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Abstract In this paper, the authors employ the splitting method to address support
vector machine within a reproducing kernel Banach space framework, where a lower semi-
continuous loss function is utilized. They translate support vector machine in reproducing
kernel Banach space with such a loss function to a finite-dimensional tensor optimization
problem and propose a splitting method based on the alternating direction method of mul-
tipliers. Leveraging Kurdyka-Lojasiewicz property of the augmented Lagrangian function,
the authors demonstrate that the sequence derived from this splitting method is globally
convergent to a stationary point if the loss function is lower semi-continuous and subana-
lytic. Through several numerical examples, they illustrate the effectiveness of the proposed
splitting algorithm.
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1 Introduction

In this paper, we employ the splitting method to address support vector machine (SVM for

short) in reproducing kernel Banach space (RKBS for short) with a lower semi-continuous loss

function. SVM is a successful model in machine learning. First, we introduce the background

of machine learning. We denote the sample space as X in the d-dimensional Euclidean space

Rd and the label space as Y in the set of real numbers as R, respectively. We have a truth

R : X → Y and the following training data

D := {(xi, yi) : yi = R(xi), i = 1, 2, · · · , N} ⊆ X × Y.
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For any x ∈ X\{x1,x2, · · · ,xN}, R(x) is unknown. Based on the training data D, we learn

a mapping RD : X → Y such that RD(x) is a good approximation of R(x) to an arbitrary

x ∈ X .

One heuristic method for learning RD is to choose the optimal one in the set of all mappings

from X to Y according to a given criterion. Since X is uncountable, it is difficult to consider all

mappings from X to Y . We can only consider a part of mappings from X to Y . Thus, different

parts of mappings from X to Y and different criteria can obtain different kinds of RD, but we

do not know which RD is better without testing data. We hope that as many mappings from

X to Y as possible can be considered and the corresponding RD can be obtained easily.

In this paper, we consider some infinite-dimensional m
m−1 -norm RKBSs B m

m−1 that consist

of some mappings from X to R, where m is an even integer. We will find a mapping in B m
m−1

that achieves the smallest regularized possible empirical risk (see [31, Section 5.5]), that is,

inf
f∈B

m
m−1

1

N

N∑

i=1

L(xi, yi, f(xi)) + λ‖f‖
m

m−1

B
m

m−1

, (1.1)

where L : X × Y × R → [0,∞) is a given lower semi-continuous loss function and λ > 0 is

a given regularization paramater. In the following, we will interpret L(x, y, f(x)) as the loss

of predicting y by f(x) if x is observed, that is, the smaller the value L(x, y, f(x)) is, the

better f(x) predicts y in the sense of L. A loss function L is called lower semi-continuous if

t 7→ L(x, y, t) is lower semi-continuous on R for all x ∈ X and y ∈ Y . Similarly, we can define

other properties of loss function, such as continuity, smoothness, convexity, etc. Finally, we

use fD to construct RD according to the task requirement. For example, if Y = R, then we

construct RD = fD for regression. If Y = {+1,−1}, then we can construct

RD(x) =

{
+1, fD(x) ≥ 0,

−1, fD(x) < 0

for binary classification (see [28, Sections 8–9]). In this paper, we call RD constructed by

optimization problem (1.1) the SVM in B m
m−1 . Clearly, the key step in constructing the SVM

in B m
m−1 is to solve optimization problem (1.1).

When m = 2, m
m−1 = 2 and B2 is a reproducing kernel Hilbert space (RKHS for short).

The SVM in B2 is already achieved with convex loss function (see [28]). By definition, if L

is a convex loss function, then L is a lower semi-continuous loss function. But the converse is

not true. Recently, some nonconvex and lower semi-continuous loss functions have been used

in SVM (see [7, 12, 17, 26, 30]). In [19], we show that when m = 2 and L is a lower semi-

continuous loss function, optimization problem (1.1) can be equivalently transferred to a lower

semi-continuous finite-dimensional optimization problem with linear constraint and a positive

semi-definite matrix. Next, we discuss the splitting method based on the alternating direction

method of multipliers (ADMM for short) for optimization problem (1.1). By this splitting

method, we obtain two subproblems that are computable easily. The first subproblem can be

equivalently transferred to some lower semi-continuous 1-dimensional optimization problems

and the second one can be equivalently transferred to a well-posed linear equation. Also, we

discuss the convergence of this splitting method. The convergence of ADMM is already guaran-

teed well for convex optimization problems (see [6]) and some special nonconvex optimization
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problems by the Kurdyka-Lojasiewicz (KL for short) property of the augmented Lagrangian

function (see [13, 15]). In [19], we discuss the global convergence of the splitting method based

on ADMM to a stationary point by the KL property of the augmented Lagrangian function.

Since RKHS is a special case of RKBS, after the success of the SVM in RKHS, people

naturally would like to know whether the SVM can be achieved in a general RKBS.Whenm ≥ 4,

B m
m−1 is just an RKBS, not an RKHS. If m ≥ 4 and L is a convex loss function, [31, Section

5.5] shows that optimization problem (1.1) has a unique minimizer. Moreover, [31, Section 5.2]

develops the fixed-point algorithm for optimization problem (1.1) with a convex and smooth loss

function. Furthermore, a preliminary experiment in [31, Chapter 6] shows that if L is a convex

and smooth loss function, the SVM in B 4

3 can perform better than the SVM in B2. Recently, [14]

shows that when m ≥ 4 and L is a lower semi-continuous loss function, optimization problem

(1.1) with another regularization term λ‖f‖2
B

m
m−1

has a minimizer. However, when m ≥ 4

and L is a nonconvex and lower semi-continuous loss function, the algorithm for optimization

problem (1.1) is still lack of study, no matter what kind of regularization term it contains.

Based on the situation above, when m ≥ 4, there are still a couple of issues that need

discussion:

• When L is a nonconvex and lower semi-continuous loss function, does optimization prob-

lem (1.1) have a minimizer? If the minimizer exists, how to solve it?

• If we find an algorithm for optimization problem (1.1) with a nonconvex and lower semi-

continuous loss function, is this algorithm still effective when L is a convex loss function? Does

the loss function need to be smooth?

In this paper, we answer these two questions. For simplicity, in the rest of this paper, without

specification, we assume that m is an even integer, m ≥ 4, and L is a lower semi-continuous

loss function.

First, we show that optimization problem (1.1) has a minimizer (see Lemma 2.1) and it can

be equivalently transferred to a lower semi-continuous finite-dimensional optimization problem

with nonlinear constraint and a positive semi-definite tensor (see optimization problem (2.11)).

Next, we discuss the splitting method based on ADMM for optimization problem (1.1) (see

Algorithm 1). By Algorithm 1, we obtain two subproblems that are computable easily. The

first subproblem can be equivalently transferred to some lower semi-continuous 1-dimensional

optimization problems and the second one can be equivalently transferred to a well-posed tensor

equation. Specially, two subproblems are nonconvex. To ensure the convergence of Algorithm 1,

we need to add more conditions on loss functions, training data, and RKBSs (see Assumption

4.1) to establish Lemma 4.1 to Lemma 4.6. In Assumption 4.1, the loss function L can be

nonconvex and nomsmooth. Thus, we reexchange the convergence theorems in [13, 15, 19] and

verify the global convergence to a stationary point of Algorithm 1 for optimization problem (1.1)

by KL property of the augmented Lagrangian function (see Theorem 4.1). Finally, we give some

numerical examples for synthetic data and real data in Section 5 to show that Algorithm 1 for

the SVM in B m
m−1 with a lower semi-continuous loss function is feasible.

This paper is organized as follows. Section 2 introduces some preliminary materials of the

SVM in B m
m−1 . Next, we use Algorithm 1 for optimization problem (1.1) in Section 3. Moreover,

we discuss the global convergence of Algorithm 1 in Section 4. Finally, we give some numerical

examples for synthetic data and real data in Section 5.
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2 Support Vector Machine in m

m−1
-norm Reproducing Kernel Banach

Space

In this section, we review some concepts of the SVM in B m
m−1 , where m is an even integer

and m ≥ 4. We denote the set of positive integers as N. In this paper, every vector is supposed

to be a column vector.

Before introducing B m
m−1 , we need some basic concepts of the spaces ℓ

m
m−1 (see [18, Appendix

C]) that consist of real sequences. We define a normed space

ℓ
m

m−1 :=
{
{an} : an ∈ R,

∑

n∈N

|an|
m

m−1 <∞
}
,

equipped with the norm ‖{an}‖ m
m−1

:=
( ∑
n∈N

|an|
m

m−1

)m−1

m . Since 1 < m
m−1 ≤ 4

3 , [18, Theorem

C.10] shows that ℓ
m

m−1 is a Banach space. Let (ℓ
m

m−1 )′ be the dual space of ℓ
m

m−1 . Since
1
m

m−1

+ 1
m

= 1, [18, Theorem C.12] ensures that (ℓ
m

m−1 )′ is isometrically isomorphic to ℓm, where

ℓm :=
{
{bn} : bn ∈ R,

∑

n∈N

|bn|m <∞
}
,

and ℓm is equipped with the norm ‖{bn}‖m :=
( ∑
n∈N

|bn|m
) 1

m . The isometric isomorphism from

ℓm onto (ℓ
m

m−1 )′ can be represented in the form {bn} 7→ 〈·, {bn}〉 m
m−1

, where 〈·, ·〉 m
m−1

is the dual

bilinear product defined on ℓ
m

m−1 and ℓm, that is,

〈{an}, {bn}〉 m
m−1

=
∑

n∈N

anbn.

Also, the Hölder’s inequality shows that

〈{an}, {bn}〉 m
m−1
≤

∑

n∈N

|anbn| ≤ ‖{an}‖ m
m−1
‖{bn}‖m.

Moreover, we need some basic properties of ℓ
m

m−1 . For example, [18, Theorem C.14] shows

that ℓ
m

m−1 is reflexive, [18, Proposition 5.2.6, Corollary 5.2.12] show that ℓ
m

m−1 is strictly convex

and [18, Proposition 5.5.7, Corollary 5.5.17] show that ℓ
m

m−1 is smooth.

2.1 m

m−1
-norm reproducing kernel Banach space

We now introduce some basic concepts of B m
m−1 (see [31, Section 3.2]), where m is an even

integer. Let {φn} be a series of continuous functions from X to R such that
∑
n∈N

|φn(x)| <
∞ for all x ∈ X . We define a normed space

B m
m−1 :=

{
f :=

∑

n∈N

anφn : an ∈ R,
∑

n∈N

|an|
m

m−1 <∞
}

equipped with the norm ‖f‖
B

m
m−1

:= ‖{an}‖ m
m−1

. This construction of B m
m−1 ensures that B m

m−1

is isometrically isomorphic to ℓ
m

m−1 . Since ℓ
m

m−1 is a Banach space, B m
m−1 is also a Banach space.
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Let (B m
m−1 )′ be the dual space of B m

m−1 . Since (ℓ
m

m−1 )′ is isometrically isomorphic to ℓm, it is

clear that (B m
m−1 )′ is isometrically isomorphic to Bm, where

Bm :=
{
g :=

∑

n∈N

bnφn : bn ∈ R,
∑

n∈N

|bn|m <∞
}

and Bm is equipped with the norm ‖g‖Bm := ‖{bn}‖m. The isometric isomorphism from Bm

onto (B m
m−1 )′ can be represented in the form g 7→ 〈·, g〉

B
m

m−1
, where 〈·, ·〉

B
m

m−1
is the dual

bilinear product defined on B m
m−1 and Bm, that is,

〈f, g〉
B

m
m−1

:=
∑

n∈N

anbn.

