
Chin. Ann. Math. Ser. B

45(5), 2024, 767–776
DOI: 10.1007/s11401-024-0038-0

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2024

A Generalization of Vosper’s Theorem∗

Yujie WANG1 Min TANG2

Abstract Let Z/mZ be the ring of residual classes modulo m, and let A and B be

nonempty subsets of Z/mZ. In this paper, the authors give the structure of A and B for
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1 Introduction

Let Z/mZ be the ring of residual classes modulo m, and let U(Z/mZ) be the group of its

units. Write (Z/mZ)⋆ = (Z/mZ)\{0}. For A,B ⊆ Z/mZ, let

A+B = {a+ b : a ∈ A, b ∈ B}.

The classical direct problem for addition in groups is to find the lower bound of the size of

A + B. In 1813, Cauchy [1] proved the following theorem and Davenport [5] rediscovered the

result in 1935. It is known as the Cauchy-Davenport theorem.

Theorem A (Cauchy-Davenport) Let p be a prime number, and let A and B be nonempty

subsets of Z/pZ. Then

|A+B| > min(p, |A|+ |B| − 1).

The Cauchy-Davenport theorem is an example of a direct addition theorem modulo p. The

first generalization to cyclic group is due to Chowla [3] in 1935.

Theorem B (Chowla) Let m > 2, and let A and B be nonempty subsets of Z/mZ. If

0 ∈ B and B \ {0} ⊆ U(Z/mZ), then

|A+B| > min(m, |A|+ |B| − 1).

The direct problem has many related results (see [2, 6–7, 9]). The inverse problem is to

describe the structure of those sets A and B from properties of the sumset A + B. In 1956,

Vosper [14–15] obtained the following result.
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Theorem C (Vosper) Let p be a prime number, and let A and B be nonempty subsets of

G = Z/pZ such that A+B 6= G. Then |A+B| = |A|+ |B| − 1 if and only if at least one of the

following three conditions holds :

(1) min(|A|, |B|) = 1 ,

(2) |A+B| = p− 1, B = c−A, where {c} = G \ (A+B) ,

(3) A and B are arithmetic progressions with the same common difference.

In 1960, Kemperman [8] generalized Vosper’s theorem to arbitrary abelian groups.

Theorem D (Kemperman) Let G be a finite abelian group, and let A and B be two subsets

of G such that |A| > 2, |B| > 2 and |A+B| = |A|+ |B|−1 6 p−2, where p is the smallest prime

divisor of |G|. Then A and B are arithmetic progressions with the same common difference.

The Vosper’s theorem also has many other generalizations derived by several authors (see

[4, 11–13]).

Throughout this paper, for g ∈ Z/mZ, let 〈g〉 denote the additive subgroup of Z/mZ
generated by g. We call the number of all cosets t(g) the index of 〈g〉 in Z/mZ and write

t(g) := [Z/mZ : 〈g〉]. Let

x1,g + 〈g〉, · · · , xt(g),g + 〈g〉

be a list of all the cosets of 〈g〉 in Z/mZ. For A,B ⊆ Z/mZ and g ∈ Z/mZ, let

Ai,g = A ∩ (xi,g + 〈g〉), Bi,g = B ∩ (xi,g + 〈g〉), i = 1, · · · , t(g).

Write

IA,g = {1 ≤ i ≤ t(g) : Ai,g = xi,g + 〈g〉},

IB,g = {1 ≤ i ≤ t(g) : Bi,g = xi,g + 〈g〉}.

Let JA,g = {1, · · · , t(g)} \ IA,g, JB,g = {1, · · · , t(g)} \ IB,g.

Write

A =
⋃

i∈IA,g

Ai,g ∪
⋃

j∈JA,g

Aj,g, B =
⋃

i∈IB,g

Bi,g ∪
⋃

j∈JB,g

Bj,g.

In this paper, we obtain the following results.

