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Abstract In this paper, the authors study the persistence approximation property for
quantitative K-theory of filtered Lp operator algebras. Moreover, they define quantita-
tive assembly maps for Lp operator algebras when p ∈ [1,∞). Finally, in the case of Lp
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Baum-Connes conjecture.
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1 Introduction

Quantitative operator K-theory was primarily developed first by Yu [20] on the Novikov

conjecture for groups with finite asymptotic dimension, and then by Oyono-Oyono and Yu in

[13] to study a general quantitative K-theory for filtered C∗-algebras. Based on their work,

Chung later extended the framework of quantitativeK-theory to the class of algebras of bounded

linear operators on subquotients of Lp spaces for p ∈ [1,∞) (i.e., SQp algebras) in [2]. Since

an Lp operator algebra is obviously an SQp algebra, we can derive a framework of quantitative

K-theory for Lp operator algebras by applying Chung’s work to the Lp operator algebras. For a

filtered Lp operator algebra A, the K-theory of A can be approximated by the quantitative K-

theory group Kε,r,N
∗ (A) as r and N tend to infinity, i.e., lim

r,N→∞
Kε,r,N

∗ (A) = K∗(A). Compared

to the usual K-theory of a complex Banach algebra, quantitative K-theory is more computable

and more flexible by using quasi-idempotents and quasi-invertibles instead of idempotents and

invertibles, respectively.

To explore a way of approximating K-theory with quantitative K-theory, Oyono-Oyono
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and Yu studied the persistence approximation property for quantitative K-theory of filtered

C∗-algebras in [14]. Subsequently, Wang and Wang investigated the persistence approximation

property for maximal Roe algebras, and proved that if X is a coarsely uniformly contractible

discrete metric space with bounded geometry, and it admits a fibred coarse embedding into

Hilbert space, then the maximal Roe algebra for X satisfies the persistence approximation

property in [17]. Motivated by these successful researches on the persistence approximation

property for the quantitative K-theory, we will in this paper extend these methods and results

for C∗-algebras to Lp operator algebras.

Recently, the research on Lp operator algebras has been revived. In the work of [15], Phillips

introduced full and reduced Lp crossed products and proved that the K-theory of Lp analogs of

Cuntz algebras is the same as that of C∗-algebras. This work has inspired mathematicians to

study Lp operator algebras that behave like C∗-algebras, including group Lp operator algebras

(see [7, 9–11, 15]) and groupoid Lp operator algebras (see [8]). There are also related works on

ℓp uniform Roe algebras in comparison with classical uniform Roe algebras, such as [4–5, 12].

These researches provide sufficient methods and techniques for dealing with the problem of the

Lp operator algebras in this paper.

In order to investigate an Lp version of persistence approximation property, we have to give

a definition of the quantitative Lp assembly map. In this important article [3], Chung defined

the Lp assembly map, and showed that a certain Lp assembly map is an isomorphism if the

action Γ y X has finite dynamical complexity. Moreover, Zhang and Zhou in [21] studied Lp

localization algebras and Lp Roe algebras, which are basic ingredients for defining quantitative

Lp assembly maps.

The main aim of this paper is to define the Lp analog of the quantitative assembly map

to study the persistence approximation property for the quantitative K-theory of filtered Lp

operator algebras. More precisely, we say that a filtered Lp operator algebra A has the per-

sistence approximation property if for any ε in
(
0, 1

20

)
, any r > 0 and any N ≥ 1, there exist

ε′ ∈
[
ε, 1

20

)
, r′ ≥ r and N ′ ≥ N such that the following statement PA∗(A, ε, ε′, r, r′, N,N ′) is

satisfied: An element from Kε,r,N
∗ (A) is zero in K∗(A) implies that it is zero in Kε′,r′,N ′

∗ (A).

For the case of a crossed product of an Lp operator algebra by a finitely generated group, we

obtain the main theorem.

Theorem 1.1 (see Theorem 4.1) Let Γ be a finitely generated group, and let A be a Γ-Lp

operator algebra. Assume that

(1) Γ admits a cocompact universal example for proper actions ;

(2) for any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp Baum-Connes assembly map for Γ with coefficients in

ℓ∞(N,K (ℓp)⊗A)

is ω-surjective ;



Persistence Approximation Property for Lp Operator Algebras 871

(3) the Lp Baum-Connes assembly map for Γ with coefficients in A is injective.

Then for any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any ε in
(
0, 1

20λPA

)

and any r > 0, there exist r′ ≥ r and N ′ ≥ N such that PA∗(A⋊Γ, ε, λPAε, r, r
′, N,N ′) holds.

This theorem is a generalization of Oyono-Oyono and Yu’s work on persistence approxi-

mation property for C∗ crossed products (see [14]). We call it the Lp version of persistence

approximation property. To demonstrate this result, we define a quantitative Lp assembly map

by using the Lp localization algebra and the Lp Roe algebra. Moreover, we carefully estimate

the changing parameters of (ε, r,N)-idempotent and (ε, r,N)-invertible elements in the proof

of the theorem to present a cleaner result.

Parallel to the main theorem, we obtain a similar result for the Lp Roe algebra for a discrete

metric space X with bounded geometry. Replacing the assumption that the group admits a

cocompact universal example for proper actions by that X is coarsely uniformly contractible,

we have the following theorem.

Theorem 1.2 (see Theorem 5.1) Let X be a discrete metric space with bounded geometry,

and let A be an Lp operator algebra. Assume that

(1) X is coarsely uniformly contractible ;

(2) for any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp coarse Baum-Connes assembly map for X with coefficients in

ℓ∞(N,K (ℓp)⊗A)

is ω-surjective ;

(3) the Lp coarse Baum-Connes assembly map for X with coefficients in A is injective.

Then for any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any ε in
(
0, 1

20λPA

)
and any r > 0, there exist r′ ≥ r and N ′ ≥ N such that PA∗(Bp(X,A), ε, λPAε,

r, r′, N,N ′) holds.

As a corollary of this theorem, we prove that any Lp Roe algebra for a discrete Gromov

hyperbolic metric space satisfies the persistence approximation property.

The outline of this paper is as follows: In Section 2, we recall the main results of quantitative

K-theory for filtered Lp operator algebras. In Section 3, we define a quantitative Lp assembly

map and show the connection between the quantitative statements and the Lp Baum-Connes

conjecture. In Section 4, for the case of Lp crossed products, we find a sufficient condition for

the persistence approximation property. Finally, in Section 5, we show that if X is a coarse-

ly uniformly contractible discrete metric space with bounded geometry and finite asymptotic

dimension, then the Lp Roe algebra for X has the persistence approximation property.
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2 Quantitative K-Theory for Lp Operator Algebras

The ordinary K-theory of Banach algebras developed in [1] focuses on idempotents or in-

vertibles. In comparison, quantitative K-theory for Banach algebras studied in [2] focuses on

quasi-idempotents or quasi-invertibles. In this section, we recall some basic definitions and

theorems of quantitative K-theory for filtered SQp algebras from [2]. Moreover, by applying

these conclusions to filtered Lp operator algebras, we can obtain some basic concepts and main

results of quantitative K-theory for filtered Lp operator algebras.

Definition 2.1 (see [7]) Let A be a Banach algebra. For p ∈ [1,∞), we say that A is an

Lp operator algebra if there exist an Lp space E and an isometric homomorphism A→ B(E).

Remark 2.1 The Lp operator algebra was initially defined by Phillips in [15], and the

above definition is compatible with the original one.

Definition 2.2 (see [2]) A filtered Lp operator algebra is an Lp operator algebra A with a

family (Ar)r>0 of closed linear subspaces indexed by positive real numbers r ∈ (0,∞) such that

(1) Ar ⊂ Ar′ if r ≤ r′;

(2) ArAr′ ⊂ Ar+r′ for all r, r′ > 0;

(3) the subalgebra
⋃
r>0

Ar is dense in A.

If A is unital with identity 1A, we require 1A ∈ Ar. For any r > 0, we call the family

(Ar)r>0 a filtration of A. We say that a has propagation r if a ∈ Ar.

If A is not unital, we write the unitization of A as

A+ = {(a, z) : a ∈ A, z ∈ C}

with multiplication given by (a, z)(a′, z′) = (aa′ + za′ + z′a, zz′). We use Ã to represent A+ if

A is non-unital or to represent A if A is unital.

In order to control the matrix norm in quantitative K-theory of Banach algebras, we need

to establish the matrix norm structure.

Definition 2.3 (see [6]) For p ∈ [1,+∞), an abstract p-operator space is a Banach space

X together with a family of norms ‖ · ‖n on Mn(X) satisfying :

(1) D∞ : For u ∈Mn(X) and v ∈Mm(X), we have

∥∥∥∥
(
u 0
0 v

)∥∥∥∥
n+m

= max(‖u‖n, ‖v‖m).

(2) Mp : For u ∈Mm(X), α ∈Mn,m(C) and β ∈Mm,n(C), we have

‖αuβ‖n ≤ ‖α‖B(ℓpm,ℓ
p
n)‖u‖m‖β‖B(ℓpn,ℓ

p
m),

where ℓpn denotes Cn with the ℓp norm.

Clearly, an Lp operator algebra is an abstract p-operator space.
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Definition 2.4 (see [16]) Let X and Y be p-operator spaces, and let φ : X → Y be a

bounded linear map. For each n ∈ N, let φn : Mn(X) → Mn(Y ) be the induced map given by

φn([xij ]) = [φ(xij)]. We say that φ is p-completely bounded if sup
n

‖φn‖ < ∞. In this case, we

let ‖φ‖pcb = sup
n

‖φn‖.

We say that φ is p-completely contractive if ‖φ‖pcb ≤ 1 and φ is p-completely isometric if

‖φ‖pcb = 1.

Definition 2.5 (see [2]) Let A and B be filtered Lp operator algebras with filtrations (Ar)r>0

and (Br)r>0, respectively. A filtered homomorphism φ : A → B is an algebra homomorphism

such that

(1) φ is p-completely bounded ;

(2) φ(Ar) ⊂ Br for all r > 0.

If φ : A → B is a filtered homomorphism, then it induces a filtered homomorphism φ+ :

A+ → B+ given by φ+(a, z) = (φ(a), z).

Definition 2.6 (see [2]) Let A be a unital filtered Lp operator algebra. For 0 < ε < 1
20 ,

r > 0 and N ≥ 1,

(1) an element e ∈ A is called an (ε, r,N)-idempotent if ‖e2 − e‖ < ε, e ∈ Ar and

max(‖e‖, ‖1Ã − e‖) ≤ N ;

(2) if A is unital, an element u ∈ A is called an (ε, r,N)-invertible if u ∈ Ar, ‖u‖ ≤ N , and

there exists v ∈ Ar with ‖v‖ ≤ N such that max(‖uv − 1‖, ‖vu− 1‖) < ε.

We call v an (ε, r,N)-inverse for u and we call (u, v) an (ε, r,N)-inverse pair. In addition,

ε is called the control and r is called the propagation of the (ε, r,N)-idempotent or of the

(ε, r,N)-invertible.

Next, we recall the definitions of quantitative K-theory for filtered Lp operator algebras.

Given a filtered Lp operator algebra A,

(1) we let Idemε,r,N (A) := {e ∈ A | e is an (ε, r,N)-idempotent};
(2) we set Idemε,r,N

n (A) := Idemε,r,N(Mn(A)) for each n ∈ N;

(3) we have inclusions Idemε,r,N
n (A) →֒ Idemε,r,N

n+1 (A), e 7→
(
e 0
0 0

)
;

(4) we set Idemε,r,N
∞ (A) :=

⋃
n∈N

Idemε,r,N
n (A);

(5) we define the equivalence relation ∼ on Idemε,r,N
∞ (A) as follows: e ∼ f if and only if e

and f are (4ε, r, 4N)-homotopic in Idem4ε,r,4N
∞ (A);

(6) we denote [e] := {f ∈ Idemε,r,N
∞ (A) | f ∼ e in Idemε,r,N

∞ (A)};
(7) Idemε,r,N

∞ (A)/ ∼:= {[e] | e ∈ Idemε,r,N
∞ (A)} and [e] + [f ] =

[(
e 0
0 f

)]
;

(8) Idemε,r,N
∞ (A)/ ∼ is an abelian semigroup with identity [0].

If we want to keep track of changes of parameters, we write [e]ε,r,N instead of [e].

Definition 2.7 (see [2]) Let A be a filtered Lp operator algebra. For 0 < ε < 1
20 , r > 0
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and N ≥ 1,

(1) if A is unital, define Kε,r,N
0 (A) to be the Grothendieck group of Idemε,r,N

∞ (A)/ ∼;

(2) if A is non-unital, define Kε,r,N
0 (A) := ker(π∗ : Kε,r,N

0 (A+) → Kε,r,N
0 (C)), where

π : A+ → C is the usual quotient homomorphism, which is p-completely contractive.