Also, for any f ∈ B m
m−1 and g ∈ Bm, we have that

〈f, g〉
B

m
m−1
≤ ‖f‖

B
m

m−1
‖g‖Bm .

Remark 2.1 Following the isometric isomorphism from Bm onto (B m
m−1 )′, in this paper,

we use the elements in Bm to represent the corresponding elements in (B m
m−1 )′.

Since ℓ
m

m−1 is reflexive, strictly convex and smooth, B m
m−1 is also reflexive, strictly convex

and smooth. For any f 6= 0, [31, Theorem 5.2] shows that

dG(‖ · ‖B m
m−1

)(f) =
(Jm)−1(f)

‖f‖
1

m−1

B
m

m−1

, (2.1)

where dG denotes Gâteaux derivative and Jm : Bm → B m
m−1 denotes duality mapping from Bm

to B m
m−1 (see [29, Definition 2]), respectively. The duality mapping Jm can be represented in

the form

Jm(g) :=
∑

n∈N

(bn)
m−1φn.

Since m ≥ 4, Jm is a nonlinear but continuous mapping. Also, [8, Chapter II, Proposition 4.8]

shows that Jm is a homeomorphism. Hence, Jm has the inverse mapping

(Jm)−1(f) =
∑

n∈N

(an)
1

m−1φn.

Next, we check the reproducing property of B m
m−1 by the well-defined kernelK : X×X → R,

K(x,x′) :=
∑

n∈N

φn(x)φn(x
′), ∀x,x′ ∈ X.

Since
∑
n∈N

|φn(x)| <∞ for all x ∈ X , it follows that
∑
n∈N

|φn(x)|m <∞. Hence,

K(x, ·) =
∑

n∈N

φn(x)φn ∈ Bm, 〈f,K(x, ·)〉
B

m
m−1

=
∑

n∈N

anφn(x) = f(x)

for all x ∈ X and f ∈ B m
m−1 . Thus, B m

m−1 is a right-sided RKBS (see [31, Definition 2.1]). For

any even integer m ≥ 4, B m
m−1 has the same reproducing kernel K.
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2.2 Support vector machine in m

m−1
-norm reproducing kernel Banach space

In this subsection, we introduce some basic properties of optimization problem (1.1). For

simplicity, we denote

δ(f) := (f(x1), · · · , f(xN ))T, F (α) :=
1

N

N∑

i=1

L(xi, yi, αi).

Also, we denote the objective function of optimization problem (1.1) as T m
m−1

: B m
m−1 → R.

Thus,

T m
m−1

(f) =
1

N

N∑

i=1

L(xi, yi, f(xi)) + λ‖f‖
m

m−1

B
m

m−1

= (F ◦ δ)(f) + λ‖f‖
m

m−1

B
m

m−1

,

where ◦ denotes composition. Since L is nonnegative, it is clear that for any f ∈ B m
m−1 ,

T m
m−1

(f) = (F ◦ δ)(f) + λ‖f‖
m

m−1

B
m

m−1

≥ λ‖f‖
m

m−1

B
m

m−1

≥ 0.

Therefore, T m
m−1

(f) tends to ∞ as ‖f‖
B

m
m−1

tends to ∞. Since B m
m−1 is reflexive, [10, Exam-

ple 1.14] shows that T m
m−1

is sequentially coercive in the weak topology of B m
m−1 . Moreover,

since L is a lower semi-continuous loss function, F is lower semi-continuous on RN . Also, the

reproducing property of B m
m−1 assures that

‖δ(f)‖ = ‖(f(x1), · · · , f(xN ))T‖ ≤ ‖f‖
B

m
m−1
‖(‖K(x1, ·)‖Bm , · · · , ‖K(xN , ·)‖Bm)T‖,

where ‖·‖ denotes the Euclidean norm in RN . Thus, δ is a continuous linear mapping on B m
m−1 ,

which ensures that δ is weakly continuous on B m
m−1 by [18, Proposition 2.5.3]. In conclusion,

F ◦ δ is lower semi-continuous and weakly lower semi-continuous on B m
m−1 . On the other hand,

since f 7→ ‖f‖
B

m
m−1

is continuous and weakly lower semi-continuous on B m
m−1 by [18, Theorem

2.5.21] and t 7→ λt
m

m−1 is continuous on [0,∞), f 7→ λ‖f‖
m

m−1

B
m

m−1

is continuous and weakly lower

semi-continuous on B m
m−1 . In conclusion, T m

m−1
is lower semi-continuous and weakly lower

semi-continuous on B m
m−1 .

In the rest of this paper, we usually discuss the optimal conditions of lower semi-continuous

functions. We need the concept of limiting subdifferential. For a lower semi-continuous func-

tion T m
m−1

, we use fk
T m

m−1−→ f to denote fk → f and T m
m−1

(fk) → T m
m−1

(f). The regular

subdifferential of T m
m−1

at f ∈ B m
m−1 is given by

∂̂T m
m−1

(f) :=
{
g ∈ Bm : lim inf

h→f, h 6=f

T m
m−1

(h)− T m
m−1

(f)− 〈h− f, g〉B
‖h− f‖

B
m

m−1

≥ 0
}
.

Also, the limiting subdifferential of T m
m−1

at f is given by

∂T m
m−1

(f) := {g ∈ Bm : ∃fk
T m

m−1−→ f, gk → g with gk ∈ ∂̂T m
m−1

(fk) for each k}.

Similarly, we can define the limiting subdifferential of F ◦ δ at f ∈ B m
m−1 and F at α ∈ R

N .

Now we discuss the limiting subdifferential of T m
m−1

. For any f 6= 0, the chain rule and (2.1)

assure that for any f 6= 0,

dG(λ‖ · ‖
m

m−1

B
m

m−1

)(f) =
mλ

m− 1
(Jm)−1(f).
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Thus, [20, Proposition 1.107] shows that

∂T m
m−1

(f) = ∂(F ◦ δ)(f) + dG(λ‖ · ‖
m

m−1

B
m

m−1

)(f) = ∂(F ◦ δ)(f) + mλ

m− 1
(Jm)−1(f). (2.2)

Moreover, for any h ∈ B m
m−1 and t ∈ R, since δ is a linear mapping, we have that

dGδ(f)(h)
(a)
= lim

t→0

δ(f + th)− δ(f)

t

(b)
= δ(h)

(c)
= (h(x1), · · · , h(xN ))T

(d)
= (〈h,K(x1, ·)〉B m

m−1
, · · · , 〈h,K(xN , ·)〉

B
m

m−1
)T,

where (a) holds because of the definition of Gateaux derivative, (b) follows from the linearity

of δ, (c) holds thanks to the definition of δ and (d) holds because of the reproducing property

of B m
m−1 . Following the isometric isomorphism from Bm onto (B m

m−1 )′ mentioned in Subsection

2.1, it follows that

dGδ(f) = (K(x1, ·), · · · ,K(xN , ·))T. (2.3)

By the chain rule [22, Proposition 6.17], it follows that

(dGδ(f))
T∂F (δ(f)) = (K(x1, ·), · · · ,K(xN , ·))∂F (δ(f)) ⊆ ∂(F ◦ δ)(f). (2.4)

Combining (2.2) with (2.4), we have that for any f 6= 0,

(K(x1, ·), · · · ,K(xN , ·))∂F (δ(f)) +
mλ

m− 1
(Jm)−1(f) ⊆ ∂T m

m−1
(f). (2.5)

A basic question for optimization problem (1.1) is whether the minimizer exists. Next, we

show the existence of the minimizer of optimization problem (1.1) and provide the space where

the minimizer is located.

Lemma 2.1 For any even integer m ≥ 4 and lower semi-continuous loss function L, opti-

mization problem (1.1) has a minimizer fD. Moreover, for any minimizer fD of optimization

problem (1.1), it follows that

fD ∈ Jm(span{K(x1, ·), · · · ,K(xN , ·)}).

Proof First, we show the existence of the minimizer. As T m
m−1

is weakly lower semi-

continuous on B m
m−1 and sequentially coercive in the weak topology of B m

m−1 , [10, Theorem

1.15 (a)] shows that optimization problem (1.1) has a minimizer fD.

If fD = 0, then the proof is straightforward. If fD 6= 0, we discuss the optimization problem

min
f∈B

m
m−1

‖f‖
B

m
m−1

,

s.t. δ(f) = δ(fD).
(2.6)

It is clear that fD is in the feasible set. Since fD is a minimizer of T m
m−1

on B m
m−1 , for any

f in the feasible set, we have that T m
m−1

(fD) ≤ T m
m−1

(f). Since for any f in the feasible set,

(F ◦δ)(fD) = (F ◦δ)(f) and λ > 0, 1 < m
m−1 ≤ 4

3 , it follows that ‖fD‖B m
m−1
≤ ‖f‖

B
m

m−1
. Thus,
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fD is a minimizer of optimization problem (2.6). From the optimal condition of optimization

problem (2.6), there exists θD ∈ RN such that

0 = dG(‖ · ‖B m
m−1

)(fD) + dGδ(fD)TθD. (2.7)

Since fD 6= 0, from (2.1), (2.3) and (2.7), we have that

(Jm)−1(fD)

‖fD‖
1

m−1

B
m

m−1

∈ span{K(x1, ·), · · · ,K(xN , ·)} ⊆ Bm.

As ‖fD‖B m
m−1
6= 0, we have that

fD ∈ Jm(span{K(x1, ·), · · · ,K(xN , ·)}).

This completes the proof.

Lemma 2.1 shows the existence of a minimizer of optimization problem (1.1). The minimizer

may not be unique, but all minimizers are contained in Jm(span{K(x1, ·), · · · ,K(xN , ·)}). In

the next subsection, we discuss how to equivalently transfer optimization problem (1.1) to a

finite-dimensional tensor optimization problem.

2.3 Tensor optimization problem

This subsection discusses how to equivalently transfer infinite-dimensional optimization

problem (1.1) to a finite-dimensional tensor optimization problem. First, we review a ten-

sor, which is an extension of the Gram matrix (see [33, Section 3]). For the convenience of

readers, the notations and operations of tensors are defined as in [23]. For a given B m
m−1 and

the training data D, where m ≥ 4 is an even integer, we denote

Φn := (φn(x1), φn(x2), · · · , φn(xN ))T ∈ R
N , n ∈ N.

