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Abstract In this paper, the authors consider the spectra of second-order left-definite d-
ifference operator with linear spectral parameters in two boundary conditions. First, they
obtain the exact number of this kind of eigenvalue problem, and prove these eigenvalues
are all real and simple. In details, they get that the number of the positive (negative)
eigenvalues is related to not only the number of positive (negative) elements in the weight
function, but also the parameters in the boundary conditions. Second, they obtain the
interlacing properties of these eigenvalues and the sign-changing properties of the cor-
responding eigenfunctions according to the relations of the parameters in the boundary
conditions.
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1 Introduction

Let a and b be two integers with a < b. We use [a, b]Z to denote the integer set {a, a +

1, · · · , b}. In this paper, we consider the spectra of the following second-order left-definite linear

difference operator

−∇(p(t)∆y(t)) + q(t)y(t) = λr(t)y(t), t ∈ [1, T ]Z, (1.1)

(a0 + b0λ)y(0) = (c0 + d0λ)∆y(0), (1.2)

(a1 + b1λ)y(T + 1) = (c1 + d1λ)∇y(T + 1), (1.3)

where T > 1 is an integer, [1, T ]Z = {1, · · · , T }, p : [0, T ]Z → (0,+∞), q : [1, T ]Z → [0,+∞),

r(t) 6= 0 and changes its sign on [1, T ]Z.
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As an important problem in both mathematical subject and any other subject, Sturm-

Liouville (S-L for short) problem has been discussed more than a hundred years. Many of

the classical earliest results and references on the S-L problem could be found in Ince [34]. In

details, for the following S-L problem

− (p(t)y′(t))′ + q(t)y(t) = λm(t)y(t), t ∈ (a, b),

a0y(a) + c0y
′(a) = 0, a1y(b)− b1y

′(b) = 0,

if the operator Ly := −(py′)′+ qy is right-definite, then this problem has a sequence of real and

simple eigenvalues λk as

λ1 < λ2 < · · · < λk < · · · → +∞,

and the corresponding eigenfunction changes its sign exactly k − 1 times. Meanwhile, if L is

left-definite, the problem has two sequences of real and simple eigenvalues λ±
k as

0 ≤ λ+
1 < λ+

2 < · · · < λ+
k < · · · → +∞,

0 ≥ λ−
1 > λ−

2 > · · · > λ−
k > · · · → −∞,

and the corresponding eigenfunction to λ±
k changes its sign exactly k − 1 times. After this,

several authors paid attention to the right-definite and left-definite S-L problems for ordinary

differential equations, such as [13–15, 47] and the references therein. Meanwhile, the discrete

S-L problem attracted wide attention as well. In 1964, Atkinson [9] obtained the spectra of the

discrete problem

c(t)y(t+ 1) = (λa(t) + b(t))y(t)− c(t− 1)y(t− 1), t ∈ [1, T ]Z, (1.4)

y(0) = 0, y(T + 1) + ly(T ) = 0. (1.5)

Under the assumption that a(t) > 0, this S-L problem has T real and simple eigenvalues. Later,

Jirari [35] continued to consider the spectra of the same equation with a more general boundary

condition and obtained similar results. Hartman [33] discussed the oscillation of the Sturm-

Liouville difference equations including the possible sign-changing in the leading coeffcient p(t),

and the notion of a generalized zero was introduced to get the oscillation properties of the

eigenfunctions. For the discrete right-definite periodic eigenvalue problems and the eigenvalue

problems with coupled boundary conditions, the eigenvalue results have been obtained by Ma

and Ma [43], Wang and Shi [46] and Sun and Shi [45]. Meanwhile, for the discrete left-definite S-

L problems, Ma et al. [41] first considered the spectra of the discrete second-order left-definite

S-L problem with Neumann boundary condition. They obtained this kind of problems has

exact T real and simple eigenvalues. In details, the number of positive eigenvalues equals to

the number of positive elements in the weight function, and the number of negative eigenvalues

equals to the number of negative elements in the weight function. Meanwhile, they obtained

the sign-changing time of the corresponding eigenvalues. Later, Ma et al. [40, 42] obtained

the spectra of the discrete problem with Dirichlet boundary condition and the Sturm-Liouville

boundary condition, respectively.

Now, let us recall the research history on the S-L problems with spectral parameters in

the boundary conditions. As far as we know, the study of this kind of problems could be first
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found in 1820s, Poisson [44] deduced an ODE model with spectral parameter in the boundary

conditions from a pendulum problem. After this, this kind of problems has received widespread

attention (see [1–8, 10–12, 16–32, 36–39]) and it appeared in several practical problems, such as

the vibrating string problems (see [1]), the acoustic wave problem (see [10]), the heat conduction

problems (see [20]), the problem of vibrating beam (see [7–8]) and so on. In particular, Binding

and Browne [11] considered the problem

−(py′)′ + qy = λry, t ∈ [0, 1], (1.6)

(aj + bjλ)y(j) = (cj + djλ)(py
′)(j), j = 0, 1. (1.7)

Under the assumption (−1)iσi = (−1)i(bici − aidi) < 0 (i = 1, 2) and the other assumptions

which could guarantee that the operator L is a right-definite and self-adjoint opertor, the au-

thors obtained (1.6)–(1.7) has a sequence of real and simple eigenvalues λk, which has only

accumulation +∞. Meanwhile, they obtained the oscillation properties of the corresponding

eigenfunctions. The method they used is the Prüfer transformation. They also obtained the

interlacing properties of the eigenvalues and the sign-changing time of the corresponding eigen-

functions. Later, the same results for (1.6)–(1.7) were obtained by Kerimov and Aliyev [36] and

Kerimov and Poladov [38] by using a different method. Meanwhile, Aliyev [2] and Aliyev and

Dun’yamalieva [3] continued to consider the spectra of (1.6)–(1.7) under the assumption σ0 < 0

and σ1 < 0 in a Pontryagin space and they obtained the basis properties of system of root

functions of the S-L problem with spectral parameter in the boundary conditions. Moreover,

Aliyev and Guliyeva [4], Aliyev and Kerimov [5], Aliyev and Namazov [6–8] also considered the

spectral properties of the fourth-order S-L problems with spectral parameters in the bound-

ary conditions. For the left-definite S-L problems with spectral parameters in the boundary

conditions, Binding and Browne [12] considered the problem (1.6)–(1.7) under the left-definite

assumptions. They obtained this eigenvalue problem has two sequences of real and simple

eigenvalues λk, in which one is negative with only one accumulation −∞ and the other one

is positive with only one accumulation +∞. Furthermore, the interlacing properties of the

eigenvalues and the sign-changing time of the corresponding eigenvalues are obtained as well.

Now, the question is what would happen for the discrete S-L problems. In 2002, Harmsen and

Li [31] considered the spectra of the following right-definite discrete S-L problems: (1.1) with

the boundary condition

y(0) = 0, (a1 + b1λ)y(T + 1) = (c1 + d1λ)∇y(T + 1). (1.8)

They obtained the problem (1.1), (1.8) has at most T + 1 real eigenvalues. Then they (see

[32]) continued to consider the S-L problem, that is, (1.1) with the condition y(0) = 0 and a

boundary condition with squared spectra parameter. They obtained this problem has at most

T + 2 real eigenvalues. Later, Gao and Ma [25] considered the more general right-definite S-L

problem (1.1)–(1.3) with (−1)iσi < 0 and obtained this problem has exact T +2 real and simple

eigenvalues (for (1.1), (1.8), it is exact T + 1 real and simple eigenvalues). They also obtained

the interlacing properties of the eigenvalues and the oscillation properties of the corresponding

eigenfunctions. Later, Gao et al. [23] obtained the spectral properties of (1.1)–(1.3) in a finite

dimensional Pontryagin space under the assumptions: r(t) > 0, σ0 < 0 and σ1 < 0. Gao et al.
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[28] considered the spectral properties of the right-definite S-L problems, (1.1) with nonlinear

parameters in the boundary conditions, then obtained the exact number of the real and simple

eigenvalues and the oscillation properties of the corresponding eigenfunctions. Meanwhile, Gao

et al. [26] studied the spectra of second-order left-definite S-L problem (1.1) with the boundary

condition

b0y(0) = d0∆y(0), (a1 + b1λ)y(T + 1) = (c1 + d1λ)∇y(T + 1). (1.9)

Under the following assumptions:

(A1) p(t) > 0 for t ∈ [0, T ]Z, q(t) ≥ 0 on t ∈ [1, T ]Z.

