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Abstract Consider a branching random walk with a random environment in time in
the d-dimensional integer lattice. The branching mechanism is governed by a supercritical
branching process, and the particles perform a lazy random walk with an independent,
non-identical increment distribution. For A ⊂ Z

d, let Zn(A) be the number of offsprings
of generation n located in A. The exact convergence rate of the local limit theorem for
the counting measure Zn(·) is obtained. This partially extends the previous results for a
simple branching random walk derived by Gao (2017, Stoch. Process Appl.).
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1 Introduction

Branching random walk is a classical model in probability. The model gives a description

of the evolution of a population of particles where spatial motion is present, hence generalizes

the classical Galton-Watson branching processes. Although the model has a long history, it is

still quite central in pure and applied probability. It serves as a popular model for describing

and analyzing phenomena in various applied disciplines, such as biology, population dynamics

and computer science. Meanwhile, because the model captures the fundamental nature of the

stochastic dynamics, it is frequently found in many other random models (e.g. multiplicative

cascades, infinite particle systems, random fractals). The reader may refer to [1, 34] for the

classical results on BRW.

Since Harris [21, Chapter III §16] raised the conjecture of central limit theorem for branching

random walk, plenty of works were devoted to this topic. See e.g. [2, 6, 10, 18, 20, 23, 25–28,

32, 36, 38] and references therein.

In this article, we aim to derive the exact convergence rate of the local limit theorem (abbre-

viated as LLT) for a branching random walk in Z
d with a time-varying random environment. In

the literature, Révész [34] initiated the study of the convergence speed in local limit theorems

for a simple branching random walk on Z
d (without random environment setting), and Chen [9]
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derived the exact convergence rate of local limit theorems in this case under a second moment

condition for the branching mechanism. Later, Gao [15] improved Chen’s result by weakening

the moment condition therein. The main objective of this article is to extend the result in [15]

to the case of branching random walk with a time-varying random environment setting. Due

to the appearance of the random environment, the model may be more suitable to modelling

real world applications but the analysis is much more difficult and awkward.

When the walks are governed by non-lattice random distributions in R, some closely related

results on the central limit theorems for branching random walk with a time-varying random

environment have been obtained by Gao and Liu in [16–17]. This kind of branching random

walk in time-varying random environment appeared firstly in [7] and then some other related

limit theorems were surveyed in [23] and [31]. Different kinds of random environments have

been considered in the context of branching random walks in the literature (see [5, 8, 11–13, 19,

22, 33, 39]). The readers may refer to these articles and references therein for more information.

1.1 Description of the model and the notations

A random environment ξ = (ξn) is defined by a sequence of independent and identically

distributed random variables in a some abstract space Θ. Each realization of ξn determines

the probability distribution p(ξn) = {pk(ξn) : k ∈ N} with N = {0, 1, 2, · · · }, and a real number

rn = r(ξn) ∈ (0, 1), with which the associated motion law Gξn(·) is define by

Gξn(0) = rn, Gξn(ev) = Gξn(−ev) =
1− rn
2d

, v = 1, 2, · · · , d, (1.1)

where 0 = (0, 0, · · · , 0) ∈ Z
d, ev(1 ≤ v ≤ d) are the orthogonal unit vectors in Z

d.

Without loss of generality, we can take ξn as coordinate functions defined on the product

space (ΘN,F
⊗

N) equipped with the product law τ of some probability law τ0 on (Θ,F ),

which is invariant and ergodic under the usual shift transformation T on ΘN: T (ξ0, ξ1, · · · ) =
(ξ1, ξ2, · · · ).

Given the environment ξ = (ξn), the process can be described as follows. It begins at time

0 with one initial particle ∅ of generation 0 located at S∅ = 0 ∈ Z
d; at time 1, it is replaced

by N = N∅ new particle ∅i = i (1 ≤ i ≤ N) of generation 1, located at Si = Li ∈ Z
d, where

N,L1, L2, · · · are mutually independent, N has the law p(ξ0), and each Li has the law G(ξ0).

In general, each particle u = u1 · · ·un of generation n is replaced at time n + 1 by Nu new

particles ui (1 ≤ i ≤ Nu) of generation n+1, with displacements Lui, so that the ith child ui is

located at Sui = Su + Lui, where Nu, Lu1, Lu2, · · · are mutually independent, Nu has the law

p(ξn), and each Lui has the same law Gξn . By definition, given the environment ξ, the random

variables Nu and Lu, indexed by all the finite sequences u of positive integers, are independent

of each other.

For each realization ξ ∈ ΘN of the environment sequence, let (Γ,G,Pξ) be the probability

space under which the process is defined (when the environment ξ is fixed to the given real-

ization). The probability Pξ is usually called quenched law. The total probability space can

be formulated as the product space (ΘN × Γ, εN
⊗G,P), where P = E(δξ

⊗
Pξ) with δξ the

Dirac measure at ξ and E the expectation with respect to the random variable ξ, so that for

all measurable and positive g defined on ΘN × Γ, we have

∫

ΘN×Γ

g(x, y)dP(x, y) = E

∫

Γ

g(ξ, y)dPξ(y).
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The total probability P is usually called annealed law. The quenched law Pξ may be considered

to be the conditional probability of P given ξ. The expectation with respect to P will still be

denoted by E; there will be no confusion for reason of consistence. The expectation with respect

to Pξ will be denoted by Eξ.

Let T be the genealogical tree with {Nu} as defining elements. By definition, we have (a)

∅ ∈ T; (b) ui ∈ T implies u ∈ T; (c) if u ∈ T, then ui ∈ T if and only if 1 ≤ i ≤ Nu. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and

represents the number of generation to which u belongs.