Also, we define the following m-th order N -dimensional real tensor

Am :=
(∑

n∈N

φn(xi1)φn(xi2) · · ·φn(xim)
)N,N,··· ,N

i1,i2,··· ,im=1
=

∑

n∈N

(Φn)
⊗m,

where ⊗ denotes the tensor outer product. Next, we introduce some operations with Am. For

any c ∈ RN , we denote

Amcm :=
(∑

n∈N

(Φn)
⊗m

)
· c⊗m =

∑

n∈N

(ΦT
nc)

m ≥ 0,

Amcm−1 :=
(∑

n∈N

(Φn)
⊗m

)
· c⊗m−1 =

∑

n∈N

(ΦT
nc)

m−1Φn ∈ R
N ,

Amcm−2 :=
(∑

n∈N

(Φn)
⊗m

)
· c⊗m−2 =

∑

n∈N

(ΦT
nc)

m−2ΦnΦ
T
n ∈ R

N×N .

By the definition of Amcm, Amcm−1 and Amcm−2, we show that

Amcm = (Amcm−1)Tc, Amcm−1 = Amcm−2 · c. (2.8)
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Moreover, by the definition of Amcm−2, it is clear that Amcm−2 is symmetric. For any d ∈ R
N ,

we have that

dT(Amcm−2)d =
∑

n∈N

(ΦT
nc)

m−2
(
ΦT

nd
)2

≥ 0.

Thus, Amcm−2 is positive semi-definite. In conclusion, Amcm−2 is symmetric and positive

semi-definite for any c ∈ RN . Also, c 7→ Amcm can be seen as a function from RN to R. By

the derivative rule, we finally note that c 7→ Amcm is a twice-differentiable function from RN

to R and for any c ∈ RN ,

∇(Am(·)m)(c) = mAmcm−1, ∇2(Am(·)m)(c) = m(m− 1)Amcm−2, (2.9)

where ∇ represents the gradient and ∇2 represents the Hessian matrix, respectively.

We now introduce how to equivalently transfer optimization problem (1.1) to a tensor opti-

mization problem. By Lemma 2.1, for any f ∈ Jm(span{K(x1, ·), · · · ,K(xN , ·)}), there exists

c ∈ RN such that f has the representation

f = Jm((K(x1, ·), · · · ,K(xN , ·))c) = Jm
(∑

n∈N

(ΦT
nc)φn

)
=

∑

n∈N

(ΦT
nc)

m−1φn,

which ensures that

δ(f) = (f(x1), · · · , f(xN ))T =
∑

n∈N

(ΦT
nc)

m−1Φn = Amcm−1. (2.10)

On the other hand, since m is an even integer and m ≥ 4, by the definition of ‖ · ‖
B

m
m−1

, we

compute

λ‖f‖
m

m−1

B
m

m−1

= λ
∑

n∈N

|(ΦT
nc)

m−1| m
m−1 = λ

∑

n∈N

(ΦT
nc)

m = λAmcm.

Thus, optimization problem (1.1) can be equivalently transferred to the following tensor opti-

mization problem

min
c∈RN

F (Amcm−1) + λAmcm.

Let α = Amcm−1. Then we reformulate the optimization problem above as

min
(α,c)∈R2N

F (α) + λAmcm,

s.t. α = Amcm−1.
(2.11)

Since m ≥ 4, the constraint is nonlinear.

Example 2.1 Suppose that N = 1 and Am is an m-th order 1-dimensional identity tensor.

Thus, optimization problem (2.11) can be written as

min
a,c

L(x1, y1, α) + λcm,

s.t. α = cm−1.

Next, we introduce some properties of optimization problem (2.11). Since L is a lower semi-

continuous loss function, F is lower semi-continuous on RN . On the other hand, by (2.9), we

have that c 7→ λAmcm is twice-differentiable on RN , and for any c ∈ RN ,

∇2(λAm(·)m)(c) = m(m− 1)λAmcm−2.
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Since Amcm−2 is symmetric and positive semi-definite for any c ∈ R
N , [2, Proposition 1.1.10

(ii)] shows that c 7→ λAmcm is convex on RN . In conclusion, optimization problem (2.11) is

lower semi-continuous on R2N with nonlinear constraint. In the next section, we discuss how

to solve optimization problem (1.1) based on optimization problem (2.11).

3 Splitting Method for Support Vector Machine in m

m−1
-norm Repro-

ducing Kernel Banach Space

In this section, we find an algorithm based on optimization problem (2.11) for optimiza-

tion problem (1.1). Currently, we mainly use the subgradient method, Lagrangian multipliers

method, and sequential minimal optimization (SMO for short) for SVM. These classical al-

gorithms are suitable for convex and smooth optimization problem. We would like to find

algorithms for lower semi-continuous optimization problem (2.11).

The ADMM algorithm, as one of the splitting techniques, can even be used for nonsmooth

and nonconvex optimization problem with linear constraint. For general lower semi-continuous

loss functions, we observe that the subproblems in ADMM for optimization problem (2.11) are

then easier to handle. Hence, we study how to obtain the minimizer of optimization problem

(1.1) by splitting method based on ADMM. Although optimization problem (2.11) has a non-

linear constraint, we still follow the idea of ADMM to write the steps of the splitting method.

Recall that the augmented Lagrangian function for optimization problem (2.11) is defined as:

Lβ(α, c,γ) := F (α) + λAmcm + γT(α−Amcm−1) +
β

2
‖α−Amcm−1‖2,

where β > 0. Suppose that the splitting method based on ADMM for optimization problem

(1.1) is initialized at (α0, c0,γ0, g0, s0), where g0 = (K(x1, ·), · · · ,K(xN , ·))c0 and s0 = Jm(g0),

its iterative scheme is

αk+1 ∈ argmin
α∈RN

Lβ(α, ck,γk), (S-1)

ck+1 ∈ argmin
c∈RN

Lβ(αk+1, c,γk), (S-2)

γk+1 := γk + β(αk+1 −Am(ck+1)
m−1), (S-3)

gk+1 := (K(x1, ·), · · · ,K(xN , ·))ck+1, (S-4)

sk+1 := Jm(gk+1), (S-5)

where k represents the number of iteration. Next, we discuss subproblems (S-1) and (S-2).

Remark 3.1 It is worth mentioning that our main goal is to use {sk} to approximate

the minimizer of optimization problem (1.1) rather than solving optimization problem (2.11).

Hence, we mainly focus on {sk}.

As for (S-1), combining the linear with quadratic terms of Lβ(α, ck,γk), we have that

Lβ(α, ck,γk) = F (α) +
β

2

∥∥∥α−Am(ck)
m−1 +

1

β
γk

∥∥∥
2

+ λAm(ck)
m − 1

2β
‖γk‖2.

Since (S-1) only depends on α, and F is lower semi-continuous and nonnegative on R
N , it is

easy to check that (S-1) is lower semi-continuous, nonnegative and coercive. Hence, Weierstrass
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Theorem (see [1, Theorem 2.14]) assures that (S-1) has a minimizer. Moreover, since

F (α) +
β

2

∥∥∥α−Am(ck)
m−1 +

1

β
γk

∥∥∥
2

=
N∑

i=1

L(xi, yi, αi)

N
+

β

2

(
αi − (Am(ck)

m−1)i +
1

β
(γk)i

)2

and L(xi,yi,αi)
N

+ β
2

(
αi−(Am(ck)

m−1)i+
1
β
(γk)i

)2 ≥ 0, i = 1, 2, · · · , N , we equivalently transfer

(S-1) in RN to some optimization problems in R, that is, for i = 1, 2, · · · , N ,

(αk+1)i ∈ argmin
αi∈R

L(xi, yi, αi)

N
+

β

2

(
αi − (Am(ck)

m−1)i +
1

β
(γk)i

)2

. (S-1′)

For a general lower semi-continuous loss function, (S-1′) may have more than one minimizer.

In this case, we choose one of the minimizers as (αk+1)i, i = 1, 2, · · · , N .

As for (S-2), combining the linear with quadratic terms of Lβ(αk+1, c,γk), it follows that

for any c ∈ RN ,

Lβ(αk+1, c,γk) = λAmcm +
β

2

∥∥∥αk+1 −Amcm−1 +
1

β
γk

∥∥∥
2

+ F (αk+1)−
1

2β
‖γk‖2.

By the derivative rule, it is easy to see that (S-2) is differentiable on RN and

∇Lβ(αk+1, ·,γk)(c)
(a)
= mλAmcm−1 − β(m− 1)Amcm−2 ·

(
αk+1 −Amcm−1 +

1

β
γk

)

(b)
= β(m− 1)Amcm−2 ·

(
Amcm−1 +

mλ

(m− 1)β
c−

(
αk+1 +

1

β
γk

))
,

where (a) holds thanks to derivative rule and (2.9), (b) follows from (2.8) and rearranging

terms. Next, we show that the following tensor equation

Amcm−1 +
mλ

(m− 1)β
c = αk+1 +

1

β
γk (S-2′)

has a unique solution dk+1, and dk+1 is a minimizer of (S-2). To this end, let

H(c) :=
1

m
Amcm +

mλ

2(m− 1)β
‖c‖2 −

(
αk+1 +

1

β
γk

)T

c.

By the derivative rule and (2.9), for any c ∈ RN , we have

∇H(c) = Amcm−1 +
mλ

(m− 1)β
c−

(
αk+1 +

1

β
γk

)
,

∇2H(c) = (m− 1)Amcm−2 +
mλ

(m− 1)β
I,

where I denotes the identity matrix of N -dimensional. Hence, c is a stationary point of H if

and only if c is a solution of tensor equation (S-2′). Moreover, since Amcm−2 is symmetric and

positive semi-definite for any c ∈ RN , it follows that ∇2H(c) is positive definite. Therefore, [2,

Proposition 1.1.10 (ii)] guarantees that H is strictly convex on RN . Since H is also coercive,

H has a unique minimizer dk+1 by Weierstrass Theorem, which means that H has a unique

stationary point dk+1. In conclusion, tensor equation (S-2′) has a unique solution dk+1.
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Now we show that dk+1 is a minimizer of optimization problem (S-2). To this end, for any

c ∈ RN , we have that

Lβ(αk+1, c,γk)− Lβ(αk+1,dk+1,γk)

=λAmcm +
β

2

∥∥∥αk+1 −Amcm−1 +
1

β
γk

∥∥∥
2

− λAm(dk+1)
m − β

2

∥∥∥αk+1 −Am(dk+1)
m−1 +

1

β
γk

∥∥∥
2

(a)
=λAmcm − λAm(dk+1)

m +
β

2

∥∥∥Am(dk+1)
m−1 −Amcm−1 +

mλ

(m− 1)β
dk+1

∥∥∥
2

− β

2

∥∥∥ mλ

(m− 1)β
dk+1

∥∥∥
2

(b)
=λAmcm − λAm(dk+1)

m +
( mλ

m− 1
dk+1

)T

(Am(dk+1)
m−1 −Amcm−1)

+
β

2
‖Am(dk+1)

m−1 −Amcm−1‖2

(c)
=

λ

m− 1
Am(dk+1)

m − λ

m− 1
Amcm −

( mλ

m− 1
Amcm−1

)T

(dk+1 − c)

+
β

2
‖Am(dk+1)

m−1 −Amcm−1‖2,

where (a) follows from tensor equation (S-2′), (b) holds as rearranging terms, and (c) holds

thanks to (2.8) and rearranging terms. Since c 7→ λ
m−1Amcm is differentiable and convex on

RN , and ∇
(

λ
m−1Am(·)m

)
(c) = mλ

m−1Amcm−1 for any c ∈ RN , [2, Proposition 1.1.7 (a)] shows

that

λ

m− 1
Am(dk+1)

m ≥ λ

m− 1
Amcm +

( mλ

m− 1
Amcm−1

)T

(dk+1 − c). (3.1)

As β
2 ‖Am(dk+1)

m−1 −Amcm−1‖2 ≥ 0, it follows that for any c ∈ RN ,

Lβ(αk+1, c,γk) ≥ Lβ(αk+1,dk+1,γk).