(A2) r(t) changes its sign on t ∈ [1, T ]Z, i.e., there are m points in t ∈ [1, T ]Z such that

r(t) > 0, while r(t) < 0 on other T −m points in t ∈ [1, T ]Z.

(H3) b0 + d0 6= 0, b0d0 ≥ 0, and if b0 = 0, then q(t) 6≡ 0.

(A4) −σ1M1 is positive definite, where σ1 = b1c1 − a1d1 and

M1 =

(

a1b1 −a1d1

−a1d1 c1d1

)

.

They obtained the exact number of positive eigenvalues and negative eigenvalues in differen-

t cases. Furthermore, they obtained the interlacing properties of eigenvalues and oscillation

properties of the corresponding eigenfunctions. However, for the problem (1.1)–(1.3), the fun-

damental functions defined in [26] is not useful for (1.1)–(1.3). Therefore, in this paper, we try

to consider the spectral properties of (1.1)–(1.3). To get it, we have to give a new assumption

on the first boundary condition.

(A3) σ0M0 is positive definite, where σ0 = b0c0 − a0d0 and

M0 =

(

a0b0 −a0d0

−a0d0 c0d0

)

.

Under the assumptions (A1)–(A4), we find that the S-L problem (1.1)–(1.3) is really a left-

definite eigenvalue problem in a new Hilbert space, which will be shown in Section 2. Then, in

Subsection 3.1, by defining and discussing the properties of the generalized Sturm’s sequences,

we obtain the eigenvalues of the Right Dirichlet Problem (RDP for short) and Right Neumann

Problem (RNP for short). In details, according to the sign of δ0, we could get the following

table.

Table 1 Number of eigenvalues of RDP (or RNP).

σ0 > 0 σ0 < 0

Number of Positive Eigenvalues (NPE) m m+ 1

Number of Negative Eigenvalues (NNE) T + 1−m T −m

Then, the sign-changing time of the generalized Sturm’s sequences will be obtained in Sub-

section 3.2 and then the sign-changing time of the eigenfunctions of RDP and RNP will be

obtained subsequently. Furthermore, based on the discussion of Section 3, we define two new

fundamental functions f(λ) and g(λ), and then get the interlacing properties of the eigenvalues
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and the oscillation properties of the corresponding eigenfunctions in Section 4. Different from

the continuous version, it is noted that the sign of the weight function r(t) and σi influences

the number of positive (negative) eigenvalues. The following table shows that how r(t) and σi

influence the number of positive (negative) eigenvalues.

Table 2 Number of Eigenvalues of (1.1)–(1.3).

σ0 > 0 σ0 < 0

σ1 > 0 σ1 < 0 σ1 > 0 σ1 < 0

NPE m+ 1 m m+ 2 m+ 1

NNE T + 1−m T + 2−m T −m T + 1−m

2 Left-Definiteness of the Generalized Operator

Let

E = {y | y : [1, T ]Z → C}.

Then E is a Hilbert space under the inner product 〈y, z〉E =
T
∑

t=1
y(t)z(t).

Furthermore, Let H := E ⊕ C2. Then H is a Hilbert space under the inner product

〈Y, Z〉 = ((y, α, µ), (z, β, ν)) = 〈y, z〉
Y
+ p(0)

1

|σ0|
αβ + p(T )

1

|σ1|
µν.

Define an operator L : D(L) → Y ⊕ C2 as follows:

LY = L(y, α, µ)

= (−∇(p(t)∆y(t)) + q(t)y(t),−ε0(a0y(0)− c0∆y(0)), ε1(a1y(T + 1)− c1∇y(T + 1))),

where D(L) = {(y, α, µ) | y ∈ Y, d0∆y(0) − b0y(0) = α, d1∇y(T + 1) − b1y(T + 1) = µ},

ε0 = sgnσ0, ε1 = sgnσ1. So, (1.1)–(1.3) is equivalent to LY = λSY , where S(y, α, µ) =

(ry,−ε0α, ε1µ).

Lemma 2.1 Suppose that (A1), (A3) and (A4) hold. Then the operator L is positive definite

on D(L).

Proof Let Y ∈ H be a nonzero element. Then

〈LY, Y 〉

=
T
∑

t=1

(−∇(p(t)∆y(t)) + q(t)y(t))y(t) + p(0)
1

|σ0|
(−b0y(0) + d0∆y(0))(−ε0(a0y(0)− c0∆y(0)))

+ p(T )
1

|σ1|
(d1∇y(T + 1)− b1y(T + 1))(ε1(a1y(T + 1)− c1∇y(T + 1)))

=
T
∑

t=1

q(t)(y(t))2 −
T
∑

t=0

p(t)y(t)∆y(t) +
T
∑

t=0

p(t)y(t+ 1)∆y(t) + y(0)∆y(0)p(0)
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− p(0)
ε0

|σ0|
[d0a0y(0)∆y(0) + c0b0y(0)∆y(0)− a0b0y(0)

2 − c0d0(∆y(0))2]

+ p(T )
ε1

|σ1|
[b1c1y(T + 1)∇y(T + 1)− a1b1y(T + 1)2 + a1d1y(T + 1)∇y(T + 1)

− c1d1(∇y(T + 1))2]

=

T
∑

t=1

q(t)(y(t))2 −

T
∑

t=0

p(t)y(t)∆y(t) +

T
∑

t=0

p(t)y(t+ 1)∆y(t) + y(0)∆y(0)p(0)

− y(T + 1)p(T )∇y(T + 1)− p(0)
1

σ0
[2d0a0y(0)∆y(0)− a0b0(y(0))

2 − c0d0(∆y(0))2

+ σ0y(0)∆y(0)] + p(T )
1

σ1
[2a1d1y(T + 1)∇y(T + 1)− a1b1y(T + 1)2

+ σ1y(T + 1)∇y(T + 1)− c1d1(∇y(T + 1))2]

=
T
∑

t=1

q(t)(y(t))2 +
T
∑

t=0

p(t)(∆y(t))2 + p(0)
1

σ0
〈M0f0, f0〉E − p(T )

1

σ1
〈M1f1, f1〉E ,

where f0 = (y(0),∆y(0))T , f1 = (y(T + 1),∇y(T + 1))T . Since (A3), (A4) hold, we know

σ0M0,−σ1M1 is positive definite. Therefore, 〈LY, Y 〉 > 0. The desired result is obtained.

3 Generalized Sturm’s Squences and Its Properties

In this section, we try to consider the properties of the roots of the polynomial y(t, λ) = 0,

which satisfy the initial condition

y(0, λ) = c0 + d0λ, ∆y(0, λ) = a0 + b0λ. (3.1)

Then, by (1.1), the explicit expression of y(t, λ) is obtained as follows:

y(0, λ) = c0 + d0λ;

y(1, λ) = (a0 + c0) + (b0 + d0)λ;

y(2, λ) =
[

1 +
p(0)

p(1)
+

q(1)

p(1)
− λ

r(1)

p(1)

]

y(1, λ)−
p(0)

p(1)
y(0, λ);

· · ·

y(t, λ) =
[

1 +
p(t− 2)

p(t− 1)
+

q(t− 1)

p(t− 1)
− λ

r(t − 1)

p(t− 1)

]

y(t− 1, λ)−
p(t− 2)

p(t− 1)
y(t− 2, λ)

= (−1)t−1 r(t − 1)r(t− 2) · · · r(1)

p(t− 1)p(t− 2) · · · p(1)
λt(b0 + d0) + Pt−1(λ),

t = 2, 3, 4, · · · , T + 1,

(3.2)

where Pt−1(λ) is a polynomial of degree t − 1 of λ. This kind of sequences is the generalized

Sturm’s sequence. Now, let us recall some basic properties of the generalized Sturm’s sequence

(3.2), which can be found in the references [23, 26, 28].