If [e] − [f ] ∈ Kε,r,N
0 (A), where e, f ∈ Mk(Ã), then [e] − [f ] = [e′] − [Ik] in Kε,r,N

0 (A) for

some e′ ∈ M2k(Ã). Therefore, if we relax control, we can write elements in Kε,r,N
0 (A) in the

form [e]− [Ik] with π(e) = diag(Ik, 0).

Given a unital filtered Lp operator algebra A,

(1) we let GLε,r,N (A) := {u ∈ A | u is an (ε, r,N)-invertible};
(2) we set GLε,r,Nn (A) := GLε,r,N(Mn(A)) for each positive integer n;

(3) we have inclusions GLε,r,Nn (A) →֒ GLε,r,Nn+1 (A), u 7→
(
u 0
0 1

)
;

(4) we set GLε,r,N∞ (A) :=
⋃
n∈N

GLε,r,Nn (A);

(5) we define the equivalence relation ∼ on GLε,r,N∞ (A) as follows: u ∼ v if and only if u

and v are (4ε, 2r, 4N)-homotopic in GL4ε,2r,4N
∞ (A);

(6) we denote [u] := {v ∈ GLε,r,N∞ (A) | v ∼ u in GLε,r,N∞ (A)};
(7) GLε,r,N∞ (A)/ ∼:= {[u] | u ∈ GLε,r,N∞ (A)} and [u] + [v] =

[(
u 0
0 v

)]
;

(8) GLε,r,N∞ (A)/ ∼ is an abelian group with identity [1].

If we want to take into account parameter changes, we usually write [u]ε,r,N instead of [u].

Definition 2.8 (see [2]) Let A be a unital filtered Lp operator algebra. For 0 < ε < 1
20 ,

r > 0 and N ≥ 1,

(1) if A is unital, define Kε,r,N
1 (A) := GLε,r,N∞ (A)/ ∼;

(2) if A is non-unital, define Kε,r,N
1 (A) := ker(π∗ : Kε,r,N

1 (A+) → Kε,r,N
1 (C)).

Remark 2.2 (see [2]) If e is an (ε, r,N)-idempotent in A, we can choose a function κ0

that is holomorphic on a neighborhood of Sp(e), and

κ0(z) =

{
0, z ∈ B√

ε(0),

1, z ∈ B√
ε(1),

then we apply holomorphic functional calculus to get an idempotent

κ0(e) =
1

2πi

∫

γ

κ0(z)(z − e)−1dz ∈ A,

where γ is the contour {z ∈ C : |z| = √
ε} ∪ {z ∈ C : |z − 1| = √

ε}, and

‖κ0(e)‖ <
N + 1

1− 2
√
ε
,

which implies that ‖κ0(e)‖ < 2(N + 1). Since each (ε, r,N)-invertible is invertible, we can

define a function κ1 such that κ1(u) = u, thus ‖κ1(u)‖ ≤ N .
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Definition 2.9 For any filtered Lp operator algebra A and any positive numbers r, r′, ε, ε′

and N,N ′ ≥ 1 with ε ≤ ε′ < 1
20 , r ≤ r′ and N ≤ N ′, we have natural group homomorphisms :

(1) ι0 : Kε,r,N
0 (A) → K0(A), [e]ε,r,N 7→ [κ0(e)] ;

(2) ι1 : Kε,r,N
1 (A) → K1(A), [u]ε,r,N 7→ [κ1(u)] = [u] ;

(3) ι∗ = ι0 ⊕ ι1 ;

(4) ιε
′,r′,N ′

0 : Kε,r,N
0 (A) → Kε′,r′,N ′

0 (A), [e]ε,r,N 7→ [e]ε′,r′,N ′ ;

(5) ιε
′,r′,N ′

1 : Kε,r,N
1 (A) → Kε′,r′,N ′

1 (A), [u]ε,r,N 7→ [u]ε′,r′,N ′ ;

(6) ιε
′,r′,N ′

∗ = ιε
′,r′,N ′

0 ⊕ ιε
′,r′,N ′

1 .

Remark 2.3 We sometimes refer to these natural homomorphisms as relaxation of control

maps. In addition, from the above definition, we know that the origin of variable parameters

of quasi-idempotents or quasi-invertibles, thus we only mark the destination of the parameters

to reduce to three superscripts.

Proposition 2.1 (see [2]) There exists a polynomial ρ ≥ 1 with positive coefficients such

that for any filtered Lp operator algebra A, any ε ∈
(
0, 1

20ρ(N)

)
, any r > 0 and any N ≥ 1, the

following holds :

Let [x], [x′] be in Kε,r,N
∗ (A) such that ι∗([x]) = ι∗([x′]) in K∗(A), there exist r′ ≥ r and

N ′ ≥ N such that

ι
ρ(N)ε,r′,N ′

∗ ([x]) = ι
ρ(N)ε,r′,N ′

∗ ([x′]) in K
ρ(N)ε,r′,N ′

∗ (A).

Remark 2.4 From the proof of [2, Proposition 3.21], we know that the choice of N ′ depends

on the norm of the homotopy path of the idempotents or invertibles, and we can choose

ρ(N) =




1 +

9

20
(N + 1)2, ∗ = 0,

1, ∗ = 1.

The item (ii) of the next proposition is a consequence of the preceding proposition.

Proposition 2.2 (see [2]) Let A be an Lp operator algebra filtered by (Ar)r>0.

(i) For any ε ∈
(
0, 1

20

)
and any [y] ∈ K∗(A), there exist r > 0, N ≥ 1 and [x] ∈ Kε,r,N

∗ (A)

such that ι∗([x]) = [y].

(ii) There exists a polynomial ρ ≥ 1 with positive coefficients such that the following is

satisfied : For ε ∈
(
0, 1

20ρ(N)

)
, r > 0 and N ≥ 1, let [x] be an element of Kε,r,N

∗ (A) such that

ι∗([x]) = 0 in K∗(A). Then there exist r′ ≥ r and N ′ ≥ N such that

ι
ρ(N)ε,r′,N ′

∗ ([x]) = 0 in K
ρ(N)ε,r′,N ′

∗ (A).

Remark 2.5 From the proof of [2, Proposition 3.20], we may put

N =

{
‖y‖+ 1, ∗ = 0,

‖y‖+ ‖y−1‖+ 1, ∗ = 1

in the item (i) of the above proposition.
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Definition 2.10 (see [2]) A control pair is a pair (λ, h) such that

(1) λ : [1,∞) → [1,∞) is a non-decreasing function ;

(2) h :
(
0, 1

20

)
× [1,∞) → [1,∞) is a function such that h(·, N) is non-increasing for fixed

N .

We will write λN for λ(N) and hε,N for h(ε,N). Given two control pairs (λ, h) and (λ′, h′),

we say that (λ, h) ≤ (λ′, h′) if λN ≤ λ′N and hε,N ≤ h′ε,N for all ε ∈
(
0, 1

20

)
and N ≥ 1.

Given a filtered Lp operator algebra A, we write the families

Ki(A) = (Kε,r,N
i (A))0<ε< 1

20
,r>0,N≥1, where i ∈ {0, 1}.

Definition 2.11 (see [2]) Let A and B be filtered Lp operator algebras, and let (λ, h) be a

control pair. A (λ, h)-controlled morphism F : Ki(A) → Kj(B), where i, j ∈ {0, 1}, is a family

F = (F ε,r,N )0<ε< 1
20λN

,r>0,N≥1

of group homomorphisms

F ε,r,N : Kε,r,N
i (A) → K

λNε,hε,Nr,λN

j (B)

such that whenever 0 < ε ≤ ε′ < 1
20λN′

, hε,Nr ≤ hε′,N ′r′ and N ≤ N ′, we have the following

commutative diagram

Kε,r,N
i (A)

ιi−−−−→ Kε′,r′,N ′

i (A)

F ε,r,N

y
yF ε′,r′,N′

K
λNε,hε,Nr,λN

j (B)
ιj−−−−→ K

λN′ε′,hε′,N′r′,λN′

j (B).

We write ιi for ι
ε′,r′,N ′

i and ιj for ι
λN′ε′,hε′,N′r′,λN′

j . We say that F is a controlled morphism

if it is a (λ, h)-controlled morphism for some control pair (λ, h).

Definition 2.12 (see [2]) Let A and B be filtered Lp operator algebras. Let F : Ki(A) →
Kj(B) and G : Ki(A) → Kj(B) be (λF , hF)-controlled and (λG , hG)-controlled morphisms,

respectively. Let (λ, h) be a control pair. We write F (λ,h)∼ G if (λF , hF) ≤ (λ, h), (λG , hG) ≤
(λ, h), and the following diagram commutes whenever 0 < ε < 1

20λN
, r > 0 and N ≥ 1 :

K
λF
Nε,h

F
ε,N r,λ

F
N

j (B)
ιj

**TT
TT

TT
TT

TT

Kε,r,N
i (A)

F ε,r,N 44jjjjjjjjjjj

Gε,r,N **TT
TT

TT
TT

T

K
λNε,hε,Nr,λN

j (B)

K
λG
Nε,h

G
ε,Nr,λ

G
N

j (B).

ιj

44jjjjjjjjj

Observe that if F (λ,h)∼ G for some control pair (λ, h), then F and G induce the same homomor-

phism in K-theory.
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Definition 2.13 (see [2]) Let A and B be filtered Lp operator algebras. Let (λ, h) be a

control pair, and let F : Ki(A) → Kj(B) be a (λF , hF)-controlled morphism with (λF , hF) ≤
(λ, h).

(1) We say that F is left (resp. right) (λ, h)-invertible if there exists a controlled morphism

G : Kj(B) → Ki(A) such that G ◦ F (λ,h)∼ IdKi(A) (resp. F ◦ G (λ,h)∼ IdKj(B)). In this case, we

call G a left (resp. right) (λ, h)-inverse for F .

(2) We say that F is (λ, h)-invertible or a (λ, h)-isomorphism if there exists a controlled

morphism G : Kj(B) → Ki(A) that is both a left (λ, h)-inverse and a right (λ, h)-inverse for F .

In this case, we call G a (λ, h)-inverse for F .

We say that F is a controlled isomorphism if it is a (λ, h)-isomorphism for some control

pair (λ, h).

Definition 2.14 (see [2]) Let A and B be filtered Lp operator algebras. Let (λ, h) be a

control pair, and let F : Ki(A) → Kj(B) be a (λF , hF)-controlled morphism with (λF , hF) ≤
(λ, h).

(1) We say that F is (λ, h)-injective if for any 0 < ε < 1
20λN

, r > 0, N ≥ 1 and [x] ∈
Kε,r,N
i (A), if F ε,r,N([x])=0 inK

λF
Nε,h

F
ε,N r,λ

F
N

j (B), then ι
λNε,hε,Nr,λN

i ([x])=0 inK
λNε,hε,Nr,λN

i (A).

(2) We say that F is (λ, h)-surjective if for any 0 < ε < 1
20(λF ·λ)N , r > 0, N ≥ 1 and

[y] ∈ Kε,r,N
j (B), there exists [x] ∈ K

λNε,hε,N r,λN

i (A) such that

FλNε,hε,Nr,λN ([x]) = ι
(λF ·λ)Nε,(hF ·h)ε,Nr,(λF ·λ)N
j ([y]) in K

(λF ·λ)Nε,(hF ·h)ε,Nr,(λF ·λ)N
j (B).

Proposition 2.3 (see [2]) Let A be a unital filtered Lp operator algebra.

(i) If e and f are homotopic as (ε, r,N)-idempotents in A, then there exist αN > 0, an

integer k and an αN -Lipschitz homotopy of
(
2ε, r, 52N

)
-idempotents between diag(e, Ik, 0k) and

diag(f, Ik, 0k).

(ii) If u and v are homotopic as (ε, r,N)-invertibles in A, then there exist βN > 0, an integer

k and a βN -Lipschitz homotopy of ((4N2+2)ε, 2r, 2(N+ε))-invertibles between diag(u, Ik) and

diag(v, Ik).

Remark 2.6 In fact, the proof of item (ii) is similar to that of item (i) (see [2, Lemma

2.29]).

Remark 2.7 Let A be an Lp operator algebra, and let ⊗ denote the spatial Lp operator

tensor product. Mn(A) can be regarded as Mn(C)⊗A when Mn(C) is viewed as B(ℓpn). Recall

from [14, Proposition 1.8, Example 1.10 ] we see that Mp
∞ = K (ℓp) for p ∈ (1,∞) when Mp

∞

denotes
⋃
n∈N

Mn(C)
‖·‖ℓp

. However, when p = 1, there is a rank one operator on ℓ1 that is not

in M1
∞.