1.2 The main result

Define Zn(·) as the counting measure of particles of generation n: For B ⊂ Z
d,

Zn(B) =
∑

u∈Tn

1B(Su).

In particular, we will frequently write Zn(z) instead of Zn({z}), which is the number of the nth

generation individuals located at z ∈ Z
d by definition.

Then {Zn(Z
d)} constitutes a branching process in random environment (see e.g. [3–4, 35]).

For n ≥ 0, let N̂n (resp. L̂n) be a random variable with the law p(ξn) (resp. Gξn) under the

law Pξ, and define

mn = EξN̂n, Πn = m0 · · ·mn−1, Π0 = 1.

It is well known that the normalized sequence

Wn =
1

Πn

Zn(Z
d), n ≥ 1 (1.2)

constitutes a martingale with respect to the filtration (Fn) defined by

F0 = {∅,Ω}, Fn = σ(ξ,Nu : |u| < n) for n ≥ 1.

Throughout the paper, we shall always assume the following conditions:

E lnm0 > 0 and E

[ 1

m0
N̂0(ln

+ N̂0)
λ+1

]
<∞, (1.3)

where the value of λ > 0 is to be specified in the hypothesis of the theorems. Under these

conditions, the underlying branching process
{
Zn(Z

d)
}

is supercritical, which means that

Zn

(
Z
d
)
→ ∞ with positive probability, and the limit W = lim

n
Wn verifies EW = 1 and

W > 0 almost surely on the explosion event {Zn → ∞} (see e.g. [4, 37]) .

For x = (x1, · · · , xd) ∈ R
d and y = (y1, · · · , yd) ∈ R

d, define

〈x, y〉 = x1y1 + x2y2 + · · ·+ xdyd, ‖x‖ =
√
x21 + x22 + · · ·+ x2d.

Set

s2n =

n−1∑

i=0

(1− ri), un =

n−1∑

i=0

(1− ri)
2.
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By the assumptions on ξ, we deduce from the law of large number that

s2n
n

n→∞−−−−→
a.s.

1− Er0,
un
n

n→∞−−−−→
a.s.

E(1− r0)
2. (1.4)

Then our main results can be stated as follows.

Theorem 1.1 Assume (1.3) for some λ > 4(d+ 3), Em−ι
0 < ∞ for some ι > 0. Then for

each x = (x1, · · · , xd) ∈ Z
d,

n
[(2πs2n

d

) d
2 Zn(x)

Πn

−W exp
(
− d

2s2n
‖x‖2

)]

n→∞−−−−→
a.s.

d

1− Er0

[
− 1

2
V2 + 〈x, V1〉+

1

8

(
d− (d+ 2)

E(1− r0)
2

1− Er0

)
W

]
, (1.5)

where respectively V1 ∈ R
d and V2 ∈ R are the almost sure limit of the sequences {Nv,n}n(v =

1, 2), defined by

N1,n =
1

Πn

∑

u∈Tn

Su and N2,n =
1

Πn

∑

u∈Tn

(‖Su‖2 − s2n). (1.6)

Remark 1.1 This theorem generalizes [15, Theorem 1.1(I)].

The rest of the paper is organized as follows. In Section 2, we define two martingales

associated with the branching random walk and prove their a.s. convergence. To prove the

main results, in Section 3, we consider a random walk with the independent, non-identical

increment distribution on Z
d, and derive a first order correction of the local limit theorem with

asymptotical infinitesimal error terms. The proofs of the main theorem will be given in Section

4.

2 Two Martingales and Their Convergences

In this section, we prove the a.s. convergence of those two sequences defined by (1.6). In

fact, they are martingales with respect to the filtration

D0 = {∅,Ω}, Dn = σ(Nu, Lui : i ≥ 1, |u| < n) for n ≥ 1.

Proposition 2.1 The sequences {(N1,n,Dn)} and {(N2,n,Dn)} are both martingales. More-

over when (1.3) and E(ln−m0)
1+λ < ∞ for some λ > 2, these two martingales converge a.s.

to V1 ∈ R
d and V2 ∈ R, respectively ,

V1 = lim
n→∞

N1,n a.s. V2 = lim
n→∞

N2,n a.s.

Proof The fact that {(N1,n,Dn)} is a martingale can be easily shown

Eξ,nN1,n+1 = Eξ,n

( 1

Πn+1

∑

u∈Tn+1

Su

)
=

1

Πn+1
Eξ,n

( ∑

u∈Tn

Nu∑

i=1

(Su + Lui)
)

=
1

Πn+1

∑

u∈Tn

Eξ,n

( Nu∑

i=1

(Su + Lui)
)
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=
1

Πn+1

∑

u∈Tn

mnSu = N1,n.

To see that {(N2,n+1,Dn)} is a martingale, it suffices to notice that

Eξ,nN2,n+1 = Eξ,n

( 1

Πn+1

∑

u∈Tn+1

(‖Su‖2 − s2n+1)
)

=
1

Πn+1

∑

u∈Tn

Eξ,n

( Nu∑

i=1

(‖Su + Lui‖2 − s2n+1)
)

=
1

Πn+1

∑

u∈Tn

Eξ,n

( Nu∑

i=1

Eξ,n((‖Su‖2 + 2〈Ss, Lui〉+ ‖Lui‖2 − s2n+1) | Nu)
)

=
1

Πn+1

∑

u∈Tn

mn(‖Su‖2 + (1− rn)− s2n+1)

=
1

Πn

∑

u∈Tn

(‖Su‖2 − s2n) = N2,n.