Therefore, dk+1 is a minimizer of optimization problem (S-2). In conclusion, we take ck+1 =

dk+1. We consider using the Newton method for tensor equation (S-2′), whose convergence can

be guaranteed by [21, Newton Attraction Theorem 10.2.2].

When αk+1 and ck+1 are acquired, we can obtain γk+1 by (S-3). However, substituting

(S-3) into the tensor equation (S-2′), that is,




Am(ck+1)

m−1 +
mλ

(m− 1)β
ck+1 = αk+1 +

1

β
γk,

γk+1 = γk + β(αk+1 −Am(ck+1)
m−1),

we have that

γk+1 =
mλ

m− 1
ck+1. (S-3′)

In conclusion, the splitting method is well-defined, and a sequence {(αk, ck,γk, gk, sk)} is

generated. Also, {sk} can be seen as an infinite iterative sequence to approximate fD. Next,

we present the splitting method for optimization problem (1.1).
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Algorithm 1 Splitting method for optimization problem (1.1)

Require: initial value (α0, c0,γ0, g0, s0), the training data D, lower semi-continuous loss func-

tion L, the RKBS B m
m−1 , λ > 0 and β > 0.

Step 1: Solve optimization problems (S-1′) and take the output as αk+1.

Step 2: Solve the tensor equation (S-2′) by Newton method and take the output as ck+1,

where the initial value of Newton method is ck.

Step 3: Set γk+1 ← mλ
m−1ck+1.

Step 4: Set gk+1 ← (K(x1, ·), · · · ,K(xN , ·))ck+1.

Step 5: Set sk+1 ← Jm(gk+1).

Update k ← k + 1 and go to Step 1.

Example 3.1 As for the optimization problem in Example 2.1, the corresponding iterative

scheme of the splitting method can be written as

αk+1 ∈ argmin
α∈R

L(x1, y1, α) +
β

2

(
α− (ck)

m−1 +
1

β
γk

)2

,

ck+1 ∈ argmin
c∈R

λcm +
β

2

(
αk+1 − cm−1 +

1

β
γk

)2

,

γk+1 = γk + β(αk+1 − (ck+1)
m−1),

gk+1 := K(x1, ·)ck+1,

sk+1 := Jm(gk+1).

Usually, we assume that αk+1 is easy to compute. Also, we solve the nonlinear equation

cm−1 +
mλ

(m− 1)β
c = αk+1 +

1

β
γk

to obtain ck+1. At last, we obtain γk+1 by mλ
m−1ck+1.

In the next section, we verify that under some assumptions, {sk} is globally convergent

to a stationary point of optimization problem (1.1). Hence, it is better to solve optimization

problem (1.1) repeatedly by selecting some initial values randomly and choosing the minimizer

of these outputs as the approximate solution sD : X → R. Finally, we construct RD by sD

according to the task requirement.

4 Convergence Analysis

In this section, we investigate the convergence of {sk} inspired by the papers [13, 15, 19]

and use a similar line of arguments therein.

4.1 Assumption

In Sections 2–3, we assume that L is a lower semi-continuous loss function. Also, from

Subsection 2.3, we show that for any even integer m ≥ 4, Amcm−2 is symmetric and positive
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semi-definite for any c ∈ R
N . To ensure the convergence of {sk}, we need some additional

conditions which we describe below.

Assumption 4.1 For any even integer m ≥ 4, the following conditions for optimization

problem (1.1) hold

(i) L is a lower semi-continuous and subanalytic loss function.

(ii) There exist ξ1, ξ2 > 0 such that for any x ∈ X , y ∈ Y and t ∈ [−ξ1, ξ1], ∂L(x, y, t) ∩
[−ξ2, ξ2] = ∅.

(iii) Amcm−2 is a symmetric and positive definite matrix for any c 6= 0.

Now we give the sufficient conditions of Assumption 4.1. Subanalytic functions are quite

wide, including semi-algebraic, analytic and semi-analytic functions (see [11, 6.6 Analytic Prob-

lems]). More precisely, polynomial functions and piecewise polynomial functions are subanalytic

functions. However, subanalyticity does not even imply continuity. Specially, some margin-

based loss functions (see [28, Section 2.3]) satisfy Assumption 4.1 (i)–(ii), such as the least

square loss, the Hinge loss, the truncated least squares loss, logistic loss, and so on. As for

Assumption 4.1 (iii), we need the following concept. We denote the space consisting of al-

l real symmetric matrices of N -dimensional as SN×N . It is easy to check that SN×N is an
N(N+1)

2 -dimensional space. For any n ∈ N, it follows that

ΦnΦ
T
n = (φn(xi1)φn(xi2))

N,N
i1,i2=1 ∈ S

N×N .

If {ΦnΦ
T
n : n ∈ N} has full-rank in SN×N , then we show that Assumption 4.1 (iii) holds. Since

Amcm−2 is symmetric and positive semi-definite for any c 6= 0, it suffices to prove that for any

d ∈ RN , if dT(Amcm−2)d = 0, then d = 0. To this end, by the definition of Amcm−2, it follows

that

dT(Amcm−2)d =
∑

n∈N

(ΦT
nc)

m−2(ΦT
nd)

2 = 0.

Therefore, we assure that

(ΦT
nc)(Φ

T
nd) = (ΦnΦ

T
n ) · (cdT) = 0, n ∈ N, (4.1)

where “·” denotes the inner product of the matrix. Let E := (ei1i2)
N,N
i1,i2=1 and

ei1i2 :=

{
ci1di1 , i1 = i2,
1
2ci1di2 +

1
2ci2di1 , i1 6= i2.

Then E ∈ SN×N , and for any n ∈ N,

N,N∑

i1,i2=1

φn(xi1)φn(xi2)ci1di2

=

N,N∑

i1=i2

φn(xi1)φn(xi1)ci1di1 +

N,N∑

i1 6=i2

φn(xi1 )φn(xi2 )
(1
2
ci1di2 +

1

2
ci2di1

)
,

which ensures that

(ΦnΦ
T
n ) · (cdT) = (ΦnΦ

T
n ) ·E, n ∈ N. (4.2)
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From (4.1)–(4.2), we obtain the following system

(Φ1Φ
T
1 , · · · ,ΦnΦ

T
n , · · · )T · (cdT) = (Φ1Φ

T
1 , · · · ,ΦnΦ

T
n , · · · )T ·E = (0, · · · , 0, · · · )T.

Since {ΦnΦ
T
n : n ∈ N} has full-rank, the system above only has zero solution, that is, E = O,

where O denotes zero matrix in SN×N . As c 6= 0, there exists ci1 6= 0 such that




ei1i1 = ci1di1 = 0,

ei1i2 =
1

2
ci1di2 +

1

2
ci1di2 = 0, i2 = 1, 2, · · · , N, i1 6= i2.

Thus, we check that d1 = · · · = dN = 0, that is, d = 0. In conclusion, Amcm−2 is symmetric

and positive definite when c 6= 0.

In the rest of this subsection, we discuss what can be drawn under Assumption 4.1. First,

we show that {K(x1, ·), · · · ,K(xN , ·)} is linearly independent in Bm under Assumption 4.1

(iii). For any c ∈ RN such that

(K(x1, ·), · · · ,K(xN , ·))c =
∑

n∈N

(ΦT
nc)φn = 0,

we see that ∑

n∈N

(ΦT
nc)

2 = cT
(∑

n∈N

(ΦT
nc)Φn

)
= cT0 = 0.

Therefore, it follows that ΦT
nc = 0, n ∈ N and

cT(Amcm−2)c = Amcm =
∑

n∈N

(ΦT
nc)

m = 0.

By Assumption 4.1 (iii), if c 6= 0, then cT(Amcm−2)c > 0. Hence, we have that c = 0, which

means that {K(x1,·),· · · ,K(xN , ·)} is linearly independent. Also, span{K(x1, ·),· · · ,K(xN , ·)}
is N -dimensional linear space. Thus, for any g ∈ span{K(x1, ·), · · · ,K(xN , ·)} ⊆ Bm, there

exists a unique cg ∈ RN such that

g = (K(x1, ·), · · · ,K(xN , ·))cg.

Also, we check that g 7→ cg is a linear mapping from span{K(x1, ·), · · · ,K(xN , ·)} onto RN .

As for g 7→ cg, we have the following lemma.

Lemma 4.1 If Assumption 4.1 (iii) holds, then g 7→ cg is an isomorphism. Moreover, there

exist 0 < w1 ≤ w2 such that

w1‖g1 − g2‖Bm ≤ ‖cg1 − cg2‖ ≤ w2‖g1 − g2‖Bm for g1, g2 ∈ span{K(x1, ·), · · · ,K(xN , ·)}.

Proof Since g 7→ cg is a linear mapping from span{K(x1, ·), · · · ,K(xN , ·)} onto RN , [18,

Theorem 1.4.15] shows that g 7→ cg is an isomorphism. Moreover, [18, Proposition 1.4.14(a)]

assures the inequality above. This proof is completed.

Next, we discuss what can be drawn under Assumption 4.1 and β > 0. Since F (α) =

1
N

N∑
i=1

L(xi, yi, αi), [24, Proposition 10.5] and [24, D. Rescaling] assure that

∂F (α) =
( 1

N
∂L(x1, y1, α1)

)
× · · · ×

( 1

N
∂L(xN , yN , αN )

)
.
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Thus, by Assumption 4.1 (ii), for any x ∈ X , y ∈ Y and α ∈ [−ξ1, ξ1]N ,

∂F (α) ∩ [−ξ2, ξ2]N = ∅. (4.3)

Also, by simple algebra, it is easy to check that t 7→ 2mλ
(m−1)β t + ‖Am‖F tm−1 and t 7→ mλ

m−1 t +

2β‖Am‖F tm−1 are strictly increasing on [0,∞), where ‖ · ‖F denotes the Frobenius norm of

tensor (see [23, Section 1.1]). Clearly, 2mλ
(m−1)β0+‖Am‖F0m−1 = 0 and mλ

m−10+2β‖Am‖F 0m−1 =

0. Hence, for ξ1, ξ2 > 0, we denote

εβ := max
{
t ≥ 0 :

2mλ

(m− 1)β
t+ ‖Am‖F tm−1 ≤ ξ1,

mλ

m− 1
t+ 2β‖Am‖F tm−1 ≤ ξ2

}
.