Theorem 1.1 Let m > 2, and let A, B be nonempty subsets of Z/mZ with |A|, |B| > 2. Let

c and d be different elements of Z/mZ such that A+B = {c, d}. Then |A+B| = |A|+ |B| − 1

ensures that at least one of the following statements holds :

(S1) If d− c ∈ U(Z/mZ), then A and B are arithmetic progressions with the same common

difference d− c.

(S2) If d− c 6∈ U(Z/mZ) and IA,d−c = ∅, then A is an arithmetic progression with common

difference d− c and
∣∣∣A+

⋃

j∈JB,d−c

Bj,d−c

∣∣∣ = |A|+
∣∣∣

⋃

j∈JB,d−c

Bj,d−c

∣∣∣− 1.

(S3) If d− c 6∈ U(Z/mZ) and IA,d−c 6= ∅, then
∣∣ ⋃
j∈JA,d−c

Aj,d−c

∣∣ = 0, 1 or

⋃

j∈JA,d−c

Aj,d−c $ xs,d−c + 〈d− c〉
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is an arithmetic progression with common difference d− c for some 1 6 s 6 t(d− c). And






|(Ã ∪ {xs,d−c}) + B̃| 6 |(Ã ∪ {xs,d−c})|+ |B̃| − 1, if xs,d−c + B̃ ⊆ Ã+ B̃ + 〈d− c〉,

|Ã+ B̃| 6 |Ã|+ |B̃| − 1, otherwise,

where Ã = {xi,d−c : i ∈ IA,d−c} and B̃ = {xi,d−c : Bi,d−c 6= ∅}.

Corollary 1.1 Let m > 2, and let A, B be nonempty subsets of Z/mZ with |A|, |B| > 2 and

|A+B| = |A|+|B|−1. Let c and d be different elements of Z/mZ such that A+ B = {c, d}. Let

Ã = {xi,d−c : i ∈ IA,d−c} and B̃ = {xi,d−c : Bi,d−c 6= ∅}. If A is not an arithmetic progression

with common difference d− c and A \ {0} ⊆ U(Z/mZ), 0 ∈ Ã, then





|(Ã ∪ {xs,d−c}) + B̃| = |(Ã ∪ {xs,d−c})|+ |B̃| − 1, if xs,d−c + B̃ ⊆ Ã+ B̃ + 〈d− c〉,

|Ã+ B̃| = |Ã|+ |B̃| − 1, otherwise,

where 1 6 s 6 t(d− c) such that
⋃

j∈JA,d−c

Aj,d−c $ xs,d−c + 〈d− c〉.

2 Lemmas

Lemma 2.1 Let m > 2, and let A be a nonempty subset of Z/mZ. If g ∈ (Z/mZ)⋆, then
A = g +A if and only if

A =
⋃

i∈IA,g

Ai,g.

Proof (Sufficiency) For any i ∈ IA,g, we have Ai,g = xi,g + 〈g〉, thus

g +Ai,g = xi,g + 〈g〉 = Ai,g.

Hence

A =
⋃

i∈IA,g

Ai,g =
⋃

i∈IA,g

(g +Ai,g) = g +
⋃

i∈IA,g

Ai,g = g +A.

(Necessity) For any i ∈ {1, · · · , t(g)}, by A = g +A, we have

g +Ai,g = (g +A) ∩ (xi,g + 〈g〉) = A ∩ (xi,g + 〈g〉) = Ai,g. (2.1)

Now, we shall show that Ai,g is either empty or equal to xi,g + 〈g〉 for some 1 6 i 6 t(g).

If Ai,g 6= ∅, then by the definition of Ai,g, we have

Ai,g = A ∩ (xi,g + 〈g〉) ⊆ xi,g + 〈g〉. (2.2)

Moreover, for any x ∈ Ai,g, by (2.1), we have

x+ g, · · · , x+ |〈g〉| · g ∈ Ai,g.

Thus

|Ai,g| = |〈g〉| = |xi,g + 〈g〉|. (2.3)
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By (2.2) and (2.3), we have Ai,g = xi,g + 〈g〉. Hence

A =
⋃

i∈IA,g

Ai,g.

