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Abstract In this paper, the authors study the persistence approximation property for
quantitative K-theory of filtered LP operator algebras. Moreover, they define quantita-
tive assembly maps for L? operator algebras when p € [1,00). Finally, in the case of L
crossed products and LP Roe algebras, sufficient conditions for the persistence approxima-
tion property are found. This allows to give some applications involving the LP (coarse)
Baum-Connes conjecture.
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1 Introduction

Quantitative operator K-theory was primarily developed first by Yu [20] on the Novikov
conjecture for groups with finite asymptotic dimension, and then by Oyono-Oyono and Yu in
[13] to study a general quantitative K-theory for filtered C*-algebras. Based on their work,
Chung later extended the framework of quantitative K-theory to the class of algebras of bounded
linear operators on subquotients of LP spaces for p € [1,00) (i.e., SQ, algebras) in [2]. Since
an L? operator algebra is obviously an SQ, algebra, we can derive a framework of quantitative
K-theory for LP operator algebras by applying Chung’s work to the LP operator algebras. For a
filtered LP operator algebra A, the K-theory of A can be approximated by the quantitative K-
theory group K5 (A) as r and N tend to infinity, i.e., TJl\;I_r)loo KN (A) = K.(A). Compared
to the usual K-theory of a complex Banach algebra, quantitative K-theory is more computable
and more flexible by using quasi-idempotents and quasi-invertibles instead of idempotents and
invertibles, respectively.

To explore a way of approximating K-theory with quantitative K-theory, Oyono-Oyono
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and Yu studied the persistence approximation property for quantitative K-theory of filtered
C*-algebras in [14]. Subsequently, Wang and Wang investigated the persistence approximation
property for maximal Roe algebras, and proved that if X is a coarsely uniformly contractible
discrete metric space with bounded geometry, and it admits a fibred coarse embedding into
Hilbert space, then the maximal Roe algebra for X satisfies the persistence approximation
property in [17]. Motivated by these successful researches on the persistence approximation
property for the quantitative K-theory, we will in this paper extend these methods and results
for C*-algebras to LP operator algebras.

Recently, the research on LP operator algebras has been revived. In the work of [15], Phillips
introduced full and reduced L? crossed products and proved that the K-theory of LP analogs of
Cuntz algebras is the same as that of C*-algebras. This work has inspired mathematicians to
study LP operator algebras that behave like C*-algebras, including group LP operator algebras
(see [7, 9-11, 15]) and groupoid LP operator algebras (see [8]). There are also related works on
£P uniform Roe algebras in comparison with classical uniform Roe algebras, such as [4-5, 12].
These researches provide sufficient methods and techniques for dealing with the problem of the
LP operator algebras in this paper.

In order to investigate an LP version of persistence approximation property, we have to give
a definition of the quantitative LP assembly map. In this important article [3], Chung defined
the LP assembly map, and showed that a certain LP assembly map is an isomorphism if the
action I' ~ X has finite dynamical complexity. Moreover, Zhang and Zhou in [21] studied L?
localization algebras and LP Roe algebras, which are basic ingredients for defining quantitative
LP assembly maps.

The main aim of this paper is to define the LP analog of the quantitative assembly map
to study the persistence approximation property for the quantitative K-theory of filtered L”
operator algebras. More precisely, we say that a filtered L? operator algebra A has the per-

sistence approximation property if for any ¢ in (0 any 7 > 0 and any N > 1, there exist

)
120/
e’ € [e,55), ¥’ =7 and N’ > N such that the following statement PA,(A,e,e’,r, 7', N,N') is
satisfied: An element from K™ (A) is zero in K,(A) implies that it is zero in Kf/’T/’N/(A).
For the case of a crossed product of an LP operator algebra by a finitely generated group, we

obtain the main theorem.

Theorem 1.1 (see Theorem 4.1) Let I' be a finitely generated group, and let A be a T'-LP
operator algebra. Assume that

(1) T admits a cocompact universal example for proper actions;

(2) for any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP Baum-Connes assembly map for T' with coefficients in
(N, 2 (P) @ A)

18 w-surjective;



Persistence Approzimation Property for LP Operator Algebras 871

(3) the LP? Baum-Connes assembly map for T' with coefficients in A is injective.
Then for any N > 1, there exists a universal constant A\pa > 1 such that for any ¢ in (O, m)
and any r > 0, there exist v’ > r and N' > N such that PA(AXT, e, Apac,r,r’, N, N') holds.

This theorem is a generalization of Oyono-Oyono and Yu’s work on persistence approxi-
mation property for C* crossed products (see [14]). We call it the LP version of persistence
approximation property. To demonstrate this result, we define a quantitative L” assembly map
by using the LP localization algebra and the LP Roe algebra. Moreover, we carefully estimate
the changing parameters of (¢,r, N)-idempotent and (e, r, N)-invertible elements in the proof
of the theorem to present a cleaner result.

Parallel to the main theorem, we obtain a similar result for the LP Roe algebra for a discrete
metric space X with bounded geometry. Replacing the assumption that the group admits a
cocompact universal example for proper actions by that X is coarsely uniformly contractible,

we have the following theorem.

Theorem 1.2 (see Theorem 5.1) Let X be a discrete metric space with bounded geometry,
and let A be an LP operator algebra. Assume that

(1) X s coarsely uniformly contractible;

(2) for any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP coarse Baum-Connes assembly map for X with coefficients in
(N, 2 () @ A)

18 w-surjective;
(3) the L? coarse Baum-Connes assembly map for X with coefficients in A is injective.
Then for any N > 1, there exists a universal constant Apa > 1 such that for any € in
(O, m) and any r > 0, there exist v > r and N' > N such that PA.(BP(X,A), &, A\pac,
r,r', N, N') holds.

As a corollary of this theorem, we prove that any LP Roe algebra for a discrete Gromov
hyperbolic metric space satisfies the persistence approximation property.

The outline of this paper is as follows: In Section 2, we recall the main results of quantitative
K-theory for filtered LP operator algebras. In Section 3, we define a quantitative LP assembly
map and show the connection between the quantitative statements and the L? Baum-Connes
conjecture. In Section 4, for the case of LP crossed products, we find a sufficient condition for
the persistence approximation property. Finally, in Section 5, we show that if X is a coarse-
ly uniformly contractible discrete metric space with bounded geometry and finite asymptotic

dimension, then the L? Roe algebra for X has the persistence approximation property.
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2 Quantitative K-Theory for LP Operator Algebras

The ordinary K-theory of Banach algebras developed in [1] focuses on idempotents or in-
vertibles. In comparison, quantitative K-theory for Banach algebras studied in [2] focuses on
quasi-idempotents or quasi-invertibles. In this section, we recall some basic definitions and
theorems of quantitative K-theory for filtered SQ, algebras from [2]. Moreover, by applying
these conclusions to filtered LP operator algebras, we can obtain some basic concepts and main

results of quantitative K-theory for filtered L? operator algebras.

Definition 2.1 (see [7]) Let A be a Banach algebra. For p € [1,00), we say that A is an

L? operator algebra if there exist an LP space E and an isometric homomorphism A — B(E).

Remark 2.1 The L? operator algebra was initially defined by Phillips in [15], and the

above definition is compatible with the original one.

Definition 2.2 (see [2]) A filtered LP operator algebra is an LP operator algebra A with a
family (A,)r>o of closed linear subspaces indexed by positive real numbers r € (0,00) such that

(1) A, C Ay dfr <o

(2) Ay Ay C Apyyr for all myr’ > 0;

(3) the subalgebra |J A, is dense in A.
>0

If A is unital with identity 14, we require 14 € A,. For any r > 0, we call the family
(A;)r>0 a filtration of A. We say that a has propagation r if a € A,.

If A is not unital, we write the unitization of A as
At ={(a,2):a€ A,z € C}

with multiplication given by (a, z)(a/, 2') = (aa’ + za’ + z'a, zz'). We use A to represent A* if
A is non-unital or to represent A if A is unital.
In order to control the matrix norm in quantitative K-theory of Banach algebras, we need

to establish the matrix norm structure.

Definition 2.3 (see [6]) For p € [1,+00), an abstract p-operator space is a Banach space
X together with a family of norms || - ||n on M,(X) satisfying:
(1) Doo : Foru € M, (X) and v € M,,,(X), we have
= max([|u[s, [[v][m)-

I 2)
0 v e

(2) M, : Foru € M,,(X), a € M, 1, (C) and B € My, »(C), we have

lauBlln < llall gz, ) llullm Bl 5z, e,y
where (P denotes C™ with the (P norm.

Clearly, an LP operator algebra is an abstract p-operator space.
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Definition 2.4 (see [16]) Let X and Y be p-operator spaces, and let ¢ : X — 'Y be a
bounded linear map. For each n € N, let ¢, : Mp(X) — M, (Y) be the induced map given by
on([zij]) = [d(xij)]. We say that ¢ is p-completely bounded if sup ||¢n| < co. In this case, we

let ||¢||pcb = sup [|¢n .
n

We say that ¢ is p-completely contractive if ||@[|per < 1 and ¢ is p-completely isometric if
[llper = 1.

Definition 2.5 (see [2]) Let A and B be filtered LP operator algebras with filtrations (A )r>o
and (B;)r>o, respectively. A filtered homomorphism ¢ : A — B is an algebra homomorphism
such that

(1) ¢ is p-completely bounded ;

(2) ¢(A,) C B, for all r > 0.

If ¢ : A — B is a filtered homomorphism, then it induces a filtered homomorphism ¢ :
AT — BT given by ¢ (a, 2) = (¢(a), 2).

Definition 2.6 (see [2]) Let A be a unital filtered LP operator algebra. For 0 < & < 55,
r>0and N > 1,

(1) an element e € A is called an (g,7, N)-idempotent if ||e? —e|]| < ¢, e € A, and
max(lel, 15 — el}) < N

(2) if A is unital, an element w € A is called an (e,r, N)-invertible if u € A,., ||u|| < N, and
there exists v € A, with ||v|| < N such that max(||luv — 1]|, |lou — 1]|) < e.

We call v an (e, r, N)-inverse for v and we call (u,v) an (&, r, N)-inverse pair. In addition,
¢ is called the control and r is called the propagation of the (e,r, N)-idempotent or of the
(e,r, N)-invertible.