Then εβ > 0. εβ not only depends on Assumption 4.1, but also depends on β > 0. Next, we

show that εβ is a lower bound of {‖(ck, ck+1)‖}.

Lemma 4.2 Suppose that Assumption 4.1 (ii) holds and β > 0. If Algorithm 1 is initialized

at (α0, c0,γ0, g0, s0), then for any k ∈ N, ‖(ck, ck+1)‖ > εβ.

Proof To finish the proof, we assume that there exists k0 ∈ N such that ‖(ck0
, ck0+1)‖ ≤ εβ .

From the optimality condition of (S-1), the iterates generated satisfy

0 ∈ ∂F (αk0+1) + γk0
+ β(αk0+1 −Am(ck0

)m−1). (4.4)

On the other hand, as ‖(ck0
, ck0+1)‖ ≤ εβ , it follows that ‖ck0

‖ ≤ εβ and ‖ck0+1‖ ≤ εβ . Hence,

we have that

‖αk0+1‖
(a)
=

∥∥∥ 1
β
(γk0+1 − γk0

) +Am(ck0+1)
m−1

∥∥∥ ≤ 1

β
‖γk0+1‖+

1

β
‖γk0

‖+ ‖Am(ck0+1)
m−1‖

(b)

≤ mλ

(m− 1)β
(‖ck0+1‖+ ‖ck0

‖) + ‖Am‖F‖ck0+1‖m−1

≤ 2mλ

(m− 1)β
εβ + ‖Am‖F (εβ)m−1,

where (a) holds thanks to (S-3) and (b) follows from (S-3′) and [23, Lemma 2.2]. Also, we have

‖γk0
+ β(αk0+1 −Am(ck0

)m−1)‖ (a)
= ‖γk0+1 + β(Am(ck0+1)

m−1 −Am(ck0
)m−1)‖

≤ ‖γk0+1‖+ β‖Am(ck0+1)
m−1‖+ β‖Am(ck0

)m−1‖
(b)

≤ mλ

m− 1
‖ck0+1‖+ β‖Am‖F (‖ck0+1‖m−1 + ‖ck0

‖m−1)

≤ mλ

m− 1
εβ + 2β‖Am‖F (εβ)m−1,

where (a) also holds thanks to (S-3), (b) follows from (S-3′) and [23, Lemma 2.2]. Hence,

αk0+1 ∈ [−ξ1, ξ1]N and γk0
+ β(αk0+1 −Am(ck0

)m−1) ∈ [−ξ2, ξ2]N . By (4.3), it follows that

0 /∈ ∂F (αk0+1) + γk0
+ β(αk0+1 −Am(ck0

)m−1). (4.5)

Clearly, (4.4) and (4.5) are contradictions. Thus, ‖(ck, ck+1)‖ > εβ for any k ∈ N. This proof

is completed.
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Now we verify another important inequality by Assumption 4.1 (ii)–(iii) and β > 0. We

need to the following concept. For any even integer m ≥ 4, we define χm : R2N → R,

χm(c,d) := λmin

(1
2
Amcm−2 +

1

2
Amdm−2

)
, (c,d) ∈ R

2N ,

where λmin denotes the smallest eigenvalue of matrix. Since m ≥ 4, it follows that m−2 ≥ 2 and

Am0m−2 =
∑
n∈N

(ΦT
n0)

m−2ΦnΦ
T
n = O. Therefore, χm(0,0) = 0. Since Amcm−2 is symmetric

and positive definite for any c 6= 0 by Assumption 4.1 (iii), we have that χm(c,d) > 0 when

(c,d) 6= (0,0). Moreover, by the definition of Amcm−2, it is easy to check that for any t > 0

and (c,d) ∈ R2N ,

1

2
Am(tc)m−2 +

1

2
Am(td)m−2 = tm−2

(1
2
Amcm−2 +

1

2
Amdm−2

)
.

Thus

χm(tc, td) = tm−2χm(c,d),

which ensures that χm is coercive on R2N . Hence, [34, Exercise 1.15] shows that there exists

µ > 0 such that when ‖(c,d)‖ > µ, it follows that χm(c,d) > 1. We denote

νβ :=
(εβ
µ

)m−2

.

Then νβ > 0. Based on εβ > 0, νβ > 0 and χm, we have the following inequality.

Lemma 4.3 Suppose that Assumption 4.1 (ii)–(iii) holds and β > 0. If ‖(c,d)‖ > εβ, then

(c − d)T(Amcm−1 −Amdm−1) ≥ νβ‖c− d‖2.

Proof Since m ≥ 4, we have that

(c − d)T(Amcm−1 −Amdm−1)

(a)
=

∑

n∈N

((ΦT
nc)

m−1 − (ΦT
nd)

m−1)(ΦT
nc−ΦT

nd)

(b)

≥
∑

n∈N

(m−2∑

j=0

(ΦT
nc)

m−2−j(ΦT
nd)

j
)
(ΦT

nc−ΦT
nd)

2

(c)
= (c − d)T

(∑

n∈N

(1
2
(ΦT

nc)
m−2 +

1

2
(ΦT

nd)
m−2

)
ΦnΦ

T
n

)
(c − d)

(d)
= (c − d)T

(1
2
Amcm−2 +

1

2
Amdm−2

)
(c− d), (4.6)

where (a) follows from the definition ofAmcm−1, (b) holds because of the fact that (a−b)(am−1−
bm−1) ≥ 1

2 (a
m−2 + bm−2)(a − b)2 for a, b ∈ R, (c) holds thanks to rearranging terms and (d)

follows from the definition of Amcm−2. When ‖(c,d)‖ > εβ, it follows that
∥∥( µ

εβ
c, µ

εβ
d
)∥∥ > µ

and χm

(
µ
εβ
c, µ

εβ
d
)
> 1. Hence

χm(c,d) =
(εβ
µ

)m−2

χm

( µ

εβ
c,

µ

εβ
d
)
>

(εβ
µ

)m−2

= νβ ,
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that is, 1
2Amcm−2 + 1

2Amdm−2 − νβI is symmetric and semi-positive definite, which ensures

that

(c− d)T
(1
2
Amcm−2 +

1

2
Amdm−2

)
(c − d) ≥ νβ‖c− d‖2. (4.7)

Combining (4.6) with (4.7), we have that

(c − d)T(Amcm−1 −Amdm−1) ≥ νβ‖c− d‖2.

This proof is completed.

Next, we give the descent inequality by Lemmas 4.1–4.3.

Lemma 4.4 Suppose that Assumption 4.1 (ii)–(iii) holds and βνβ > 2mλ
m−1 . If Algorithm 1

is initialized at (α0, c0,γ0, g0, s0), then there exists (ζ1)β > 0 such that for any k ∈ N,

ζ1‖gk − gk+1‖2Bm ≤ Lβ(αk, ck,γk)− Lβ(αk+1, ck+1,γk+1).

Moreover, we show that {Lβ(αk, ck,γk)} is monotonically decreasing and lower bounded. Fur-

thermore, {Lβ(αk, ck,γk)} is convergent.

Proof First, we show that {Lβ(αk, ck,γk)} is monotonically decreasing. From (S-1), we

know that αk+1 is the minimizer of α 7→ Lβ(α, ck,γk). Thus

0 ≤ Lβ(αk, ck,γk)− Lβ(αk+1, ck,γk). (I-1)

Moreover, from the definition of Lβ , we use ck and ck+1 to replace αk+1, γk and γk+1 in

Lβ(αk+1, ck,γk)− Lβ(αk+1, ck+1,γk+1), that is,

Lβ(αk+1, ck,γk)− Lβ(αk+1, ck+1,γk)

(a)
=λAm(ck)

m − λAm(ck+1)
m − (γk)

T(Am(ck)
m−1 −Am(ck+1)

m−1)

+
β

2
‖αk+1 −Am(ck)

m−1‖2 − β

2
‖αk+1 −Am(ck+1)

m−1‖2

(b)
=λAm(ck)

m − λAm(ck+1)
m − (γk)

T(Am(ck)
m−1 −Am(ck+1)

m−1)

+
β

2

∥∥∥ 1
β
(γk+1 − γk) +Am(ck+1)

m−1 −Am(ck)
m−1

∥∥∥
2

− β

2

∥∥∥ 1
β
(γk+1 − γk)

∥∥∥
2

(c)
=λAm(ck)

m − λAm(ck+1)
m − (γk+1)

T(Am(ck)
m−1 −Am(ck+1)

m−1)

+
β

2
‖Am(ck)

m−1 −Am(ck+1)
m−1‖2

(d)
=λAm(ck)

m − λAm(ck+1)
m −

( mλ

m− 1
ck+1

)T

(Am(ck)
m−1 −Am(ck+1)

m−1)

+
β

2
‖Am(ck)

m−1 −Am(ck+1)
m−1‖2

(e)
=

λ

m− 1
Am(ck+1)

m − λ

m− 1
Am(ck)

m −
( mλ

m− 1
Am(ck)

m−1
)T

(ck+1 − ck)

+
β

2
‖Am(ck)

m−1 −Am(ck+1)
m−1‖2, (4.8)
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where (a) holds because of rearranging terms, (b) follows from (S-3), (c) holds thanks to

rearranging terms, (d) follows from (S-3′) and (e) follows from (2.9). From (3.1), we take

dk+1 = ck+1 and c = ck, it follows that

λ

m− 1
Am(ck+1)

m − λ

m− 1
Am(ck)

m −
( mλ

m− 1
Am(ck)

m−1
)T

(ck+1 − ck) ≥ 0. (4.9)

On the other hand, since Lemma 4.2 assures that ‖(ck, ck+1)‖ > εβ for any k ∈ N, the Cauchy-

Schwartz inequality and Lemma 4.3 show that

‖ck − ck+1‖‖Am(ck)
m−1 −Am(ck+1)

m−1‖
≥(ck − ck+1)

T(Am(ck)
m−1 −Am(ck+1)

m−1)

≥νβ‖ck − ck+1‖2,

which ensures that

‖Am(ck)
m−1 −Am(ck+1)

m−1‖ ≥ νβ‖ck − ck+1‖. (4.10)

Since gk, gk+1 ∈ span{K(x1, ·), · · · ,K(xN , ·)}, Lemma 4.1 and (4.10) show that

β

2
‖Am(ck)

m−1 −Am(ck+1)
m−1‖2 ≥ β(νβ)

2

2
‖ck − ck+1‖2 ≥

β(νβw1)
2

2
‖gk − gk+1‖2Bm . (4.11)

From (4.8)–(4.9) and (4.11), we have that

β(νβw1)
2

2
‖gk − gk+1‖2Bm ≤ Lβ(αk+1, ck,γk)− Lβ(αk+1, ck+1,γk). (I-2)

Furthermore, from the definition of Lβ and (S-3), it follows that

− 1

β
‖γk − γk+1‖2 = Lβ(αk+1, ck+1,γk)− Lβ(αk+1, ck+1,γk+1).