Now we collect some concepts of [15] concerning Lp operator tensor products. For p ∈ [1,∞)

and for measure spaces (X,µ) and (Y, ν), there is an Lp tensor product such that we have a
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canonical isometric isomorphism Lp(X,µ)⊗Lp(Y, ν) ∼= Lp(X × Y, µ× ν) via (x, y) 7→ ξ(x)η(y)

for any ξ ∈ Lp(X,µ), η ∈ Lp(Y, ν), this tensor product has the following properties:

(1) Under the previous isomorphism, the linear span of all ξ⊗η is dense in Lp(X×Y, µ×ν).
(2) ‖ξ ⊗ η‖p = ‖ξ‖p‖η‖p for all ξ ∈ Lp(X,µ) and η ∈ Lp(Y, ν).

(3) The tensor product is commutative and associative.

(4) If a ∈ B(Lp(X1, µ1), L
p(X2, µ2)) and b ∈ B(Lp(Y1, ν1), L

p(Y2, ν2)), then there exists a

unique

c ∈ B(Lp(X1 × Y1, µ1 × ν1), L
p(X2 × Y2, µ2 × ν2))

such that c(ξ ⊗ η) = a(ξ)⊗ b(η) for all ξ ∈ Lp(X1, µ1) and η ∈ Lp(Y1, ν1). We will denote this

operator by a⊗ b, thus ‖a⊗ b‖ = ‖a‖‖b‖.
(5) The tensor product of operators is associative, bilinear and satisfies (a1 ⊗ b1)(a2 ⊗ b2) =

a1a2 ⊗ b1b2.

If A ⊂ B(Lp(X,µ)) and B ⊂ B(Lp(Y, ν)) are norm-closed subalgebras, we can define

A⊗B ⊂ B(Lp(X×Y, µ× ν)) to be the closed linear span of all elements of the form a⊗ b with

a ∈ A and b ∈ B.

Proposition 2.4 (see [2]) If A is a filtered Lp operator algebra for some p ∈ (1,∞), then

the homomorphism

A→ K (ℓp)⊗A, a 7→



a

0
. . .




induces a group isomorphism (the Morita equivalence)

Kε,r,N
∗ (A) → Kε,r,N

∗ (K (ℓp)⊗A).

For p = 1, we denote K (ℓ1) by
⋃
n∈N

Mn(C)
‖·‖ℓ1 , then we still have the Morita equivalance.

Proposition 2.5 (see [2]) If A is a filtered L1 operator algebra, then we have a group

isomorphism

Kε,r,N
∗ (K (ℓ1)⊗A) ∼= Kε,r,N

∗ (A).

Remark 2.8 For any r > 0, the Lp operator tensor product K (ℓp) ⊗ A has a filtration

(K (ℓp)⊗Ar)r>0.

If A = (Ai)i∈N is any family of filtered Lp operator algebras. For any r > 0, we set

A∞
c,r =

∏

i∈N

K (ℓp)⊗Ai,r,

and we define the Lp operator algebra A∞
c as the closure of

⋃
r>0

A∞
c,r in

∏
i∈N

K (ℓp)⊗Ai.
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Lemma 2.1 Let A = (Ai)i∈N be a family of filtered Lp operator algebras. There exist a

control pair (λ, h) independent of the family A and a (λ, h)-isomorphism

F = (F ε,r,N )0<ε< 1
20
,r>0,N≥1 : K∗(A∞

c ) →
∏

i∈N

K∗(Ai),

where

F ε,r,N : Kε,r,N
∗ (A∞

c ) →
∏

i∈N

Kε,r,N
∗ (Ai)

is induced on the j-th factor by the projection
∏
i∈N

K (ℓp) ⊗ Ai → K (ℓp) ⊗ Aj and up to the

Morita equivalence restricted to A∞
c .

Remark 2.9 If Ai is unital, then the above Lemma 2.1 is a consequence of Proposition 2.3.

In this case, we let λN = 5
2N , h(·, N) = 2. If Ai is not unital for some i, the proof is similar to

that of [14, Lemma 2.14].

3 Quantitative Lp Assembly Maps

In this section, we will introduce Lp localization algebras, Lp Roe algebras and reduced

Lp crossed products to define quantitative Lp assembly maps, and establish the connection

between the Lp Baum-Connes conjecture and the quantitative Lp Baum-Connes conjecture.

3.1 Lp Roe algebras and Lp localization algebras

In this section, we consider the case of finitely generated groups. Let Γ be a finitely generated

group with a length function ℓ : Γ → R+ such that

(1) ℓ(γ) = 0 if and only if γ = e, where e is the identity element of Γ;

(2) ℓ(γγ′) ≤ ℓ(γ) + ℓ(γ′) for all γ, γ′ ∈ Γ;

(3) ℓ(γ) = ℓ(γ−1) for all γ ∈ Γ.

We assume that ℓ is the word length

ℓ(γ) = inf{d | γ = γ1 · · · γd with γ1, · · · , γd ∈ S},

where S is a finite symmetric generating set. Let the ball of radius r ∈ (0,∞) around the

identity of Γ be

B(e, r) = {γ ∈ Γ | ℓ(γ) ≤ r}.

Definition 3.1 (see [19]) Let Γ be a finitely generated group and let d ≥ 0. The spherical

Rips complex of Γ at scale d, denoted by Sd(Γ), consists as a set of all formal sums

x =
∑

γ∈Γ

tγγ

such that each tγ ∈ [0, 1] with
∑
γ∈Γ

tγ = 1 and such that the support of x defined by

supp(x) := {γ ∈ Γ | tγ 6= 0}

has diameter at most d.
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Definition 3.2 (see [19]) Let Γ be a finitely generated group, and let Sd(Γ) be the associated

spherical Rips complex at scale d. A semi-simplicial path δ between points x and y in Sd(Γ)

consists of a sequence of the form

x = x0, y0, x1, y1, x2, y2, · · · , xn, yn = y,

where each of x1, · · · , xn and each of y0, · · · , yn−1 are in Γ. The length of such a path is

l(δ) :=

n∑

i=0

dSd
(xi, yi) +

n−1∑

i=0

dΓ(yi, xi+1).

We define the semi-spherical distance on Sd(Γ) by

dPd
(x, y) := inf{l(γ) | γ is a semi-simplicial path between x and y}

(note that a semi-simplicial path between two points always exists).

The Rips complex of Γ is defined to be the space Pd(Γ) equipped with the metric dPd
above.

Remark 3.1 Pd(Γ) is a locally finite simplicial complex and is locally compact when en-

dowed with the simplicial topology, and it is endowed with a proper and cocompact action of

Γ by left translation.

Definition 3.3 For d ≥ 0, we define

Qd :=
{∑

γ∈Γ

tγγ ∈ Pd(Γ) | tγ ∈ Q for all γ ∈ Γ
}
.

Then Qd is a Γ-invariant, countable, dense subset of Pd(Γ).

Definition 3.4 Let Γ be a discrete group, and let A be an Lp operator algebra. We say that

A is a Γ-Lp operator algebra if α : Γ → Aut(A) is an action by isometric automorphisms.

Definition 3.5 (see [15]) Let (Γ, A, α) be a Γ-Lp operator algebra, and let (X,B, µ) be

a measure space. Then a covariant representation of (Γ, A, α) on Lp(X,µ) is a pair (v, π)

consisting of a representation γ 7→ vγ from Γ to the invertible operators on Lp(X,µ) such that

γ 7→ vγξ is continuous for all ξ ∈ Lp(X,µ), and a representation π : A → B(Lp(X,µ)) such

that the following covariance condition is satisfied : π(αγ(a)) = vγπ(a)v
−1
γ for all γ ∈ Γ and

a ∈ A.

We say that a covariant representation is isometric if π is isometric.

Definition 3.6 Let A be a Γ-Lp operator algebra, and let E be a covariant represented Lp

space of A. An Lp-module is defined to be an Lp space

Ld = ℓp(Qd)⊗ E ⊗ ℓp ⊗ ℓp(Γ) ∼= ℓp(Qd, E ⊗ ℓp ⊗ ℓp(Γ))

equipped with an isometric Γ-action given by

uγ · (δx ⊗ e⊗ η ⊗ δγ′) = δxγ−1 ⊗ γe⊗ η ⊗ δγγ′
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for x ∈ Qd, e ∈ E, η ∈ ℓp and γ, γ′ ∈ Γ.

Remark 3.2 For each d ≥ d0 ≥ 0, the canonical inclusion id0,d : Pd0(Γ) →֒ Pd(Γ) is a

homeomorphism on its image and a coarse equivalence, and Qd0 ⊂ Qd. Hence, we have an

equivariant isometric inclusion Ld0 ⊂ Ld.

Remark 3.3 Let KΓ be the algebra of compact operators on ℓp ⊗ ℓp(Γ) ∼= ℓp(N × Γ)

equipped with the Γ-action induced by the tensor product of the trivial action on ℓp and the

left regular representation on ℓp(Γ). Also, we equip the algebra A⊗KΓ with the diagonal action

of Γ. We say that the representation of A ⊗ KΓ on E ⊗ ℓp ⊗ ℓp(Γ) is faithful and covariant if

this representation is obtained by tensoring the natural action on E, trivial on ℓp and regular

on ℓp(Γ).

Next, we will define equivariant Lp Roe algebras and equivariant Lp localization algebras.

Definition 3.7 Let Ld be the Lp-module as in Definition 3.6, and let T be a bounded linear

operator on Ld, which we regard as a (Qd ×Qd)-indexed matrix T = (Ty,z) with

Ty,z ∈ B(E ⊗ ℓp ⊗ ℓp(Γ))

for all y, z ∈ Qd.

(1) T is Γ-invariant if uγTu
−1
γ = T for all γ ∈ Γ, i.e., Ty,z = γ · Tyγ,zγ for all γ ∈ Γ.

(2) The propagation of T is defined to be

prop(T ) := sup{dPd(Γ)(y, z) : Ty,z 6= 0}.

(3) T is E-locally compact if Ty,z ∈ A⊗KΓ for all y, z ∈ Qd, and if for each compact subset

G ⊂ Pd(Γ), the set

{(y, z) ∈ (G×G) ∩ (Qd ×Qd) : Ty,z 6= 0}

is finite.

Definition 3.8 Let Ld be the Lp-module, and let C[Ld, A]Γ denote the algebra of all Γ-

invariant, E-locally compact operators on Ld with finite propagation. The equivariant Lp Roe

algebra with coefficients in A, denoted by Bp(Pd(Γ), A)
Γ, is defined to be closure of C[Ld, A]Γ

in the operator norm on B(Ld).

Definition 3.9 Let Ld be the L
p-module, and let CL[Ld, A]Γ denote the algebra of all bound-

ed, uniformly continuous functions f : [0,∞) → C[Ld, A]Γ such that

prop(f(t)) → 0 as t→ ∞.

The equivariant Lp localization algebra with coefficients in A, denoted by BpL(Pd(Γ), A)
Γ, is the

completion of CL[Ld, A]Γ with respect to the norm

‖f‖ := sup
t∈[0,∞)

‖f(t)‖B(Ld).
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3.2 The quantitative Lp assembly maps

For p ∈ [1,∞), to give a definition of a quantitative Lp assembly map, we replace the

equivariant KK-theory by the equivariant K-theory of the Lp localization algebra on the left-

hand side of the map and replace the reduced C∗ crossed product by the reduced Lp crossed

product on the right-hand side of the map. In the setting of Lp operator algebras, we need to

study reduced Lp crossed products and Lp Baum-Connes assembly maps.

Definition 3.10 Let A be a Γ-Lp operator algebra, and let E be an Lp representation space

of A. The reduced Lp crossed product A⋊α,λ Γ is the completion of Cc(Γ, A, α) in the operator

norm on B(E ⊗ ℓp(Γ)).

Remark 3.4 If A is a matrix algebra Mn(C) or a commutative algebra C(X) for some

compact space X , then the above definition is identical with Phillips’s reduced Lp crossed

products (see [15, Definition 3.3]) since it is independent of the representation of A (see [18,

Lemma 2.6]).

Remark 3.5 In the following, we will write A⋊Γ for A⋊α,λΓ. Note that the identification

between A⋊ Γ and Bp(Pd(Γ), A)
Γ is derived from the Morita equivalence between Cc(Γ, A, α)

and C[Ld, A]Γ. In addition, for r > 0, the reduced Lp crossed product A⋊ Γ has a filtration

(A⋊ Γ)r := {f ∈ Cc(Γ, A) with supp(f) ∈ B(e, r)}.

Definition 3.11 Let A be an Lp operator algebra. For N ≥ 1,

(1) an element z ∈ A is called an N -idempotent if z2 = z and ‖z‖ ≤ N ;

(2) if A is unital, an element w ∈ A is called an N -invertible if w is invertible and

max{‖w‖, ‖w−1‖} ≤ N .

Then we will define a variant of K-theory of Lp operator algebras, which is labeled by the

norm of the element and the norm of the homotopy path.