Next, we recall the definitions of quantitative K-theory for filtered LP operator algebras.
Given a filtered LP operator algebra A,

(1) we let Idem®™™ (A) := {e € A| e is an (e, r, N)-idempotent};

2) we set Idem® "™ (A) := Idem®"" (M,,(A)) for each n € N;

3) we have inclusions Idem?® """ (4) < Idemfl’j_’lN (A), e —~ ( 0)
)
)

0 0
4) we set Idem%"™ (A) := |J Idem® " (A);
neN

(
(
(
(5) we define the equivalence relation ~ on Idem®" (A) as follows: e ~ f if and only if e
and f are (4e,r,4N)-homotopic in Idem25™*V (A4);

(6) we denote [e] := {f € IdemZ""N (A) | f ~ e in IdemETN( )}

(7) Idem="N (A)/ ~:= {[] | e € Idem="Y (A)} and [e [( )}

(8) Idem="" (A)/ ~ is an abelian semigroup with 1dent1ty [0].

If we want to keep track of changes of parameters, we write [e]. , n instead of [e].

Definition 2.7 (sce [2]) Let A be a filtered LP operator algebra. For 0 < e < 55, 1 > 0
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and N > 1,
(1) if A is unital, define K™ (A) to be the Grothendieck group of Idem=™™ (A)/ ~;

(2) if A is non-unital, define K™ (A) = ker(m, : KJ"N (A1) — KN (C)), where

m: AT — C is the usual quotient homomorphism, which is p-completely contractive.

If [e] — [f] € Kg"N(A), where e, f € My(A), then [¢] — [f] = [¢/] — [Ix] in KN (A) for
some €' € Myy(A). Therefore, if we relax control, we can write elements in KoM (A) in the
form [e] — [I;] with 7(e) = diag(I, 0).

Given a unital filtered LP operator algebra A,

(1) we let GL=™N(A) :={u € A |uis an (g,7, N)-invertible};

2) we set GLE™N(A) := GL®™N (M, (A)) for each positive integer n;

3) we have inclusions GLE™N (A) — GLZ’_?{V (A), ur— (g (1]),
)
)

4) we set GLEMN (A) :== |J GLE™N(A);
neN
5) we define the equivalence relation ~ on GLE NV (A) as follows: u ~ v if and only if u

(
(
(
(
and v are (4¢,2r, 4N)-homotopic in G L4274V (A);

(6) we denote [u] := {v € GLE"N(A) | v ~u in GLEN (A)};

(7) GLEZN (A)/ ~i= {[u] | w € GLEN (A)} and [u] + (o] = [ (5 V)];

(8) GLEN(A)/ ~ is an abelian group with identity [1].

If we want to take into account parameter changes, we usually write [u]. , n instead of [u].

Definition 2.8 (see [2]) Let A be a unital filtered LP operator algebra. For 0 < e < 2—10,
r>0and N > 1,

(1) if A is unital, define K=" (A) := GLE N (A)/ ~;

(2) if A is non-unital, define K™ (A) = ker(m, : K™V (AT) —» KP™N(Q)).

Remark 2.2 (see [2]) If e is an (g,7, N)-idempotent in A, we can choose a function kg

that is holomorphic on a neighborhood of Sp(e), and

0, ze€ B (0),
Ko(2) = i —\/g( )
1, A B\/g(l),
then we apply holomorphic functional calculus to get an idempotent

ko(e) = / ko(2)(z —e)tdz € A,

"~ 27
where « is the contour {z € C: |z| =/} U{z € C: |z — 1] =/}, and

Imo(e)]] < 1
Rol€E 1_2\/5,

which implies that ||ko(e)]] < 2(N + 1). Since each (g, r, N)-invertible is invertible, we can

define a function k1 such that x1(u) = u, thus ||s1(u)]] < N.
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Definition 2.9 For any filtered LP operator algebra A and any positive numbers r,r' e, ¢’

and N,N' > 1 withe <e' < %, r <71’ and N < N', we have natural group homomorphisms:

(1) o : K5 N (A) = Ko(A), [e]ern > [Ko(e)]:

(2) 11 s KN (A) = Ki(A), [ulepn = [F1(w)] = [u];

(3) tu =10 D t1;

(4) 157N KGN (A) = K5 TN (), [elen o [eler e
(5) i7" N KN (A) > KTV (A), e o [l
(6) Lil7rl’ = LSI’T/’N, o) Lil’r,’N,.

Remark 2.3 We sometimes refer to these natural homomorphisms as relaxation of control
maps. In addition, from the above definition, we know that the origin of variable parameters
of quasi-idempotents or quasi-invertibles, thus we only mark the destination of the parameters

to reduce to three superscripts.

Proposition 2.1 (see [2]) There exists a polynomial p > 1 with positive coefficients such
that for any filtered LP operator algebra A, any € € (O, m), any r >0 and any N > 1, the
following holds:

Let [2],[2'] be in KE™N(A) such that u,.([z]) = w.([2]) in K.(A), there exist ' > r and

N’ > N such that
Lﬁ:(N)s,r’,N’([x]) _ Lﬁ:(N)s,r’,N’([x/]) n Kf(N)E’TI’N,(A).

Remark 2.4 From the proof of [2, Proposition 3.21], we know that the choice of N’ depends
on the norm of the homotopy path of the idempotents or invertibles, and we can choose
9
1+ —=(N+1)?2 =0
T =0

p(N) =

1, * = 1.

The item (ii) of the next proposition is a consequence of the preceding proposition.

Proposition 2.2 (see [2]) Let A be an LP operator algebra filtered by (Ay)r>o-

(i) For any e € (0,55) and any [y] € K.(A), there exist r >0, N > 1 and [z] € KN (4)
such that v.([x]) = [y].

(ii) There exists a polynomial p > 1 with positive coefficients such that the following is
satisfied: For e € (0, m), r >0 and N > 1, let [z] be an element of K™ (A) such that
t«([x]) = 0 in K.(A). Then there exist v’ > r and N' > N such that

LNEN (@) =0 i KENETN (),

Remark 2.5 From the proof of [2, Proposition 3.20], we may put

N:?M+L * =0,

Iyl +lly~+1, ==1

in the item (i) of the above proposition.
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Definition 2.10 (see [2]) A control pair is a pair (A, h) such that

(1) A:[1,00) = [1,00) is a non-decreasing function;

(2) h:(0,55) x [1,00) = [1,00) is a function such that h(-,N) is non-increasing for fized
N.

We will write A for A(N) and he n for h(e, N). Given two control pairs (A, h) and (XN, h'),
we say that (A, h) < (N, B') if AN < Ny and heny < h'E’N for all e € (O, %) and N > 1.

Given a filtered LP operator algebra A, we write the families
N .
Ki(A) = (Kf (A))o<s<2i0,r>o,N21a where i € {0,1}.

Definition 2.11 (see [2]) Let A and B be filtered LP operator algebras, and let (A, h) be a
control pair. A (A, h)-controlled morphism F : K;(A) — K;(B), where i,j € {0,1}, is a family

_ e, r,IN
F = (F )0<s<20§N r>0,N>1

of group homomorphisms
e Kis,r,N(A) N K;\NE,hs,NT,XN (B)

such that whenever 0 < e < &’ < QOTlN/’ he Nt < her nor’ and N < N', we have the following

commutative diagram

KM@ e KDY ()

Fs,r,NJ/ J/FEIJ‘/,N/

K;\Ns’hE’NT’AN(B) Lj K‘;\NIE/)hE/YN/TZ)\N/ (B)

>\N/€/7h‘€/,N/T/)>\N/
J
if it is a (A, h)-controlled morphism for some control pair (A, h).

We write v; for Lf/’r/’N/ and ¢ for ¢ . We say that F s a controlled morphism

Definition 2.12 (see [2]) Let A and B be filtered LP operator algebras. Let F : K;(A) —
Kj(B) and G : Ki(A) — K;(B) be (\F,h7)-controlled and (A9, h9)-controlled morphisms,
respectively. Let (A, h) be a control pair. We write F ot G if W, RT) < (AW h), (M9, hY) <

X\, k), and the following diagram commutes whenever 0 < ¢ < s——,r >0 and N > 1:
( g diag

20\ N
Aoe,h? yr AL
KJ N e,N N (B)

KiE7T,N(A) K)\NE-,hs,NT-,AN (B)

\ /j

GonN G_ 4G g
A9, hd e
KJ N e,N N (B).

Observe that if F O G for some control pair (A, h), then F and G induce the same homomor-

phism in K -theory.
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Definition 2.13 (see [2]) Let A and B be filtered LP operator algebras. Let (A, h) be a
control pair, and let F : K;(A) — K;(B) be a (A", h”)-controlled morphism with (A", h7) <
(A, h).

(1) We say that F is left (resp. right) (A, h)-invertible if there exists a controlled morphism
G:K;j(B) = Ki(A) such that Go F G0 Td,(a) (resp. FoG Gl Tdyc,(p))- In this case, we
call G a left (resp. right) (X, h)-inverse for F.

(2) We say that F is (A, h)-invertible or a (A, h)-isomorphism if there exists a controlled
morphism G : K;(B) — K;(A) that is both a left (A, h)-inverse and a right (X, h)-inverse for F.
In this case, we call G a (X, h)-inverse for F.

We say that F is a controlled isomorphism if it is a (X, h)-isomorphism for some control
pair (A, h).

Definition 2.14 (see [2]) Let A and B be filtered LP operator algebras. Let (A, h) be a
control pair, and let F : K;(A) — K;(B) be a (A", h”)-controlled morphism with (A", h7) <
(A h).

(1) We say that F is (A, h)-injective if for any 0 < € < ﬁ, r>0, N>1andlz] €

v z T F T . T
KT NA), if ForN ([a]) =0 in K, "5 N(B), then (VSN ([a]) =0 in KV NN A),

(2) We say that F is (\, h)-surjective if for any 0 < & < r>0, N >1 and

[y] € K;’T’N(B), there exists [z] € K:‘NE’hE’Nn)‘N (A) such that

1
200 N’

FANEhe NTAN ([4]) = L;AF»MNE,(hF»h)E,Nr,<AF»A>N([y]) . KJ(F»A)NE,(hf-h>E,Nr,<Af»A>N(B).

Proposition 2.3 (see [2]) Let A be a unital filtered LP operator algebra.