Lemma 3.1 (see [23, 28]) Suppose that y(t, λ) is a solution of the initial value problem

(1.1)λ, (2.1) and y(t, µ) is a solution of (1.1)µ, (2.1). Then for t ∈ [1, T ]Z,

(µ− λ)
[

t
∑

s=1

r(s)y(s, λ)y(s, µ) − p(0)σ0

]

= p(t)

∣

∣

∣

∣

y(t+ 1, λ) y(t+ 1, µ)
y(t, λ) y(t, µ)

∣

∣

∣

∣

. (3.3)
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Lemma 3.2 (see [23, 28]) Suppose that y(t, λ) is a solution of the initial value problem

(1.1)λ, (2.1). Then, for t ∈ [1, T ]Z, we have

t
∑

s=1

r(s)(y(s, λ))2 − p(0)σ0 = p(t)

∣

∣

∣

∣

y(t+ 1, λ) ∂
∂λ

y(t+ 1, λ)
y(t, λ) ∂

∂λ
y(t, λ)

∣

∣

∣

∣

. (3.4)

Lemma 3.3 (see [26]) Suppose that y(t, λ) is a solution of the initial value problem (1.1)λ,

(2.1). Then, for t ∈ [1, T ]Z, we have

λ

T
∑

t=1

r(t)(y(t))2 =

T
∑

t=0

p(t)(∆y(t))2 +

T
∑

t=1

q(t)(y(t))2

+ p(0)y(0)∆y(0)− p(T )y(T + 1)∇y(T + 1). (3.5)

Lemma 3.4 (see [23, 28]) For t ∈ {1, · · · , T + 1}, y(t, λ) = 0 and y(t− 1, λ) = 0 have no

common zeros.

Lemma 3.5 (see [23, 28]) Suppose that λ=λ0 is a root of y(t, λ)=0. Then, for t∈{1, · · · ,

T }, y(t− 1, λ0)y(t+ 1, λ0) < 0.

Next, let us prove another useful properties for the Sturm’s sequences. To get it, it is

necessary to discuss the relations of the σ0, a0, b0, c0 and d0.

Remark 3.1 Suppose that (A3) holds. Then σ0M0 is positive definite. By the properties of

positive definite matrix, it follows that σ0a0b0 > 0, σ0c0d0 > 0 and σ0detM0 = σ2
0(a0b0c0d0 −

a20d
2
0) = σ3

0a0d0 > 0. Therefore, detM0 = σ0a0d0 > 0. Finally, from the inequalities σ0a0d0 >

0, σ0a0b0 > 0, σ0c0d0 > 0, we get a0c0 > 0, b0d0 > 0.

Lemma 3.6 Suppose that (A1) holds. If λ = 0, then (a0 + c0)∆y(t − 1, 0) > 0 and (a0 +

c0)y(t, 0) > 0, t ∈ [0, T + 1]Z.

Proof Without loss of generality, let a0 + c0 > 0. Then by Remark 3.1, it is easy to see

that y(0, 0) = c0 > 0 and y(1, 0) = a0 + c0 > 0. Then, ∆y(0, 0) > 0. Next, suppose that the

result holds for t = k, that is, ∆y(k − 1, 0) > 0 and y(k, 0) > 0. Then for t = k+ 1, by (1.1), it

follows that

∆y(k, 0) =
q(t)

p(t)
y(k, 0) +

p(t− 1)

p(t)
∆y(k − 1, 0).

By the condition (A1), we get ∆y(k, 0) > 0, and y(k + 1, 0) > 0 subsequently. Therefore, the

induction method implies that the results hold.

3.1 Interlacing properties of zeros of Sturm’s sequence

In this subsection, let us consider the interlacing properties of the roots of y(t, λ) = 0.

For t ∈ [2, T + 1]Z, let

S+
t = {k ∈ [1, t− 1]Z | r(k) > 0}, S−

t = {k ∈ [1, t− 1]Z | r(k) < 0}.

Let mt be the number of S+
t , t− 1−mt be the number of S−

t . Meanwhile, if t = 0 and t = 1,

we define mt = 0 and t− 1−mt = 0 for convenience.
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Lemma 3.7 For t ∈ [0, T + 1]Z, y(t, λ) has the following asymptotic behavior as λ → ±∞.

In details,

(a) if b0 + d0 > 0, then

lim
λ→±∞

y(0, λ) = ±∞, lim
λ→±∞

y(1, λ) = ±∞,

lim
λ→−∞

(−1)t−mty(t, λ) = +∞, lim
λ→+∞

(−1)mty(t, λ) = +∞;

(b) if b0 + d0 < 0, then

lim
λ→±∞

y(0, λ) = ∓∞, lim
λ→∓∞

y(1, λ) = ∓∞,

lim
λ→−∞

(−1)t+mt−1y(t, λ) = +∞, lim
λ→+∞

(−1)mt+1y(t, λ) = +∞.

Proof In fact, by Remark 3.1, if b0 + d0 > 0, then d0 > 0, if b0 + d0 < 0, then d0 < 0.

Therefore, the asymptotic behavior of y(0, λ) and y(1, λ) holds for λ → ±∞.

For t ∈ [2, T + 1]Z, by (2.2),

y(t, λ) = (−1)t−1 r(t− 1)r(t − 2) · · · r(1)

p(t− 1)p(t− 2) · · · p(1)
λt(b0 + d0) + Pt−1(λ)

= (−1)mt
|r(t − 1)||r(t− 2)| · · · |r(1)|

p(t− 1)p(t− 2) · · · p(1)
λt(b0 + d0) + Pt−1(λ).

Then, it is not difficult to see that (a) and (b) hold.

Now, we focus on the interlacing properties of the generalized Sturm’s sequence. For the

sake of simplicity, let λt,+i denote the positive root(s) of y(t, λ) = 0 and λt,−(t−1−i) denote the

negative root(s) of y(t, λ) = 0. By Remark 3.1, the roots of y(0, λ) = 0 and y(1, λ) = 0 satisfy

the following relation:

If σ0 > 0, then

λ0,−1 = −
c0

d0
< λ1,−1 = −

a0 + c0

b0 + d0
< 0. (3.6)

If σ0 < 0, then

λ0,+1 = −
c0

d0
> λ1,+1 = −

a0 + c0

b0 + d0
> 0. (3.7)

Furthermore, for t ∈ [1, T ]Z, the following interlacing result holds.

Lemma 3.8 For t ∈ [1, T ]Z, the roots of y(t, λ) = 0 and y(t+1, λ) = 0 are simple, real and

interlacing each other. In details,

(a) if σ0 < 0 and r(t) > 0, then

0 < λt+1,+i < λt,+i < λt+1,+(i+1), i = 1, 2, · · · ,mt + 1;

0 > λt+1,−j > λt,−j > λt+1,−(j+1),

λt+1,−(t−mt−1) > λt,−(t−mt−1), j = 1, · · · , t−mt − 2;

(b) if σ0 < 0 and r(t) < 0, then

0 < λt+1,+i < λt,+i < λt+1,+(i+1), λt+1,+(mt+1) < λt,+(mt+1), i = 1, 2, · · · ,mt;
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0 > λt+1,−j > λt,−j > λt+1,−(j+1), j = 1, 2, · · · , t−mt − 1;

(c) if σ0 > 0 and r(t) > 0, then

0 < λt+1,+i < λt,+i < λt+1,+(i+1), i = 1, 2, · · · ,mt;

0 > λt+1,−j > λt,−j > λt+1,−(j+1), λt+1,−(t−mt) > λt,−(t−mt), j = 1, 2, · · · , t−mt − 1;

(d) if σ0 > 0 and r(t) < 0, then

0 < λt+1,+i < λt,+i < λt+1,+(i+1), λt+1,+mt
< λt,+mt

, i = 1, 2, · · · ,mt − 1;

0 > λt+1,−j > λt,−j > λt+1,−(j+1), j = 1, 2, · · · , t−mt.

Proof We only prove the case (a). Others could be proved similarly. First, we prove that

(a) holds for y(1, λ) = 0 and y(2, λ) = 0. In this case, r(1) > 0, m1 = 0 and m2 = 1. Now, the

proof will be divided into two cases.