We shall prove the a.s. convergence of the martingale {N1,n} by showing that the series

∞∑

n=1

In with In = N1,n+1 −N1,n (2.1)

converges a.s. For n ≥ 1 and |u| = n, set

Xu = Su

( Nu

m|u|
− 1

)
+

Nu∑

i=1

Lui

m|u|
. (2.2)

It is plain to see

‖Xu‖ ≤ (n+ 1)
( Nu

m|u|
+ 1

)
(2.3)

and

In = N1,n+1 −N1,n =
1

Πn

∑

u∈Tn

Xu.

Let X̂n be a generic random variable of Xu, i.e., X̂n has the same distribution with Xu (for

|u| = n). Recall that N̂n has the same distribution as Nu, |u| = n.

We shall use a truncating argument to prove the convergence. Put

X ′
u = Xu1{ Nu

mn
≤Π|u|} and I ′n =

∑

u∈Tn

X ′
u.

The following decomposition will play an important role:

∞∑

n=0

In =

∞∑

n=0

(In − I ′n) +
∞∑

n=0

(I ′n − Eξ,nI
′
n) +

∞∑

n=0

Eξ,nI
′
n. (2.4)

We shall prove that each of the three series on the right hand side converges a.s.

Since lim
n→∞

ln Πn

n
= E lnm0 > 0 a.s., for a given constant 0 < cξ < E lnm0 and for n large

enough, we have

lnΠn > cξn. (2.5)
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For the first series
∞∑

n=0
(In − I ′n) in (2.4),

Eξ‖In − I ′n‖ = Eξ

∥∥∥ 1

Πn

∑

u∈Tn

Xu1{ Nu
mn

>Πn}

∥∥∥

≤ Eξ

( 1

Πn

∑

u∈Tn

Eξ,n(‖Xu‖1{ Nu
mn

>Πn})
)

= Eξ(‖X̂n‖1{ N̂n
mn

>Πn}
)

≤ 1

(lnΠn)1+λ
Eξ‖X̂n‖

(
ln+

( N̂n

mn

))1+λ

≤ Kξn
−λ

Eξ

( N̂n

mn

+ 1
)
(ln+ N̂n)

1+λ +Kξn
−λ(ln−mn)

1+λ a.s.

We see that

E

∞∑

n=1

n−λ
[
Eξ

( N̂n

mn

+ 1
)
(ln+ N̂n)

1+λ + (ln−mn)
1+λ

]

=
( ∞∑

n=1

n−λ
)[

E

( N̂n

m0
+ 1

)
(ln+ N̂0)

1+λ + E(ln−m0)
1+λ

]
<∞,

which implies that

∞∑

n=1

n−λ
[
Eξ

( N̂n

mn

+ 1
)
(ln+ N̂n)

1+λ + (ln−mn)
1+λ

]
<∞ a.s. (2.6)

Hence

Eξ

∥∥∥
∞∑

n=1

(In − I
′
n)
∥∥∥ ≤

∞∑

n=1

Eξ‖In − I
′
n‖ <∞,

Eξ

∥∥∥
∞∑

n=1

Eξ,nI
′
n

∥∥∥ = Eξ

∥∥∥
∞∑

n=1

Eξ,n(In − I
′
n)
∥∥∥ ≤

∞∑

n=1

Eξ‖In − I
′
n‖ <∞.

It follows that the series
∞∑
n=1

(In − I
′
n) and

∞∑
n=1

Eξ,nI
′
n converge a.s.

Thus, it suffices to prove that the second series

∞∑

n=0

(I ′n − Eξ,nI
′
n) converges a.s. (2.7)

By using the fact that
n∑

k=1

(I ′n−Eξ,kIk) is a martingale w.r.t {Dn+1} and by the a.s. convergence

of an L2 bounded martingale (see e.g. [14, P.251, Example. 4.9]), we only need to show that

the series
∞∑

n=0

Eξ‖I ′n − Eξ,nI
′
n‖2 converges a.s.

First observe that

Eξ

{
‖Xu‖2

∣∣Nu

}
≤ 2(Eξ‖Su‖2)

(Nu

mn

+ 1
)2

+ 2
(Nu

mn

)2

≤ 2(n+ 1)
(Nu

mn

+ 1
)2

.



Exact Convergence Rate of LLT for BRW 811

Notice

Eξ‖I ′n − Eξ,nI
′
n‖2

= Eξ

( 1

Π2
n

∑

u∈Tn

Eξ,n ‖X ′
u − Eξ,nX

′
u‖

2
)

≤ 1

Π2
n

Eξ

∑

u∈Tn

Eξ,n‖X ′
u‖2

≤ 2

Πn

Eξ(n+ 1)
( N̂n

mn

+ 1
)2

(1{ N̂n
mn

≤Πn}
1{ N̂n

mn
≤e2λ} + 1{ N̂n

mn
≤Πn}

1{ N̂n
mn

>e2λ})

≤ 2(n+ 1)(e4λ + 3)

Πn

+
2(n+ 1)

Πn

Eξ

( N̂n

mn
)2Πn(lnΠn)

−1−λ

( N̂n

mn
)(ln+( N̂n

mn
))−1−λ

(because x(lnx)−1−λ is increasing for x > e2λ)

≤ 2(n+ 1)(e4λ + 3)

Πn

+ 4
( 2

cξ

)λ+1

n−λ
(
Eξ

N̂n

mn

(ln+ N̂n)
1+λ + (ln−mn)

1+λ
)
.

By using (2.6), we can obtain
∞∑
n=1

Eξ‖In − Eξ,nI
′
n‖2 < ∞ a.s., which implies (2.7). Combining

the above arguments, we see that the series
∑
In converges a.s. Therefore, N1,n converges a.s.

to

V1 =

∞∑

n=1

(N1,n+1 −N1,n) +N1,n.