(i) If e and f are homotopic as (e,r, N)-idempotents in A, then there exist ay > 0, an
integer k and an oy -Lipschitz homotopy of (28, 7, %N) -idempotents between diag(e, I, 0y) and
diag(f, I, O).

(i) If u and v are homotopic as (¢, r, N)-invertibles in A, then there exist Sy > 0, an integer
k and a By -Lipschitz homotopy of ((4N? +2)e, 2r, 2(N +¢))-invertibles between diag(u, I1.) and
diag(v, I).

Remark 2.6 In fact, the proof of item (ii) is similar to that of item (i) (see [2, Lemma
2.29]).

Remark 2.7 Let A be an LP operator algebra, and let ® denote the spatial LP operator
tensor product. M, (A) can be regarded as M, (C) ® A when M, (C) is viewed as B(¢?). Recall
from [14, Proposition 1.8, Example 1.10 | we see that M& = 2 (¢?) for p € (1,00) when M,

denotes |J Mn((C)”'”ep. However, when p = 1, there is a rank one operator on ¢! that is not
neN

in ML.
Now we collect some concepts of [15] concerning L? operator tensor products. For p € [1,00)

and for measure spaces (X, u) and (Y, v), there is an LP tensor product such that we have a
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canonical isometric isomorphism LP(X, u) @ LP(Y,v) =2 LP(X X Y, u x v) via (z,y) — &(z)n(y)
for any € € LP(X, ), n € LP(Y,v), this tensor product has the following properties:

(1) Under the previous isomorphism, the linear span of all £ ® 1 is dense in LP(X XY, u x v).

(2) €@ lly = €0l for all € € LP(X, u) and 5 € LP(Y,v).

(3) The tensor product is commutative and associative.

(4) If a € B(LP(X1, 1), LP (X2, p2)) and b € B(LP(Y1,14), LP(Ya,12)), then there exists a
unique

¢ € B(LP(Xy x Y1, 1 X v1), LP(Xo x Yo, ua X 112))

such that ¢(§ ® n) = a(&) ® b(n) for all £ € LP(Xq, 1) and n € LP(Y1,v1). We will denote this
operator by a ® b, thus |la ® b|| = ||a||||b]|-

(5) The tensor product of operators is associative, bilinear and satisfies (a1 ® b1)(az2 ® be) =
ai1as ® bybs.

If A C B(LP(X,u)) and B C B(LP(Y,v)) are norm-closed subalgebras, we can define
A®B C B(LP(X XY, uxv)) to be the closed linear span of all elements of the form a ® b with
ac€Aandbe B.

Proposition 2.4 (see [2]) If A is a filtered LP operator algebra for some p € (1,00), then

the homomorphism

A= H(P)R A, ars 0

induces a group isomorphism (the Morilta equivalence)
KemN(A) — KemN (o (P) @ A).
For p = 1, we denote (1) by WH'H"J, then we still have the Morita equivalance.
ne
Proposition 2.5 (see [2]) If A is a filtered L' operator algebra, then we have a group

isomorphism
KemN (o () @ A) = KEmN(A).
Remark 2.8 For any r > 0, the LP operator tensor product J# (/) ® A has a filtration
(j((ﬁp) ® Ar)r>0-
If A= (A;)en is any family of filtered L? operator algebras. For any r > 0, we set
Az =[x )@ A,
ieN

and we define the LP operator algebra AZ° as the closure of |J A%, in [] 2 (¢F) ® A;.
r>0 €N
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Lemma 2.1 Let A = (4;)ien be a family of filtered LP operator algebras. There exist a
control pair (A, h) independent of the family A and a (X, h)-isomorphism

F= (FE’T’N)0<5<2—1O,T>0,N21 DL (A) = H’C*(Ai)a

ieN
where
N s KN (A o [] KN (4)
ieN
is induced on the j-th factor by the projection [] J# (P) @ A; — H# (€P) @ A; and up to the

ieN
Morita equivalence restricted to AX.
Remark 2.9 If A; is unital, then the above Lemma 2.1 is a consequence of Proposition 2.3.
In this case, we let Ay = %N, h(-, N) = 2. If A; is not unital for some i, the proof is similar to

that of [14, Lemma 2.14].

3 Quantitative LP? Assembly Maps

In this section, we will introduce L? localization algebras, LP Roe algebras and reduced
LP crossed products to define quantitative LP assembly maps, and establish the connection

between the LP Baum-Connes conjecture and the quantitative LP Baum-Connes conjecture.

3.1 LP Roe algebras and LP localization algebras

In this section, we consider the case of finitely generated groups. Let I' be a finitely generated
group with a length function £ : I' — R such that
(1) £(v) = 0 if and only if v = e, where e is the identity element of T’;
(2) €(v7) < £(7) + £(") for all 7,7/ € T
(3) £(y) = b(y~1) for all y € T.
We assume that ¢ is the word length

U(y)=inf{d |y =714 with y1,--- ;74 € S},

where S is a finite symmetric generating set. Let the ball of radius r € (0,00) around the
identity of T" be
Ble,r) ={yeT[l(y) <r}.
Definition 3.1 (see [19]) Let T' be a finitely generated group and let d > 0. The spherical
Rips complex of T' at scale d, denoted by Sq(T"), consists as a set of all formal sums
T = Z tyy
yer

such that each t, € [0,1] with )~ t, =1 and such that the support of x defined by
~el

supp(x) := {7 € T'| 1, # 0}

has diameter at most d.
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Definition 3.2 (see [19]) LetT be a finitely generated group, and let Sq(T') be the associated
spherical Rips complex at scale d. A semi-simplicial path § between points x and y in Sg(T")

consists of a sequence of the form

T =20,Y%0,T1,Y1,22,Y2, " s Tn,Yn =Y,

where each of x1,--+ ,xy and each of yo, -+ ,yn—1 are in I'. The length of such a path is

n n—1
1o)== Z ds, (i, yi) + Z dr (i, Tit1).
i=0 i=0
We define the semi-spherical distance on S4(T) by
dp,(z,y) ;== inf{l(7y) | v is a semi-simplicial path between x and y}
(note that a semi-simplicial path between two points always exists).
The Rips complex of T is defined to be the space Py(T') equipped with the metric dp, above.

Remark 3.1 P4(T') is a locally finite simplicial complex and is locally compact when en-
dowed with the simplicial topology, and it is endowed with a proper and cocompact action of

I" by left translation.

Definition 3.3 For d > 0, we define
Qq = { Zt.ﬂ € PyT) |ty €Q forally € I‘}.
yel’
Then Qg is a I-invariant, countable, dense subset of Py(T).

Definition 3.4 Let I" be a discrete group, and let A be an LP operator algebra. We say that

A is a T-LP operator algebra if « : T' — Aut(A) is an action by isometric automorphisms.

Definition 3.5 (see [15]) Let (T, A,«) be a T'-LP operator algebra, and let (X,B,u) be
a measure space. Then a covariant representation of (I, A,«) on LP(X,pn) is a pair (v,7)
consisting of a representation v — vy from I' to the invertible operators on LP(X, u) such that
v = vy is continuous for all § € LP(X, ), and a representation m : A — B(LP(X, p)) such
that the following covariance condition is satisfied: m(a(a)) = vym(a)v;" for all v € T and

ac€ A
We say that a covariant representation is isometric if 7 is isometric.

Definition 3.6 Let A be a I'-LP operator algebra, and let E be a covariant represented LP
space of A. An LP-module is defined to be an LP space

Ly=0P(Qq)®@E® P @PT)2P(QqE P xPT))
equipped with an isometric I'-action given by

Uy (0, RERN R 0yr) = Ogy—1 D VER N @ Oy
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forx € Qq,e € E,ne P and v,y €T.

Remark 3.2 For each d > dy > 0, the canonical inclusion iq4, 4 : Py, (I') < Py(T") is a
homeomorphism on its image and a coarse equivalence, and Qq, C Q4. Hence, we have an

equivariant isometric inclusion Ly, C Lg.

Remark 3.3 Let .#p be the algebra of compact operators on 7 @ ¢P(T') = (P(N x I
equipped with the I'-action induced by the tensor product of the trivial action on ¢P and the
left regular representation on ¢P(I'). Also, we equip the algebra A® ¢ with the diagonal action
of I'. We say that the representation of A ® 1 on E ® (P @ (P(T) is faithful and covariant if
this representation is obtained by tensoring the natural action on F, trivial on ¢ and regular
on (P(T).

Next, we will define equivariant LP Roe algebras and equivariant LP localization algebras.

Definition 3.7 Let Ly be the LP-module as in Definition 3.6, and let T' be a bounded linear

operator on Lq, which we regard as a (Qa %X Qq)-indexed matriz T = (T .) with
T,.€ BE®FePT))

forally,z € Qq.
(1) T is T-invariant if uvTu,;l =T forallyel,de, T, .= Tyy.y for all y €T.
(2) The propagation of T is defined to be

prop(T') := sup{dp,)(y, 2) : Ty,» # 0}.
(3) T is E-locally compact if T, , € AQKrp for all y,z € Qq, and if for each compact subset
G C Py(), the set
{(y,z) S (G X G) N (Qd X Qd) : Ty7z #* 0}
is finite.
Definition 3.8 Let Ly be the LP-module, and let C[Lgy, A]" denote the algebra of all T-
mwvariant, E-locally compact operators on Lg with finite propagation. The equivariant LP Roe

algebra with coefficients in A, denoted by BP(Py(T), A)'', is defined to be closure of C[L4, A]"

in the operator norm on B(Lg).

Definition 3.9 Let Ly be the LP-module, and let Cr,[Lg, A]" denote the algebra of all bound-

ed, uniformly continuous functions f : [0,00) — C[Lg4, A" such that
prop(f(t)) -0 ast— co.

The equivariant LP localization algebra with coefficients in A, denoted by BY (Py(T), A)'', is the

completion of Cr[Lq, A]" with respect to the norm

[l == sup [If(O)llLa)-

t€[0,00)
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3.2 The quantitative LP assembly maps

For p € [1,00), to give a definition of a quantitative LP assembly map, we replace the
equivariant K K-theory by the equivariant K-theory of the LP localization algebra on the left-
hand side of the map and replace the reduced C* crossed product by the reduced LP crossed
product on the right-hand side of the map. In the setting of L? operator algebras, we need to

study reduced LP crossed products and L? Baum-Connes assembly maps.