Case I b0 + d0 > 0. Then, y(0, λ) and y(1, λ) are both increasing linear function with

respect to λ. On the other hand, it follows from (3.7) that λ0,+1 > λ1,+1 > 0, and then, by the

fact that δ0 < 0, we obtain

y(0, λ1,+1) = c0 + d0λ1,+1 =
σ0

b0 + d0
< 0.

Combining this with Lemma 3.5, it follows that y(2, λ1,+1) > 0. On the other hand, Lemma

3.7 implies that

lim
t→±∞

y(1, λ) = ±∞ and lim
t→±∞

y(2, λ) = −∞.

Therefore, y(2, λ) = 0 has exact 2 real roots. Furthermore, by Remark 3.1, σ0 < 0 implies that

a0 < 0 and a0 + c0 < 0. Combining this with Lemma 3.6, we have that y(2, λ) = 0 has two

positive roots λ2,+1 and λ2,+2 satisfying 0 < λ2,+1 < λ1,+1 < λ2,+2. This means (a) holds for

y(1, λ) = 0 and y(2, λ) = 0, if b0 + d0 > 0.

Case II b0 + d0 < 0. Then (3.7) still implies that λ0,+1 > λ1,+1 > 0 and σ0 < 0 implies

that

y(0, λ1,+1) = c0 + d0λ1,+1 =
σ0

b0 + d0
> 0.

From Lemmas 3.5 and 3.7, y(2, λ1,+1) < 0 and

lim
t→±∞

y(1, λ) = ∓∞ and lim
t→±∞

y(2, λ) = +∞.

Therefore, by Lemma 3.6, we obtain that y(2, λ) = 0 has exact two different real roots λ2,+1

and λ2,+2 such that 0 < λ2,+1 < λ1,+1 < λ2,+2. Therefore, (a) holds.

Next, suppose that (a) holds for y(k, λ) = 0 and y(k + 1, λ) = 0. That is to say, if σ0 < 0

and r(k) > 0, then the roots of these two equations satisfy the following interlacing properties:

0 < λk+1,+i < λk,+i < λk+1,+(i+1), i = 1, 2, · · · ,mk + 1;

0 > λk+1,−j > λk,−j > λk+1,−(j+1), (3.8)

λk+1,−(t−mk−1) > λk,−(t−mk−1), j = 1, 2, · · · , t−mk − 2;
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Finally, let us consider the interlacing properties of the roots of y(k + 1, λ) = 0 and y(k +

2, λ) = 0. By (2.2),

y(k + 2, λ) = (−1)mk+2
|r(k + 1)||r(k)| · · · |r(1)|

p(k + 1)p(k) · · · p(1)
λk+2(b0 + d0) + Pk+1(λ).

Then the following two cases should be discussed.

Case I r(k + 1) > 0 and b0 + d0 > 0. In this case, mk+2 = mk+1 + 1 = mk + 2 and

lim
λ→−∞

(−1)k+2−mk+2y(k + 2, λ) = +∞, lim
λ→+∞

(−1)mk+2y(k + 2, λ) = +∞. (3.9)

Now, let us focus on the sign of y(k, λ) and y(k + 2, λ) at the roots of y(k + 1, λ) = 0, i.e., at

the points λ = λk+1,±i. In fact, from Lemma 3.5 and (3.8), it follows that

(−1)mky(k, λk+1,+mk+2) > 0, (−1)mk+1y(k, λk+1,+mk+1) > 0, · · · , (−1)2mk+1y(k, λk+1,+1) > 0.

This together with Lemma 3.5 implies that

(−1)mky(k + 2, λk+1,+mk+2) < 0,

(−1)mk+1y(k + 2, λk+1,+mk+1) < 0,

· · · ,

(−1)2mk+1y(k + 2, λk+1,+1) < 0.

(3.10)

Meanwhile, since σ0 < 0 and b0, d0 > 0, we know from Remark 3.1 that a0 < 0 and a0+ c0 < 0.

Therefore, y(k + 2, 0) < 0. Combining this with (3.9)–(3.10), we know that y(k+ 2, λ) = 0 has

mk + 2 positive roots with

0 < λk+2,+i < λk+1,+i < λk+2,+i+1, i = 1, 2, · · · ,mk + 1.

Next, let us consider the distribution of the negative roots of y(k+1, λ) = 0 and y(k+2, λ) = 0.

In fact, by (3.8), at the point λ = λk+1,−j , we get

(−1)k−mk−1y(k, λk+1,−(k−mk−1)) > 0, (−1)k−mk−2y(k, λk+1,−(k−mk−2)) > 0,

· · · , (−1)2y(k, λk+1,−2) > 0, (−1)1y(k, λk+1,−1) > 0.

Therefore, Lemma 3.5 implies that

(−1)k−mk−1y(k + 2, λk+1,−(k−mk−1)) < 0, (−1)k−mk−2y(k + 2, λk+1,−(k−mk−2)) < 0,

· · · , (−1)2y(k + 2, λk+1,−2) < 0, (−1)1y(k + 2, λk+1,−1) < 0.

Combining this with (3.9) and the fact that y(k + 2, 0) < 0, we get that y(k + 2, λ) = 0 has

k − 1−mk negative roots which satisfy

0 > λk+2,−j > λk+1,−j > λk+2,−(j+1),

λk+2,−(t−mk−1) > λk+1,−(t−mk−1), j = 1, 2, · · · , k −mk − 1.

By the mathematical induction, (a) holds for r(k + 1) > 0 and b0 + d0 > 0.
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Case II r(k +1) > 0 and b0 + d0 < 0. In this case, a0 > 0, c0 > 0, mk = mk + 1 = mk +2

and by Lemma 3.7,

lim
λ→−∞

(−1)k+mk−1y(k, λ) = +∞, lim
λ→+∞

(−1)mk+1y(k, λ) = +∞.

lim
λ→−∞

(−1)k+mk+1y(k + 2, λ) = +∞, lim
λ→+∞

(−1)mk+1y(k + 2, λ) = +∞. (3.11)

Furthermore, by Lemma 3.5 and (3.8), we get

(−1)mk+1y(k, λk+1,+mk+2) > 0, (−1)mk+2y(k, λk+1,+mk+1) > 0,

· · · , (−1)2mk+2y(k, λk+1,+1) > 0

and

(−1)mk+1y(k + 2, λk+1,+mk+2) < 0, (−1)mk+2y(k + 2, λk+1,+mk+1) < 0,

· · · , (−1)2mk+2y(k + 2, λk+1,+1) < 0.

Therefore, if follows from (3.11) that y(k+2, λ) = 0 has at least mk+3 positive roots satisfying

(a). On the other hand,

(−1)k−mky(k, λk+1,−(k−mk−1)) > 0, (−1)k−mk−1y(k, λk+1,−(k−mk−2)) > 0,

· · · , (−1)3y(k, λk+1,−2) > 0, (−1)2y(k, λk+1,−1) > 0

and

(−1)k−mky(k + 2, λk+1,−(k−mk−1)) < 0, (−1)k−mk−1y(k + 2, λk+1,−(k−mk−2)) < 0,

· · · , (−1)3y(k + 2, λk+1,−2) < 0, (−1)2y(k + 2, λk+1,−1) < 0.

Combining this with (3.11) and the fact y(k + 2, 0) > 0, we get that y(k + 2, λ) = 0 has at

least k −mk − 1 negative roots satisfying (a). Finally, since y(k + 2, λ) is a (k + 2)th degree

polynomial about λ, we know that those “at least” should be “exact”.

In what follows, by the mathematical induction, we get that (a) holds for σ0 < 0 and

r(t) > 0. This completes the proof.

From Lemma 3.8, it is easy to get the following eigenvalue results for the Right Dirichlet

problem (RDP for short): (1.1), (2.1) with the boundary condition y(T + 1) = 0.

Theorem 3.1 Suppose that (A1)–(A3) hold. Then Right Dirichlet problem has exact s real

and simple positive eigenvalues λD
+i, and T + 1 − s real and simple negative eigenvalues λD

−l,

satisfying

λD
T+1−s < · · · < λD

−2 < λD
−1 < 0 < λD

+1 < λD
+2 < · · · < λD

+s, (3.12)

where

s =

{

m, σ0 > 0,

m+ 1, σ0 < 0.
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Then by Theorem 3.1, we could get the distribution of eigenvalues of the Right Neumann

problem (RNP for short): (1.1), (2.1) and boundary condition ∇y(T + 1) = 0.