By mimicking the above proofs in the case of {(N1,n,Dn)}, we can prove the a.s. convergence

of the martingale {(N2,n,Dn)} by showing that

∞∑

n=1

(N2,n+1 −N2,n) converges a.s.

For n ≥ 1 and |u| = n, we still use the nation Xu and In, which are defined respectively by

Xu =
(Nu

mn

− 1
)
(‖Su‖2 − s2n) +

Nu

mn

rn +
2

mn

〈
Su,

Nu∑

i=1

Lui

〉
(2.8)

and

In = N2,n+1 −N2,n =
1

Πn

∑

u∈Tn

Xu. (2.9)

It is easy to see

‖Xu‖ ≤ 2(n+ 1)2
( Nu

m|u|
+ 1

)
. (2.10)

Using the decomposition (2.4), with Xu and In defined respectively by (2.8) and (2.9), and

the following almost the same lines as above, we can prove that the series
∞∑
n=1

(N2,n+1 −N2,n)

converges a.s. Then {N2,n} converges a.s. to

V2 =

∞∑

n=1

(N2,n+1 −N2,n) +N2,1.

The proposition is proved.
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3 First Order Correction of the Local Limit Theorem for a Random

Walk in a Time-Inhomogeneous Environment

In this section, we derive the first order correction in the local limit theorem for a time-

inhomogeneous random walk in Z
d, whose step size distributions vary in time.

Theorem 3.1 Assume that β ∈
(

1
12 ,

1
4

)
and r = {rn ∈ (0, 1) : n ∈ N} is a sequence of real

numbers. Let Sn = L1 + L2 + · · ·+ Ln, where

P(Ln = 0) = rn, P(Ln = ev) = P(Ln = −ev) =
1− rn
2d

, v = 1, · · · , d, n ∈ N. (3.1)

Set δc = 1−cos(d
−1
2 )

d
, Mn =

n∑
i=1

min{2ri, δc(1 − ri)}, s2n =
n∑

i=1

(1 − ri), un =
n∑

i=1

(1 − ri)
2. If the

following conditions :

Mn

n

n→∞−−−−→M ∈ (0,∞),
s2n
n

n→∞−−−−→ s > 0,
un
n

n→∞−−−−→ u > 0 (3.2)

hold, then we have

P(Sn = x) =
( d

2πs2n

) d
2
[
1 +

d

s2n

(
− 1

2
‖x‖2 + 1

8
d− 1

8
(d+ 2)

un

s2n

)]
+

1

n1+ d
2

Rn(r, x), (3.3)

where Rn(r, x) is asymptotically uniform bounded for ‖x‖ ≤ nβ as n→ ∞,

sup
‖x‖≤nβ

|R(r, x)| ≤Cd

(s2n
n

)− d
2

n− 1
2
+2β + 2dn

d
2 exp

{
− 11

24
n

1
4
−β

(s2n
n

)}

+ n(1+ d
2
)e−Mn + Cd

(s2n
n

)−d

n
1
2
+ d

8 exp
{
− 1

2d

(s2n
n

)
n

1
4
−β

}
. (3.4)

Corollary 3.1 Under the hypothesis of Theorem 3.1,

n1+ d
2

[
P(Sn = x)−

( d

2πs2n

) d
2

exp
(
− d‖x‖2

2s2n

)]

n→∞−−−−→2π
( d

2πs

) d
2
+1(1

8
d− 1

8
(d+ 2)

u

s

)
. (3.5)

Proof of Theorem 3.1 We start by the following simple fact:

ψLi
(λ) = Eei〈λ,Li〉 = ri +

1− ri
d

d∑

j=1

cosλj , λ = (λ1, · · · , λd) ∈ [−π, π]d.

Because {Ln} are independent, we have

ψSn
(λ) = Ee

i〈λ,
n∑

i=1

Li〉
=

n∏

i=1

Eei〈λ,Li〉 =
n∏

i=1

ψLi
(λ).

Then, by [29, Proposition 2.2.2], we see that

P(Sn = x) =
1

(2π)d

∫

[−π,π]d
e−i〈λ,x〉ψSn

(λ)dλ
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=
1

(2π)d

∫

[−π,π]d
e−i〈λ,x〉

n∏

i=1

ψLi
(λ)dλ

=
1

(2π)d

∫

[−π,π]d
cos〈λ, x〉

n∏

i=1

ψLi
(λ)dλ. (3.6)

It can be easily seen that

2ri − 1 ≤ ψLi
(λ) ≤ 1 for ri ∈ (0, 1), λ ∈ [−π, π]d

and

ψLi
(λ) = 1 ⇔ λ = 0.

When ‖λ‖ < 1, by Taylor’s expansion, we have

ψLi
(λ) = ri +

1− ri
d

d∑

j=1

(
1− 1

2
λ2j +

cos ηj
24

λ4j

)
,

hence

‖ψLi
(λ)‖ ≤ 1− 11(1− ri)

24
‖λ‖2 ≤ e−

11
24

(1−ri)‖λ‖2

. (3.7)

While when λ ∈ [−π, π]d and ‖λ‖ ≥ 1,

−d ≤
d∑

j=1

cosλj ≤ d− 1 + cos(d−
1
2 ) < d.

Therefore, we have

|ψLi
(λ)| ≤ max{|2ri − 1|, ri + (1− δc)(1− ri)}

≤ exp{−(1−max{|2ri − 1|, ri + (1− δc)(1− ri)})}
= e−min{2ri,δc(1−ri)}. (3.8)

On the basis of the above discussions, we write

P(Sn = x) = In(x) + Jn(x)

with

Jn(x) :=
1

(2π)d

∫

λ∈[−π,π]d,‖λ‖≥1

cos〈λ, x〉
n∏

i=1

ψLi
(λ)dλ,

In(x) :=
1

(2π)d

∫

‖λ‖<1

cos〈λ, x〉
n∏

i=1

ψLi
(λ)dλ.