Definition 3.10 Let A be a I'-LP operator algebra, and let E be an LP representation space
of A. The reduced LP crossed product A x4\ T is the completion of C.(I', A, «) in the operator
norm on B(E @ (P(T)).

Remark 3.4 If A is a matrix algebra M, (C) or a commutative algebra C(X) for some
compact space X, then the above definition is identical with Phillips’s reduced L? crossed
products (see [15, Definition 3.3]) since it is independent of the representation of A (see [18,
Lemma 2.6]).

Remark 3.5 In the following, we will write A x I for A x4, xI". Note that the identification
between A x I and BP(Py(I"), A)! is derived from the Morita equivalence between C. (T, 4, a)
and C[Lg, A]'. In addition, for » > 0, the reduced L? crossed product A x I' has a filtration

(AxT), :={f e C.T,A) with supp(f) € Ble,r)}.

Definition 3.11 Let A be an LP operator algebra. For N > 1,

(1) an element z € A is called an N-idempotent if 22 = z and ||z|| < N;

(2) if A is unital, an element w € A is called an N-invertible if w is invertible and
max{ ], |t} < V.

Then we will define a variant of K-theory of LP operator algebras, which is labeled by the
norm of the element and the norm of the homotopy path.

Given an LP operator algebra A, for N > 1,

(1) we set Idem™ (A) := {z € A | z is an N-idempotent};
2) we let Idem? (A) = Idem™ (M,,,(A)) for each m € N;
3) we have inclusions Idem\ (A) < IdemeH(A), Z (é 8);

(
(
(4) we put Idem?® (A) := UN Idem® (A);
(5) we define the equivalenece relation ~ on Idem’ (4) as follows: z ~ 2/ if z and 2’ are
homotopic in Idem® (A);

(6) we denote by [z] the equivalence class of z € Idem?® (A);

(7) we equip Idem? (A)/ ~ with the addition given by [z] + [2/] = [diag(z, 2')];

(8) Idem’Y (A4)/ ~ is an abelian semigroup with identity [0].

If we wish to keep track of changes in the norm, we write [z]y instead of [z].
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Definition 3.12 Let A be an LP operator algebra. For N > 1,
(1) if A is unital, define K (A) to be the Grothendieck group of Tdem’\ (A)/ ~;
(2) if A is non-unital, define

K (A) = ker(m, : KY(AY) = Z).
If [z] — [¢'] € KY(A), where 2,2’ € My(A), then [2] — [2/] = [2] — [I] in K (A) for some
2" € My, (A). Hence, each element of K{¥ (A) can be written by [z]—[I}] with 7(z) = diag(Ix, 0).
Given a unital LP operator algebra A, for N > 1,
1) we set GLN(A) := {w € A | w is an N-invertible};
2) we let GLY (A) = GLYN (M,,(A)) for each m € N;
3) we have inclusions GLY (A) — GLY .1 (A), w +— (w 0);

0 1
4) we put GLY (A) .= |J GLYN(A);
meN
(5) we define the equivalence relation ~ on GLY (A) as follows: w ~ w' if w and w' are

homotopic in GL4Y (A);
(6) we denote by [w] the equivalence class of w € GLY (A);
(7) we equip GLY (A)/ ~ with the addition defined by [w] + [w'] = [diag(w, w')];
(8) GLY (A)/ ~ is an abelian group with identity [1].

If we wish to keep track of changes in norm, we write [w]y instead of [w].

(
(
(
(

Definition 3.13 Let A be an LP operator algebra. For N > 1,
(1) if A is unital, define K{¥(A) := GLY (A)/ ~;
(2) if A is non-unital, define K{¥(A) := KN (AT).

In the odd case, each element of KV (A) can be written as [w] satisfying m(w) = I}.. Observe
that there is a natural map KN (A4) — KN'(A) if N < N’ and K, (A) = A}im KN(A).
—00

The evaluation-at-zero homomorphism
evy : BY (Py(T), A)Y' — BP(Py(T), A)"
induces a homomorphism on K-theory
ev, : Ko (BY (Py(T), A)V) — K.(BP(Py(T), A)L).

Definition 3.14 (see [3]) Let A be a T'-LP operator algebra. We define an LP assembly
map
ph e Ko(BL(Pa(), A)Y) = K. (BP(Py(T), A)') = K. (A xT),

which gives rise to a homomorphism
pae s lim K.(BY(Py(I),A)F) = K. (AxT)
>

called the LP Baum-Connes assembly map. Moreover, the LP Baum-Connes conjecture for I’

predicts that the LP Baum-Connes assembly map s, is an isomorphism.
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Subsequently, we will give a definition of a quantitative LP assembly map. Let us do some
preparation. Considering the even case, the odd case is similar. Let [2] be in K{ (BY (P4(T'), A)")
with z € Idemfjl(Bi(Pd(F),A)F) for some m. Then for any 0 < ¢ < 5, there exist ' > 0,

o~

Z € Idem,,, (Cp[Lq, A]L)) such that ||z — Z]| < GN(vT2 then Z is an (e,1",2N)-idempotent in

M (CL[Lg, A7) and v ([Z]e 2n) = [2] (see [2, Proposition 3.20]). Observe that the propa-
gation of Z tends to zero when t goes to infinity. Hence, for » > 0, we can choose ¢t € [0, c0)

such that the prop(z;) < r. Since ||z — z|| < ||z — 2] < SNV We get that Z is an

(e,7,2N)-idempotent in M,,(C[Lg, A]') and to([2t]c.r2n) = [2¢] by applying [2, Proposition
3.20].

Definition 3.15 Let A be a I'-LP operator algebra. For 0 < e < %, r>0, N>1and

d > 0, we define a quantitative LP assembly map
uSmN L KN (BY(Pa(D), A)Y) — KEON (B2 (PyD), A)F) = KE™ON (AD),  [2] o [Eleon
for some t € [0,00) satisfying

te([Zt]eron) = [2t) in K (AXT).

Remark 3.6 Put B = BY(Py(I'), A)'. In the even case, If [z] = [2/] € K{(B), then
[z] + [g] = [¢] + [g] in Idem® (B)/ ~ for some g in Idem?' (B), thus diag(z, g) and diag(z’, g) are
homotopic in Idem*Y (B). Let (Z%)sej0,1) be a homotopy of 4N-idempotents between diag(z, g)
and diag(z’, g), and let 0 = sg < 81 < --- < s = 1 be such that

| Z% — z%1| < fori=1,-- k.

€
6(10N +1)
].io/r cach i, there exist r; > 0, Z% € Mm(/B:) suil/that |1Z5 — /Z\;H < soNGNTDz: Lhen
Zsi is an (g,r;,5N)-idempotent in M,,(B) and to([Z5]) = [Z°] in Ko(B) (see [2, Proposition
3.20]). For r > 0, by the definition of the localization algebra, we can choose an appropriate
t; in [0, 00) such that Z;* is in Mm(m) and the propagation of Z;* is no more than r. Let
t= nax t;, and define Ez = Sl__ST’jlzsv—i— %Zf\j forl € [s;—1, s;]. Then Ez is a homotopy
of (g,r,5N)-idempotent in M, (Z—;ﬂ_/F) between ZJ and EE . The odd case is similar: We can also
construct a homotopy of (e, 7, 9N )-invertible in Mm(m). Note that max{5N,9N} = 9N.
Hence, for any [z] € KN (B), there exists a unique element [ .on € KN (A xT) such that
te([Zt)e,ron) = [2] for some t € [0,00) in K, (A xT). Therefore, the quantitative L? assembly

map MZT;N’d is well-defined.

Moreover, the quantitative LP assembly maps are compatible with the usual ones, namely,
if [2] is an element of KN (BY (P4(T), A)"'), then

() = teop3 M (Ely) in Ku(AxT). (3.1)
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For any positive numbers d, d’ such that d < d’, we denote by

- N N r N r

igare K (B (Pa(T), A)) — K(BL (Par(T), A)),

the homomorphism induced by the canonical inclusion i4q : Pg(T") < Py (T'), then

e,r,N,d _  emr,N,d -N
:U“A,* - :uA,* © Zd,d',*a

which implies that uﬁ"* = Mff{)* 0 iga .. Moreover, for 0 < & <& < &, 0 < r <7 and
1 < N < N/, we have

! ’ ! ’ ’ ’
e, r' 9N e,r,N,d e ' N".d
* OHAx  —Ha (3.2)

1* :

L
For N > 1, the evaluation-at-zero homomorphism
evg : BY (Py(T), A)F' — BP(Py(T), A)F
induces a homomorphism on a variant of K-theory
evl : KY (B} (Pa(T), A)F) — KX (BP(Py(T), A)F).

Definition 3.16 Let A be a I'-LP operator algebra. For N > 1, we define an N-LP assembly
map
evly
pas KX (BY(Pa(l), A)F) == KV (BP(Py(D), A)F) = KX (A% T),
which gives rise to a homomorphism
P lim N (BR(PAT), A)F) = K (A T)
>

called the N-LP Baum-Connes assembly map.

Remark 3.7 When A is a C*-algebra, the N-LP Baum-Connes assembly map is indeed
the Baum-Connes assembly map. In fact, in the context of C*-algebras in [1], idempotents
are homotopic to projections and invertibles are homotopic to unitaries. And the norm of the

projection or the unitary is no more than 1.

Definition 3.17 Let A and B be LP operator algebras, and let w : [1,00) — [1,00) be a
non-decreasing function. We say that FN : KN(A) — KJN (B) is w-surjective if for any integer
N>1and[y] € KJN(B), there exists [x] € Kf(N)(A) such that

FM((a]) = [y] in KN (B).

Remark 3.8 By the proof of [3, Theorem 5.17], we know that if I' ~ X has finite dynamical
complexity, then the N-LP Baum-Connes assembly map for I' ~ X is w-surjective, and the
function w depends on the dynamic asymptotic dimension m and Mayer-Vietoris control pair
(A, h). In addition, we may use the term controlled-surjective when we do not want to emphasize

the function w.
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Definition 3.18 Let A be a filtered LP operator algebra. For (0 < e < %, r>0and N > 1,

we have a canonical group homomorphism
N KETN(A) = KIN(A),  [2)ern = [Fe(2)]an-

Furthermore, the quantitative LP assembly maps are compatible with the N-LP? assembly
maps, namely, if [z] is the element of KN (BY (P4(T'), A)"), then

M?iv7d([z]36N) =N o MZ,T;N’d([Z]N) in KPM(AxT).