Theorem 3.2 Suppose that (A1)–(A3) hold. Then Right Neumann problem has exact s

real and simple positive eigenvalues λN
+i, i = 1, · · · , s and T − s + 1 real and simple negative

eigenvalues λN
−j, j = 1, · · · , T − s + 1. These eigenvalues satisfy the following interlacing

properties

λN
−(j+1) < λD

−j < λN
−j < 0 < λN

+i < λD
+i < λN

+(i+1). (3.13)

Proof Let

N(λ) =
y(T, λ)

y(T + 1, λ)
, λ 6= λD

+i and λ 6= λD
−j .

It follows from (2.2) that ∇y(T + 1) is a (T + 1)th degree polynomial of λ. Then, there are at

most T + 1 real λ such that ∇y(T + 1, λ) = 0. This implies that N(λ) has at most T + 1 real

zeros. Now, we only need to discuss that the equation N(λ) = 1 has exact T + 1 real roots

which satisfy the conclusion.

By (2.2), it is easy to see that lim
λ→±∞

N(λ) = 0. Furthermore, by Lemma 3.6, we know that

(a0 + c0)∆y(T, 0) > 0 and N(0) < 1. Meanwhile, no matter a0 + c0 > 0 or a0 + c0 < 0, by

Lemma 3.8, it is not difficult to see that, there exists a small left neighbourhood Uo
−(λ

D
+1; δ0) of

λD
+1, such that N(λ) > 0 for Uo

−(λ
D
+1; δ0). This implies that lim

λ→λD

+1
−0

N(λ) = +∞. Therefore,

N(λ) = 1 has a positive root λN
+1 in (0, λD

+1). Furthermore, by Lemma 3.8, there exists a small

right neighbourhood Uo
+(λ

D
+1; δ0) of λ

D
+1, such that N(λ) < 0 for Uo

+(λ
D
+1; δ0). This implies that

lim
λ→λD

+1
+0

N(λ) = −∞. Similarly, by Lemma 3.8, we know that for some δ > 0 small enough,

N(λ) > 0, λ ∈ Uo
−(λ

D
+i; δ) and N(λ) < 0, λ ∈ Uo

+(λ
D
+i; δ), i = 1, 2, · · · , s− 1,

N(λ) < 0, λ ∈ Uo
−(λ

D
−j ; δ) and N(λ) > 0, λ ∈ Uo

+(λ
D
−j ; δ), j = 1, 2, · · · , T − s.

Therefore, N(λ) has at least one zero point in each of these open intervals: (0, λD
+1), (−λD

+1, 0),

(λ+i, λ+(i+1)) and (λD
−(j+1), λ

D
−j), where i ∈ [1, s− 1]Z and j ∈ [1, T − s]Z.

Meanwhile, N(λ) < 0 for λ ∈ Uo
+(λ

D
+s; δ) and N(λ) > 0 for λ ∈ Uo

−(λ
D
−(T+1−s); δ). Combin-

ing this with the fact that lim
λ→±∞

N(λ) = 0, it is not difficult to see that N(λ) does not have

any zero in (−∞, λD
−(T+1−s)) and (λD

+s,+∞).

Overall, N(λ) has exact s positive zeros λN
+i (i ∈ [1, s]Z) and T + 1 − s negative zeros λN

−j

(j ∈ [1, T + 1− s]Z) such that the interlacing inequalities (3.13) holds.

3.2 The sign-changing rule of the generalized Sturm’s sequence

In this section, we try to discuss the oscillation properties of y(k, λ) about k. Then the

position of the point λ0,+1(or λ0,−1) will be important for our discussion.

For the sake of convenience, if σ0 > 0, let

λN
−(T−m+2) = λD

−(T−m+2) = −∞, λN
+(m+1) = λD

+(m+1) = +∞, λN
+0 = λD

+0 = λN
−0 = λD

−0 = 0.

If σ0 < 0, let

λN
−(T−m+1) = λD

−(T−m+1) = −∞, λN
+(m+2) = λD

+(m+2) = +∞, λN
+0 = λD

+0 = λN
−0 = λD

−0 = 0.
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Furthermore, without loss of generality, if σ0 > 0, we suppose that there exists a nonnegative

constant W− : 1 ≤ W− ≤ T −m+ 2 such that

λD
−W−

≤ λ0,−1 < λD
−(W−−1).

If σ0 < 0, we suppose that there exists a non-negative constant W+ : 1 ≤ W+ ≤ m + 2, such

that

λD
+(W+−1) < λ0,+1 ≤ λD

+W+
.

Theorem 3.3 Suppose that (A1)–(A3) hold and σ0 > 0. Then

(i) if λ ∈ (λD
+(k−1), λ

D
+k] and k ∈ [1,m+ 1]Z, then all solutions of (1.1), (2.1) change their

signs exactly k − 1 times on [0, T + 1]Z;

(ii) if λ ∈ [λD
−k, λ

D
−(k−1)) or λ ∈ (λ0,−1, λ

D
−(W−−1)), k ∈ [1,W− − 1]Z, then all solutions of

(1.1), (2.1) change their signs exactly k − 1 times in [0, T + 1]Z;

(iii) if λ ∈ [λD
−k, λ

D
−(k−1)) or λ ∈ (λD

−W−

, λ0,−1], k ∈ [W−, T −m + 2, ]Z, then all solutions

of (1.1), (2.1) change their signs exactly k − 2 times in [0, T + 1]Z.

Proof Now, we only need to discuss the sign-changing time of the sequence

{y(0, λ), y(1, λ), · · · , y(T + 1, λ)}. (3.14)

First, let us prove (i) holds. Since σ0 > 0, it follows that y(0, λ) and y(1, λ) are both

negative or positive for λ ≥ 0. Now, we prove the result by using the method of induction on

k, k = 1, 2, · · · , T + 1.

Step 1 Let us consider the case that k = 2. If r(1) < 0, then, by Lemma 3.8, we know

that the two roots of y(2, λ) = 0 are both negative. This together with Lemmas 3.6–3.7 implies

that y(2, λ) > 0 for λ > 0.

On the other hand, if r(1) > 0, then by Lemma 3.7, y(2, λ) = 0 has exact one negative root

λ2,−1 and one positive root λ2,+1. Then, the following two cases happen for r(1) > 0.

Case I b0 + d0 > 0. Since σ0 > 0, it follows from Remark 3.1 that a0 > 0 and c0 > 0.

Then, by Lemmas 3.6–3.7, we get y(2, 0) < 0 and lim
λ→±∞

y(2, λ) = −∞. Therefore,

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)0, (−1)0, (−1)0} for λ ∈ (0, λ2,+1);

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)0, (−1)0, 0} for λ = λ2,+1;

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)0, (−1)0, (−1)1} for λ ∈ (λ2,+1,+∞).

Therefore, {y(0, λ), y(1, λ), y(2, λ)} does not change its sign for λ ∈ (0, λ2,+1] and changes its

sign exactly one time for λ ∈ (λ2,+1,+∞). We get the desired result.

Case II b0 + d0 < 0. In this case, a0 < 0 and c0 < 0. By Lemmas 3.6–3.7, y(2, 0) < 0 and

lim
λ→±∞

y(2, λ) = −∞. Then, Lemma 3.8(c) implies that

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)1, (−1)1, (−1)1} for λ ∈ (0, λ2,+1);

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)1, (−1)1, 0} for λ = λ2,+1;

sgn{y(0, λ), y(1, λ), y(2, λ)} = {(−1)1, (−1)1, (−1)0} for λ ∈ (λ2,+1,+∞).
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The result still holds for k = 2.

Step 2 Suppose that the result holds for k = t. This is to say, the sequence

{y(0, λ), y(1, λ), · · · , y(t, λ)} (3.15)

changes its sign exactly k − 1 times for λ ∈ (λD
+(k−1), λ

D
+k].