Lemma 2.2 Let m > 2, and let A be a nonempty subset of Z/mZ. If c, d ∈ Z/mZ are two

different elements, then |(c−A) ∩ (d−A)| = |A| − 1 if and only if

A = A0 ∪
( ⋃

i∈IA,g

Ai,g

)
,

where g = d − c, |A0| = 1 or A0 is an arithmetic progression with common difference g and

1 < |A0| < |〈g〉|.

Proof Let g = d− c. Write

H =
⋃

i∈IA,g

Ai,g, A0 =
⋃

j∈JA,g

Aj,g.

By Lemma 2.1, we have H = g +H , and thus c−H = d−H . Since

(c−A) ∩ (d−A) = (c− (A0 ∪H)) ∩ (d− (A0 ∪H))

= [(c−A0) ∩ (d−A0)] ∪ [(c−H) ∩ (d−H)]

∪ [(c−A0) ∩ (d−H)] ∪ [(c−H) ∩ (d−A0)]

= [(c−A0) ∩ (d−A0)] ∪ [(c−H) ∩ (d−H)]

= [(c−A0) ∩ (d−A0)] ∪ (c−H),

we have |(c−A) ∩ (d−A)| = |A| − 1 if and only if

|(c−A0) ∩ (d−A0)| = |A0| − 1. (2.4)

(Sufficiency) If |A0| = 1, then |(c − A0) ∩ (d − A0)| = 0 = |A0| − 1. By (2.4), we have

|(c−A) ∩ (d−A)| = |A| − 1. Now we consider |A0| > 1. Since A0 is an arithmetic progression

with common difference g and |A0| < |〈g〉|, without loss of generality, we may assume

A0 = {a+ ig : 0 6 i 6 q − 1}.

Then

d−A0 = {d− a− ig : 0 6 i 6 q − 1},

c−A0 = {c− a− ig : 0 6 i 6 q − 1} = {d− a− (i+ 1)g : 0 6 i 6 q − 1}.

Thus |(c−A0) ∩ (d−A0)| = |A0| − 1. By (2.4), we have |(c−A) ∩ (d−A)| = |A| − 1.

(Necessity) By Lemma 2.1, we have A0 6= ∅. By the definition of JA,g, we have JA,g 6= ∅.

For j ∈ JA,g, we have Aj,g $ xj,g + 〈g〉. By Lemma 2.1, we have Aj,g 6= g + Aj,g, that is,

c−Aj,g 6= d−Aj,g. Thus

|(c−Aj,g) ∩ (d−Aj,g)| 6 |Aj,g| − 1, j ∈ JA,g.
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Hence

|(c−A0) ∩ (d−A0)| =
∑

j∈JA,g

|(c−Aj,g) ∩ (d−Aj,g)| 6
∑

j∈JA,g

|Aj,g| − |JA,g| = |A0| − |JA,g|.

By (2.4), we have |JA,g| 6 1. Since JA,g 6= ∅, we have |JA,g| = 1.

It is easy to see that the condition |(c−A0) ∩ (d−A0)| = |A0| − 1 holds for |A0| = 1. Now

we assume |A0| > 1. Since A0 $ xj,g + 〈g〉 for some j ∈ {1, · · · , t(g)}\IA,g, we may assume

A0 = {xj,g + l1g, xj,g + l2g, · · · , xj,g + lqg},

where 2 6 q < |〈g〉| and 0 6 l1 < · · · < lq 6 |〈g〉| − 1. Hence

d−A0 = {d− xj,g − l1g, · · · , d− xj,g − lqg}, (2.5)

c−A0 = {c− xj,g − l1g, · · · , c− xj,g − lqg}

= {d− xj,g − (l1 + 1)g, · · · , d− xj,g − (lq + 1)g}. (2.6)

By (2.4), we have

|(c−A0) ∪ (d−A0)| = |A0|+ 1 = q + 1. (2.7)

We divide the problem into the following two cases.