Given an Lp operator algebra A, for N ≥ 1,

(1) we set IdemN (A) := {z ∈ A | z is an N -idempotent};
(2) we let IdemN

m(A) = IdemN (Mm(A)) for each m ∈ N;

(3) we have inclusions IdemN
m(A) →֒ IdemN

m+1(A), z 7→
(
z 0
0 0

)
;

(4) we put IdemN
∞(A) :=

⋃
m∈N

IdemN
m(A);

(5) we define the equivalence relation ∼ on IdemN
∞(A) as follows: z ∼ z′ if z and z′ are

homotopic in Idem4N
∞ (A);

(6) we denote by [z] the equivalence class of z ∈ IdemN
∞(A);

(7) we equip IdemN
∞(A)/ ∼ with the addition given by [z] + [z′] = [diag(z, z′)];

(8) IdemN
∞(A)/ ∼ is an abelian semigroup with identity [0].

If we wish to keep track of changes in the norm, we write [z]N instead of [z].
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Definition 3.12 Let A be an Lp operator algebra. For N ≥ 1,

(1) if A is unital, define KN
0 (A) to be the Grothendieck group of IdemN

∞(A)/ ∼;

(2) if A is non-unital, define

KN
0 (A) := ker(π∗ : KN

0 (A+) → Z).

If [z]− [z′] ∈ KN
0 (A), where z, z′ ∈ Mk(Ã), then [z]− [z′] = [z′′] − [Ik] in K

N
0 (A) for some

z′′ ∈M2k(Ã). Hence, each element ofKN
0 (A) can be written by [z]−[Ik] with π(z) = diag(Ik, 0).

Given a unital Lp operator algebra A, for N ≥ 1,

(1) we set GLN(A) := {w ∈ A | w is an N -invertible};
(2) we let GLNm(A) = GLN (Mm(A)) for each m ∈ N;

(3) we have inclusions GLNm(A) →֒ GLNm+1(A), w 7→
(
w 0
0 1

)
;

(4) we put GLN∞(A) :=
⋃
m∈N

GLNm(A);

(5) we define the equivalence relation ∼ on GLN∞(A) as follows: w ∼ w′ if w and w′ are

homotopic in GL4N
∞ (A);

(6) we denote by [w] the equivalence class of w ∈ GLN∞(A);

(7) we equip GLN∞(A)/ ∼ with the addition defined by [w] + [w′] = [diag(w,w′)];

(8) GLN∞(A)/ ∼ is an abelian group with identity [1].

If we wish to keep track of changes in norm, we write [w]N instead of [w].

Definition 3.13 Let A be an Lp operator algebra. For N ≥ 1,

(1) if A is unital, define KN
1 (A) := GLN∞(A)/ ∼;

(2) if A is non-unital, define KN
1 (A) := KN

1 (A+).

In the odd case, each element of KN
1 (A) can be written as [w] satisfying π(w) = Ik. Observe

that there is a natural map KN
∗ (A) → KN ′

∗ (A) if N ≤ N ′ and K∗(A) = lim
N→∞

KN
∗ (A).

The evaluation-at-zero homomorphism

ev0 : BpL(Pd(Γ), A)
Γ → Bp(Pd(Γ), A)

Γ

induces a homomorphism on K-theory

ev∗ : K∗(B
p
L(Pd(Γ), A)

Γ) → K∗(B
p(Pd(Γ), A)

Γ).

Definition 3.14 (see [3]) Let A be a Γ-Lp operator algebra. We define an Lp assembly

map

µdA,∗ : K∗(B
p
L(Pd(Γ), A)

Γ)
ev∗−−→ K∗(B

p(Pd(Γ), A)
Γ) ∼= K∗(A⋊ Γ),

which gives rise to a homomorphism

µA,∗ : lim
d>0

K∗(B
p
L(Pd(Γ), A)

Γ) → K∗(A⋊ Γ)

called the Lp Baum-Connes assembly map. Moreover, the Lp Baum-Connes conjecture for Γ

predicts that the Lp Baum-Connes assembly map µA,∗ is an isomorphism.
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Subsequently, we will give a definition of a quantitative Lp assembly map. Let us do some

preparation. Considering the even case, the odd case is similar. Let [z] be inKN
0 (BpL(Pd(Γ), A)

Γ)

with z ∈ IdemN
m(BpL(Pd(Γ), A)

Γ) for some m. Then for any 0 < ε < 1
20 , there exist r′ > 0,

z̃ ∈ Idemm( ˜CL[Ld, A]Γr′) such that ‖z − z̃‖ < ε
6N(N+1)2 , then z̃ is an (ε, r′, 2N)-idempotent in

Mm( ˜CL[Ld, A]Γ) and ι0([z̃]ε,r′,2N ) = [z] (see [2, Proposition 3.20]). Observe that the propa-

gation of z̃ tends to zero when t goes to infinity. Hence, for r > 0, we can choose t ∈ [0,∞)

such that the prop(z̃t) ≤ r. Since ‖zt − z̃t‖ ≤ ‖z − z̃‖ < ε
6N(N+1)2 , we get that z̃t is an

(ε, r, 2N)-idempotent in Mm( ˜C[Ld, A]Γ) and ι0([z̃t]ε,r,2N ) = [zt] by applying [2, Proposition

3.20].

Definition 3.15 Let A be a Γ-Lp operator algebra. For 0 < ε < 1
20 , r > 0, N ≥ 1 and

d > 0, we define a quantitative Lp assembly map

µε,r,N,dA,∗ : KN
∗ (BpL(Pd(Γ), A)

Γ) → Kε,r,9N
∗ (Bp(Pd(Γ), A)

Γ) ∼= Kε,r,9N
∗ (A⋊Γ), [z] 7→ [z̃t]ε,r,9N

for some t ∈ [0,∞) satisfying

ι∗([z̃t]ε,r,9N ) = [zt] in K∗(A⋊ Γ).

Remark 3.6 Put B = BpL(Pd(Γ), A)
Γ. In the even case, If [z] = [z′] ∈ KN

0 (B), then

[z]+ [g] = [z′]+ [g] in IdemN
∞(B̃)/ ∼ for some g in IdemN

k (B̃), thus diag(z, g) and diag(z′, g) are

homotopic in Idem4N
∞ (B̃). Let (Zs)s∈[0,1] be a homotopy of 4N -idempotents between diag(z, g)

and diag(z′, g), and let 0 = s0 < s1 < · · · < sk = 1 be such that

‖Zsi − Zsi−1‖ < ε

6(10N + 1)
for i = 1, · · · , k.

For each i, there exist ri > 0, Z̃si ∈ Mm(B̃ri) such that ‖Zsi − Z̃si‖ < ε
30N(5N+1)2 . Then

Z̃si is an (ε, ri, 5N)-idempotent in Mm(B̃) and ι0([Z̃si ]) = [Zsi ] in K0(B) (see [2, Proposition

3.20]). For r > 0, by the definition of the localization algebra, we can choose an appropriate

ti in [0,∞) such that Zsiti is in Mm(Ã⋊ Γ) and the propagation of Zsiti is no more than r. Let

t = max
0≤i≤k

ti, and define Z̃ lt =
l−si−1

si−si−1
Z̃sit + si−l

si−si−1
Z̃
si−1

t for l ∈ [si−1, si]. Then Z̃ lt is a homotopy

of (ε, r, 5N)-idempotent inMm(Ã⋊ Γ) between Z̃0
t and Z̃

1
t . The odd case is similar: We can also

construct a homotopy of (ε, r, 9N)-invertible in Mm(Ã⋊ Γ). Note that max{5N, 9N} = 9N .

Hence, for any [z] ∈ KN
∗ (B), there exists a unique element [z̃t]ε,r,9N ∈ Kε,r,9N

∗ (A⋊Γ) such that

ι∗([z̃t]ε,r,9N ) = [zt] for some t ∈ [0,∞) in K∗(A⋊ Γ). Therefore, the quantitative Lp assembly

map µε,r,N,dA,∗ is well-defined.

Moreover, the quantitative Lp assembly maps are compatible with the usual ones, namely,

if [z] is an element of KN
∗ (BpL(Pd(Γ), A)

Γ), then

µdA,∗([z]) = ι∗ ◦ µε,r,N,dA,∗ ([z]N ) in K∗(A⋊ Γ). (3.1)
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For any positive numbers d, d′ such that d ≤ d′, we denote by

iNd,d′,∗ : KN
∗ (BpL(Pd(Γ), A)

Γ) → KN
∗ (BpL(Pd′(Γ), A)

Γ),

the homomorphism induced by the canonical inclusion id,d′ : Pd(Γ) →֒ Pd′(Γ), then

µε,r,N,dA,∗ = µε,r,N,d
′

A,∗ ◦ iNd,d′,∗,

which implies that µdA,∗ = µd
′

A,∗ ◦ id,d′,∗. Moreover, for 0 < ε ≤ ε′ < 1
20 , 0 < r ≤ r′ and

1 ≤ N ≤ N ′, we have

ιε
′,r′,9N ′

∗ ◦ µε,r,N,dA,∗ = µε
′,r′,N ′,d
A,∗ . (3.2)

For N ≥ 1, the evaluation-at-zero homomorphism

ev0 : BpL(Pd(Γ), A)
Γ → Bp(Pd(Γ), A)

Γ

induces a homomorphism on a variant of K-theory

evN∗ : KN
∗ (BpL(Pd(Γ), A)

Γ) → KN
∗ (Bp(Pd(Γ), A)

Γ).

Definition 3.16 Let A be a Γ-Lp operator algebra. For N ≥ 1, we define an N -Lp assembly

map

µN,dA,∗ : KN
∗ (BpL(Pd(Γ), A)

Γ)
evN∗−−→ KN

∗ (Bp(Pd(Γ), A)
Γ) ∼= KN

∗ (A⋊ Γ),

which gives rise to a homomorphism

µNA,∗ : lim
d>0

KN
∗ (BpL(Pd(Γ), A)

Γ) → KN
∗ (A⋊ Γ)

called the N -Lp Baum-Connes assembly map.

Remark 3.7 When A is a C∗-algebra, the N -Lp Baum-Connes assembly map is indeed

the Baum-Connes assembly map. In fact, in the context of C∗-algebras in [1], idempotents

are homotopic to projections and invertibles are homotopic to unitaries. And the norm of the

projection or the unitary is no more than 1.

Definition 3.17 Let A and B be Lp operator algebras, and let ω : [1,∞) → [1,∞) be a

non-decreasing function. We say that FN : KN
i (A) → KN

j (B) is ω-surjective if for any integer

N ≥ 1 and [y] ∈ KN
j (B), there exists [x] ∈ K

ω(N)
i (A) such that

Fω(N)([x]) = [y] in K
ω(N)·N
j (B).

Remark 3.8 By the proof of [3, Theorem 5.17], we know that if Γ y X has finite dynamical

complexity, then the N -Lp Baum-Connes assembly map for Γ y X is ω-surjective, and the

function ω depends on the dynamic asymptotic dimension m and Mayer-Vietoris control pair

(λ, h). In addition, we may use the term controlled-surjective when we do not want to emphasize

the function ω.
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Definition 3.18 Let A be a filtered Lp operator algebra. For 0 < ε < 1
20 , r > 0 and N ≥ 1,

we have a canonical group homomorphism

ιN∗ : Kε,r,N
∗ (A) → K4N

∗ (A), [z]ε,r,N 7→ [κ∗(z)]4N .

Furthermore, the quantitative Lp assembly maps are compatible with the N -Lp assembly

maps, namely, if [z] is the element of KN
∗ (BpL(Pd(Γ), A)

Γ), then

µ36N,d
A,∗ ([z]36N ) = ι9N∗ ◦ µε,r,N,dA,∗ ([z]N ) in K36N

∗ (A⋊ Γ).

Proposition 3.1 There exists a polynomial ρ ≥ 1 with positive coefficients such that for

any filtered Lp operator algebra A, any ε ∈ (0, 1
20ρ(N) ), any r > 0 and any N ≥ 1, the following

holds : Let [x], [x′] be in Kε,r,N
∗ (A) such that ιN∗ ([x]) = ιN∗ ([x′]) in K4N

∗ (A), there exists r′ ≥ r

such that

[x]ρ(N)ε,r′,33N = [x′]ρ(N)ε,r′,33N in K
ρ(N)ε,r′,33N
∗ (A).

Proof (i) In the even case, let (gt)t∈[0,1] be a homotopy of 16N -idempotents in Mn(Ã)

between κ0(x) and κ0(x
′). Then G := (gt) is a 16N -idempotent in C([0, 1],Mn(Ã)). There

exist r′ ≥ r and H := (ht) ∈ C([0, 1],Mn(Ãr′)) such that ‖H − G‖ < ε
68N . In particular, we

have ‖h0 − κ0(x)‖ < ε
68N and ‖h1 − κ0(x

′)‖ < ε
68N . Then ht is an (ε, r′, 17N)-idempotent in

Mn(Ã) for each t ∈ [0, 1]. Also

‖h0 − x‖ < ‖h0 − κ0(x)‖ + ‖κ0(x)− x‖

<
ε

68N
+

2(N + 1)ε

(1 −√
ε)(1− 2

√
ε)

< 6(N + 1)ε

and similarly ‖h1 − x′‖ < 6(N + 1)ε. Then h0 and x are (ε′, r′, 17N)-homotopic, where ε′ =

ε+ 1
4 (6N + 6)2ε2, and similarly for h1 and x′. Hence [x]ε′,r′,17N = [x′]ε′,r′,17N .