Step 3 Now, we consider the case k = t+ 1, i.e., the sign-changing time of the sequence

{y(0, λ), y(1, λ), · · · , y(t, λ), y(t+ 1, λ)}. (3.16)

Without loss of generality, let λ ∈ (λt+1,+(i−1), λt+1,+i], i = 2, · · · , st+1. According to Lemma

3.8, λt,+(i−2) < λt+1,+(i−1) < λt,+(i−1) < λt+1,+i < λt,+i. Furthermore, since λt+1,+(i−1) is the

(i− 1)th zero of y(t+ 1, λ) and (a0 + c0)y(t+ 1, 0) > 0, we know that

sgny(t+ 1, λ) = (−1)i−1sgn(a0 + c0) for λ ∈ (λt+1,+(i−1), λt+1,+i). (3.17)

If λ ∈ (λt+1,+(i−1), λt,+(i−1)], then λ ∈ (λt,+(i−2), λt,+(i−1)]. According to Step 2, we know

that the sequence (3.15) changes its sign exactly i−2 times and the sign of y(t, λ) in this interval

is (−1)i−2sgn(a0 + c0). This together with (3.17) implies that (3.16) changes its sign exactly

i − 1 times. On the other hand, if λ = λt,+(i−1), then by Lemma 3.5, y(t + 1, λt,+(i−1))y(t −

1, λt,+(i−1)) < 0. Therefore, (3.16) still changes its sign exactly i− 1 times.

If λ ∈ (λt,+(i−1), λt+1,+i], then λ ∈ (λt,+(i−1), λt,+i). According to Step 2, we know that

the sequence (3.15) changes its sign exactly i− 1 times and the sign of y(t, λ) in this interval is

(−1)i−1sgn(a0 + c0). Combining this with (3.17), we know that y(t+1, λ) and y(t, λ) have the

same sign in (λt,+(i−1), λt+1,+i), which guarantees the sequence (3.16) changes its sign exactly

i − 1 times. Meanwhile, for λ = λt+1,+i, the result holds since (3.15) changes its sign exactly

i− 1 times at this point and y(t+ 1, λt+1,+i) = 0.

Therefore, the conclusion (i) holds by the induction method.

Next, let us prove (ii) and (iii) hold. Because of σ0 > 0, we know that λ1,−1 < λ0,−1 < 0.

So, there exists a non-negative constant W ′
− : 1 ≤ W ′

− ≤ T −m+ 2 such that

λD
−W ′

−

≤ λ1,−1 = −
a0 + c0

b0 + d0
< λD

−(W ′

−
−1).

Similar to the discussion for (i), it is not difficult to see that

{y(1, λ), y(2, λ), · · · , y(T + 1, λ)} (3.18)

has the following two oscillation properties:

(P1) The sequence (3.18) changes its sign exactly k − 1 times for λ ∈ [λD
−k, λ

D
−k−1), k =

1, 2, · · · ,W ′
− − 1 and W ′

− − 1 times for λ ∈ (λ1,−1, λ
D
−(W ′

−−1)).

(P2) The sequence (3.18) changes its sign exactly k − 2 times, for λ ∈ [λD
−k, λ

D
−k−1), k =

W ′
−, · · · , T −m+ 2 and W ′

− − 2 times for λ ∈ (λD
−W ′

−

, λ1,−1] .

Now, let us discuss the sign-changing time of the sequence (3.14).

First, when λ ∈ (λ1,−1, 0), then (a0 + c0)y(0, λ) > 0, (a0 + c0)y(1, λ) > 0. This means

y(0, λ) and y(1, λ) have the same sign for λ ∈ (λ1,−1, 0). This together with the property (P1)
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implies that the sequence (3.14) changes its sign exactly k− 1 times, when λ ∈ [λD
−k, λ

D
−k+1) or

λ ∈ (λ1,−1, λ
D
−(W ′

−
−1)), k ∈ [1,W ′

− − 1]Z.

Second, when λ ∈ (λ0,−1, λ1,−1], then (a0+c0)y(0, λ) > 0 and (a0+c0)y(1, λ) < 0. Therefore,

y(0, λ) and y(1, λ) have the opposite sign in this interval. This together with (P1) implies

that the sequence (3.14) changes its sign exactly k − 1 times, when λ ∈ [λD
−k, λ

D
−k+1) or λ ∈

(λD
−W ′

−

, λ1,−1] or λ ∈ (λ0,−1, λ
D
−(W−−1)), k ∈ [W ′

−, (W− − 1)]Z.

Third, when λ ∈ (−∞, λ0,−1], then (a0+ c0)y(0, λ) < 0, and (a0+ c0)y(1, λ) < 0. Therefore,

when λ ∈ [λD
−k, λ

D
−k+1) or λ ∈ (λD

−W−

, λ0,−1], k ∈ [W−, T −m+2]Z, the sequence (3.14) changes

its sign exactly k− 2 times. If λ = λ0,−1, then y(0, λ) = 0 and the sequence (3.14) still changes

its sign exactly k − 2 times.

Final, when λ ∈ (0,+∞), then (a0 + c0)y(0, λ) > 0, (a0 + c0)y(1, λ) > 0. Therefore, when

λ ∈ (λD
k−1, λ

D
k ], k ∈ [1,m+ 1]Z, the sequence (3.18) changes its sign exactly k − 1 times.

Similar to the proof of Theorem 3.3, we could get the following oscillation properties for the

case σ0 < 0.

Theorem 3.4 Suppose that (A1)–(A3) hold and σ0 < 0.

(i) If λ ∈ [λD
−k, λ

D
−k+1), k ∈ [1, T −m + 1]Z, then all solutions of (1.1), (2.1) change their

signs exactly k − 1 times in [0, T + 1]Z.

(ii) If λ ∈ (λD
+k−1, λ

D
+k] or λ ∈ (λD

+(W+−1), λ0,+1), k ∈ [1,W+ − 1]Z, then all solutions of

(1.1), (2.1) change their signs exactly k − 1 times in [0, T + 1]Z.

(iii) If λ ∈ (λD
+k−1, λ

D
+k] or λ ∈ [λ0,+1, λ

D
+W+

), k ∈ [W+,m+2]Z, then all solutions of (1.1),

(2.1) change their signs exactly k − 2 times in [0, T + 1]Z.

4 Spectral Properties for (1.1)–(1.3)

First, let us introduce a function

f(λ) =
∇y(T + 1, λ)

λy(T + 1, λ)
, λ ∈

+(s+1)
⋃

k=−(T−s+2)

(λD
k , λD

k+1), (4.1)

where s is defined in Theorem 3.1. Then, we get the following result.

Lemma 4.1 Suppose that (A1)–(A3) hold. Then f(λ) has the following properties:

(i) The graph of f(λ) consists of T +3 branches Ek, k ∈ [−(T − s+2),−1]∪ [+1,+(s+1)]Z.

The branch intersects λ−axis at λ = λN
k .

(ii) f(λ) is (strictly) decreasing as λ varies from λD
k to λD

k+1 for k ∈ [−(T−s+2),+(s+1)]Z.

(iii) For k ∈ [−(T − s + 1),+s]Z, f(λ) → −∞ as λ ↑ λD
k and f(λ) → +∞ as λ ↓ λD

k .

Meanwhile, f(λ) → 0 as λ → ±∞.

Proof (i) Since f(λ) has only one kind of zero point: λ = λN
k , it is easy to see that (i)

holds.

(ii) For λ ∈
+(s+1)
⋃

k=−(T−s+2)

(λD
k , λD

k+1), we have

f ′(λ) =
∂

∂λ

(∇y(T + 1, λ)

λy(T + 1, λ)

)
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= −
y(T + 1, λ)∇y(T + 1, λ) + λ

[

y(T + 1, λ) ∂
∂λ

y(T, λ)− y(T, λ) ∂
∂λ

y(T + 1, λ)
]

(λy(T + 1, λ))2

= −

p(T )y(T + 1, λ)∇y(T + 1, λ) + λ
T
∑

s=1
r(s)(y(s, λ))2 − p(0)δ0λ

p(T )(λy(T + 1, λ))2

= −

p(0)y(0, λ)∆y(0, λ) +
T
∑

t=0
p(t)(∆y(t, λ))2 +

T
∑

t=1
q(t)(y(t, λ))2 − p(0)δ0λ

p(T )(λy(T + 1, λ))2
.