Since gk, gk+1 ∈ span{K(x1, ·), · · · ,K(xN , ·)}, combining Lemma 4.1 with (S-3′), we see that

−m2λ2(w2)
2

(m− 1)2β
‖gk − gk+1‖2Bm ≤ − m2λ2

(m− 1)2β
‖ck − ck+1‖2 = − 1

β
‖γk − γk+1‖2.

From the two inequalities above, we have that

−m2λ2(w2)
2

(m− 1)2β
‖gk − gk+1‖2Bm ≤ Lβ(αk+1, ck+1,γk)− Lβ(αk+1, ck+1,γk+1). (I-3)

In conclusion, (I-1), (I-2) and (I-3) assure that

(β(νβw1)
2

2
− m2λ2(w2)

2

(m− 1)2β

)
‖gk − gk+1‖2Bm ≤ Lβ(αk, ck,γk)− Lβ(αk+1, ck+1,γk+1).

Since βνβ > 2mλ
m−1 and w2 ≥ w1, we have

β(νβw1)
2

2
− m2λ2(w2)

2

(m− 1)2β
>

2m2λ2(w1)
2

(m− 1)2β
− m2λ2(w1)

2

(m− 1)2β
=

m2λ2(w1)
2

(m− 1)2β
.
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We denote (ζ1)β := m2λ2(w1)
2

(m−1)2β . Then (ζ1)β > 0. Thus, we finally have that for any k ∈ N,

(ζ1)β‖gk − gk+1‖2Bm ≤ Lβ(αk, ck,γk)− Lβ(αk+1, ck+1,γk+1), (4.12)

which ensures that {Lβ(αk, ck,γk)} is monotonically decreasing.

Next, we show that {Lβ(αk, ck,γk)} is lower bounded. For any k ∈ N, we see that

Lβ(αk, ck,γk)
(a)
= F (αk) + λAm(ck)

m + (γk)
T(αk −Am(ck)

m−1) +
β

2
‖αk −Am(ck)

m−1‖2

(b)
= F (αk) + λAm(ck)

m − 1

2β
‖γk‖2 +

β

2

∥∥∥αk −Am(ck)
m−1 +

1

β
γk

∥∥∥
2

(c)
= F (αk) + λAm(ck)

m − m2λ2

2(m− 1)2β
‖ck‖2 +

β

2

∥∥∥αk −Am(ck)
m−1 +

1

β
γk

∥∥∥
2

(d)

≥ λAm(ck)
m − m2λ2

2(m− 1)2β
‖ck‖2, (4.13)

where (a) holds because of the definition of {Lβ(αk, ck,γk)}, (b) follows from rearranging terms,

(c) holds thanks to (S-3′) and (d) follows from F (αk) ≥ 0 and β
2 ‖αk−Am(ck)

m−1+ 1
β
γk‖2 ≥ 0.

To find the lower bound of λAm(ck)
m − m2λ2

2(m−1)2β‖ck‖2, we need to consider the following two

cases.

(I) As c 7→ λAmcm − m2λ2

2(m−1)2β ‖c‖2 is continuous on the closed ball {c ∈ RN : ‖c‖ ≤ εβ},
there exists τβ ∈ R such that when ‖c‖ ≤ εβ , it follows that λAmcm − m2λ2

2(m−1)2β ‖c‖2 ≥ τβ .

Thus, if ‖ck‖ ≤ εβ , then

λAm(ck)
m − m2λ2

2(m− 1)2β
‖ck‖2 ≥ τβ .

(II) If ‖ck‖ > εβ, then ‖(ck,0)‖ > εβ. Thus, it follows that

λAm(ck)
m − m2λ2

2(m− 1)2β
‖ck‖2

(a)
=λ(ck − 0)T(Am(ck)

m−1 −Am0m−1)− m2λ2

2(m− 1)2β
‖ck‖2

(b)

≥
(
λνβ −

m2λ2

2(m− 1)2β

)
‖ck‖2

(c)
>
λνβ
2
‖ck‖2 ≥ 0, (4.14)

where (a) holds because of (2.8), (b) follows from Lemma 4.3, and (c) holds thanks to the fact

that − m2λ2

2(m−1)2β ≥ − mλ
(m−1)β > − νβ

2 by βνβ > 2mλ
m−1 and 2 > 4

3 ≥ m
m−1 . From (4.14) and (I)–(II),

we show that for any k ∈ N,

Lβ(αk, ck,γk) ≥ min{τβ , 0}.
Thus, {Lβ(αk, ck,γk)} is lower bounded. Since {Lβ(αk, ck,γk)} is monotonically decreasing

and lower bounded, [25, Theorem 3.24] shows the convergence of {Lβ(αk, ck,γk)}. This proof
is completed.

By Lemma 4.4, we can define the residual of Lβ(αk, ck,γk),

rk := Lβ(αk, ck,γk)− lim
k→∞

Lβ(αk, ck,γk).

By the definition of {rk} and Lemma 4.4, we have that {rk} is monotonically decreasing and

lim
k→∞

rk = 0. Next, we show the boundedness of {(αk, ck,γk)} by Lemma 4.4.
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Lemma 4.5 Suppose that Assumption 4.1 (ii)–(iii) holds and βνβ > 2mλ
m−1 . If Algorithm 1

is initialized at (α0, c0,γ0, g0, s0), then {(αk, ck,γk)} is bounded.

Proof Since {Lβ(αk, ck,γk)} is monotonically decreasing by Lemma 4.4, we have that

Lβ(α0, c0,γ0) ≥ Lβ(αk, ck,γk) for k ∈ N. (4.15)

If ‖ck‖ > εβ, then (4.13)–(4.15) assure that

‖ck‖ ≤
√

2

λνβ
Lβ(αk, ck,γk) ≤

√
2

λνβ
Lβ(α0, c0,γ0).

Hence

‖ck‖ ≤ max
{√ 2

λνβ
Lβ(α0, c0,γ0), εβ

}
, for k ∈ N,

that is, {ck} is bounded. Moreover, (S-3′) shows that {γk} is also bounded. Furthermore, by

[23, Lemma 2.2] and (S-3), we have that ‖αk‖ ≤ 1
β
(‖γk‖ + ‖γk−1‖) + ‖Am‖F ‖ck‖m−1. Thus,

{(αk, ck,γk)} is bounded. This proof is completed.

Let S be the set of subsequential limits of {(αk, ck,γk)}. Then [25, Theorems 3.6–3.7] show

that if Assumption 4.1 (ii)–(iii) holds and βνβ > 2mλ
m−1 , then S is nonempty compact, and

lim
k→∞

dist((αk, ck,γk), S) = 0, (4.16)

where dist(·, ·) denotes the Euclidean distance. Next, we verify some properties of Lβ on S.

By Assumption 4.1 (i), since L is a lower semi-continuous and subanalytic loss function,

[27, (I.2.1.9)] shows that F is nonnegative, lower semi-continuous and subanalytic. Also, c 7→
λAmcm is nonnegative, continuous and semi-algebraic. Moreover, (α, c,γ) 7→ γT(α−Amcm−1)

is continuous and semi-algebraic. By Cauchy-Schwartz inequality and [23, Lemma 2.2], we have

that

|γT(α−Amcm−1)| ≤ ‖γ‖‖α−Amcm−1‖ ≤ ‖γ‖(‖α‖+ ‖Am‖F ‖c‖m−1).

Thus, (α, c,γ) 7→ γT(α−Amcm−1) is bounded for any bounded set in R3N . Finally, (α, c) 7→
β
2 ‖α−Amcm−1‖2 is nonnegative, continuous and semi-algebraic. Since semi-algebraic function

is a subanalytic function, [27, (I.2.1.9)] shows that Lβ is subanalytic. By [3, 4, 32], it follows

that Lβ is a KL function on R3N , which ensures that Lβ is a KL function on S.

Moreover, to show that Lβ has uniformized KL property on S, we verify that Lβ is constant

on S. For any (α∗, c∗,γ∗) ∈ S, there exists a subsequence {(αkj
, ckj

,γkj
)} that converges to

(α∗, c∗,γ∗). Hence, the lower semi-continuity of Lβ at (α∗, c∗,γ∗) and Lemma 4.4 show that

Lβ(α∗, c∗,γ∗) ≤ lim inf
j→∞

Lβ(αkj
, ckj

,γkj
) = lim

k→∞
Lβ(αk, ck,γk). (4.17)

Conversely, since αkj+1 minimizes α 7→ Lβ(α, ckj ,γkj ), (I-1)–(I-3) show that

Lβ(α∗, ckj
,γkj

) ≥ Lβ(αkj+1, ckj
,γkj

) ≥ Lβ(αkj+1, ckj+1,γkj+1).
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From the continuity of Lβ with respect to c and γ, it holds that

lim
j→∞

Lβ(α∗, ckj
,γkj

) = Lβ(α∗, c∗,γ∗).

On the other hand, Lemma 4.4 shows that

lim
j→∞

Lβ(αkj+1, ckj
,γkj

) = lim
k→∞

Lβ(αk, ck,γk).

Also, passing to the limit along {(αkj
, ckj

,γkj
)}, [25, Theorem 3.19] assures that

Lβ(α∗, c∗,γ∗) ≥ lim
k→∞

Lβ(αk, ck,γk). (4.18)

Finally, (4.17)–(4.18) assure that

Lβ(α∗, c∗,γ∗) = lim
k→∞

Lβ(αk, ck,γk). (4.19)

Hence, Lβ is constant on S. In conclusion, Lβ has uniformized KL property on S (see [5, Lemma

3.6]), that is, there exist ε > 0, η > 0 and a continuous concave function ϕ : [0, η) → (0,∞)

such that

(i) ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with positive derivatives;

(ii) For any (α, c,γ) ∈ R3N such that dist((α, c,γ), S) < ε and lim
k→∞

Lβ(αk, ck,γk) <

Lβ(α, c,γ) < lim
k→∞

Lβ(αk, ck,γk) + η, it follows that

ϕ′(Lβ(α, c,γ)− lim
k→∞

Lβ(αk, ck,γk)) dist(0, ∂Lβ(α, c,γ)) ≥ 1. (4.20)

Based on the uniformized KL property of Lβ on S, we derive an important inequality.