With the help of (3.8) and the definition of Mn, we see that

|Jn(x)| ≤
n∏

i=1

|ψLi
(λ)| ≤ e−Mn = o(n−1− d

2 ). (3.9)

We next estimate In(x). Let α =
√
nλ. Then,

In(x) =
1

(2π
√
n)d

∫

‖α‖<√
n

cos
〈x, α〉√

n

n∏

i=1

ψLi

( α√
n

)
dα.
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To estimate this integral, we put δ = 1
8 − 1

2β and use the following decomposition:

(2π
√
n)dIn =

∫

nδ≤‖α‖<√
n

cos
〈x, α〉√

n

n∏

i=1

ψLi

( α√
n

)
dα+

∫

‖α‖<nδ

cos
〈x, α〉√

n

n∏

i=1

ψLi

( α√
n

)
dα

=: I1n(x) + I2n(x).

By (3.7),

|I1n(x)| ≤ 2dn
d
2 exp

{
− 11

24
n

1
4
−β

(s2n
n

)}
. (3.10)

Next we turn to the estimate of I2n(x). By Taylor’s expansion, as n tends to infinity, for

‖α‖ < nδ, ‖x‖ < nβ , we have

∣∣∣ cos 〈x, α〉√
n

− 1 +
〈x, α〉2
2n

∣∣∣ ≤ |〈x, α〉|4
4!n2

<
1

24
n−2+4(δ+β).

Then we can write

cos
〈x, α〉√

n
= 1− 〈x, α〉2

2n
+

〈x, α〉4
n2

M1n(x, α), (3.11)

where sup
‖α‖<nδ,‖x‖<nβ

‖M1n(x, α)‖ < 1
24 .

On the basis of (3.11), we have

n∏

i=1

ψLi

( α√
n

)
=

n∏

i=1

(
ri +

1− ri
d

d∑

j=1

cos
αj√
n

)

=exp
{ n∑

i=1

log
(
1− (1 − ri)

‖α‖2
2nd

+ (1 − ri)

d∑
j=1

α4
j

24n2d
+ (1− ri)

‖α‖6
n3

M2n(α)
)}

=exp
{
− s2n

‖α‖2
2nd

+ s2n

d∑
j=1

α4
j

24n2d
− un

‖α‖4
8n2d2

+ s2n
‖α‖6
n3

M3n(r, α)
}

=e−s2n
‖α‖2

2nd

{
1 + s2n

d∑
j=1

α4
j

24n2d
− un

‖α‖4
8n2d2

+ s2n
‖α‖6
n3

M3n(r, α) + s4n
‖α‖8
n4

M4n(r, α)
}
,

where, just as in (3.11), Min(·) is a continuous function uniformly bounded by a constant,

i = 2, 3, 4.

Now, combining the above expansions with (3.11), we obtain

cos
〈x, α〉√

n

n∏

i=1

ψLi

( α√
n

)

= e−s2n
‖α‖2

2nd

(
1− 〈x, α〉2

2n
+ s2n

d∑
j=1

α4
j

24n2d
− un

‖α‖4
8n2d2

+
1

n
εn(x, r, α)

)
, (3.12)

where the term εn(x, r, α) satisfies

sup
‖α‖<nδ,‖x‖<nβ

|εn(x, r, α)| ≤ Cd max
{ 1

n1−4(δ+β)
,

1

n1−8δ

}
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= Cdn
−min( 1

2
−2β,4β) = Cdn

− 1
2
+2β (3.13)

with Cd an absolute constant only depending on d. Thus

sup
‖x‖≤nβ

∣∣∣
∫

‖α‖<nδ

e−
s2n‖α‖2

2nd εn(x, r, α)dα
∣∣∣ ≤ Cdn

− 1
2
+2β

∫

Rd

e−
s2n‖α‖2

2nd dα

≤ Cd

(s2n
n

)− d
2

n− 1
2
+2β . (3.14)

Observe that
∫

‖α‖≥nδ

e−
s2n‖α‖2

2nd dα = 2π
d
2 /Γ

(d
2

) ∫ ∞

nδ

e−
s2n
2nd

r2rd−1dr

≤ Cd

(s2n
n

)−d

ndδe−
s2n
2nd

n2δ

≤ Cd

(s2n
n

)−d

n
1
2
+d

8 exp
{
− 1

2d

(s2n
n

)
n

1
4
−β

}
. (3.15)

By elementary calculus, we evaluate

∫

‖α‖<nδ

e−
s2n‖α‖2

2nd dα =
(2πnd

s2n

) d
2

+ γen(s
2
n),

∫

‖α‖<nδ

e−
s2n‖α‖2

2nd
1

d

d∑

j=1

α4
jdα = 3(2π)

d
2

( d

(
s2n
n
)

) d
2
+2

+ γen(s
2
n),

∫

‖α‖<nδ

e−
s2n‖α‖2

2nd ‖α‖4dα = (2π)
d
2 d(d+ 2)

( d

(
s2n
n
)

) d
2
+2

+ γen(s
2
n),

∫

‖α‖<nδ

e−
s2n‖α‖2

2nd 〈α, x〉2 dα = (2π)
d
2

( d

(
s2n
n
)

) d
2
+1

‖x‖2 + σe
n(s

2
n, x).

In the above estimates, similar to (3.15), all the infinitesimals γen(s
2
n) and sup

‖x‖≤nβ

σe
n(s

2
n, x) are

bounded by

Cd

(s2n
n

)−d

n
1
2
+ d

8 exp
{
− 1

2d

(s2n
n

)
n

1
4
−β

}
.