According to Remark 3.1, we have b0d0 > 0, σ0a0d0 > 0. Therefore,

p(0)y(0, λ)∆y(0, λ)− p(0)σ0λ

= p(0)[(c0 + d0λ)(a0 + b0λ)− (b0c0 − a0d0)λ] = p(0)(b0d0λ
2 + 2a0d0λ+ a0c0) ≥ 0.

Further, we have f ′(λ) < 0. Therefore, (ii) holds.

(iii) The results of (ii) and the definition of f(λ) imply the results of (iii) holds.

Let

g(λ) =
a1 + b1λ

λ(c1 + d1λ)
, λ 6= 0, −

c1

d1
.

According to (A4), if σ1 > 0, then − c1
d1

> 0; if σ1 < 0, then − c1
d1

< 0.

Lemma 4.2 g(λ) has the following properties :

(i) g(λ) has two vertical asymptotes µ1 = min
{

0,− c1
d1

}

and µ2 = max
{

0,− c1
d1

}

. Meanwhile,

the graph of g(λ) has three branches Fk, k = 1, 2, 3 and one zero point −a1

b1
.

(ii) g(λ) is (strictly) increasing for (−∞, µ1) ∪ (µ1, µ2) ∪ (µ2,+∞).

(iii) lim
s→µ

−

i

g(s) = +∞, lim
s→µ

+

i

g(s) = −∞, lim
s→∞

g(s) = 0, i = 1, 2.

Proof Obviously, (i) holds. Now, we only need to prove that (ii) holds. For λ ∈ (−∞, µ1)∪

(µ1, µ2) ∪ (µ2,+∞), we have

g′(λ) =
( a1 + b1λ

λ(c1 + d1λ)

)′

= −
a1c1 + 2a1d1λ+ b1d1λ

2

(a1 + b1λ)2
≥ 0.

Since (A4) holds, the last inequality holds. This implies that g(λ) is (strictly) increasing on

each of its branches. Further, (ii), (iii) hold.

In order to obtain the oscillation theory of problems (1.1)–(1.3), we give some notations.

Let

l =

{

s, σ1 < 0,
s+ 1, σ1 > 0.

Then

l =







m, σ1 < 0, σ0 > 0,
m+ 1, σ1 < 0, σ0 < 0 or σ1 > 0, σ0 > 0,
m+ 2, σ1 > 0, σ0 < 0.

If σ1 < 0, then there exists a non-negative integer L− : 1 ≤ L− ≤ T − l+ 2 such that

λN
−L−

≤ −
a1

b1
< λN

−(L−−1). (4.2)
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Further, there exists a non-negative integer K− : 1 ≤ K− ≤ T − l + 2 such that

λD
−K−

≤ −
c1

d1
< λD

−(K−−1) (4.3)

Obviously, L− ≤ K−. If σ1 > 0, then there exists a non-negative integer L+ : 1 ≤ L+ ≤ l + 1,

such that

λN
+(L+−1) < −

a1

b1
≤ λN

+L+
(4.4)

Further, there exists a non-negative integer K+ : 1 ≤ K+ ≤ l + 1 such that

λD
+(K+−1) < −

c1

d1
≤ λD

+K+
. (4.5)

Obviously, L+ ≤ K+.

Theorem 4.1 Suppose that (A1)–(A4) hold. Then (1.1)–(1.3) has l positive eigenvalues

{λ+k}
k=l
k=1, T + 2 − l negative eigenvalues {λ−k}

k=T+2−l
k=1 . These T + 2 eigenvalues satisfy the

following properties :

(a) If σ1 > 0, then

λD
−(T+2−l) < λ−(T+2−l) < λN

−(T+2−l) < · · · < λD
−1 < λ−1 < λN

−1 < 0

< λN
+1 < λ+1 < λD

+1 < · · · < λN
+(L+−1) < λ+(L+−1) < λD

+(L+−1) < λ+(L+)

≤ λN
+L+

< λD
+L+

< · · · < λ+(K+−1) < λN
+(K+−1) < λD

+(K+−1) < λ+K+

< λN
+K+

< λ+(K++1) ≤ λD
+K+

< · · · < λN
+l−1 < λ+l < λD

+l−1. (4.6)

(b) If σ1 < 0, then

λD
−(T−l+1) < λ−(T−l+2) < λN

−(T−l+1) < · · · < λD
−K−

≤ λ−(K−+1) < λN
−K−

< λ−K−
< λD

−(K−−1) < λN
−(K−−1) < λ−(K−−1) < · · · < λD

−L−

< λN
−L−

≤ λ−L−
< λD

−(L−−1) < λ−(L−−1) < λN
−(L−−1) < · · · < λD

−1

< λ−1 < λN
−1 < 0 < λN

+1 < λ+1 < λD
+1 < · · · < λN

+l < λ+l < λD
+l. (4.7)

Proof We only show that (a) holds. Without loss of generality, let σ0 > 0. Then l = m+1

and T + 2− l = T + 1−m. Now, the proof will be divided into two cases.

Case I 1 ≤ K+ ≤ m + 1. First, we consider the first branch F1 of g(λ). From the

monotonicity of g(λ) and f(λ), the first branch F1 of g(λ) intersects the upper half of branch

E−(T−m+1) to branch E−1 of f(λ) and does not intersect the branch E−(T−m+2). Therefore, we

can get the following interlacing inequalities

λD
−(T−m+1) < λ−(T−m+1) < λN

−(T−m+1) < · · · < λD
−1 < λ−1 < λN

−1 < 0. (4.8)

Next, we consider the second branch F2 of g(λ). From the monotonicity of g(λ) and f(λ),

the second branch F2 of g(λ) intersects branch E+1 to branch E+K+
of f(λ). More precisely,

since λN
+(L+−1) < −a1

b1
< λN

+L+
, the second branch F2 of g(λ) intersects the lower half of branch

E+1 to branch E+(L+−1) of f(λ) and intersects the upper half of branch E+L+
to branch E+K+

of f(λ). Therefore, we can get the following interlacing inequality

0 < λN
+1 < λ+1 < λD

+1 < · · · < λN
+(L+−1) < λ+(L+−1) < λD

+(L+−1)
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and

λ+L+
< λN

+L+
< λD

+L+
< · · · < λ+(K+−1) < λN

+(K+−1) < λD
+(K+−1) < λ+K+

< λN
+K+

.

We consider the third branch F3 of g(λ). From the monotonicity of g(λ) and f(λ), the third

branch F3 of g(λ) intersects the lower half of branch E+K+
to branch E+m of f(λ) and does not

intersect the last branch E+(m+1). Therefore, we can get the following interlacing inequality

λN
+K+

< λ+(K++1) < λD
+K+

< · · · < λN
+m < λ+(m+1) < λD

+m.

Finally, if −a1

b1
= λN

+L+
, then λN

+L+
= λ+L+

. So (4.6) holds.

Case II K+ = +(m+ 1). Then λD
+m < − c1

d1
< λD

+(m+1). Similar to the discussion of Case

I, we obtain (4.8) holds. Therefore, we only consider how the branches F2 and F3 of g(λ)

intersect the branches of f(λ). From the monotonicity of g(λ) and f(λ), the second branch F2

of g(λ) intersects the upper half of branch E+L+
to branch E+(m+1) of f(λ), the third branch

F3 of g(λ) does not intersect f(λ). So, we can get the following interleaving inequality

λ+L+
≤ λN

+L+
< λD

+L+
< · · · < λ+m < λN

+m < λD
+m < λ+(m+1).

Therefore, (4.6) holds.

For the sake of convenience, let

K1 = min{λ0,−1, µ1}, K2 = max{λ0,−1, µ1} if σ1 < 0,

K3 = min{λ0,+1, µ2}, K4 = max{λ0,+1, µ2} if σ1 > 0.