Lemma 4.6 Suppose that Assumption 4.1 holds and βνβ > 2mλ
m−1 . If Algorithm 1 is initial-

ized at (α0, c0,γ0, g0, s0) and for any k ∈ N, rk > 0, then there exists k1 ∈ N such that

ϕ′(rk) inf
(α,c,γ)∈

∂Lβ(αk,ck,γk)

‖(α, c,γ)‖ ≥ 1 for k > k1.

Proof From Lemma 4.4 and (4.16), there exists k1 ∈ N such that if k > k1, then we have

that dist((αk, ck,γk), S) < ε and rk < η. Since for any k ∈ N, rk > 0, (4.20) assures that

ϕ′(rk) dist(0, ∂Lβ(αk, ck,γk)) = ϕ′(rk) inf
(α,c,γ)∈

∂Lβ(αk,ck,γk)

‖(α, c,γ)‖ ≥ 1 for k > k1.

This proof is completed.

In this subsection, we discuss what conditions satisfy Assumption 4.1 and derive some facts

of optimization problem (1.1) under Assumption 4.1. In the next subsection, we use Lemmas

4.1–4.6 to discuss the convergence of {sk} under Assumption 4.1.

4.2 Convergence of splitting method

In this subsection, we discuss the convergence of {sk} under Assumption 4.1.
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Theorem 4.1 Suppose that Assumption 4.1 holds and βνβ > 2mλ
m−1 . If Algorithm 1 is

initialized at (α0, c0,γ0, g0, s0), then {sk} converges to a stationary point s∗ of optimization

problem (1.1), that is,

lim
k→∞

‖sk − s∗‖B m
m−1

= 0, 0 ∈ ∂T m
m−1

(s∗).

The main idea for proving Theorem 4.1 is to find a lower bound and an upper bound of

{rk − rk+1}. Combining this upper bound with this lower bound, we verify the convergence of

{gk}. Since Jm is a homeomorphism, we verify the convergence of {sk}. Finally, we show that

{s∗} is a stationary point of optimization problem (1.1).

Before presenting our main result in this section, we introduce two useful inequalities that

play crucial roles in estimating the error bounds of {gk}. First, by the definition of {rk} and
Lemma 4.4, (4.12) can be rewritten and we find a lower bound of {rk − rk+1}.

Lemma 4.7 Suppose that the conditions in Theorem 4.1 hold. Then there exists (ζ1)β > 0

such that

(ζ1)β‖gk − gk+1‖2Bm ≤ rk − rk+1 for k ∈ N.

On the other hand, we find an upper bound of {rk − rk+1} by Lemma 4.6.

Lemma 4.8 Suppose that the conditions in Theorem 4.1 hold and for any k ∈ N, rk > 0.

Then there exists (ζ2)β > 0 such that

rk − rk+1 ≤ (ζ2)β‖gk−1 − gk‖Bm(ϕ(rk)− ϕ(rk+1)) for k > k1.

Proof From the concavity of ϕ, we get that

ϕ′(rk)(rk − rk+1) ≤ ϕ(rk)− ϕ(rk+1).

Combining Lemma 4.6 and the inequality above, we obtain that

rk − rk+1 ≤ inf
(α,c,γ)

∈∂Lβ(αk,ck,γk)

‖(α, c,γ)‖(ϕ(rk)− ϕ(rk+1)) for k > k1. (4.21)

Next, we find an element in ∂Lβ(αk, ck,γk). To this end, by [24, Exercise 8.8(c), Proposition

10.5] and (S-3′), it follows that

∂Lβ(αk, ck,γk) = ∂αLβ(αk, ck,γk)×∇cLβ(αk, ck,γk)×∇γLβ(αk, ck,γk), (4.22)

where

∂αLβ(αk, ck,γk) = ∂F (αk) + γk + β(αk −Am(ck)
m−1),

∇cLβ(αk, ck,γk) = −(m− 1)Am(ck)
m−2 · β(αk −Am(ck)

m−1),

∇γLβ(αk, ck,γk) = αk −Am(ck)
m−1.

Invoking the optimality condition for (S-1), we have that

−β
(
αk −Am(ck−1)

m−1 +
1

β
γk−1

)
∈ ∂F (αk). (4.23)
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From (S-3), (S-3′) and (4.22)–(4.23), we obtain further that

α
#
k := β(Am(ck−1)

m−1 −Am(ck)
m−1)− mλ

m− 1
(ck−1 − ck) ∈ ∂αLβ(αk, ck,γk),

c
#
k := mλAm(ck)

m−2 · (ck−1 − ck) = ∇cLβ(αk, ck,γk),

γ
#
k := − mλ

(m− 1)β
(ck−1 − ck) = ∇γLβ(αk, ck,γk).

Hence, (α#
k , c

#
k ,γ

#
k ) ∈ ∂Lβ(αk, ck,γk). It means that

inf
(α,c,γ)

∈∂Lβ(αk,ck,γk)

‖(α, c,γ)‖ ≤ ‖(α#
k , c

#
k ,γ

#
k )‖ ≤ ‖α

#
k ‖+ ‖c

#
k ‖+ ‖γ

#
k ‖. (4.24)

To finish the proof, we need to find upper bounds of ‖α#
k ‖, ‖c

#
k ‖ and ‖γ

#
k ‖.

From the fundamental theorem of calculus and (2.9), we have that

Am(ck−1)
m−1 −Am(ck)

m−1 =

∫ 1

0

(m− 1)Am(ck + t(ck−1 − ck))
m−2dt · (ck−1 − ck).

By Lemma 4.5, it follows that {ck} is bounded, that is, there exists M > 0 such that ‖ck‖ ≤
M for any k ∈ N. Since the closed ball {c ∈ RN : ‖c‖ ≤ M} is convex, when t ∈ [0, 1],

‖ck−1 + t(ck − ck−1)‖ ≤M . From [23, Lemma 2.2], we see that

∥∥∥
∫ 1

0

(m− 1)Am(ck−1 + t(ck − ck−1))
m−2dt

∥∥∥ ≤ (m− 1)‖Am‖FMm−2.

Therefore

‖Am(ck−1)
m−1 −Am(ck)

m−1‖ ≤ (m− 1)‖Am‖FMm−2‖ck−1 − ck‖. (4.25)

Since gk−1, gk ∈ span{K(x1, ·), · · · ,K(xN , ·)}, inserting Lemma 4.1 and (4.25) into α
#
k , c

#
k

and γ
#
k , we have

‖α#
k ‖ ≤

(
(m− 1)βw2‖Am‖FMm−2 +

mλw2

m− 1

)
‖gk−1 − gk‖Bm ,

‖c#k ‖ ≤ mλw2‖Am‖FMm−2‖gk−1 − gk‖Bm ,

‖γ#
k ‖ ≤

mλw2

(m− 1)β
‖gk−1 − gk‖Bm .

Thus, it follows that there exists (ζ2)β > 0 such that

‖α#
k ‖+ ‖c

#
k ‖+ ‖γ

#
k ‖ ≤ (ζ2)β‖gk−1 − gk‖Bm . (4.26)

From (4.21), (4.24) and (4.26), we finally have that

rk − rk+1 ≤ (ζ2)β‖gk−1 − gk‖Bm(ϕ(rk)− ϕ(rk+1)) for k > k1.

This proof is completed.

Now we prove Theorem 4.1 by Lemmas 4.7–4.8.
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Proof of Theorem 4.1 since {rk} is monotonically decreasing and convergent to 0, we

consider the following two cases of {rk}.
(I) If for k sufficiently large, rk = rk+1 = 0, then Lemma 4.7 shows that gk = gk+1. Since

Jm is a homeomorphism, it follows that sk = sk+1. Hence, {sk} is convergent in B
m

m−1 .

(II) If rk > 0 for any k ∈ N, then we show that {gk} is a Cauchy sequence in Bm. To this

end, for any j, l ∈ N where j < l, from the triangle inequality, we have that

‖gj − gl‖Bm ≤
l−1∑

k=j

‖gk − gk+1‖Bm ≤
∞∑

k=j

‖gk − gk+1‖Bm . (4.27)

Since (ζ1)β , (ζ2)β > 0, it follows that

‖gk − gk+1‖Bm

(a)

≤
√

(ζ2)β
(ζ1)β

‖gk−1 − gk‖Bm(ϕ(rk)− ϕ(rk+1))

(b)

≤
‖gk−1 − gk‖Bm +

(ζ2)β
(ζ1)β

(ϕ(rk)− ϕ(rk+1))

2
for k > k1 + 1,

where (a) holds because of Lemmas 4.7–4.8 and (b) follows from the fact
√
ab ≤ a+b

2 , a, b ∈
(0,∞). Thus, we see that

‖gk − gk+1‖Bm ≤ ‖gk−1 − gk‖Bm − ‖gk − gk+1‖Bm +
(ζ2)β
(ζ1)β

(ϕ(rk)− ϕ(rk+1)) for k > k1 + 1.

Summing up the above relation from k = k1 + 1 to ∞, we obtain that
∑

k∈N

‖gk − gk+1‖Bm

=

k1∑

k=1

‖gk − gk+1‖Bm +

∞∑

k=k1+1

‖gk − gk+1‖Bm

≤
k1∑

k=1

‖gk − gk+1‖Bm + ‖gk1
− gk1+1‖Bm +

(ζ2)β
(ζ1)β

ϕ(rk1+1)

<∞. (4.28)

Hence

lim
j→∞

∞∑

k=j

‖gk − gk+1‖Bm = 0. (4.29)

Combining (4.27) with (4.29), it follows that

lim
j→∞

‖gj − gl‖Bm = 0,

that is, {gk} is a Cauchy sequence in Bm. Since Bm is a Banach space, the convergence of {gk}
follows immediately from this. Since Jm is a homeomorphism, the convergence of {gk} implies

the convergence of {sk}.
Combining (I) with (II), we conclude that {sk} is convergent in B

m
m−1 , that is, there exists

s∗ ∈ B
m

m−1 such that

lim
k→∞

‖sk − s∗‖B m
m−1

= 0.
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Now we show that s∗ is a stationary point of optimization problem (1.1) by (2.5).

First, we discuss where s∗ is located. Since Jm is a homeomorphism from Bm onto

B m
m−1 and span{K(x1, ·), · · · ,K(xN , ·)} is a closed subset in Bm by [18, Corollary 1.4.20],

Jm(span{K(x1, ·), · · · ,K(xN , ·)}) is closed in B m
m−1 . Since {sk} converges to s∗ in B m

m−1 and

{sk} is contained in Jm(span{K(x1, ·), · · · ,K(xN , ·)}), it follows that

s∗ ∈ Jm(span{K(x1, ·), · · · ,K(xN , ·)}).