(ii) In the odd case, let (ft)t∈[0,1] be a homotopy of 16N -invertibles in Mn(Ã) between x

and x′. The path F := (ft) can be regarded as an invertible element in C([0, 1],Mn(Ã)). Then

there exist r′ ≥ r and W ∈ C([0, 1],Mn(Ãr′)) such that

‖W − F‖ < 1

33N
(ε−max{‖xy − 1‖, ‖yx− 1‖, ‖x′y′ − 1‖, ‖y′x′ − 1‖}),

where y is an (ε, r,N)-inverse for x and y′ is an (ε, r,N)-inverse for x′. ThenW is an (ε, r′, 33N)-

invertible in C([0, 1],Mn(Ã)), and we have a homotopy of (ε, r′, 33N)-invertibles x ∼ W0 ∼
W1 ∼ x′.

3.3 Quantitative statements

Oyono-Oyono established the connection between the Baum-Connes conjecture and the

quantitative Baum-Connes conjecture in [13]. In parallel, we will give the connection between

the Lp Baum-Connes conjecture and the quantitative Lp Baum-Connes conjecture.
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For a Γ-Lp operator algebra A and positive numbers d, d′, r, r′, ε, ε′, N,N ′ with d ≤ d′,

ε ≤ ε′ < 1
20 , r ≤ r′ and 1 ≤ N ≤ N ′, let us consider the following statements:

(1) QIA,∗(d, d′, ε, r,N): For every [x] ∈ KN
∗ (BpL(Pd(Γ), A)

Γ), then

µε,r,N,dA,∗ ([x]) = 0 in Kε,r,9N
∗ (A⋊ Γ)

implies that id,d′,∗([x]) = 0 in K∗(B
p
L(Pd′(Γ), A)

Γ).

(2) QSA,∗(d, ε, ε′, r, r′, N,N ′): For every [y] ∈ Kε,r,N
∗ (A ⋊ Γ), there exists an element [x] ∈

KN ′

∗ (BpL(Pd(Γ), A)
Γ) such that

µε
′,r′,N ′,d
A,∗ ([x]) = ιε

′,r′,9N ′

∗ ([y]) in Kε′,r′,9N ′

∗ (A⋊ Γ).

Using equation (3.1) and Proposition 2.1, we get the following proposition.

Proposition 3.2 Let Γ be a finitely generated group, and let A be a Γ-Lp operator algebra.

For a positive number ε with ε < 1
20 :

(i) Assume that for any r>0,N≥1 and d>0, there exists d′≥d such that QIA,∗(d, d′, ε, r,N)

is satisfied. Then µA,∗ is injective.

(ii) Assume that for any r > 0 and N ≥ 1, there exist positive numbers ε′, d, r′ and N ′ with

ε ≤ ε′ < 1
20 , r ≤ r′, N ≤ N ′ and d > 0 such that QSA,∗(d, ε, ε′, r, r′, N,N ′) is true. Then µA,∗

is surjective.

The following results construct the connection between quantitative injectivity (resp. sur-

jectivity) and injectivity (resp. surjectivity) of the Lp Baum-Connes assembly map.

Theorem 3.1 Let Γ be a discrete group, and let A be a Γ-Lp operator algebra. Then the

following two statements are equivalent :

(i) µℓ∞(N,K (ℓp)⊗A),∗ is injective.

(ii) For 0 < ε < 1
20 , r > 0, N ≥ 1 and d > 0, there exists d′ ≥ d such that QIA,∗(d, d′, ε, r,N)

holds.

Proof The proof relies on Proposition 3.3, which will be proved later. Suppose (ii) holds.

Let [x] be in K∗(B
p
L(Pd(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ) for some d > 0 such that

µdℓ∞(N,K (ℓp)⊗A),∗([x]) = 0 in K∗(ℓ
∞(N,K (ℓp)⊗A)⋊ Γ).

Then there exists N ′ ≥ 1 such that [z] ∈ KN ′

∗ (ℓ∞(N,K (ℓp)⊗A)⋊Γ), thus µε
′,r′,N ′,d
ℓ∞(N,K (ℓp)⊗A),∗([x])

is an element of Kε′,r′,9N ′

∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ). By equation (3.1), we obtain that

ι∗(µ
ε′,r′,N ′,d
ℓ∞(N,K (ℓp)⊗A),∗([x])) = 0 for any ε ∈

(
0,

1

20

)
.

Hence, by Proposition 2.2 (ii) and equation (3.2), there exist ε ≥ ε′, r ≥ r′ and N ≥ N ′ such

that

µε,r,N,dℓ∞(N,K (ℓp)⊗A),∗([x]) = 0 in Kε,r,9N
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).
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According to Proposition 3.3, we have an isomorphism

K∗(B
p
L(Pd(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ)
∼=−→ K∗(B

p
L(Pd(Γ), A)

Γ)N (3.3)

induced on the j-th factor by the projection ℓ∞(N,K (ℓp) ⊗ A) → K (ℓp) ⊗ A and up to the

Morita equivalence

K∗(B
p
L(Pd(Γ), A)

Γ) ∼= K∗(B
p
L(Pd(Γ),K (ℓp)⊗A)Γ). (3.4)

Assume that ([xm])m∈N is the element in K∗(B
p
L(Pd(Γ), A)

Γ)N corresponding to [x] under this

identification, and let d′ ≥ d be a positive number such that QIA,∗(d, d′, ε, r,N) holds. By

naturality of the quantitative Lp assembly maps, we get that

µε,r,N,dA,∗ ([xm]) = 0 in Kε,r,9N
∗ (BpL(Pd(Γ), A)

Γ),

which implies that id,d′,∗([xm]) = 0 in K∗(B
p
L(Pd′(Γ), A)

Γ) for each integer m. Finally, using

equation (3.3), we obtain that

id,d′,∗([x]) = 0 in K∗(B
p
L(Pd′(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ).

Hence µℓ∞(N,K (ℓp)⊗A),∗ is injective. Thus (ii) implies (i).

Suppose (ii) is false. In the even case, there exist ε in
(
0, 1

20

)
, r > 0, N ≥ 1 and d > 0 such

that for all d′ ≥ d, the statement QIA,0(d, d
′, ε, r,N) does not hold. So it suffices to prove that

µℓ∞(N,K (ℓp)⊗A),0 is not injective. Let (dm)m∈N be an increasing and unbounded sequence of

positive numbers such that dm ≥ d for all m ∈ N. For each positive integer m, let [xm] be in

KN
0 (BpL(Pd(Γ), A)

Γ) such that

µε,r,N,dA,0 ([xm]) = 0 in Kε,r,9N
0 (A⋊ Γ)

but

id,di,0([xm]) 6= 0 in K0(B
p
L(Pdm(Γ), A)Γ).

Assume that [x] is the element in KN
0 (BpL(Pd (Γ), ℓ

∞(N, K (ℓp) ⊗ A))Γ) corresponding to

([xm])m∈N under the identification of equation (3.3). Let (em)m∈N be a family of (ε, r, 9N)-

idempotents with em in Mnk
(Ã⋊ Γ) for some nk such that

µε,r,N,dℓ∞(N,K (ℓp)⊗A),0([x]) = [(em)m∈N]ε,r,9N in Kε,r,9N
0 (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).

By naturality of µε,r,N,dA,0 , we know that [em]ε,r,9N = 0 in Kε,r,N
0 (A⋊Γ) for all integers m, hence

ι0([(em)m∈N]ε,r,9N ) = 0 in K0(ℓ
∞(N,K (ℓp)⊗A)⋊ Γ).

This gives µdℓ∞(N,K (ℓp)⊗A),0([x]) = ι0 ◦ µε,r,N,dℓ∞(N,K (ℓp)⊗A),0([x]) = 0. For each positive integer m,

id,dm,0([xm]) 6= 0 implies id,dm,0([x]) 6= 0, thus we see that µℓ∞(N,K (ℓp)⊗A),0 is not injective,

hence (i) is false. In the odd case, we have a similar proof.
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Theorem 3.2 Let Γ be a discrete group. Assume that for any Γ-Lp operator algebra A,

there exists a polynomial ρ ≥ 1 with positive coefficients such that for any ε in
(
0, 1

20ρ(N)

)
, r > 0

and N ≥ 1, there exist r′ ≥ r, N ′ ≥ N and d > 0 such that QSA,∗(d, ε, ρ(N)ε, r, r′, N,N ′) holds.

Then µℓ∞(N,K (ℓp)⊗A),∗ is surjective.

Proof The proof relies on Proposition 3.3, which will be proved later. Let ρ be as in

Proposition 2.1. Suppose the statement QSA,∗(d, ε, ρ(N)ε, r, r′, N,N ′) holds. Let [z] be the

element in K∗(ℓ∞(N,K (ℓp) ⊗ A) ⋊ Γ) and let [y] be in Kε,r′,N ′

∗ (ℓ∞(N,K (ℓp) ⊗ A) ⋊ Γ) such

that ι∗([y]) = [z] with ε ∈
(
0, 1

20ρ(N)

)
, r > 0 and N ≥ 1. Let [yi] be the image of [y] under the

composition

Kε,r,N
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ) → Kε,r,N

∗ (K (ℓp)⊗A⋊ Γ)
∼=−→ Kε,r,N

∗ (A⋊ Γ), (3.5)

where the first map is induced on the j-th factor by the projection

ℓ∞(N,K (ℓp)⊗A) → K (ℓp)⊗A

and the second map is the Morita equivalence of Propositions 2.4–2.5. Let d, r′ and N ′ be

positive numbers with r′ ≥ r and N ′ ≥ N such that QSA,∗(d, ε, ρ(N)ε, r, r′, N,N ′) holds. Then

for each positive integer m, there exists [xm] in KN ′

∗ (BpL(Pd(Γ), A)
Γ) such that

µ
ρ(N)ε,r′,N ′,d
A,∗ ([xm]) = ι

ρ(N)ε,r′,9N ′

∗ ([ym]) in K
ρ(N)ε,r′,9N ′

∗ (A⋊ Γ).

Let [x] be the element of KN ′

∗ (BpL(Pd(Γ), ℓ
∞(N,K (ℓp) ⊗ A))Γ) corresponding to ([xm])m∈N

under the identification of equation (3.3). By naturality of the quantitative Lp assembly maps,

we get that

µ
ρ(N)ε,r′,N ′,d
ℓ∞(N,K (ℓp)⊗A),∗([x]) = ι

ρ(N)ε,r′,9N ′

∗ ([y])

in K
ρ(N)ε,r′,9N ′

∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ). Hence, we conclude that

µdℓ∞(N,K (ℓp)⊗A),∗([x]) = ι∗([y]) = [z],

and therefore µℓ∞(N,K (ℓp)⊗A),∗ is surjective.

The next theorem relates controlled-surjectivity of the N -Lp Baum-Connes assembly map

and quantitative surjectivity.

Theorem 3.3 Let Γ be a discrete group. Assume that for any Γ-Lp operator algebra A and

any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞) such that

µN

ℓ∞(N,K (ℓp)⊗A),∗ is ω-surjective. Then for some polynomial ρ ≥ 1 with positive coefficients and

for any ε in
(
0, 1

20ρ(9Nω(4N))

)
, r > 0 and N ≥ 1, there exist r′ ≥ r, N ′ ≥ N and d > 0 such

that QSA,∗(d, ε, ρ(9Nω(4N))ε, r, r′, N,N ′) holds.

Proof Assume that this statement does not hold. Then there exist

(1) ε in
(
0, 1

20ρ(N)

)
, r > 0 and N ≥ 1,



890 H. Wang, Y. R. Wang, J. G. Zhang and D. P. Zhou

(2) an unbounded increasing sequence (rm)m∈N with rm ≥ r,

(3) an unbounded increasing sequence (Nm)m∈N with Nm ≥ N ,

(4) an unbounded increasing sequence (dm)m∈N with dm > 0,

(5) an element [ym] in Kε,r,N
∗ (A⋊ Γ),

such that for each m ∈ N and any [xm] in KNm∗ (BpL(Pdm(Γ), A)Γ),

ι
ρ(9Nω(4N))ε,rm,9Nm
∗ ([ym]) 6= µ

ρ(9Nω(4N))ε,rm,Nm,dm
A,∗ ([xm])

in K
ρ(9Nω(4N))ε,rm,9Nm
∗ (A⋊ Γ). According to equation (3.5), there exists

[y] ∈ Kε,r,N
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ)

such that for every positive integer m, the image of [y] is [ym]. Since µN

ℓ∞(N,K (ℓp)⊗A),∗ is ω-

surjective, then for some d′ > 0 there exists [x] in K
ω(4N)
∗ (BpL(Pd′(Γ), ℓ

∞(N,K (ℓp) ⊗ A))Γ)

such that

ιN∗ ([y]) = µ
ω(4N),d′

ℓ∞(N,K (ℓp)⊗A),∗([x]) in K
ω(4N)·4N
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).