Taking these evaluations and the expansion (3.12) into account, we obtain

I2n =
(2πd

s2n
n

) d
2
[
1 +

d

s2n

(
− 1

2
‖x‖2 + 1

8
d
(
1− un

s2n

)
− 1

4

un

s2n

)]
+

1

n
σn(s

2
n, x),

where σn(s
2
n, x) satisfies

sup
‖x‖≤nβ

∥∥σn(s2n, x)
∥∥ ≤Cd

(s2n
n

)−d
2

n
−1

2
+2β

+ Cd

(s2n
n

)−d

n
1
2
+ d

8 exp
{
− 1

2d

(s2n
n

)
n

1
4
−β

}
. (3.16)

Combining this with (3.9)–(3.10), we obtain the desired

P(Sn = x) =
( d

2πs2n

) d
2
[
1 +

d

s2n

(
− 1

2
‖x‖2 + 1

8
d− 1

8
(d+ 2)

un

s2n

)]
+

1

n1+ d
2

Rn(r, x), (3.17)
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where Rn(r, x) is asymptotically uniform bounded satisfying (3.4), i.e., for ‖x‖ ≤ nβ as n→ ∞,

sup
‖x‖≤nβ

|R(r, x)| ≤ Cd

(s2n
n

)−d
2

n− 1
2
+2β + 2dn

d
2 exp

{
− 11

24
n

1
4
−β s

2
n

n

}

+ n(1+d
2
)e−Mn + Cd

(s2n
n

)−d

n
1
2
+ d

8 exp
{
− 1

2d

s2n
n
n

1
4
−β

}
.

The lemma has been proved.

4 Proof of Theorem 1.1

In the proof of the main results, a key decomposition plays an important role. It goes back

at least as far as [28] and is widely used in later literature (see e.g. [9, 16, 18, 34]). To introduce

the decomposition, we need some notations.

Let T(u) be the shifted tree of T at u with defining elements {Nuv} satisfying (1) ∅ ∈ T(u),

(2) vi ∈ T(u) ⇒ v ∈ T(u) and (3) if v ∈ T(u), then vi ∈ T(u) if and only if 1 ≤ i ≤ Nuv. Set

Tn(u) = {v ∈ T(u) : |v| = n} and denote by |Tn(u)| the cardinality of Tn(u) (i.e., the number

of descendants of nth generation of u).

For u ∈ (N∗)k(k ≥ 0) and n ≥ 1, let Zn(u, x) denote the number of descendants of nth

generation of u located at x+ Su ∈ Z
d . More precisely,

Zn(u, x) =
∑

v∈Tn(u)

δx(Suv − Su),

where

δx(y) =

{
1, x = y,

0, x 6= y.

Let β be a real number satisfying d+3
λ

< β < 1
4 and set kn = ⌊nβ⌋, the largest integer not

bigger than nβ. On the basis of the additivity property of the branching process, we have the

following decomposition:

Zn(x) =
∑

u∈Tkn

Zn−kn
(u, x− Su). (4.1)

By definition, for u ∈ Tkn
, we have

Zn−kn
(u, x− Su) =

∑

v1···vn−kn∈Tn−kn(u)

δx(Suv1···vn−kn
).

In addition, we also need the following σ−fields:

I0 = {∅,Ω}, In = σ(ξk, Nu, Lui : k < n, i ≥ 1, |u| < n) for n ≥ 1.

For conditional probabilities and expectations, we write

Pξ,n(·) = Pξ(·|Dn), Eξ,n(·) = Eξ(·|Dn), Pn(·) = P(·|In), En(·) = E(·|In).

Also we write Ŝn = S1n for n ≥ 0, with 1n = 1 · · · 1︸ ︷︷ ︸
n

for n > 1 and 10 = ∅. Then Ŝn is a random

walk with the random environment ξ in time .
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As the environment sequence is independent, identically distributed, the distribution of

Zn−kn
(u, x) under Pξ coincides with that of Zn−kn

(x) under PTknξ. Then for u ∈ Tkn
, we have

Eξ

( Zn−kn
(u, x)

mkn
· · ·mn−1

)
= PTknξ(Ŝn−kn

= x). (4.2)

Therefore, we provide the following key decomposition:

1

Πn

Zn(x) =
1

Πkn

∑

u∈Tkn

[Zn−kn
(u, x− Su)

mkn
· · ·mn−1

− PTknξ(Ŝn−kn
= x− y)|y=Su

]

+
1

Πkn

∑

u∈Tkn

PTknξ(Ŝn−kn
= x− y)|y=Su

=: An +Bn. (4.3)

On the basis of (4.3), we divide the proof of Theorem 1.1 into two lemmas.

Lemma 4.1 Assume the conditions of Theorem 1.1. Then

n1+d
2An

n→∞−−−−→
a.s.

0. (4.4)

Lemma 4.2 Assume the conditions of Theorem 1.1. Then

n
[(2πs2n

d

) d
2

Bn −W exp
(
− d‖x‖2

2s2n

)]

n→∞−−−−→
a.s.

d

1− Er0

[
− 1

2
V2 + 〈x, V1〉+

(1
8
d− 1

8
(d+ 2)

E(1 − r0)
2

1− Er0

)
W

]
. (4.5)

Proof of Lemma 4.1 Firstly we give some notations. For u ∈ Tkn
, define

Xn,u =
Zn−kn

(u, x− Su)

mkn
· · ·mn−1

− PTknξ(Ŝn−kn
= x− y)|y=Su

,

Xn,u = Xn,u1{|Xn,u|≤Πkn},

An =
1

Πkn

∑

u∈Tkn

Xn,u.