Thus, there exists a unique c∗ ∈ RN such that

mλ

m− 1
(Jm)−1(s∗) = (K(x1, ·), · · · ,K(xN , ·))

( mλ

m− 1
c∗

)
. (4.30)

Next, we use the definition of limiting subdifferential of F at δ(s∗) to finish the proof. By

the definition of Lβ , we have that

F (αk) = Lβ(αk, ck,γk)− λAm(ck)
m − (γk)

T(αk −Am(ck)
m−1)

− β

2
‖αk −Am(ck)

m−1‖2. (4.31)

Since Jm is a homeomorphism from Bm onto B m
m−1 and {sk} converges to s∗ in B m

m−1 , we

see that {gk} converges to (Jm)−1(s∗). Moreover, since g 7→ cg is an isomorphism from

span{K(x1, ·), · · · ,K(xN , ·)} onto RN by Lemma 4.1, (2.10), (S-3) and (S-3′) show that the

sequence {(αk, ck,γk)} is also convergent and

lim
k→∞

ck = c∗, lim
k→∞

γk =
mλ

m− 1
c∗, lim

k→∞
αk = Am(c∗)

m−1 = δ(s∗). (4.32)

Thus, from the continuity of c 7→ λAmcm, (4.19) and (4.31)–(4.32), we show that

lim
k→∞

F (αk) = F (δ(s∗)). (4.33)

Moreover, from the optimality condition of (S-1), it is easy to check that

−β
(
αk −Am(ck−1)

m−1 +
1

β
γk−1

)
∈ ∂F (αk) (4.34)

and

lim
k→∞

−β
(
αk −Am(ck−1)

m−1 +
1

β
γk−1

)
= − mλ

m− 1
c∗. (4.35)

In conclusion, by the definition of limiting subdifferential of F at δ(s∗), (4.32)–(4.35), it follows

that

− mλ

m− 1
c∗ ∈ ∂F (δ(s∗)). (4.36)

From (2.5), (4.30) and (4.36), we finally have that

0 ∈ (K(x1, ·), · · · ,K(xN , ·))∂F (δ(s∗)) +
mλ

m− 1
(Jm)−1(s∗) ⊆ ∂T m

m−1
(s∗),

that is, s∗ is a stationary point of optimization problem (1.1). This proof is completed.

In this section, leveraging Kurdyka-Lojasiewicz property of Lβ , we finish the convergence

analysis of {sk}. In the next section, we give several numerical examples to illustrate the

effectiveness of Algorithm 1.
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5 Numerical Examples

In this section, we test Algorithm 1 by the synthetic data and the real data for binary

classification. We choose some training data and testing data, loss functions and RKBSs to

test Algorithm 1. For simplicity, let K1 be the Gaussian kernel, that is,

K1(x,x
′) = e−σ2‖x−x

′‖2

=
∑

n∈(N0)d

φn(x)φn(x
′), σ > 0 for x,x′ ∈ X,

where φn(x) =
d∏

j=1

(
2nj

(nj)!

) 1

2 (σxj)
nj e−σ2(xj)

2

for x = (x1, x2, · · · , xd)
T ∈ X and (N0)

d is the

tensor product of natural numbers. Also, let K2 be the power series kernel, that is,

K2(x,x
′) =

∑

n∈(N0)d

φn(x)φn(x
′), ∀x,x′ ∈ X,

where φn(x) =
d∏

j=1

1
(nj)!

(xj)
nj , ∀x = (x1, x2, · · · , xd)

T ∈ X . For any even integer m ≥ 4, we

construct B m
m−1 by the kernel K1 or K2 as we mentioned in Section 2. Specially, in [19], we

show that the RKHS can be constructed by the kernel K1 or K2, and these RKHSs can be

seen as B2. Also, we discuss the splitting method for the SVM in B2 in [19]. We will compare

with the performance of the SVM in B m
m−1 when m ≥ 4 and the SVM in B2 with the same loss

function.

On the other hand, let L1–L4 be four loss functions used in our experiments, that is,

L1(x, y, t) =

{
−yt+ 1, yt− 1 < 0,

0, yt− 1 ≥ 0,
L2(x, y, t) =

{
(−yt+ 1)2, yt− 1 < 0,

0, yt− 1 ≥ 0,

L3(x, y, t) =

{
ln(2− yt), yt− 1 < 0,

0, yt− 1 ≥ 0,
L4(x, y, t) =





−yt+ 2, yt− 1 < −1,
−2yt+ 2, −1 ≤ yt− 1 < 0,

0, yt− 1 ≥ 0.

We see that L1 is a convex Hinge loss, L2 is a convex squared Hinge loss, L3 is a nonconvex

piecewise logarithmic loss function and L4 is a nonconvex linear piecewise loss function. All of

these loss functions satisfy Assumption 4.1 (i)–(ii).

Figure 1 The loss functions L1–L4. All are shown as a function of yt rather than t, because of the

symmetry between the y = +1 and y = −1 case.



850 M. Y. Mo, Y. M. Wei and Q. Ye

Now we introduce some numerical techniques of Algorithm 1. It is well-known that storing

a high-dimensional tensor and then performing numerical tensor operation is unrealistic. By

the definitions of Amcm−1 and Amcm−2, we truncate them byM terms, that is,

Amcm−1 ≈
M∑

n=1

(ΦT
nc)

m−1Φn ∈ R
N , Amcm−2 ≈

M∑

n=1

(ΦT
nc)

m−2ΦnΦ
T
n ∈ R

N×N .

In other words, we use the sum of vectors and matrices to approximate tensor operations.

Moreover, we can show the convergence of the sequence {sk} by (4.28). By the definition of

{gk}, it follows that
∑
k∈N

‖gk−gk+1‖Bm =
∑
k∈N

( ∑
n∈N

|ΦT
n (ck−ck+1)|m

) 1

m . Similarly, we truncate

it byM terms, that is,

∑

k∈N

‖gk − gk+1‖Bm ≈
∑

k∈N

( M∑

n=1

|ΦT
n (ck − ck+1)|m

) 1

m

.

On the other hand, we set the terminal criterion as for a given ε0 > 0, if ‖αk+1−Am(ck+1)
m−1‖ <

ε0, then stop. We take sk+1 as the output. Since {sk} is globally convergent to a stationary

point of optimization problem (1.1), we solve optimization problem (1.1) repeatedly by selecting

some initial values randomly and choosing the minimizer of these outputs as the approximate

solution sD : X → R.

Next, we introduce our numerical results on synthetic data and real data.

5.1 Examples on synthetic data

In this subsection, we introduce our test results on the synthetic data. We use the training

set D11 with 25 points and the testing set D12 with 2601 points to show the effectiveness of

Algorithm 1.

(a) Training Set D11 (b) Testing Set D12

Figure 2 The binary classification X1 = [−1, 1]× [−1, 1] and Y = {+1,−1}: The classes are coded

as a binary variable (blue=+1 and red=−1). The left panel represents the training data D11 and the

right panel represents the testing data D12.

First, we show the convergence of Algorithm 1. The parameters are given below.

• Gaussian kernel K1, where σ = 3.36.
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• Loss function L3.

• The RKBS B2, B 4

3 and B 6

5 .

• N = 25, λ = 0.01, β = 1 and ε0 = 10−8.

• 20 initial values randomly chosen in [−1, 1]N .

We now conduct experiments to verify the convergence of Algorithm 1.

(a) m = 2 (b) m = 4 (c) m = 6

Figure 3 The convergence of Algorithm 1 in different RKBSs with L3. The horizontal axis

represents iterations and the vertical axis represents
∑

k∈N

‖gk − gk+1‖Bm .

As shown in Figure 3, for the training data D11, loss function L3 and other parameters

above, Algorithm 1 converges in less than 50 iterations. These numerical results show that

Algorithm 1 is efficient and stable.

Next, we use loss functions L1–L4 and kernel K1 mentioned above to test Algorithm 1 and

obtain the approximate solution sD. We use sD to build the following SVM,

R m
m−1

(x) =

{
+1, sD(x) ≥ 0,

−1, sD(x) < 0

to predict testing data. In each experiment, we select the training data, a loss function, an

RKBS and some other parameters above. Then we build the corresponding SVM to predict

the testing data. Here are the results of these experiments.

Table 1 Different testing accuracy on testing set D12 with kernel K1.

P
P
P
P
P
P
PP

RKBS

L
L1 L2 L3 L4

B2 94.31% 94.31% 96.16% 84.16%

B
4

3 92.96% 94.00% 96.77% 69.51%

B
6

5 93.54% 94.31% 97.85% 69.51%

From Algorithm 5.1, it shows that the SVM in B m
m−1 with a lower semi-continuous loss

function by Algorithm 1 is feasible in terms of accuracy. Moreover, it is easy to see that for

this training data D11 and testing data D12, the SVM in B 6

5 with nonconvex loss function L3

and the kernel K1 performs better than other cases shown in Table 1. Next, we introduce our

experiments on real data.
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5.2 Examples on UCI machine learning repository

In this subsection, we use the Parkinson’s disease classification dataset in the UCI machine

learning repository. There are 752 features about them. We try to train a model to determine

whether the patient has Parkinson’s disease. Here is the detail of these data (see Table 2).

Table 2 The detail of training data and testing data.

Positive Negative Total

Training Set D21 389 111 500

Testing Set D22 175 81 256

Label +1 −1

To make features have the same measurement scale, we normalize the data to [0, 1]752. We

use the normalized training data and testing data for binary classification. Next, we introduce

some parameters of these experiments as follows.

• Power series kernel K2.

• Loss functions L1, L2, L3 and L4.

• The RKBS B2, B 4

3 and B 6

5 .

• N = 756, λ = 10−4, β = 10−4 and ε0 = 10−8.

• 20 initial values randomly chosen in [0, 1]N .

In each experiment, we will choose a loss function and an RKBS. Then we have the following

results.

Table 3 Different testing accuracy of on testing set D22 with kernel K2.

P
P
P
P
P
P
PP

RKBS

Loss
L1 L2 L3 L4

B2 71.09% 74.22% 77.34% 73.44%

B
4

3 68.75% 55.86% 80.86% 82.31%

B
6

5 68.75% 64.84% 80.47% 77.34%

From Table 3, we check that the SVM in B 4

3 with nonconvex loss function L4 and the kernel

K2 performs better than others in these experiments. It shows that for this training data D21

and testing data D22, nonconvex and lower semi-continuous loss function and general RKBS

are more suitable than the convex loss function and RKHS, which is our motivation for this

paper.

In Section 5, we demonstrate the effectiveness of solving the SVM in B m
m−1 with a lower

semi-continuous loss function by splitting method based on ADMM. In addition, we give some

examples to show that the SVM in B m
m−1 with a nonconvex and lower semi-continuous loss

function performs better than the SVM in B m
m−1 with a convex loss function. Also, we show

that the SVM in B m
m−1 performs better than the SVM in B2 with a lower semi-continuous loss

function.
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6 Final Remarks

In [16], the second author and the third author propose several numerical tricks in RKBS

and discuss the homotopy method for the multikernel-based approximation method. As a

continuation of the program, in this paper, we discuss the splitting method based on ADMM

for the SVM in B m
m−1 with a lower semi-continuous loss function. Since Bp (1 ≤ p <∞) are also

RKBSs, we will study how to solve the SVM in Bp (1 ≤ p <∞) with a lower semi-continuous

loss function.
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