Proposition 3.1 There exists a polynomial p > 1 with positive coefficients such that for
any filtered LP operator algebra A, any ¢ € (0, ﬁ(l\’))’ any r >0 and any N > 1, the following
holds: Let [x],[2'] be in KE™ (A) such that N ([z]) = N ([2']) in KN (A), there exists ' > r
such that

[x]p(N)s,r/,SBN = [xl]p(N)s,r/,BBN m Kf(N)EﬁT )BSN(A)

Proof (i) In the even case, let (g¢):cjo,1) be a homotopy of 16 N-idempotents in M, (A)
between k() and ko(z/). Then G := (g¢) is a 16N-idempotent in C([0,1], M, (A)). There

exist v’ > 7 and H := (h;) € C([0,1], M,,(A,r)) such that |H — G|| < 5. In particular, we

have ||ho — ro(2)| < g5 and [|h1 — ko(2')|| < 55+ Then hy is an (g,7', 17N)-idempotent in

M, (A) for each ¢ € [0,1]. Also

1ho — 2|l < [lho — ro(@)|| + [|Ixo(x) — ]|

5 2(N +1)e
SN T U-vau-25
<6(N+1)e

and similarly ||h; — 2’| < 6(N + 1)e. Then hy and z are (¢/,7', 17N )-homotopic, where &’ =
e+ (6N +6)%c?, and similarly for hy and 2’. Hence [2]o v 178 = [2/]er v 171

(ii) In the odd case, let (f;)icjo,1) be a homotopy of 16 N-invertibles in M,,(A) between x

and 2’. The path F := (f;) can be regarded as an invertible element in C([0, 1], M,,(A)). Then

there exist ' > r and W € C([0, 1], M,,(A,)) such that

1
W = F|| < g3 (e = max{fley — 1|, [lyz = 1], [l="y" = L|I, y'=" = 1[[}),

where y is an (¢, r, N)-inverse for x and ¢’ is an (¢, r, N)-inverse for 2’. Then W is an (g,7’, 33N)-
invertible in C([0,1], M,,(A)), and we have a homotopy of (¢,7/,33N)-invertibles z ~ Wy ~
W1 ~ ZZ?/.

3.3 Quantitative statements

Oyono-Oyono established the connection between the Baum-Connes conjecture and the
quantitative Baum-Connes conjecture in [13]. In parallel, we will give the connection between

the LP Baum-Connes conjecture and the quantitative LP Baum-Connes conjecture.
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For a I'-LP operator algebra A and positive numbers d,d’,r,r’,e,e’, N,N' with d < d',
e<e < %, r <7’ and 1 <N < N’, let us consider the following statements:
(1) QIa . (d,d ,e,r,N): For every [z] € KN(BY (Py(T), A)V), then

N2 =0 in KETON(A T

implies that ig 4 .([z]) = 0 in K. (B} (Py(T), A)L).
(2) QS .(d,e,& 7,7, N,N'): For every [y] € K™ (A x I), there exists an element [z]
KN'(BE (Py(T), A)T) such that

pal N ) = TN () in KON (A D).
Using equation (3.1) and Proposition 2.1, we get the following proposition.

Proposition 3.2 Let ' be a finitely generated group, and let A be a T'-LP operator algebra.
For a positive number € with € < % :

(1) Assume that for any r>0,N >1 and d>0, there exists d' >d such that QI 4 .(d,d ,e,7,N)
is satisfied. Then pa s is injective.

(ii) Assume that for any r > 0 and N > 1, there exist positive numbers €', d, v’ and N’ with
e<ée < %, r<r', N<N' and d >0 such that QSa .(d,e, & ,r,r',N,N") is true. Then i x

18 surjective.

The following results construct the connection between quantitative injectivity (resp. sur-

jectivity) and injectivity (resp. surjectivity) of the L? Baum-Connes assembly map.

Theorem 3.1 Let I' be a discrete group, and let A be a I'-LP operator algebra. Then the
following two statements are equivalent:

(1) frgoe (07 (er)@A) % 15 injective.

(ii) For0 <e < 2—10, r >0, N >1andd >0, there exists d' > d such that Q14 .(d,d',e,r, N)
holds.

Proof The proof relies on Proposition 3.3, which will be proved later. Suppose (ii) holds.
Let [z] be in K.(BY (Py(T), £ (N, % (?) @ A))F) for some d > 0 such that

1 (vt ey 0.4y < ([2]) = 0 in KL (6°(N, 2 () @ A) x T).

Then there exists N > 1 such that [2] € KN (€(N, 7 ()@ A)«T), thus 5. gy 0 . (12])

is an element of Kf/’r/’gN/(é‘x’(N, H(P)® A) x T'). By equation (3.1), we obtain that

AN
)T \d

1
£ N _
L sy (1) =0 for any e € (0, %).
Hence, by Proposition 2.2 (ii) and equation (3.2), there exist € > €', r > 1/ and N > N’ such
that

1N ey L ([2]) = 0 in KON (02N, (07) © A) % T).
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According to Proposition 3.3, we have an isomorphism
K. (BY(Pa(D), 0 (N, ((7) © A)') = K. (B} (Pa(T), A)F)" (3.3)

induced on the j-th factor by the projection £>°(N, .7 () ® A) — # () ® A and up to the

Morita equivalence
K.(B5(Pa(T), A)Y) = K. (B (Pa(D), 2 (17) © A)F). (3.4)

Assume that ([2,,,])men is the element in K, (BY (Py(T), A)F)Y corresponding to [z] under this
identification, and let d’ > d be a positive number such that QI4 .(d,d’,e,r,N) holds. By

naturality of the quantitative LP assembly maps, we get that
N () =0 in KEPON (B (Pa(D), A)"),

which implies that ig g «([xm]) = 0 in K. (BY (Py (), A)Y) for each integer m. Finally, using
equation (3.3), we obtain that

iaa«([]) =0 in K.(B} (Po(T), 0N, () © A)").

Hence fupoo (v, ¢ (¢7)@4),+ 18 injective. Thus (ii) implies (i).

Suppose (ii) is false. In the even case, there exist € in (0,55), r >0, N > 1 and d > 0 such
that for all d’ > d, the statement QI o(d,d’,e,r, N) does not hold. So it suffices to prove that
[hoe (N, ()2 A),0 18 1ot injective. Let (dm)men be an increasing and unbounded sequence of
positive numbers such that d,, > d for all m € N. For each positive integer m, let [x,,] be in

K{ (B (Py(T), A)) such that
pA (o)) =0 in KGN (A1 T)

but

ig.d;0([tm]) # 0 in Ko(BY (Py, (I'), A)").
Assume that [z] is the element in KJ' (BY (Py (L), (>(N, # (¢*) ® A))') corresponding to
([#m])men under the identification of equation (3.3). Let (e )men be a family of (¢,r,9N)-

idempotents with ey, in M,, (A x T") for some ny, such that

N%kﬁ!ﬁk(@)@ALoqx]) = [(em)men]eron  in KGN (02 (N, (1) @ A) x T).

By naturality of ,ui{de’d, we know that [e,]c ron = 0 in Kg’T’N(A x ') for all integers m, hence

w([(em)menleron) =0 in Ko(0®(N, # (£7) @ A) x I).

This gives u?""(N,%(@)@ALO([x]) =10 MZQ(%[ZZg(gp)@A),O([x]) = 0. For each positive integer m,
id,d,,,0([Zm]) # 0 implies i44, o([z]) # 0, thus we see that jipe (¢ (er)g4),0 is nOt injective,

hence (i) is false. In the odd case, we have a similar proof.
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Theorem 3.2 Let I' be a discrete group. Assume that for any I'-LP operator algebra A,

1
) 20p(N))’ r>0
and N > 1, there exist v’ > r, N’ > N and d > 0 such that QS4 .(d,e, p(N)e,r,r’', N, N') holds.

Then g (N, (er)0 A),% 18 surjective.

there exists a polynomial p > 1 with positive coefficients such that for any € in (0

Proof The proof relies on Proposition 3.3, which will be proved later. Let p be as in
Proposition 2.1. Suppose the statement QS4 .(d, e, p(N)e,r,r', N,N’) holds. Let [z] be the
element in K, ((>*(N, # (¢?) ® A) x T') and let [y] be in Kf’r/’N/(ZOO (N, ¢ (¢P) ® A) x T') such
that v ([y]) = [2] with e € (0, ﬁ(m), r>0and N > 1. Let [y;] be the image of [y] under the

composition
KN (0™ (N, A ((P) @ A) x T) = KN (o ((P) @ AxT) = KS"N(A % T), (3.5)
where the first map is induced on the j-th factor by the projection
(N, (PR A) — 2 (P)2 A

and the second map is the Morita equivalence of Propositions 2.4-2.5. Let d, v’ and N’ be
positive numbers with ' > and N’ > N such that QSa4 .(d, e, p(N)e,r,7’, N, N') holds. Then
for each positive integer m, there exists [x,,] in KN'(B? (Py4(T), A)F) such that

77‘/, /7d ,T/, !’ . 77‘/, !’
b0 (g 1) = LSOV Ty i kESTON (4 ).

Let [z] be the element of KN'(BY (Py(T), (N, # (f7) ® A))') corresponding to ([Zm])men
under the identification of equation (3.3). By naturality of the quantitative LP assembly maps,

we get that

N)e,r’ ,N',d N)e,r’ 9N’
e N ((a]) = S ()

in FPNeTON' (0> (N, 72 (¢P) ® A) x T'). Hence, we conclude that

Hieo (v, ()0 ), ([2]) = e ([y]) = [2],

and therefore piyee (N 7 (er)ga),« 1S sSurjective.
The next theorem relates controlled-surjectivity of the .4#'-LP Baum-Connes assembly map

and quantitative surjectivity.

Theorem 3.3 Let I' be a discrete group. Assume that for any I'-LP operator algebra A and
any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00) such that
uﬂo(N H(P)RA) is w-surjective. Then for some polynomial p > 1 with positive coefficients and
for any € in (O,m), r >0 and N > 1, there exist v’ > r, N' > N and d > 0 such
that QSa «(d,e, p(ONw(4N))e,r,r', N, N') holds.