Since the quantitative Lp assembly maps are compatible with the ω(4N)-Lp assembly maps,

we get that

µ4N1,d
′

ℓ∞(N,K (ℓp)⊗A),∗([x]4N1
) = ιN1

∗ ◦ µε,r,ω(4N),d′

ℓ∞(N,K (ℓp)⊗A),∗([x]ω(4N)),

where N1 = max{ω(4N) ·N, 9ω(4N)}. We now apply Proposition 3.1 and conclude that there

exists r′ ≥ r such that

ι
ρ(9Nω(4N))ε,r′,33N1

∗ ◦ µε,r,ω(4N),d′

ℓ∞(N,K (ℓp)⊗A),∗([x]) = ι
ρ(9Nω(4N))ε,r′,33N1

∗ ([y]).

However, if we choose m such that rm ≥ r′, Nm ≥ 33N1 and dm ≥ d′, using naturality of the

Lp assembly map and equation (3.2), we obtain that

ι
ρ(9Nω(4N))ε,rm,9Nm
∗ ([ym]) = µ

ρ(9Nω(4N))ε,rm,Nm,dm
A,∗ ([xm]),

which contradicts our assumption.

In the proof of (i) implying (ii) of Theorems 3.1 and 3.3, replacing the algebra ℓ∞(N,K (ℓp)⊗
A) by

∏
i∈N

(K (ℓp)⊗Ai) for a family of Γ-Lp operator algebras (Ai)i∈N, we can obtain the following

theorem.

Theorem 3.4 Let Γ be a discrete group.

(i) Assume that for any Γ-Lp operator algebra A, the Lp Baum-Connes assembly map µA,∗

is injective. Then for 0 < ε < 1
20 , r > 0, N ≥ 1 and d > 0, there exists d′ ≥ d such that

QIA,∗(d, d′, ε, r,N) holds.

(ii) Assume that for any Γ-Lp operator algebra A and for any integer N , there exists a

non-decreasing function ω : [1,∞) → [1,∞) such that the N -Lp Baum-Connes assembly map

µN
A,∗ is ω-surjective. Then for some polynomial ρ ≥ 1 with positive coefficients and for any

ε in
(
0, 1

20ρ(9Nω(4N))

)
, r > 0 and N ≥ 1, there exist d > 0, r′ ≥ r and N ′ ≥ N such that

QSA,∗(d, ε, ρ(9Nω(4N))ε, r, r′, N,N ′) holds.
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Remark 3.9 To complete the proof of Theorems 3.1 and 3.3, we need Proposition 3.3 which

is based on a couple of lemmas.

Lemma 3.1 Let A be a unital Lp operator algebra. There exists a map ϕ : (0,∞) → (0,∞)

such that :

(1) If e and f are homotopic idempotents in Mn(A), then there exist k,N ∈ N with n+ k ≤
N , and a homotopy of idempotents (Et)t∈[0,1] in MN(A) between diag(e, Ik, 0) and diag(f, Ik, 0)

such that ‖Et − Es‖ ≤ ε when |s− t| ≤ ϕ(ε) for any ε > 0 and any s, t ∈ [0, 1].

(2) If u and v are homotopic invertibles in GLn(A), then there exist an integer k and a

homotopy (Ut)t∈[0,1] in GLn+k(A) between diag(u, Ik) and diag(v, Ik) such that ‖Us − Ut‖ ≤ ε

when |s− t| ≤ φ(ε) for any ε > 0 and any s, t ∈ [0, 1].

Proof Let us prove the property in the case of idempotents, the case of invertibles being

similar. Without loss of generality, we suppose n = 1.

(i) Recall from [1, Propositions 4.3.3 and 3.4.3] that if e and f are idempotents in A, and

there exists 0 < δ < 1
‖2e−1‖ such that ‖e − f‖ ≤ δ, then f = z−1ez for some invertible z in A

with ‖z− 1‖ < 1. Hence there exists a ∈ A with ‖a‖ < log 2 such that z = exp(a). Considering

the homotopy (et)t∈[0,1] = (exp(ta) ·e ·exp(−ta))t∈[0,1] between e and f , we see that there exists

a map ϕ1 : (0,∞) → (0,∞) such that ‖es− et‖ ≤ ε when |s− t| ≤ ϕ1(ε) for any ε > 0 and any

s, t ∈ [0, 1].

(ii) For t ∈ [0, 1], let ct = cosπt2 and st = sinπt2 . Define

Et =

(
e 0
0 0

)
+

(
ct −st
st ct

)(
1− e 0
0 0

)(
ct st
−st ct

)

in M2(A). Then we know that (Et)t∈[0,1] is a homotopy of idempotents between diag(1, 0) and

diag(e, 1 − e). Also, there exists a map ϕ2 : (0,∞) → (0,∞) such that ‖Es − Et‖ ≤ ε when

|s− t| ≤ ϕ2(ε) for any ε > 0 and any s, t ∈ [0, 1].

(iii) In the general case, let (et)t∈[0,1] be a homotopy of idempotents between e and f , and

let 0 = t0 < t1 < · · · < tk = 1 be such that

‖eti − eti−1
‖ ≤ δ for i = 1, · · · , k.

Then we have the following sequence of homotopies of idempotents in M2k+1(A) in which the

first and last homotopies are conjugated by some permutation matrices:

h0
h0
t∼ h1

h1
t∼ h2

h2
t∼ h3

h3
t∼ h4

h4
t∼ h5, where

h0 = diag(et0 , Ik, 0k),

h1 = diag(et0 , 1, 0, · · · , 1, 0),
h2 = diag(et0 , 1− et1 , et1 , · · · , 1− etk , etk),

h3 = diag(et0 , 1− et0 , et1 , 1− et1 , · · · , etk−1
, 1− etk−1

, etk),

h4 = diag(1, 0, · · · , 1, 0, etk),
h5 = diag(etk , Ik, 0k).
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If we let ϕ = min{ϕ1, ϕ2}, then the result is obtained from cases (i) and (ii). Indeed, the

fact that ‖h3 − h2‖ ≤ δ implies that for every m ∈ {0, 4}, there are homotopies (hmt )t∈[0,1]

between hm and hm+1 such that ‖hms − hmt ‖ ≤ ε when |s − t| ≤ ϕ(ε) for any ε > 0 and any

s, t ∈ [0, 1].

In the next lemma, the injectivity of ΦA
∗ follows immediately from Lemma 3.1, and ΦA

∗ is

clearly surjective. Hence the following result is obtained.

Lemma 3.2 Let A = (Ai)i∈I be a family of unital Lp operator algebras. Let

ΦA
∗ : K∗

(∏

i∈I
(K (ℓp)⊗Ai)

)
→

∏

i∈I
K∗(K (ℓp)⊗Ai) ∼=

∏

i∈I
K∗(Ai)

be the homomorphism induced on the j-th factor by the projection

∏

i∈I
(K (ℓp)⊗Ai) → K (ℓp)⊗Aj .

Then ΦA
∗ is an isomorphism.

Remark 3.10 Observe that K (ℓp)⊗K (ℓp)⊗Ai is isometrically isomorphic to K (ℓp)⊗Ai
for each i ∈ N, thus ΦA

∗ is an isometric isomorphism.

As a consequence of this lemma, we have the following important proposition.

Proposition 3.3 Let Γ be a discrete group and let A = (Ai)i∈N be a family of Γ-Lp operator

algebras. Suppose Ai ⊗ K (ℓp) is equipped with the diagonal action, the action of Γ on K (ℓp)

is trivial. Let

ΦΓ,A
∗ : K∗

(
BpL

(
Pd(Γ),

∏

i∈I
(K (ℓp)⊗Ai)

)Γ)
→

∏

i∈I
K∗(B

p
L(Pd(Γ),K (ℓp)⊗Ai)

Γ)

∼=
∏

i∈I
K∗(B

p
L(Pd(Γ), Ai)

Γ)

be the homomorphism induced on the j-th factor by the projection

∏

i∈I
(K (ℓp)⊗Ai) → K (ℓp)⊗Aj .

Then ΦΓ,A
∗ is an isomorphism.

Proof Put Bi = K (ℓp) ⊗ Ai, i ∈ I. For any locally compact space X equipped with an

action of Γ, we define

ΦX∗ : K∗
(
BpL

(
X,

∏

i∈I
Bi

)Γ)
→

∏

i∈I
K∗(B

p
L(X,Bi)

Γ).

The homomorphism induced by the projection on the j-th factor is

ΦXj,∗ : K∗
(
BpL

(
X,

∏

i∈I
Bi

)Γ)
→ K∗(B

p
L(X,Bj)

Γ).
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Let Z0, · · · , Zn be the skeleton decomposition of Pd(Γ), then Zj is a locally finite simplicial

complex of dimension j, and endowed with a proper, cocompact and type preserving action of

Γ.

Next, we prove that Φ
Zj
∗ is an isomorphism by induction on j.

(i) For j = 0, the 0-skeleton Z0 is a finite union of orbits, thus it suffices to prove that

Φ
Γ/F
∗ is an isomorphism when F is a finite subgroup of Γ. For any Γ-Lp operator algebra B,

let χ0 be the charateristic map of F in Γ/F , and let π be a representation of C0(Γ/F ) in Ed.

Then Ed0 = π(χ0) ·Ed is stable under the action of group F and under the endmorphism of a

bounded linear operator T . The element restricted to Ed0 defines an element of K∗(B
p
L(C, B)F )

and there is a natural restriction isomorphism

RBF,Γ : K∗(B
p
L(Γ/F,B)Γ) → K∗(B

p
L(C, B)F ) ∼= K∗(B ⋊ F ).

By naturality, we obtain the following commutative diagram:

K∗
(
BpL

(
Γ/F,

∏
i∈I

Bi

)Γ) Φ
Γ/F
j,∗−−−−→ K∗(B

p
L(Γ/F,Bj)

Γ)

R

∏

i∈I
Bi

F,Γ

y
yRBj

F,Γ

K∗
( ∏
i∈I

Bi ⋊ F
)

−−−−→ K∗(Bj ⋊ F ),

where the bottom row is induced by the homomorphism

∏

i∈I
Bi ⋊ F → Bj ⋊ F

determined by the projection on the j-th factor
∏
i∈I

Bi → Bj. Since F is finite, we see that

∏
i∈I

Bi ⋊ F ∼=
( ∏
i∈I

Bi
)
⋊ F . Applying Lemma 3.2, we have an isomorphism

K∗
((∏

i∈I
Bi

)
⋊ F

)
∼= K∗

(∏

i∈I
Bi ⋊ F

)
→

∏

i∈I
K∗(Bi ⋊ F ).

Hence Φ
Γ/F
∗ is an isomorphism.

(ii) Suppose Φ
Zj−1

∗ is an isomorphism, and it remains to prove that Φ
Zj
∗ is an isomorphism.

The short exact sequence

0 → C0(Zj\Zj−1) → C0(Zj) → C0(Zj−1) → 0

induces a natural long exact sequence

→ K∗(B
p
L(Zj−1, ·)Γ) → K∗(B

p
L(Zj , ·)Γ) → K∗(B

p
L(Zj\Zj−1, ·)Γ) → K∗+1(B

p
L(Zj−1, ·)Γ) →

and hence by naturality, we obtain a commutative diagram
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K∗(B
p
L(Zj−1, B)Γ) //

Φ
Zj−1
∗

��

K∗(B
p
L(Zj , B)Γ) //

Φ
Zj
∗

��

K∗(B
p
L(Zj\Zj−1, B)Γ) //

Φ
Zj\Zj−1
∗

��

K∗+1(B
p
L(Zj−1, B)Γ)

Φ
Zj−1

∗+1

��∏
i∈I

K∗(B
p
L(Zj−1)

Γ) //
∏
i∈I

K∗(B
p
L(Zj)

Γ) //
∏
i∈I

K∗(B
p
L(Zj\Zj−1)

Γ) //
∏
i∈I

K∗+1(B
p
L(Zj−1)

Γ),

where
∏
i∈I

Bi and
∏
i∈I

K∗(B
p
L(Zj , Bi)

Γ) are denoted by B and
∏
i∈I

K∗(B
p
L(Zj)

Γ) respectively.