Case 1 c− xj,g − lqg 6∈ d−A0. Since

{c− xj,g − lig : 1 6 i 6 q − 1} ⊆ d−A0

and

|(c−A0) ∪ {d− xj,g − l1g}| = q + 1,

we have

(c−A0) ∪ (d−A0) = (c−A0) ∪ {d− xj,g − l1g}. (2.8)

By (2.5)–(2.6), (2.8) and li + 1 ≤ li+1, i = 1, · · · , q − 1, we have

d− xj,g − (li + 1)g = d− xj,g − li+1g, i = 1, · · · , q − 1.

Thus

li + 1 = li+1, i = 1, · · · , q − 1.

Hence, A0 is an arithmetic progression with common difference g.

Case 2 c− xj,g − lqg ∈ d−A0. By (2.4), there exists a unique 1 6 k 6 q − 1 such that

c− xj,g − lkg 6∈ d−A0.

Thus

{c− xj,g − lig : 1 6 i 6 q, i 6= k} = {d− xj,g − (li + 1)g : 1 6 i 6 q, i 6= k} ⊆ d−A0.

Again by (2.5)–(2.6) and li + 1 ≤ li+1, i = 1, · · · , q − 1, we have

d− xj,g − (li + 1)g = d− xj,g − li+1g, i = 1, · · · , q − 1, i 6= k
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and

c− xj,g − lqg = d− xj,g − l1g.

Thus

li + 1 = li+1, i = 1, · · · , q − 1, i 6= k.

Hence, A0 = {xj,g + lk+1g, · · · , xj,g + lqg, xj,g + l1g, · · · , xj,g + lkg} is an arithmetic progression

with common difference g.

Lemma 2.3 Let m > 2, g ∈ (Z/mZ)⋆, and let A, B be nonempty subsets of Z/mZ such

that min(|A|, |B|) > 2 and

|A+B| = |A|+ |B| − 1.

If A $ xs,g + 〈g〉 for some 1 6 s 6 t(g), then

∣∣∣A+
⋃

j∈JB,g

Bj,g

∣∣∣ = |A|+
∣∣∣

⋃

j∈JB,g

Bj,g

∣∣∣− 1.

Proof Since

B =
( ⋃

i∈IB,g

Bi,g

)
∪
( ⋃

j∈JB,g

Bj,g

)
,

we have

|B| =
∣∣∣

⋃

j∈JB,g

Bj,g

∣∣∣+ |IB,g| · |〈g〉|. (2.9)

Moreover, A $ xs,g + 〈g〉 for some 1 6 s 6 t(g), we have

(
A+

⋃

i∈IB,g

Bi,g

)
∩
(
A+

⋃

j∈JB,g

Bj,g

)
= ∅

and

|A+B| =
∣∣∣
(
A+

⋃

i∈IB,g

Bi,g

)
∪
(
A+

⋃

j∈JB,g

Bj,g

)∣∣∣

=
∣∣∣

⋃

i∈IB,g

(xs,g +Bi,g)
∣∣∣+

∣∣∣A+
⋃

j∈JB,g

Bj,g

∣∣∣

= |IB,g| · |〈g〉|+
∣∣∣A+

⋃

j∈JB,g

Bj,g

∣∣∣. (2.10)

By (2.9), we have

|A|+ |B| − 1 = |A|+ |IB,g| · |〈g〉|+
∣∣∣

⋃

j∈JB,g

Bj,g

∣∣∣− 1. (2.11)

By (2.10)–(2.11), we have

∣∣∣A+
⋃

j∈JB,g

Bj,g

∣∣∣ = |A|+
∣∣∣

⋃

j∈JB,g

Bj,g

∣∣∣− 1.
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Lemma 2.4 Let m > 2 and g ∈ U(Z/mZ). Let A and B be nonempty subsets of Z/mZ
such that min(|A|, |B|) > 2 and

|A+B| = |A|+ |B| − 1.

If A is an arithmetic progression with common difference g, then B is an arithmetic progression

with the same common difference.

Proof The method of the proof originates from [10, Lemma 2.4], we omit the details.