Proof Assume that this statement does not hold. Then there exist

(1) e in (O,m),r>0andN21,
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2) an unbounded increasing sequence (7, )men With 7, > r,

3) an unbounded increasing sequence (N, )men with N, > N,
4) an unbounded increasing sequence (d,)men with d,;, > 0,

5) an element [y,,] in K&V (A x T),

such that for each m € N and any [z,,] in KN (BY (P, (T), A)Y),

(
(
(
(

INw(4AN))e,rm 9N m INw(4AN))e,rm N ,dm
LONAN)e ([ym]) # pi NN ([2m])

in KPONCEN)ErmONm (A o 7). According to equation (3.5), there exists

[y] € KN (£>°(N, # (1P) @ A) x T)

such that for every positive integer m, the image of [y] is [y.,]. Since M%O(N,%(ZP)(@A),* is w-
surjective, then for some d’ > 0 there exists [z] in Kf(4N)(B§(Pd/ (1), 0°(N, 2 (¢7) @ A)Y)
such that

N D) = e ey () in KON (2 (N, 2 (7) © A) 1 T).

Since the quantitative LP assembly maps are compatible with the w(4N)-LP assembly maps,
we get that

e G ey (i) = 21 o /‘zi’&{gg@g;m»*([x]w@”\’ )
where N7 = max{w(4N) - N,9w(4N)}. We now apply Proposition 3.1 and conclude that there
exists 7’ > r such that

9INw(4N))e,r’,33N 7rw(4N),d INw(4N))e,r’,33N
LONCENDe ' ouzww(,x()ep)m),*([f]) = LN “([wD)-

However, if we choose m such that r,, > 7/, N,,, > 33N; and d,, > d’, using naturality of the
L? assembly map and equation (3.2), we obtain that

Lp(9Nw(4N))€,rm,9Nm([ pP(ONW(AN))e, P, Ny ydim,
*

Ym]) = Wa s ([zm]),

which contradicts our assumption.

In the proof of (i) implying (ii) of Theorems 3.1 and 3.3, replacing the algebra £>°(N, .2 (¢?)®
A) by [] (F (fP)®A;) for a family of I'-LP operator algebras (A;);en, we can obtain the following
theorellfﬁ

Theorem 3.4 Let I" be a discrete group.

(i) Assume that for any T'-LP operator algebra A, the LP Baum-Connes assembly map (1 «
1s injective. Then for 0 < & < r >0, N>1andd >0, there evists d > d such that
QIA(d,d' e, 7, N) holds.

(ii) Assume that for any T-LP operator algebra A and for any integer A, there exists a

L
207

non-decreasing function w : [1,00) — [1,00) such that the A -LP Baum-Connes assembly map
ujV, . s w-surjective. Then for some polynomial p > 1 with positive coefficients and for any
€ in (O,m), r >0 and N > 1, there exist d > 0, v’ > r and N’ > N such that
QSax(de, p(INw(AN))e,r,7’, N, N') holds.
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Remark 3.9 To complete the proof of Theorems 3.1 and 3.3, we need Proposition 3.3 which

is based on a couple of lemmas.

Lemma 3.1 Let A be a unital LP operator algebra. There exists a map ¢ : (0,00) — (0, 00)
such that:

(1) If e and f are homotopic idempotents in M, (A), then there exist k, N € N with n+ k <
N, and a homotopy of idempotents (Ey)icio,1) in Mn(A) between diag(e, I, 0) and diag(f, I1,0)
such that |Ey — Es|| < e when |s —t| < ¢(e) for any e > 0 and any s,t € [0,1].

(2) If u and v are homotopic invertibles in GL,(A), then there exist an integer k and a
homotopy (Ut)icjo,1) i GLnyk(A) between diag(u, It,) and diag(v, I,) such that ||[Us — Us|| < e
when |s —t| < ¢(g) for any e > 0 and any s,t € [0,1].

Proof Let us prove the property in the case of idempotents, the case of invertibles being
similar. Without loss of generality, we suppose n = 1.

(i) Recall from [1, Propositions 4.3.3 and 3.4.3] that if e and f are idempotents in A, and
there exists 0 < § < m such that |le — f|| < 8, then f = z7lez for some invertible z in A
with ||z —1|| < 1. Hence there exists a € A with ||a|| < log2 such that z = exp(a). Considering
the homotopy (et)e(0,1] = (exp(ta)-e-exp(—ta))c(o,1] between e and f, we see that there exists
a map ¢ : (0,00) = (0,00) such that ||es — e¢]| < e when |s —t| < p1(e) for any € > 0 and any
s,t € [0,1].

(ii) For t € [0,1], let ¢; = cosZt and s; = sinZt. Define

(e 0 ¢t —St 1—e O ¢t St
a5 o) (0 ) (e (%)

in My(A). Then we know that (F}).e0,1] is @ homotopy of idempotents between diag(1,0) and
diag(e,1 — e). Also, there exists a map @2 : (0,00) — (0,00) such that ||Fs — E¢|| < & when
|s — t] < @a(e) for any € > 0 and any s,t € [0, 1].

(iii) In the general case, let (e;)¢cjo,1) be a homotopy of idempotents between e and f, and

let 0 =ty <t; <--- <ty =1 be such that
ller, —et, || <6 fori=1,--- k.

Then we have the following sequence of homotopies of idempotents in Maj1+1(A) in which the
first and last homotopies are conJugated by some permutation matrices:
h? h} h? h?
ho ~ hl ~N h2 ~ h3 ~ h4 ~ h5, where

h() = dlag(eto, Ik, Ok)

hi = diag(es,,1,0,---,1,0),
h2 = diag(es,, 1 — es, €y, s 1 — e, er,.),

= diag(es,, 1 — ey, L — €y, €y 1, 1 — €1y 1,68, )s
h4 = diag(1,0,---,1,0,eq,),

= diag(es, , Ii, Ok)-
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If we let ¢ = min{p1, @2}, then the result is obtained from cases (i) and (ii). Indeed, the
fact that ||hs — ha| < ¢ implies that for every m € {0,4}, there are homotopies (h}"):c[o,1]
between h,, and h,,11 such that |7 — k|| < & when |s — t| < ¢(g) for any € > 0 and any
s,t € [0,1].

In the next lemma, the injectivity of ®2 follows immediately from Lemma 3.1, and &2 is

clearly surjective. Hence the following result is obtained.

Lemma 3.2 Let A = (4;)ier be a family of unital LP operator algebras. Let
oA, K*(H(%(ﬁ’ ) A;) ) S [ B (@) @ A) = [] K.(A
el icl icl
be the homomorphism induced on the j-th factor by the projection
[[ex (@) @A) — () @ A
i€l
Then ®2 is an isomorphism.

Remark 3.10 Observe that 2 (¢P) @ % (¢P) ® A; is isometrically isomorphic to & (/7)) ® A;

for each i € N, thus ® is an isometric isomorphism.
As a consequence of this lemma, we have the following important proposition.

Proposition 3.3 Let " be a discrete group and let A = (A;);en be a family of I'-LP operator
algebras. Suppose A; @ JH (P) is equipped with the diagonal action, the action of T' on J¢ (¢P)

is trivial. Let

<I>£7A:K*(Bf(Pd(F),H(J{(Ep)@)A ) )—>HK T), 7 (") @ A,))

iel el

= [ [ K. (BY(Pa(T), 4)")

iel

be the homomorphism induced on the j-th factor by the projection

[[ex ()@ Ai) — o2 () @ A;.

icl

A , ,
Then ®24 is an isomorphism.

Proof Put B, = J#(f?) ® A;, i € I. For any locally compact space X equipped with an

action of I', we define
r
X . K, (Bg (X, HBZ-) ) - [[ K (BL(X. B)Y).
il iel
The homomorphism induced by the projection on the j-th factor is

cbff*:K( (X HB) )—>K (B2 (X, B;))").

i€l
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Let Zy,- -, Z, be the skeleton decomposition of P;(I"), then Z; is a locally finite simplicial
complex of dimension j, and endowed with a proper, cocompact and type preserving action of
r.

Next, we prove that <I>*Zj is an isomorphism by induction on j.

(i) For j = 0, the 0-skeleton Zj is a finite union of orbits, thus it suffices to prove that
<I>£/ s an isomorphism when F' is a finite subgroup of I'. For any I'-LP operator algebra B,
let xo be the charateristic map of F' in I'/F, and let 7 be a representation of Co(I'/F) in Ej.
Then Eg4, = m(x0) - Eq is stable under the action of group F and under the endmorphism of a
bounded linear operator 7'. The element restricted to Ey, defines an element of K, (BY (C, B))

and there is a natural restriction isomorphism
REp: K.(BY('/F,B)") — K.(BY(C,B)") 2 K,(B x F).

By naturality, we obtain the following commutative diagram:

r q>5/f
Ko(BL(/F T B) ) = K.(BL(/F,B)))
1€
11 B, B,
R}Elf l lRF,]F
K*(HBMF) ——  K.(B; % F),

i€l
where the bottom row is induced by the homomorphism
[[BixF—BxF
iel
determined by the projection on the j-th factor [[ B; — Bj. Since F' is finite, we see that
iel

[1 B; x F= ([[ B;) x F. Applying Lemma 3.2, we have an isomorphism
iel iel

K*((HBi) NF) EK*(HBZ- ><1F) = [ E.(B: % F).

i€l icl icl

T/F . . .
Hence @*/ is an isomorphism.
. Zi 1 . . . . . Z; . . .
(i) Suppose ®;7"* is an isomorphism, and it remains to prove that ®.” is an isomorphism.

The short exact sequence
0— Co(Z;\Zj—1) = Co(Zj) = Co(Zj-1) = 0
induces a natural long exact sequence
= Ko (B} (Zj—1,)") = Ku(BL(Z;,)") = Ku(BL(Z\Zj-1,)") = Kerr(BL(Zj-1,)") =

and hence by naturality, we obtain a commutative diagram
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K.(B}(Zj-1,B)") = K.(B}(Z;,B)") = K.(B}(Z\Zj-1,B)") — K.1(B}(Zj-1,B)")

Zi_ Z; Zi\Z;_ Zj—1
P70 1[ <I>*JL o7 1[ I

_GHIK*(Bf(Zj—l)F) - _GHIK*(Bi(Zj)F) - EK*(Bi(Zj\Zj—l)F) - _GI_IIK*—Fl(Bi(Zj—l)F)v

where [[ B; and [[ K.(B7(Z;, B;)") are denoted by B and [] K.(BY(Z;)") respectively.
i€l i€l i€l
We denote by I; the interior of the standard j-simplex. Since the action of I' is type preserving,
then

Zi\Zj1 = 1; x Cj,

where Cj is the set of center of j-simplices of Z;, I' acts trivially on I;. Together with the Bott

periodicity, we have a commutative diagram

K. (B (2)\%1, 11 Bi)r) —— Ko (B(0 11 Bi)r)

el iel
@fj\zj71J/ l¢5i1
HIK*(Bﬁ(Zj\Zj—hBi)F) — HK*+1(B§(CjaBi)F)-
1€ 1€

Finally, 3¢ is an isomorphism obtained from case (i), and thus 7N~ g an isomorphism.