We denote by Ij the interior of the standard j-simplex. Since the action of Γ is type preserving,

then

Zj\Zj−1
∼= Ij × Cj ,

where Cj is the set of center of j-simplices of Zj , Γ acts trivially on Ij . Together with the Bott

periodicity, we have a commutative diagram

K∗
(
BpL

(
Zj\Zj−1,

∏
i∈I

Bi

)Γ)
−−−−→ K∗+1

(
BpL

(
Cj ,

∏
i∈I

Bi

)Γ)

Φ
Zj\Zj−1
∗

y
yΦ

Cj
∗+1

∏
i∈I

K∗(B
p
L(Zj\Zj−1, Bi)

Γ) −−−−→ ∏
i∈I

K∗+1(B
p
L(Cj , Bi)

Γ).

Finally, Φ
Cj
∗ is an isomorphism obtained from case (i), and thus Φ

Zj\Zj−1

∗ is an isomorphism.

According to the induction hypothesis and the five lemma, we know that Φ
Zj
∗ is an isomorphism.

4 Persistence Approximation Property

In this section, we introduce the persistence approximation property for filtered Lp operator

algebras. In the case of a reduced crossed product of an Lp operator algebra by a finitely

generated group, we find a sufficient condition for the persistence approximation property.

Let A be a filtered Lp operator algebra. Applying Proposition 2.2 (i), we see that for any

ε ∈
(
0, 1

20

)
and any N ≥ 1, there exists a surjective map

lim
r>0

Kε,r,N
∗ (A) → KN

∗ (A)

induced by a family of relaxation of control maps (ι∗)r>0. Moreover, if ε > 0 is small enough,

then for any r > 0, any N ≥ 1 and any [x] ∈ Kε,r,N
∗ (A), there exist positive numbers ε′ ∈

[
ε, 1

20

)

independent of x and A, r′ ≥ r and N ′ ≥ N such that

ι∗([x]) = 0 in K∗(A) ⇒ ιε
′,r′,N ′

∗ ([x]) = 0 in Kε′,r′,N ′

∗ (A).

However, we may wonder whether this r′ depends on x, in other words whether the family

(Kε,r,N
∗ (A))0<ε< 1

20
,r>0,N≥1 has a persistence approximation for K∗(A) in the following sense:
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For any sufficiently small ε ∈
(
0, 1

20

)
, any r > 0 and any N ≥ 1, there exist ε′ ∈

[
ε, 1

20

)
, r′ ≥ r

and N ′ ≥ N such that for any [x] ∈ Kε,r,N
∗ (A), we have

ιε
′,r′,N ′

∗ ([x]) 6= 0 in Kε′,r′,N ′

∗ (A) ⇒ ι∗([x]) 6= 0 in K∗(A).

Therefore, we consider the following statement: For a filtered Lp operator algebraA and positive

numbers ε, r and N ≥ 1, there exist ε′ in
[
ε, 1

20

)
, r′ ≥ r and N ′ ≥ N :

PA∗(A, ε, ε′, r, r′, N,N ′): For any [x] ∈ Kε,r,N
∗ (A),

ι∗([x]) = 0 in K∗(A) ⇒ ιε
′,r′,N ′

∗ ([x]) = 0 in Kε′,r′,N ′

∗ (A).

4.1 The case of crossed products

Theorem 4.1 Let Γ be a finitely generated group, and let A be a Γ-Lp operator algebra.

Assume that

(1) Γ admits a cocompact universal example for proper actions.

(2) For any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp Baum-Connes assembly map for Γ with coefficients in

ℓ∞(N,K (ℓp)⊗A)

is ω-surjective.

(3) The Lp Baum-Connes assembly map for Γ with coefficients in A is injective.

Then for any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any ε in
(
0, 1

20λPA

)
and any r>0, there exist r′≥r and N ′≥ N such that PA∗(A⋊Γ, ε, λPAε, r, r

′, N,N ′)

holds.

Remark 4.1 Here, the constant λPA does not depend on r, but on the positive integer N .

Proof Let A be a Γ-Lp operator algebra, and let Γ admit a cocompact universal example for

proper actions. Assume that for every positive integer N , there exists a non-decreasing function

ω such that the N -Lp Baum-Connes assembly map with coefficients in ℓ∞(N,K (ℓp) ⊗ A) is

ω-surjective and the Lp Baum-Connes assembly map with coefficients in A is injective, then

there exist positive numbers d and d′ with d ≤ d′ such that the following two conditions are

satisfied:

(1) For every N ∈ N and any [z] in KN
∗ (ℓ∞(N,K (ℓp) ⊗ A) ⋊ Γ), there exists [x] in

K
ω(N )
∗ (BpL(Pd(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ) such that

µ
ω(N ),d
ℓ∞(N,K (ℓp)⊗A),∗([x]) = [z] in K

ω(N )·N
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).

(2) For any [x] in K∗(B
p
L(Pd(Γ), A)

Γ) such that µdA,∗([x]) = 0, we have

id,d′,∗([x]) = 0 in K∗(B
p
L(Pd′(Γ), A)

Γ),
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where id,d′,∗ : K∗(B
p
L(Pd(Γ), A)

Γ) → K∗(B
p
L(Pd′(Γ), A)

Γ) is induced by the inclusion Pd(Γ) →֒
Pd′(Γ).

Fix such d and d′, and let ρ be as in Proposition 3.1, pick (λ, h) as in Lemma 2.1 and put

λPA = ρ(9λNω(4λN )). Assume that there exists N ≥ 1 such that this statement does not hold.

Then there exist

(1) ε ∈
(
0, 1

20λPA

)
and r > 0,

(2) an unbounded increasing sequence (ri)i∈N with ri ≥ r,

(3) an unbounded increasing sequence (Ni)i∈N with Ni ≥ N ,

(4) a sequence of elements ([xi])i∈N with [xi] ∈ Kε,r,N
∗ (A⋊ Γ),

such that, for each i ∈ N,

ι∗([xi]) = 0 in K∗(A⋊ Γ)

and

ιλPAε,ri,Ni
∗ ([xi]) 6= 0 in KλPAε,ri,Ni

∗ (A⋊ Γ).

Since

ℓ∞(N,K (ℓp)⊗A)⋊ Γhε,Nr = ℓ∞(N,K (ℓp)⊗A⋊ Γhε,Nr)

and according to Lemma 2.1, there exists an element

[x] ∈ K
λNε,hε,Nr,λN
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ)

that maps to ι
λNε,hε,N r,λN
∗ ([xi]), for all integers i under the composition

K
λNε,hε,Nr,λN
∗ (ℓ∞(N,K (ℓp)⊗A)⋊Γ) → K

λNε,hε,Nr,λN
∗ (K (ℓp)⊗A⋊Γ)

∼=−→ K
λNε,hε,Nr,λN
∗ (A⋊Γ),

where the first map is induced by the j-th projection

ℓ∞(N,K (ℓp)⊗A) → K (ℓp)⊗A (4.1)

and the isomorphism is the Morita equivalence of Propositions 2.4–2.5. Note that ιλN∗ ([x]) is

in K4λN∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ). Let

[z] ∈ K
ω(4λN )
∗ (BpL(Pd(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ)

such that

µ
ω(4λN ),d
ℓ∞(N,K (ℓp)⊗A),∗([z]) = ιλN

∗ ([x]) in K
ω(4λN )·4λN
∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).

Since the quantitative Lp assembly maps are compatible with the ω(4λN )-Lp assembly maps,

we obtain that

µ4N1,d
ℓ∞(N,K (ℓp)⊗A),∗([z]4N1

) = ιN1

∗ ◦ µλNε,hε,Nr,ω(4λN ),d

ℓ∞(N,K (ℓp)⊗A),∗ ([z]ω(4λN )),
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where N1 = max{ω(4λN) · λN , 9ω(4λN )}. However, according to Proposition 3.1, there exists

R ≥ hε,Nr such that

ιλPAε,R,33N1

∗ ([x]) = ιλPAε,R,33N1

∗ ◦ µλNε,hε,N r,ω(4λN ),d

ℓ∞(N,K (ℓp)⊗A),∗ ([z]ω(4λN ))

= µλPAε,R,33N1,d
ℓ∞(N,K (ℓp)⊗A),∗([z]33N1

).

By Proposition 3.3, we have an isomorphism

K∗(B
p
L(Pd(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ)
∼=−→

∏

j∈N

K∗(B
p
L(Pd(Γ), A)

Γ) (4.2)

induced by the j-th projection in equation (4.1). Let ([zj ])j∈N be the element of

∏

j∈N

K∗(B
p
L(Pd(Γ), A)

Γ)

corresponding to [z] under this identification. Using the compatibility of the quantitative Lp

assembly maps with the usual ones, we obtain by naturality that µdAi,∗([zi]) = 0, for every i ∈ N

and hence

id,d′,∗([zi]) = 0 in K∗(B
p
L(Pd′(Γ), A)

Γ).

Using once more equation (4.2), we deduce that

id,d′,∗([z]) = 0 in K∗(B
p
L(Pd′(Γ), ℓ

∞(N,K (ℓp)⊗A))Γ).

Let (pt)t∈[0,1] be a homotopy of idempotents (resp. invertibles) in Mn(B̃) between id,d′,∗([z])

and 0, then P := (pt) is an idempotent (resp. invertible) element in C([0, 1],Mn(B̃)), where

B = BpL(Pd′(Γ), ℓ
∞(N,K (ℓp)⊗A))Γ. Put N ′ = max{33N1, ‖P‖}. Since

µλPAε,R,N
′,d

ℓ∞(N,K (ℓp)⊗A),∗([z]) = µλPAε,R,N
′,d′

ℓ∞(N,K (ℓp)⊗A),∗ ◦ id,d′,∗([z]),

then

ιλPAε,R,N
′

∗ ([x]) = 0 in KλPAε,R,N
′

∗ (ℓ∞(N,K (ℓp)⊗A)⋊ Γ).

By naturality, we see that ιλPAε,R,N
′

∗ ([xi]) = 0 in KλPAε,R,N
′

∗ (A⋊ Γ) for all integers i. Picking

an integer i such that ri ≥ R and Ni ≥ N ′, we have

ιλPAε,ri,Ni
∗ ([xi]) = ιλPAε,ri,Ni

∗ ◦ ιλPAε,R,N
′

∗ ([xi]) = 0,

which contradicts our assumption.

For any Lp operator algebra A, the Lp Baum-Connes assembly map for Γ with coefficients

in C0(Γ, A) is an isomorphism and C0(Γ, A) ⋊ Γ ∼= A ⊗ K (ℓp(Γ)), hence by Theorem 4.1, we

immediately obtain the following corollary.
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Corollary 4.1 Let Γ be a finitely generated group, and let A be an Lp operator algebra.

Assume that

(1) Γ admits a cocompact universal example for proper actions ;

(2) for any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp Baum-Connes assembly map for Γ with coefficients in

ℓ∞(N, C0(Γ,K (ℓp)⊗A))

is ω-surjective.

Then for any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any ε in
(
0, 1

20λPA

)
and any r > 0, there exist r′ ≥ r and N ′ ≥ N such that PA∗(A⊗K(ℓp(Γ)), ε, λPAε,

r, r′, N,N ′) holds.

In particular, if we put A = C, we have the following conclusion.

Proposition 4.1 Let Γ be a finitely generated group. Assume that

(1) Γ admits a cocompact universal example for proper actions ;

(2) for any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp Baum-Connes assembly map for Γ with coefficients in

ℓ∞(N, C0(Γ,K (ℓp)))

is ω-surjective.

Then for any N ≥ 1, there exists a universal constant λ ≥ 1 such that for any ε ∈
(
0, 1

20λ

)

and any r > 0, there exist R ≥ r and N ′ ≥ N such that the following holds :

(1) If u is an (ε, r,N)-invertible of K(ℓp(Γ) ⊗ ℓp) + CIdℓp(Γ)⊗ℓp, then u is connected to

Idℓp(Γ)⊗ℓp by a homotopy of (λε,R,N ′)-invertibles.

(2) If e and f are (ε, r,N)-idempotents of K(ℓp(Γ)⊗ ℓp) such that

rankκ0(e) = rankκ0(f),

then e and f are connected by a homotopy of (λε,R,N ′)-idempotents.

5 Applications Involving Lp Coarse Baum-Connes Conjecture

In this section, X will be a discrete metric space with bounded geometry and A will be

an Lp operator algebra. We will present a result on the persistence approximation property

of the Lp Roe algebra for X . This result is applied to show that if any such space is coarsely

uniformly contractible and satisfies controlled-surjectivity of the N -Lp coarse Baum-Connes

assembly map and injectivity of the Lp coarse Baum-Connes assembly map, then the Lp Roe

algebra Bp(X,A) has the persistence approximation property.