Then we have the following fact:

|Xn,u| ≤Wn−kn
(u) + 1 with Wn−kn

(u) =:
Tn−kn

(u)

mkn
· · ·mn−1

.

We remind that {Wn−kn
(u) : u ∈ Tkn

} are mutually independent and identically distributed

as Wn−kn
under the conditional probability Pξ,kn

. We can obtain the required result once we

prove ∀ε > 0,
∞∑

n=1

Pkn
(|n1+ d

2An| > 2ε) <∞. (4.6)

Notice

Pkn

(
|An| >

2ε

n1+ d
2

)
≤ Pkn

(An 6= An) + Pkn

(
|An − Eξ,kn

An| >
ε

n1+d
2

)

+ Pkn

(
|Eξ,kn

An| >
ε

n1+ d
2

)
. (4.7)
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Then we divide the proof into 3 steps.

Step 1 Prove
∞∑

n=1

Pkn
(An 6= An) <∞. (4.8)

To this end, we need the following result with W ∗ = sup
n
Wn.

Lemma 4.3 (see [30, Theorem 1.2]) Assume (1.3) for some λ > 0 and Em−ι
0 <∞ for some

ι > 0. Then

E(W ∗ + 1)(ln (W ∗+1))λ <∞. (4.9)

By virtue of this result, we have

Pkn
(An 6= An) ≤

∑

u∈Tkn

Pkn
(Xn,u 6= Xn,u) =

∑

u∈Tkn

Pkn
(|Xn,u| ≥ Πkn

)

≤
∑

u∈Tkn

Pkn
(Wn−kn

(u) + 1 ≥ Πkn
)

=Wkn
[πnP(Wn−kn

+ 1 ≥ πn)
]
πn=Πkn

≤Wkn
[E((Wn−kn

+ 1)1{Wn−kn+1≥πn})]πn=Πkn

≤Wkn
[E((W ∗ + 1)1{W∗+1≥πn})]πn=Πkn

≤W ∗(lnΠkn
)−λ

E(W ∗ + 1)(ln (W ∗ + 1))λ

≤ KξW
∗n−λβ

E(W ∗ + 1)(ln (W ∗ + 1))λ,

where Kξ is constant depending on ξ. And the last inequality holds because of the conditions

kn ∼ nβ and
1

n
lnΠn → E lnm0 > 0 a.s. (4.10)

By the choice of β and using Lemma 4.3, we achieve the first inequality (4.8).

Step 2 We next prove the following inequality for all ε > 0,

∞∑

n=1

Pkn

(
|An − Eξ,kn

An| >
ε

n1+ d
2

)
<∞. (4.11)

Take a constant b ∈ (1, eE lnm0). For all u ∈ Tkn
and n ≥ 1, we can see

Ekn
X

2

n,u =

∫ ∞

0

2xPkn
(|Xn,u| > x)dx = 2

∫ ∞

0

xPkn
(|X |n,u1{|Xn,u|<Πkn})dx

≤ 2

∫ Πkn

0

xPkn
(|Wn−kn

(u) + 1| > x)dx = 2

∫ Πkn

0

xPkn
(|Wn−kn

+ 1| > x)dx

≤ 2

∫ Πkn

0

xP(|W ∗ + 1| > x)dx

≤ 2

∫ Πkn

e

(lnx)−λ
E(W ∗ + 1)(ln (W ∗ + 1))λdx+ 9

≤ 2E(W ∗ + 1)(ln (W ∗ + 1))λ
(∫ bkn

e

(lnx)−λdx+

∫ Πkn

bkn

(lnx)−λ
)
+ 9

≤ 2E(W ∗ + 1)(ln (W ∗ + 1))λ(bkn + (Πkn
− bkn)(kn ln b)

−λ) + 9.
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Then we have
∞∑

n=1

Pkn

(
|An − Eξ,kn

An| >
ε

n1+ d
2

)

=

∞∑

n=1

Ekn
Pξ,kn

(
|An − Eξ,kn

An| >
ε

n1+ d
2

)

≤ ε−2
∞∑

n=1

n2+d
Ekn

(
Π−2

kn

∑

u∈Tkn

Eξ,kn
X

2

n,u

)
= ε−2

∞∑

n=1

n2+d
(
Π−2

kn

∑

u∈Tkn

Ekn
X

2

n,u

)

≤ ε−2
∞∑

n=1

n2+dWkn

Πkn

[(W ∗ + 1)(ln (W ∗ + 1)λ)(bkn + (Πkn
− bkn)(kn ln b)−λ) + 9]

≤ 2ε−2W ∗
E(W ∗ + 1)(ln (W ∗ + 1)λ)

( ∞∑

n=1

n2+d

Πkn

bkn +
∞∑

n=1

n2+d(kn ln b)
−λ

)

+ 9ε−2W ∗
∞∑

n=1

n2+d

Πkn

.

Using the condition (4.10) and λβ > 3+d, the last three series in the above inequality converge

and the second inequality (4.11) follows.

Step 3 As Eξ,kn
Xn,u = 0, we have

Pkn

(
|Eξ,kn

An| >
ε

n1+ d
2

)
≤ n1+ d

2

ε
Ekn

|Eξ,kn
An| =

n1+ d
2

ε
Ekn

∣∣∣ 1

Πkn

∑

u∈Tkn

Eξ,kn
Xn,u

∣∣∣

=
n1+ d

2

ε
Ekn

∣∣∣ 1

Πkn

∑

u∈Tkn

(−Eξ,kn
Xn,u1{|Xn,u|≥Πkn})

∣∣∣

≤ n1+ d
2

ε

1

Πkn

∑

u∈Tkn

Ekn
(Wn−kn

(u) + 1)1{Wn−kn (u)+1≥Πkn}

=
n1+ d

2

ε
Wkn

[E(W ∗ + 1)1{Wn−kn+1≥πn}]πn=Πkn

≤ W ∗

ε
n1+ d

2 [E(W ∗ + 1)1{W∗+1≥πn}]πn=Πkn

≤ W ∗

ε

n1+ d
2

(ln Πkn
)λ

E(W ∗ + 1) lnλ (W ∗ + 1)

≤ W ∗

ε
Kξn

1+ d
2
−λβ

E(W ∗ + 1) lnλ (W ∗ + 1).

