42. By af?, a?4?,
ay?, 54,wegeta:ﬁ:2§,7:§,5:§.

If o - - - = ®42, then by af?, 6* and o<372, we get a = (%—%)w, B=(G+3)my=(3+3)m
By a3v2, the degree 4 vertex |'yl Yal - = 3242 or 4L However 3242 contradicts 8 + v > .
Therefore, y1y4--- =~* Then f =24 and a = 5, 8= 6 ,Yy=0=73.

Both possibilities imply ao37 - - - = a2 and 167i6gl - - - = §%. Then T% is a special 3345-tile,

which has been discussed in Section 4.

Finally, we describe the tilings with more than one types of special tiles. Except quadrilateral
subdivisions of the octahedron, where every tile is 3444-tile, all other a?bc-tilings with a 344d-tile
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also have a 334d-tile:

e The flip of a special quadrilateral subdivision of the octahedron with f = 24 has a 3444-tile
and a 3344-tile: T'(2a3, 672, 60232,63%72,60%);

e the 3-layer earth map tiling with f = 16 has a 3444-tile and a 3344-tile: T'(8a~?, 40232, 2434,
461);

e the 1st flip of the 3-layer earth map tiling with f = 24 has a 3445-tile, a 3344-tile and a
3345-tile: T'(12av2,4a2B2,66%, 4a8%);

e the 2nd flip of the 3-layer earth map tiling with f = 24 has a 3444-tile, a 3445-tile, a
3344-tile and a 3345-tile: T(10av?, 60232,28%~2,65%, 2a3%).
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