Lemma 2.5 Let m > 2, g ∈ (Z/mZ)⋆, and let A, B be nonempty subsets of Z/mZ such

that min(|A|, |B|) > 2 and

|A+B| = |A|+ |B| − 1.

If IA,g 6= ∅ and |
⋃

j∈JA,g

Aj,g| = 0, 1 or
⋃

j∈JA,g

Aj,g $ xs,g + 〈g〉 is an arithmetic progression with

common difference g for some 1 6 s 6 t(g), then





|(Ã ∪ {xs,g}) + B̃| 6 |(Ã ∪ {xs,g})|+ |B̃| − 1, if xs,g + B̃ ⊆ Ã+ B̃,

|Ã+ B̃| 6 |Ã|+ |B̃| − 1, otherwise,

where Ã = {xi,g ∈ Z/mZ : i ∈ IA,g} and B̃ = {xi,g ∈ Z/mZ : Bi,g 6= ∅}.

Proof Write A0 =
⋃

j∈JA,g

Aj,g. Since IA,g 6= ∅, we have Ã 6= ∅, and thus

|A+B| =
∣∣∣

⋃

x∈Ã+B̃

(x+ 〈g〉) ∪ (A0 +B)
∣∣∣, (2.12)

|A|+ |B| − 1 = |A0|+ |Ã| · |〈g〉|+ |B| − 1. (2.13)

If A0 = ∅, then

|A+B| =
∣∣∣

⋃

x∈Ã+B̃

(x+ 〈g〉)
∣∣∣ = |Ã+ B̃| · |〈g〉|.

By (2.12)–(2.13), we have

|Ã+ B̃| · |〈g〉| = |Ã| · |〈g〉|+ |B| − 1 < (|Ã|+ |B̃|) · |〈g〉|.

Hence

|Ã+ B̃| 6 |Ã|+ |B̃| − 1.

Now we consider that A0 $ xs,g + 〈g〉 is an arithmetic progression with common difference

g for some 1 6 s 6 t(g). We divide it into the following two cases.

Case 1 There exists an element b ∈ B̃ such that xs,g + b 6∈ Ã+ B̃ + 〈g〉. If

(Ã+ B̃ + 〈g〉) ∩ (A0 + b) 6= ∅.

Then A0 + b ⊆ Ã+ B̃ + 〈g〉. Since A0 + b $ xs,g + b+ 〈g〉, we have

xs,g + b+ 〈g〉 ⊆ Ã+ B̃ + 〈g〉.
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Thus xs,g + b ∈ Ã+ B̃ + 〈g〉, which is false. Hence

(Ã+ B̃ + 〈g〉) ∩ (A0 + b) = ∅.

So

|A+B| >
∣∣∣

⋃

a∈Ã+B̃

(a+ 〈g〉)
∣∣∣+ |A0 + b| = |Ã+ B̃| · |〈g〉|+ |A0|.

Again by (2.12)–(2.13), we have

|Ã+ B̃| · |〈g〉|+ |A0| 6 |A0|+ |Ã| · |〈g〉|+ |B| − 1 < |A0|+ (|Ã|+ |B̃|) · |〈g〉|,

that is,

|Ã+ B̃| 6 |Ã|+ |B̃| − 1.

Case 2 xs,g + B̃ ⊆ Ã+ B̃. Then (Ã ∪ {xs,g}) + B̃ = Ã+ B̃. By (2.12)–(2.13), we have

|A+B| = |Ã+ B̃| · |〈g〉| = |(Ã ∪ {xs,g}) + B̃| · |〈g〉|

and

|A|+ |B| − 1 = |A0|+ |Ã| · |〈g〉|+ |B| − 1 < |A0|+ (|Ã|+ |B̃|) · |〈g〉|.

Hence

|(Ã ∪ {xs,g}) + B̃| 6 |Ã|+ |B̃| = |Ã ∪ {xs,g}|+ |B̃| − 1.

The case |A0| = 1 is similar to the above.