Theorem 4.2 Suppose that (A1)–(A4) hold. If σ0 > 0 and σ1 < 0, then

(i) if K2 < λ−k, then the −kth eigenfunction y−k(t) changes its sign exactly k− 1 times for

t ∈ [0, T + 1]Z;

(ii) if K1 < λ−k ≤ K2, then the −kth eigenfunction y−k(t) changes its sign exactly k − 2

times for t ∈ [0, T + 1]Z;

(iii) if λ−k ≤ K1, then the −kth eigenfunction y−k(t) changes its sign exactly k − 3 times

for t ∈ [0, T + 1]Z;

(iv) the +kth eigenfunction y+k(t) changes its sign exactly k − 1 times for t ∈ [0, T + 1]Z.

Proof Without loss of generality, suppose that K1 = µ1. Then W− < K−. Other cases

can be obtained similarly.

First, from Theorem 4.1, if k ∈ [1,K−]Z, then λD
−k < λ−k < λD

−(k−1). Therefore, by Theorem

3.3, if λk > λ0,−1, then the −kth eigenfunction y−k(t) changes its sign exactly k − 1 times for

t ∈ [1, T+1]Z. If µ1 < λ−k < λ0,−1, then the −kth eigenfunction y−k(t) changes its sign exactly

k − 2 times for t ∈ [1, T + 1]Z.

Second, from Theorem 4.1, if k ∈ [K− + 1, T − m + 2]Z, then λD
−(k−1) < λ−k < λD

−(k−2).

Therefore, by Theorem 3.3, if λk < µ1, then the −kth eigenfunction y−k(t) changes its sign

exactly k − 3 times for t ∈ [1, T + 1]Z.

Last, if k ∈ [1,m+1]Z, then λ+k ∈ (λD
+(k−1), λ

D
k ]. According to Theorem 3.1, then the +kth

eigenfunction y+k(t) changes its sign exactly k − 1 times for t ∈ [1, T + 1]Z.
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Theorem 4.3 Suppose that (A1)–(A4) hold. If σ0 > 0 and σ1 > 0, then

(i) if λ0,−1 < λ−k, then the −kth eigenfunction y−k(t) changes its sign exactly k − 1 times

for t ∈ [0, T + 1]Z;

(ii) if λk ≤ λ0,−1, then the −kth eigenfunction y−k(t) changes its sign exactly k − 2 times

for t ∈ [0, T + 1]Z;

(iii) if λ+k < µ2, then the +kth eigenfunction y+k(t) changes its sign exactly k − 1 times

for t ∈ [0, T + 1]Z;

(iv) if λ+k ≥ µ2, then the +kth eigenfunction y+k(t) changes its sign exactly k − 2 times

for t ∈ [0, T + 1]Z.

Theorem 4.4 Suppose that (A1)–(A4) hold. If σ0 < 0 and σ1 < 0, then

(i) if µ1 < λ−k, then the −kth eigenfunction y−k(t) changes its sign exactly k − 1 times for

t ∈ [0, T + 1]Z;

(ii) if λ−k ≤ µ1, then the −kth eigenfunction y−k(t) changes its sign exactly k− 2 times for

t ∈ [0, T + 1]Z;

(iii) if λ+k < λ0,+1, then the +kth eigenfunction y+k(t) changes its sign exactly k− 1 times

for t ∈ [0, T + 1]Z;

(iv) if λ+k ≥ λ0,+1, then the +kth eigenfunction y+k(t) changes its sign exactly k− 2 times

for t ∈ [1, T + 1]Z.

Theorem 4.5 Suppose that (A1)–(A4) hold. If σ0 < 0 and σ1 > 0, then

(i) the −kth eigenfunction y−k(t) changes its sign exactly k − 1 times for t ∈ [0, T + 1]Z;

(ii) if λ+k < K3, then the +kth eigenfunction y+k(t) changes its sign exactly k − 1 times

for t ∈ [0, T + 1]Z;

(iii) if K3 ≤ λ+k < K4, then the +kth eigenfunction y+k(t) changes its sign exactly k − 2

times for t ∈ [0, T + 1]Z;

(iv) if λ+k ≥ K4, then the +kth eigenfunction y+k(t) changes its sign exactly k − 3 times

for t ∈ [0, T + 1]Z.

Remark 4.1 In order to better verify the results of this paper, we use another method to

verify the spectra of the following left-definite difference operator

∇(∆y(t)) = −λr(t)y(t), t ∈ [1, 3]Z, (4.9)

(1− 3λ)y(0) = (2− λ)∆y(0), (1− 2λ)y(4) =
(

−
2

3
+ λ
)

∇y(4), (4.10)

where r(1) = 1, r(2) = 1, r(3) = −1, a0 = 1, b0 = −3, c0 = 2, d0 = −1, a1 = 1 = −d1, b1 =

−2, c1 = − 2
3 . Suppose that initial conditions y(0, λ) = 2 − λ, y(1, λ) = 3 − 4λ. Therefore, by

(3.2), we obtain

y(2, λ) = (2− λ)(3 − 4λ) + λ− 2 = 4λ2 − 10λ+ 4;

y(3, λ) = (2− λ)[(2 − λ)(3 − 4λ) + λ− 2] + 4λ− 3 = −4λ3 + 18λ2 − 20λ+ 5;

y(4, λ) = (2 + λ)[(2 − λ)[(2 − λ)(3 − 4λ) + λ− 2] + 4λ− 3]− (2− λ)(3 − 4λ)− λ+ 2

= −4λ4 + 10λ3 + 12λ2 − 25λ+ 6.

In order to obtain the eigenvalues of (4.9)–(4.10), we first consider the eigenvalues of Right

Dirichlet problem (i.e., y(4) = 0) and Right Neumann problem (i.e., ∇y(4) = 0). By using
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Matlab 7.0, it is not difficult to see that y(4, λ) = 0 has one negative eigenvalue and three pos-

itive eigenvalues, i.e., λD
−1, λD

+1, λD
+2, λD

+3. Similarly, ∇y(4, λ) = 0 has one negative eigenvalue

and three positive eigenvalues, i.e., λN
−1, λN

+1, λN
+2, λN

+3. Then

λD
−1 = −1.7064, λD

+1 = 0.2884, λD
+2 = 1.0703, λD

+3 = 2.8477;

λN
−1 = −0.5000, λN

+1 = 0.1771, λN
+2 = 1.0000, λN

+3 = 2.8229.

Further, we can get the following interlacing inequality

λD
−1 < λN

−1 < 0 < λN
+1 < λD

+1 < λN
+2 < λD

+2 < λN
+3 < λD

+3.

Next, suppose that

f1(λ) =
1− 2

3

λ
∇y(4) =

λ− 2
3

λ
(−4λ4 + 14λ3 − 6λ2 − 5λ+ 1),

g1(λ) =
1− 2λ

λ
y(4) =

1− 2λ

λ
(−4λ4 + 10λ3 + 12λ2 − 25λ+ 6).

So, in order to get the eigenvalues of (4.9)–(4.10), we need to find the intersection of f1(λ) and

g1(λ). It can be seen that f1(λ) has five zeros λN
−1, λ

N
+1, λ

N
+2, λ

N
+3 and λ = 2

3 . Meanwhile,

lim
λ→−∞

f1(λ) = −∞, lim
λ→+∞

f1(λ) = −∞.

f1(λ) has an asymptote λ = 0, and

lim
λ↓0

f1(λ) = +∞, lim
λ↑0

f1(λ) = −∞.

g1(λ) has five zeros, i.e., λD
−1, λ

D
+1, λ

D
+2, λ

D
+3,

1
2 , and

lim
λ→−∞

g1(λ) = +∞, lim
λ→+∞

g1(λ) = +∞.

g1(λ) has an asymptote λ = 0, and

lim
λ↓0

g1(λ) = −∞, lim
λ↑0

g1(λ) = +∞.

Therefore, (4.9)–(4.10) have two negative eigenvalues λ−1 and three positive eigenvalues λ+1, λ+2,

λ+3, λ+4, which satisfy the following interlacing inequality

λD
−1 < λ−1 < λN

−1 < 0 < λN
+1 < λ+1 < λD

+1 < λ+2 < λN
+2 < λ+3 < λD

+2 < λN
+3 < λ+4 < λD

+3.

In this example, we can see that K+ = L+ = 2, σ0 = −5 and σ1 = 2
3 , therefore, the conclusion

is the same to the conclusion of Theorem 4.1.
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