According to the induction hypothesis and the five lemma, we know that <I>*Zj is an isomorphism.

4 Persistence Approximation Property

In this section, we introduce the persistence approximation property for filtered LP operator
algebras. In the case of a reduced crossed product of an LP operator algebra by a finitely
generated group, we find a sufficient condition for the persistence approximation property.

Let A be a filtered LP operator algebra. Applying Proposition 2.2 (i), we see that for any
€€ (O, %) and any N > 1, there exists a surjective map

lim KomN(A) = KN(A)

induced by a family of relaxation of control maps (x),>0. Moreover, if € > 0 is small enough,
then for any r > 0, any N > 1 and any [2] € K" (A), there exist positive numbers ¢’ € [¢, &)
independent of x and A, v’ > r and N’ > N such that

L([z]) = 0in Ko (A) = &7 N ([2]) =0 in K27 N (A).

However, we may wonder whether this ' depends on z, in other words whether the family

(K:’T7N(A))O<s<%,r>O,N21 has a persistence approximation for K,(A) in the following sense:
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For any sufficiently small e € (O, 2—10), any r > 0 and any N > 1, there exist ¢’ € [a, i), >

20
and N’ > N such that for any [z] € K2V (A), we have
SN (@) £0 0 in KN (A) = 0 ([2]) £0in KL (A).

Therefore, we consider the following statement: For a filtered L? operator algebra A and positive
numbers g, r and N > 1, there exist &’ in [a, 2—10), " >rand N' > N:
PA.(A e e r,r',N,N'): For any [z] € K"V (A),

L(z]) =0 in K, (A) = &N ([2]) =0 in K27 N (A).
4.1 The case of crossed products

Theorem 4.1 Let ' be a finitely generated group, and let A be a T'-LP operator algebra.
Assume that

(1) T' admits a cocompact universal example for proper actions.

(2) For any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP Baum-Connes assembly map for T' with coefficients in
(XN, 2 (P)e A)

1§ w-surjective.

(3) The LP Baum-Connes assembly map for T' with coefficients in A is injective.

Then for any N > 1, there exists a universal constant Apa > 1 such that for any € in
(0, ﬁ) and any r>0, there exist ' >r and N' > N such that PA(AXT, e, Apae,r,r', N, N’)
holds.

Remark 4.1 Here, the constant Ap4 does not depend on r, but on the positive integer N.

Proof Let A be a I'-LP operator algebra, and let I" admit a cocompact universal example for
proper actions. Assume that for every positive integer .4, there exists a non-decreasing function
w such that the .#-LP Baum-Connes assembly map with coefficients in ¢>°(N, 2 (¢?) @ A) is
w-surjective and the LP Baum-Connes assembly map with coefficients in A is injective, then
there exist positive numbers d and d’ with d < d’ such that the following two conditions are
satisfied:

(1) For every .4 € N and any [z] in K (£*°(N,.# (") @ A) x T), there exists [z] in
K2C(BE (Py(T), °(N, # (07) @ A))T) such that

w(A), . w(A) N [ poo
1 mony (] =[] i K& (2 (N (7) @ A) % ).
(2) For any [z] in K. (BY (P4(T), A)") such that uﬁ,,*([x]) = 0, we have

ig«([z]) =0 in K.(B}(Pa(T),A)"),
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where g, . : K.(BY (Py(T), A)Y) — K.(BY (Py(T), A)F) is induced by the inclusion Py(T') <
Py (I).

Fix such d and d’, and let p be as in Proposition 3.1, pick (A, h) as in Lemma 2.1 and put
Apa = p(9Anw(4Ay)). Assume that there exists N > 1 such that this statement does not hold.
Then there exist

(1

(2

(3

4
such that, for each i € N,

€€ (O,m) and r > 0,
an unbounded increasing sequence (r;);en with r; > r,

an unbounded increasing sequence (N;);eny with N; > N|

—_ — — ~—

a sequence of elements ([z;])ien with [z;] € KZ"N(A % T),

t([z;]) =0 in K,(AxT)

and
2T N (@) 20 in K2PASTEN (A ).

Since
(XN, (P) @A) X Th e = (N, ((P) @ AX T yr)

and according to Lemma 2.1, there exists an element
ANEhe NTSAN (oo
[x] € Kx ’ (N, (P)® A) x T)
that maps to (2~ "™ ([z,]), for all integers i under the composition
FONEMNTAN (20 (N, 7 ((P) @ A)HT) — KON SN TN (g (P) @ AT) S5 KNSRV (4xT),
where the first map is induced by the j-th projection

0°(N, # () @ A) — H (") @ A (4.1)

and the isomorphism is the Morita equivalence of Propositions 2.4-2.5. Note that 1}~ ([z]) is
in K2 (0°°(N, ¢ (1P) @ A) x T). Let

[2] € KU (B2 (Py(T), 6 (N, ¢ () @ A))F)
such that
e o (2 = 2% ([a]) in KO (o (N (¢7) @ A) % T).

Since the quantitative LP assembly maps are compatible with the w(4Ay)-LP assembly maps,

we obtain that

4Nq,d ANehe NT,wW(4AN),d
WNENX(W)@A),*([Z]‘*M) =0 NPJZ(EN,%]\EZP)é)Agz ([2)wan))s
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where N7 = max{w(4An) - An, 9w(4An)}. However, according to Proposition 3.1, there exists
R > h. nr such that

Ane,h w(4AN),d
QracfIN (a]) = rac BN o ey (Flutaa)

Apac,R,33N1,d
= Ko (8o or) i ) ([l 33)

By Proposition 3.3, we have an isomorphism

K. (B (Py(T), (N, # (") @ A))F) =5 H (BE (Py(T'), A)F) (4.2)

induced by the j-th projection in equation (4.1). Let ([2;]) en be the element of

[T K. (BL(Pa(T), 4)F)

jEN
corresponding to [z] under this identification. Using the compatibility of the quantitative L
assembly maps with the usual ones, we obtain by naturality that ujfh*([zz]) =0, for every i € N

and hence
ia,0.+([2z]) =0 in K.(BY(Py(T), A)Y).

Using once more equation (4.2), we deduce that
iga«([2]) =0 in K,(BY(Py(D), £°(N, 2 ((7) @ A)Y).

Let (pt)tejo,1) be a homotopy of idempotents (resp. invertibles) in M,,(B) between iq,a,+([2])
and 0, then P := (p;) is an idempotent (resp. invertible) element in C([0,1], M, (B)), where
B = BY (Py(),(°(N, 2 (*) @ A))''. Put N = max{33Ny, || P||}. Since

A d A d’
N@£?§ ifj(\;P)QgA) ([ ]) N@£?§ ifj(\;P)QgA) * Old d’* ([ ])7

then
Qras BN gy =0 in K)ras BN (9(N, 2 (1P) @ A) % T).
By naturality, we see that (2745 N’ ([x;]) =0 in Kras N’ (A xT) for all integers i. Picking

an integer 4 such that 7; > R and N; > N’, we have

LiPA&Tq:,Ni([xi]) — Li\PAE,Tqu: ° LiPA57R7N/([:Ei]) =0,

which contradicts our assumption.
For any LP operator algebra A, the LP Baum-Connes assembly map for I with coefficients
in Cy(T', A) is an isomorphism and Cy(T', A) x ' =2 A ® ¢ (¢*(T")), hence by Theorem 4.1, we

immediately obtain the following corollary.
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Corollary 4.1 Let I' be a finitely generated group, and let A be an LP operator algebra.
Assume that

(1) T' admits a cocompact universal example for proper actions;

(2) for any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP Baum-Connes assembly map for I' with coefficients in
(N, Co (I, 2 (0P) @ A))

18 w-surjective.

Then for any N > 1, there exists a universal constant Apa > 1 such that for any € in
(0, ﬁ) and any r > 0, there exist v’ > r and N' > N such that PA.(A® K((P(T)), e, Apac,
r, 7', N, N') holds.

In particular, if we put A = C, we have the following conclusion.

Proposition 4.1 Let I’ be a finitely generated group. Assume that
(1) T admits a cocompact universal example for proper actions;
(2) for any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP Baum-Connes assembly map for I' with coefficients in
C=(N, Co(I', 2 (£7)))

18 w-surjective.

Then for any N > 1, there exists a universal constant X\ > 1 such that for any ¢ € (O, ﬁ)
and any r > 0, there exist R > r and N’ > N such that the following holds:

(1) If uw is an (g,7, N)-invertible of K(¢P(T') @ £P) + Cldgprygew, then u is connected to
Idp(ryger by a homotopy of (Ae, R, N')-invertibles.

(2) If e and f are (g,7, N)-idempotents of IC(¢P(I") @ £P) such that

rank ro(e) = rank ko (f),

then e and f are connected by a homotopy of (A\e, R, N')-idempotents.

5 Applications Involving L? Coarse Baum-Connes Conjecture

In this section, X will be a discrete metric space with bounded geometry and A will be
an LP operator algebra. We will present a result on the persistence approximation property
of the LP Roe algebra for X. This result is applied to show that if any such space is coarsely
uniformly contractible and satisfies controlled-surjectivity of the .4#'-LP coarse Baum-Connes
assembly map and injectivity of the LP coarse Baum-Connes assembly map, then the LP Roe
algebra BP (X, A) has the persistence approximation property.