Assume that A = (Ai)i∈N is any family of filtered Lp operator algebras. For each i ∈ N,

there is a representation of Ai on an Lp space Ei. We define E :=
⊕
i∈N

Ei = {(ei)i∈N | ei ∈ Ei}
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with the norm ‖(e1, e2, · · · )‖ =
{ ∑
i∈N

|ei|p
} 1

p . Clearly, E is an Lp space. Let L′
d = ℓp(Qd)⊗E⊗ℓp

be a certain Lp-X-module defined in [21], and let C[L′
d, Ai] denote the algebra of all E-locally

compact operators on L′
d with finite propagation. For any r > 0, we set

A∞
d,r =

∏

i∈N

C[L′
d, Ai]r,

and we define the Lp operator algebra A∞
d as the closure of

⋃
r>0

A∞
d,r in

∏
i∈N

Bp(Pd(X), Ai).

Lemma 5.1 Let X be a discrete metric space with bounded geometry, and let A = (Ai)i∈N

be a family of filtered Lp operator algebras. Then there exist a control pair (λ, h) independent

of the family A and a (λ, h)-isomorphism

G = (Gε,r,N )0<ε< 1
20
,r>0,N≥1 : K∗(A∞

d ) →
∏

i∈N

K∗(B
p(Pd(X), Ai)),

where

Gε,r,N : Kε,r,N
∗ (A∞

d ) →
∏

i∈N

Kε,r,N
∗ (Bp(Pd(X), Ai))

is induced on the j-th factor by the projection
∏
i∈N

Bp(Pd(X), Ai) → Bp(Pd(X), Aj).

Proof Let us first consider the even case. For 0 < ε < 1
20 , r > 0 and N ≥ 1, there exist a

control pair (λ, h) and a (λ, h)-controlled morphism

Gε,r,N : Kε,r,N
∗ (A∞

d ) →
∏

i∈N

Kε,r,N
∗ (Bp(Pd(X), Ai))

induced on the j-th factor by the projection
∏
i∈N

Bp(Pd(X), Ai) → Bp(Pd(X), Aj). For any

positive integer i and n, we know that

Mn(ℓ
∞(X,Ai ⊗ K (ℓp))) ⊂ ℓ∞(X,Ai)⊗ K (ℓp).

Hence, Mn(B
p(Pd(X), Ai)) ⊂ Bp(Pd(X), Ai). Assume that x is in

∏
i∈N

Kε,r,N
0 (Bp(Pd(X), Ai)),

then we can write [x] = ([xi])i∈N for [xi] ∈ Kε,r,N
0 (Bp(Pd(X), Ai)). Let (ei)i∈N be a family

of (ε, r,N)-idempotents with ei in some Mn( ˜Bp(Pd(X), Ai)) such that [x]ε,r,N = [(ei)i∈N]ε,r,N ,

then Gε,r,N is (λ, h)-surjective.

According to the item (i) of Proposition 2.3, we construct the Lipschitz homotopy of (ε, r,N)-

idempotents in larger matrix size, thus we can prove that Gε,r,N is (λ, h)-injective. In the odd

case, we have a similar proof.

Lemma 5.2 Let X be a discrete metric space with bounded geometry, and let A = (Ai)i∈N

be a family of filtered Lp operator algebras, then we have a filtered isomorphism

φ : Bp
(
Pd(X),

∏

i∈N

Ai

)
→ A∞

d .
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Proof By the universal property of Bp
(
Pd(X),

∏
i∈N

Ai
)
, there exists a filtered homomor-

phism

Bp
(
Pd(X),

∏

i∈N

Ai

)
→ A∞

d .

Note that the filtered homomorphism φ maps the dense subalgebra C
[
L′
d,

∏
i∈N

Ai
]
to a dense

subalgebra of A∞
d , thus we can easily get that φ is surjective. It thus suffices to show that φ

is injective. For every positive integer i, we have the inclusion Ai →
∏
i∈N

Ai. Hence, we have a

filtered homomorphism

Bp(Pd(X), Ai) → Bp
(
Pd(X),

∏

i∈N

Ai

)
,

which induces a filtered homomorphism

ψ : A∞
d → Bp

(
Pd(X),

∏

i∈N

Ai

)

such that the composition

Bp
(
Pd(X),

∏

i∈N

Ai

)
φ−→ A∞

d
ψ−→ Bp

(
Pd(X),

∏

i∈N

Ai

)

is an identity map. Let x be in Bp
(
Pd(X),

∏
i∈N

Ai
)
such that φ(x) = 0 in A∞

d , then x =

ψ(φ(x)) = 0, thus φ is injective. This implies that φ is a filtered isomorphism.

The preceding Lemma 5.2 yields the following.

Corollary 5.1 Let X be a discrete metric space with bounded geometry, and let A = (Ai)i∈N

be a family of filtered Lp operator algebras, then there exist a control pair (λ, h) and a (λ, h)-

isomorphism

K∗
(
Bp

(
Pd(X),

∏

i∈N

Ai

))
→

∏

i∈N

K∗(B
p(Pd(X), Ai)).

Moreover, passing to the limit we obtain

K∗
(
Bp

(
X,

∏

i∈N

Ai

))
→

∏

i∈N

K∗(B
p(X,Ai)).

Definition 5.1 (see [14]) A discrete metric space X is coarsely uniformly contractible, if

for each d > 0, there exists d′ > d such that any compact subset of Pd(X) lies in a contractible

compact subset of Pd′(X).

Example 5.1 (see [14]) Any discrete Gromov hyperbolic metric space is coarsely uniformly

contractible.

Definition 5.2 Let A be an Lp operator algebra. The evaluation-at-zero homomorphism

ev0 : BpL(Pd(X), A) → Bp(Pd(X), A)
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induces a homomorphism on K-theory

µdA,∗ = ev∗ : K∗(B
p
L(Pd(X), A)) → K∗(B

p(Pd(X), A)) ∼= K∗(B
p(X,A)),

called an Lp coarse assembly map.

The family of Lp coarse assembly maps (µdA,∗)d>0 gives rise to a homomorphism

µA,∗ : lim
d>0

K∗(B
p
L(Pd(X), A)) → K∗(B

p(X,A)),

called the Lp coarse Baum-Connes assembly map. Moreover, the Lp coarse Baum-Connes

conjecture for X posits that this map µA,∗ is an isomorphism.

Definition 5.3 Let A be an Lp operator algebra. For N ≥ 1, we define an N -Lp coarse

assembly map

µN,dA,∗ : KN
∗ (BpL(Pd(X), A)) → KN

∗ (Bp(Pd(X), A)) ∼= KN
∗ (Bp(X,A))

induced by the evaluation-at-zero homomorphism

ev0 : BpL(Pd(X), A) → Bp(Pd(X), A).

The family of N -Lp coarse assembly maps (µN,dA,∗ )d>0 gives rise to a homomorphism

µNA,∗ : lim
d>0

KN
∗ (BpL(Pd(X), A)) → KN

∗ (Bp(X,A)),

called the N -Lp coarse Baum-Connes assembly map.

Remark 5.1 From the proof of [21, Theorem 4.6], we see that if X is a proper metric space

with finite asymptotic dimension, then the N -Lp coarse Baum-Connes assembly map for X

is ω-surjective, and the function ω depends on the asymptotic dimension m, strong Lipschitz

constant C and Mayer-Vietoris control pair (λ, h).

The following result gives a sufficient condition for persistence approximation property to

be satisfied for a class of Lp operator algebras.

Theorem 5.1 Let X be a discrete metric space with bounded geometry, and let A be an Lp

operator algebra. Assume that

(1) X is coarsely uniformly contractible ;

(1) for any positive integer N , there exists a non-decreasing function ω : [1,∞) → [1,∞)

such that the N -Lp coarse Baum-Connes assembly map for X with coefficients in

ℓ∞(N,K (ℓp)⊗A)

is ω-surjective ;

(3) the Lp coarse Baum-Connes assembly map for X with coefficients in A is injective.

Then for any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any ε in
(
0, 1

20λPA

)
and any r > 0, there exist r′ ≥ r and N ′ ≥ N such that PA∗(Bp(X,A), ε, λPAε, r, r′,

N,N ′) holds.
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Proof Let ρ be as in Proposition 3.1, pick (λ, h) as in Corollary 5.1 and put λPA =

ρ(9λNω(4λN )). Assume that there exists N ≥ 1 such that this statement does not hold. Then

there exist

(1) ε ∈
(
0, 1

20λPA

)
and r > 0,

(2) an unbounded increasing sequence (ri)i∈N bounded below by r,

(3) an unbounded increasing sequence (Ni)i∈N bounded below by N ,

(4)a sequence of elements ([xi])i∈N with [xi] ∈ Kε,r,N
∗ (Bp(X,A)), such that, for each i ∈ N,

ι∗([xi]) = 0 in K∗(B
p(X,A))

and

ιλPAε,ri,Ni
∗ ([xi]) 6= 0 in KλPAε,ri,Ni

∗ (Bp(X,A)).

Let [x] be an element of K
λNε,hε,Nr,λN
∗ (Bp(X, ℓ∞(N,K (ℓp) ⊗ A))) corresponding to ([xi])i∈N

in
∏
i∈N

Kε,r,N
∗ (Bp(X,A)) under the (λ, h)-isomorphism of Corollary 5.1. Observe that ιλN∗ ([x])

is the element of K4λN∗ (Bp(X, ℓ∞(N,K (ℓp)⊗A))). Then there exist d > 0 and

[z] ∈ K
ω(4λN )
∗ (BpL(Pd(X), ℓ∞(N,K (ℓp)⊗A)))

such that

µ
ω(4λN ),d
ℓ∞(N,K (ℓp)⊗A),∗([z]) = ιλN

∗ ([x]) in K
ω(4λN )·4λN
∗ (Bp(X, ℓ∞(N,K (ℓp)⊗A))).

Since the quantitative Lp coarse assembly maps are compatible with the ω(4λN )-Lp coarse

assembly maps, we obtain that

µ4N1,d
ℓ∞(N,K (ℓp)⊗A),∗([z]4N1

) = ιN1

∗ ◦ µλNε,hε,Nr,ω(4λN ),d

ℓ∞(N,K (ℓp)⊗A),∗ ([z]ω(4λN )),

where N1 = max{ω(4λN) · λN , 9ω(4λN )}. However, according to Proposition 3.1, there exists

R ≥ hε,Nr such that

ιλPAε,R,33N1

∗ ([x]) = µλPAε,R,33N1,d
ℓ∞(N,K (ℓp)⊗A),∗([z]33N1

).

By Proposition 3.3, we have an isomorphism

K∗(B
p
L(Pd(X), ℓ∞(N,K (ℓp)⊗A))) ∼=

∏

i∈N

K∗(B
p
L(Pd(X), A)).

Let ([zi])i∈N be the element of
∏
i∈N

K∗(B
p
L(Pd(X), A)) corresponding to [z] under this identi-

fication. Using the compatibility of the quantitative Lp assembly maps with the usual ones,

we obtain by naturality that µdA,∗([zi]) = 0 for each i ∈ N. Since X is coarsely uniformly

contractible and µA,∗ is injective, we deduce that there exists d′ ≥ d such that

id,d′,∗([z]) = 0 in K∗(B
p
L(Pd′(X), ℓ∞(N,K (ℓp)⊗A))).
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Let (pt)t∈[0,1] be a homotopy of idempotents (resp. invertibles) in Mn(B̃) between id,d′,∗([z])

and 0, then P := (pt) is an idempotent (resp. invertible) element in C([0, 1],Mn(B̃)), where

B = BpL(Pd′(X), ℓ∞(N,K (ℓp)⊗ A)). Put N ′ = max{33N1, ‖P‖}. Since

µλPAε,R,N
′,d

ℓ∞(N,K (ℓp)⊗A),∗([z]) = µλPAε,R,N
′,d′

ℓ∞(N,K (ℓp)⊗A),∗ ◦ id,d′,∗([z]),

then

ιλPAε,R,N
′

∗ ([x]) = 0 in KλPAε,R,N
′

∗ (Bp(X, ℓ∞(N,K (ℓp)⊗A))).

By naturality, we see that ιλPAε,R,N
′

∗ ([xi]) = 0 in KλPAε,R,N
′

∗ (Bp(X,A)) for all integers i.

Picking an integer i such that ri ≥ R and Ni ≥ N ′, we have

ιλPAε,ri,Ni
∗ ([xi]) = 0,

which contradicts our assumption.

Theorem 5.2 (see [21]) For any p ∈ [1,∞), the Lp coarse Baum-Connes conjecture holds

for proper metric spaces with finite asymptotic dimension.

Since hyperbolic metric spaces have finite asymptotic dimension, and combining this with

Remark 5.1 and Theorems 5.1–5.2, we have the following result.

Corollary 5.2 For any N ≥ 1, there exists a universal constant λPA ≥ 1 such that for any

discrete Gromov hyperbolic metric space X, the following holds : For any ε in
(
0, 1

20λPA

)
and

any r > 0, there exist r′ ≥ r and N ′ ≥ N such that PA∗(Bp(X,A), ε, λPAε, r, r′, N,N ′) holds

for any Lp operator algebra A.
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