Then by the condition (4.10) and λβ > 3 + d, we obtain

∞∑

n=1

Pkn

(
|Eξ,kn

An| >
ε

n1+ d
2

)
<∞.

Through Steps 1–3, We prove (4.6). Hence Lemma 4.1 has been proved.

Proof of Lemma 4.2 Just to keep the notations consistent with Theorem 3.1, we intro-

duce

ŝ2n−kn
:=

n−kn−1∑

i=0

(1− rkn+i), ûn−kn
:=

n−kn−1∑

i=0

(1− rkn+i)
2,
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M̂n−kn
:=

n−kn−1∑

i=0

min{2rkn+i, δc(1− rkn+i)}.

By the law of large numbers, we get

ŝ2n−kn

n− kn
=
s2n − s2kn

n− kn
→ 1− Er0,

ûn−kn

n− kn
=
un − ukn

n− kn
→ E(1 − r0)

2,

M̂n−kn

n− kn
→ Emin{2r0, δc(1 − r0)} > 0.

(4.12)

Using Theorem 3.1, we have

PTknξ(Ŝn−kn
= x− y)|y=Su

=
( d

2πŝ2n−kn

) d
2
[
1 +

d

ŝ2n−kn

(
− 1

2
‖x− Su‖2 +

1

8
d− 1

8
(d+ 2)

ûn−kn

ŝ2n−kn

)]

+
1

(n− kn)1+
d
2

Rn−kn
(ξ, x− Su), (4.13)

where the remainder terms Rn−kn

(
ξ, x−Su

)
(u ∈ Tkn

) are asymptotically uniform infinitesimals.

Observe ‖Su‖ ≤ kn for u ∈ Tkn
and n≫ kn. Then

‖x− Su‖2 = ‖x‖ − 2〈x, Su〉+ ‖Su‖2,

(s2n − s2kn
)

−d
2 = (s2n)

−d
2

(
1 +

ds2kn

2s2n

)
+ (s2n)

− d
2 o

(s2kn

s2n

)
,

(s2n − s2kn
)−1 = (s2n)

−1
(
1 +

s2kn

s2n

)
+ (s2n)

−1o
(s2kn

s2n

)
,

(n− kn)
−d
2 = n

−d
2

(
1 +

dkn
2n

)
+ o

( 1

n1+ d
2

)
.

Plugging these into (4.3), we obtain

PTknξ(Ŝn−kn
= x− y)|y=Su

=
( d

2πs2n

) d
2
[
1 +

d

s2n
〈x, Su〉+

d

s2n

(
− 1

2
(‖Su‖2 − s2kn

)
)

+
d

s2n

(
− 1

2
‖x‖2 + 1

8
d− 1

8
(d+ 2)

ûn−kn

ŝ2n−kn

)]

+
1

n
d
2
+1
εu,n, (4.14)

where εu,n(u ∈ Tkn
) denote a family of infinitesimals dominated by an infinitesimal τn, i.e.,

sup{|εu,n| : u ∈ Tkn
} ≤ τn → 0.

Hence, combining (4.14) with (4.3), we conclude

(2πs2n
d

) d
2

Bn =Wkn
+

d

s2n

[
− 1

2
N2,kn

+ 〈x,N1,kn
〉
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+
(
− 1

2
‖x‖2 + 1

8
d− 1

8
(d+ 2)

ûn−kn

ŝ2n−kn

)
Wkn

]
+

1

n

( 1

Πkn

∑

u∈Tkn

εu,n

)
.

Then we obtain

(2πs2n
d

) d
2

Bn −Wkn
exp

(
− d‖x‖2

2s2n

)

=
d

s2n

[
− 1

2
N2,kn

+ 〈x,N1,kn
〉+

(1
8
d− 1

8
(d+ 2)

ûn−kn

ŝ2n−kn

)
Wkn

]
+ o

( 1

n

)
Wkn

. (4.15)

Under the condition (1.3), applying the result given in [24, Theorem 1.2], we obtain

W −Wn = o(n−λ), a.s.

By the choice of β and kn, we see that

W −Wkn
= o(n−λβ) = o(n−1). (4.16)

So we can deduce the desired (4.5) from the results (4.12), (4.15)–(4.16) and Proposition 2.1.

Proof of Theorem 1.1 Theorem 1.1 follows directly from Lemmas 4.1–4.2.
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[34] Révész, P., Random Walks of Infinitely Many Particles, World Scientific Publishing Co. Inc., River Edge,
NJ, 1994.

[35] Smith, W. L. and Wilkinson, W. E., On branching processes in random environments, Ann. Math. Statist.,
40, 1969, 814–827.

[36] Stam, A.J., On a conjecture by Harris, Z.Wahrsch. Verw. Gebiete, 5, 1966, 202–206.

[37] Tanny D., A necessary and sufficient condition for a branching process in a random environment to grow
like the product of its means, Stoch. Process. Appl., 28(1), 1988, 123–139.

[38] Uchiyama, K., Spatial growth of a branching process of particles living in R
d., Ann. Probab., 10(4), 1982,

896–918.

[39] Yoshida, N., Central limit theorem for branching random walks in random environment, Ann. Appl.

Probab., 18(4), 2008, 1619–1635.