Assume that A = (4;);en is any family of filtered LP operator algebras. For each i € N,

there is a representation of A; on an LP space E;. We define E := @ E; = {(e;)ien | €; € E;}
ieN
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1
with the norm [|(e1, ez, -+ )| = { 3 |e;[P} 7. Clearly, E is an LP space. Let L}, = (P(Qq) 9 E@(?
ieN
be a certain LP-X-module defined in [21], and let C[L/,, A;] denote the algebra of all E-locally
compact operators on L/, with finite propagation. For any r > 0, we set
Az?r = H (C[L:ja Ai]ra
ieN
and we define the L? operator algebra A3 as the closure of |J A, in [[ BP(Pu(X), A;).
r>0 €N

Lemma 5.1 Let X be a discrete metric space with bounded geometry, and let A = (A;)ien
be a family of filtered LP operator algebras. Then there exist a control pair (A, h) independent
of the family A and a (\, h)-isomorphism

G = (G V)oceat ronzt  Ku(AT) = [T KL(BP(Pu(X), A2)),

i€N
where
G K N(AT) = [T EEmN(BP (Pa(X), A2))
ieN
is induced on the j-th factor by the projection %BP(Pd(X), A;) = BP(Py(X), Aj).
ic

Proof Let us first consider the even case. For 0 < ¢ < 2—10, r>0and N > 1, there exist a

control pair (A, h) and a (A, h)-controlled morphism

GorN KN (AT) = T KN (B (Pa(X), A1)
i€N
induced on the j-th factor by the projection [] BP(P;(X),A;) — BP(Py(X),A;). For any
i€N
positive integer ¢ and n, we know that

M, (6°(X, A; @ K ((P))) C 12(X, A;) @ H (7).

Hence, M, (B?(Py(X), Ai)) C BP(P4(X), A;). Assume that z is in [] K5 (BP(Pa(X), Ai)),
then we can write [z] = ([2;])ien for [x;] € KS’T’N(BP(Pd(X),Ai)z)e.NLet (€;)ien be a family
of (e,r, N)-idempotents with e; in some Mn(BP(P/d_(\)?), A;)) such that [z]. » v = [(€)ien]e,r, N,
then G=™ is (), h)-surjective.

According to the item (i) of Proposition 2.3, we construct the Lipschitz homotopy of (e, r, N)-
idempotents in larger matrix size, thus we can prove that G=™ is (), h)-injective. In the odd

case, we have a similar proof.

Lemma 5.2 Let X be a discrete metric space with bounded geometry, and let A = (A;)ien

be a family of filtered LP operator algebras, then we have a filtered isomorphism

WB%&@yHAO%Af

€N
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Proof By the universal property of BP (Pd(X ), 11 Ai), there exists a filtered homomor-

ieN
phism
Br (Pd(X), I1 Ai) AT
ieN
Note that the filtered homomorphism ¢ maps the dense subalgebra (C[Lgl, 11 Ai} to a dense

ieN
subalgebra of AJ°, thus we can easily get that ¢ is surjective. It thus suffices to show that ¢

is injective. For every positive integer i, we have the inclusion 4; — [] A;. Hence, we have a
ieN
filtered homomorphism

BP(Py(X), A;) — BP (Pd(X), I1 Ai),
ieN

which induces a filtered homomorphism

v AT = B (Pa(x), T 4)

ieN
such that the composition
BP (Pd(X), 11 Ai) 2y AT Yy Br (Pd(X), I1 Ai)

ieN ieN

is an identity map. Let  be in BP(Py(X), [] 4;) such that ¢(z) = 0 in A3, then z =

ieN
Y(¢(x)) =0, thus ¢ is injective. This implies that ¢ is a filtered isomorphism.

The preceding Lemma 5.2 yields the following.

Corollary 5.1 Let X be a discrete metric space with bounded geometry, and let A = (A;)ien
be a family of filtered LP operator algebras, then there exist a control pair (\,h) and a (\, h)-
isomorphism

K. (Bp (Pd(X), I1 Ai)) = [ K- (B (Pu(X), A2)).

€N ieN

Moreover, passing to the limit we obtain
K. (Bp (X, I1 Ai)) = [ K(BP(X, A:)).
ieN ieN

Definition 5.1 (see [14]) A discrete metric space X is coarsely uniformly contractible, if
for each d > 0, there exists d' > d such that any compact subset of Py(X) lies in a contractible
compact subset of Py (X).

Example 5.1 (see [14]) Any discrete Gromov hyperbolic metric space is coarsely uniformly

contractible.

Definition 5.2 Let A be an LP operator algebra. The evaluation-at-zero homomorphism

evo : BY(Py(X), A) = BP(Py(X), A)
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induces a homomorphism on K-theory
h = ev. : K. (BY(Pa(X), A)) — K.(B(Py(X), 4)) = K.(B"(X, A)),
called an LP coarse assembly map.
The family of LP coarse assembly maps (ujﬁ)*)bo gives rise to a homomorphism
s s i KL (BY(Pa(X), 4)) = K. (BY(X, 4),

called the LP coarse Baum-Connes assembly map. Moreover, the LP coarse Baum-Connes

conjecture for X posits that this map p4 « is an isomorphism.

Definition 5.3 Let A be an LP operator algebra. For N > 1, we define an N-LP coarse

assembly map
i KN (BY(Pa(X), 4)) — KN (BP(Pa(X), A)) = KN (B”(X, A))
induced by the evaluation-at-zero homomorphism
evy : BY (Py(X), A) — BP(Py(X), A).
The family of N-LP coarse assembly maps (MJX:S)DO gives rise to a homomorphism
N N (P N/ pp
KA - gi%K* (BL(Pd(X)aA)) - K* (B (X7 A)),
called the N-LP coarse Baum-Connes assembly map.

Remark 5.1 From the proof of [21, Theorem 4.6], we see that if X is a proper metric space
with finite asymptotic dimension, then the N-LP coarse Baum-Connes assembly map for X
is w-surjective, and the function w depends on the asymptotic dimension m, strong Lipschitz

constant C' and Mayer-Vietoris control pair (A, h).

The following result gives a sufficient condition for persistence approximation property to

be satisfied for a class of LP operator algebras.

Theorem 5.1 Let X be a discrete metric space with bounded geometry, and let A be an LP
operator algebra. Assume that

(1) X s coarsely uniformly contractible;

(1) for any positive integer A, there exists a non-decreasing function w : [1,00) — [1,00)

such that the A -LP coarse Baum-Connes assembly map for X with coefficients in
(N, 2 (P) @ A)

1§ w-surjective;
(3) the LP coarse Baum-Connes assembly map for X with coefficients in A is injective.
Then for any N > 1, there exists a universal constant Apa > 1 such that for any € in
(O, ﬁ) and any r > 0, there exist ' > r and N’ > N such that PA.(BP(X, A),e, Apae,r,r’,
N, N’) holds.
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Proof Let p be as in Proposition 3.1, pick (A ) as in Corollary 5.1 and put Aps =
p(OANw(4Any)). Assume that there exists N > 1 such that this statement does not hold. Then
there exist

(1) ee (O,m) and r > 0,

(2) an unbounded increasing sequence (7;);ecny bounded below by 7,

(3) an unbounded increasing sequence (N;);en bounded below by N,

(4)a sequence of elements ([z;])ien with [z;] € KZ™ (BP(X, A)), such that, for each i € N,

t([z]) =0  in K. (BP(X,A))

and
APAET 1([ ]) ?é 0 in K:\PAE,T"L,NI‘(BP(X7 A))

Ly

Let [z] be an element of K2 N" N (BP(X 1°°(N, # (6P) ® A))) corresponding to ([z;])ien

in [] K™Y (BP(X, A)) under the (X, h)-isomorphism of Corollary 5.1. Observe that 2 ([z])
iEN
is the element of KV (BP(X,(>(N,.# ({?) ® A))). Then there exist d > 0 and

[2] € KM (BE (Py(X), 02N, ¢ (7) © A)))
such that

e oy ([2]) = 2% ([a])  in KEOW Y (BP(X (N, (1) @ A))).

Since the quantitative LP coarse assembly maps are compatible with the w(4A\y)-L? coarse
assembly maps, we obtain that

4N7,d Anehe NT,w(4AN),d
Fogoe (N, (9)@ A) lelanwy) = O“eozz(gN xj\éer’)éA;\g ([2wan))s

where N1 = max{w(4An) - An, 9w(4An)}. However, according to Proposition 3.1, there exists
R > h. nr such that

Apac,R,33N,d
LQPAE’R’33N1 ([z]) = ﬂg£?§7x(gp)(1®14))*([2]33]\71)-

By Proposition 3.3, we have an isomorphism
K.(BY (Pa(X), (N, £ (") @ A))) = [ [ K.(B X), A)).
ieN

Let ([z:])ien be the element of H K.(BY (P4(X),A)) corresponding to [z] under this identi-

fication. Using the compamblhty of the quantitative LP assembly maps with the usual ones,
we obtain by naturality that p A*([zl]) = 0 for each ¢ € N. Since X is coarsely uniformly

contractible and 4 . is injective, we deduce that there exists d’ > d such that

iaara(2) =0 in K.(BY(Py(X), 05N, # (1) © A))).
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Let (pt)tejo,1) be a homotopy of idempotents (resp. invertibles) in M, (B) between ig 4 «([2])
and 0, then P := (p;) is an idempotent (resp. invertible) element in C([0,1], M, (B)), where
B = BY (Py(X),0>(N, # (¢*) @ A)). Put N’ = max{33Ny, || P||}. Since

A JR,N'.d A JR,N'.d’ .
e (5% 0y @) (1) = 102 (8 o s @ ) v © T, ([2]),

then
Dras BN [0y =0 in KMPas BN (BP(X 0°(N, . (17) @ A))).

By naturality, we see that LiPAE’R’NI([xi]) = 0 in KfPAE’R’N,(Bp(X, A)) for all integers i.

Picking an integer 7 such that 7; > R and N; > N’, we have

rasrNi () = o,

which contradicts our assumption.

Theorem 5.2 (see [21]) For any p € [1,00), the LP coarse Baum-Connes conjecture holds

for proper metric spaces with finite asymptotic dimension.

Since hyperbolic metric spaces have finite asymptotic dimension, and combining this with

Remark 5.1 and Theorems 5.1-5.2, we have the following result.

Corollary 5.2 For any N > 1, there exists a universal constant A\p4 > 1 such that for any
discrete Gromov hyperbolic metric space X, the following holds: For any € in (O, m) and
any r > 0, there exist ' > r and N' > N such that PA.(BP(X,A),e, A\pac,r,v', N, N') holds

for any LP operator algebra A.
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