Lemma 2.6 Let the notations be as in Lemma 2.5 and A \ {0} ⊆ U(Z/mZ), 0 ∈ Ã. Then






|(Ã ∪ {xs,g}) + B̃| = |(Ã ∪ {xs,g})|+ |B̃| − 1, if xs,g + B̃ ⊆ Ã+ B̃,

|Ã+ B̃| = |Ã|+ |B̃| − 1, otherwise.

Proof Since A \ {0} ⊆ U(Z/mZ), we have Ã \ {0} ⊆ U(Z/(m/|〈g〉|)Z). By Theorem B,

|Ã+ B̃| > |Ã|+ |B̃| − 1,

|(Ã ∪ {xs,g}) + B̃| > |(Ã ∪ {xs,g})|+ |B̃| − 1.

So we obtain the conclusion by Lemma 2.5.

3 Proofs

Proof of Theorem 1.1 Since A+B = {c, d}, we have c, d 6∈ A+B, and thus

B ∩ (c−A) = ∅, B ∩ (d−A) = ∅.

Hence B ⊆ (c−A) ∩ (d−A), so

|B| 6 |(c−A) ∩ (d−A)|. (3.1)

Moreover,

|(c−A) ∩ (d−A)| 6 |(c−A)| = m− |A|.
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Since |A+B| = |A|+ |B| − 1 = m− 2, we have

|(c−A) ∩ (d−A)| 6 m− ((m− 2)− |B|+ 1) = |B|+ 1. (3.2)

By (3.1)–(3.2), we have |(c−A) ∩ (d−A)| = |B| or |B|+ 1.

If |(c−A) ∩ (d−A)| = |B|+ 1, then

|B|+ 1 = |(c−A) ∩ (d−A)| 6 |(c−A)| = m− |c−A| = m− |A| = |B|+ 1.

It follows that

|(c−A) ∩ (d−A)| = |(c−A)|.

Thus (c−A) = (d−A). Hence c−A = d−A, so A = d− c+A. By Lemma 2.1, we have

A =
⋃

i∈IA,d−c

Ai,d−c.

If |(c−A) ∩ (d−A)| = |B|, then

|B| = |(c−A) ∩ (d−A)| = m− (|c−A|+ |d−A| − |(c−A) ∩ (d−A)|).

Thus

|(c−A) ∩ (d−A)| = (2|A|+ |B|)−m = |A| − 1.

By Lemma 2.2, we have

A = A0 ∪
( ⋃

i∈IA,d−c

Ai,d−c

)
,

where |A0| = 1 or A0 is an arithmetic progression with common difference d− c.

In conclusion, we have

A = A0 ∪
( ⋃

i∈IA,d−c

Ai,d−c

)
,

where |A0| = 0, 1 or A0 is an arithmetic progression with common difference d− c.

Since |A +B| = |A|+ |B| − 1 = m− 2, we know that A,B $ Z/mZ. We divide it into the

following three cases.

Case 1 d − c ∈ U(Z/mZ). Then 〈d − c〉 = Z/mZ. Thus t(d − c) = [Z/mZ : 〈d − c〉] = 1.

Moreover, A0 $ Z/mZ, hence Ã = ∅, so A = A0. Since |A| > 2, we have |A0| > 2. Therefore, A

is an arithmetic progression with common difference d− c. By Lemma 2.4, B is an arithmetic

progression with the same common difference. Hence the statement (S1) holds.

Case 2 gcd(d − c,m) > 1 and Ã = ∅. Then A = A0. Since |A| > 2, we have |A0| > 2.

Therefore, A is an arithmetic progression with common difference d−c, thus A $ xs,d−c+〈d−c〉

for some 1 6 s 6 t(d− c). By Lemma 2.3, we obtain the statement (S2).

Case 3 gcd(d− c,m) > 1 and Ã 6= ∅. Then by Lemma 2.5, we obtain the statement (S3).

Proof of Corollary 1.2 It follows directly from Lemma 2.6 and Theorem 1.1.
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