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Abstract Note that some classic fluid dynamical systems such as the Navier-Stokes
equations, Magnetohydrodynamics (MHD for short), Boussinesq equations and etc., are
observably different from each other but obey some energy inequalities of the similar type.
In this paper, the authors attempt to axiomatize the extending mechanism of solutions to
these systems, merely starting from several basic axiomatized conditions such as the local
existence, joint property of solutions and some energy inequalities. The results established
have nothing to do with the concrete forms of the systems and, thus, give the extending
mechanisms in a unified way to all systems obeying the axiomatized conditions. The key
tools are several new multiplicative interpolation inequalities of Besov type, which have
their own interests.
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1 Introduction

The fluid dynamical models, just mention some of them, include the Navier-Stokes equations,

Magnetohydrodynamics (MHD for short) and the liquid crystals. Generally speaking, for those

models with viscosities, the local well-posedness can be established in somewhat standard way;

however, recalling that it is a well-known open question to prove the global existence of smooth

solutions to the three-dimensional Navier-Stokes equations, though a lot of attentions have

been made, we are still far from the complete mathematical understanding of the the global

well-posedness of these systems.

To understand the possible singularity or global regularity, it may be helpful for us to study

some blow-up criteria. The aim of establishing the blow-up criteria is to find such conditions

as weak as possible that ensure the global regularity of the solutions. There have been a lot of
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works on establishing the blow-up criteria for the classic fluid dynamical systems, in particular

for the systems mentioned above, in the existing literatures. There are two well-known blow-up

criteria for the Navier-Stokes equations, the Ladyzhenskaya-Prodi-Serrin type (see, e.g., [14–

15]) and the Beale-Kato-Majda type (see [1]). The Ladyzhenskaya-Prodi-Serrin blow-up criteria

imply that if the following Serrin condition

u ∈ Lq(0, T ;Lp(R3)) with
2

q
+

3

p
≤ 1, 3 < p ≤ ∞

holds for a positive time T and a pair of (p, q), then the solution to the Navier-Stokes equations

will not blow-up at time T ; while the Beale-Kato-Majda blow up criteria tell us that as long as

the L1(0, T ;BMO(R3)) norm of the vorticity is finite, then the solution to the Navier-Stokes

equations can be extended beyond the time T . Both cases can be proved by the energy method

with Gagliardo-Nirenberg interpolation inequality or some embedding inequality of logarithmic

type. Note that the endpoint case of the Serrin condition u ∈ L∞(0, T ;L3(R3)) is different,

which was proved by Escauriaza, Seregin and Šverák [6] by employing blow-up analysis and the

backward uniqueness property of the parabolic operator.

Many generalizations and extensions to other systems of these two kinds of blow-up criteria

have been made. For the Navier-Stokes and MHD equations, Ladyzhenskaya-Prodi-Serrin’s and

Beale-Kato-Majda’s criteria were considered in Sobolev space or Besov space, for example see

[3–4, 7–8, 9–10, 13, 17–19] and the references therein.

We note that though the systems from the fluid dynamics may be observably different from

each other, they may obey some energy inequalities of the same type. For example, one can

easily check that the Navier-Stokes equations, MHD and Boussineq equations satisfy the same

type energy inequalities stated in (H4), (H4′) and (H5), below. Therefore, there should be some

common features for these systems, such as the well-posedness under the same assumptions on

the initial data, and the same type blow-up criteria under the same conditions on the solutions.

Keeping this in mind, it will be very interesting to reveal all these common features determined

by the same characteristics of the systems from the fluid dynamics, while this paper is employed

as the first attempt to exploit a tip of the iceberg of these common features.

Specifically, we list some axiomatized conditions, by which we get a unified proof for blow-up

criteria of Ladyzhenskaya-Prodi-Serrin type and Beale-Kato-Majda type in Besov space of the

systems satisfying these conditions. Without such restrictions, these systems may have some

blow-up solutions. Recently Tao [16] proved that in the averaged Navier-Stokes equations, it

is assumed that the nonlinear term satisfies all the classical harmonic analysis estimates and

the fundamental cancellation property, so as to construct the exploding solution. Throughout

this paper, we use (P) to denote the Cauchy problem of an arbitrary PDE system in Rd. The

problem (P) considered in this paper is supposed to satisfies (H1)–(H3) and at least one of (H4)

and (H4′):

(H1) (Local existence) For any u0 ∈ H1(Rd) (if some other conditions, such as div u = 0,

is included in (P), then u0 is required to satisfy the same conditions), there exists a unique
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solution u to (P) on Rd × (0, T∗), with initial data u0, and for any T < T∗, there hold

u ∈ C([0, T ];H1(Rd)) ∩ L2(0, T ;H2(Rd)), ∂tu ∈ L2(0, T ;L2(Rd)),

where T∗ is a positive number depending only on the upper bound of the initial norm ‖u0‖H1(Rd).

(H2) (Joint property) For any two solutions u1 and u2 to (P) on Rd × (0, T1) and on

Rd × (T1, T2), respectively, with initial data u0 and u1(T1), respectively, such that u1 ∈

C([0, T1];H
1(Rd)) and u2 ∈ C([T1, T2);H

1(Rd)), then the joint function u defined as

u :=

{
u1(x, t), t ∈ [0, T1),
u2(x, t), t ∈ [T1, T2)

is a solution to (P) on Rd × (0, T2), with initial data u0.

(H3) (Basic energy) For any solution u to (P) on Rd × (0, T ), it satisfies

sup
0≤s≤t

‖u‖L2(Rd) ≤ M(t)

for any t ∈ (0, T ), where M is a continuous nondecreaing function on [0,∞), determined by

the initial data.

(H4) (First energy inequality) For any solution u to (P) on Rd×(0, T ), it satisfies the energy

inequality
d

dt
‖∇u‖2L2(Rd) + c1‖∆u‖2L2(Rd) ≤ c′1

∫

Rd

|u|2|∇u|2dx

for t ∈ (0, T ), where c1 and c′1 are two positive constants.

(H4′) (First energy inequality′) For any solution u to (P) on Rd × (0, T ), it satisfies the

energy inequality
d

dt
‖∇u‖2L2(Rd) + c2‖∆u‖2L2(Rd) ≤ c′2‖∇u‖3L3(Rd)

for t ∈ (0, T ), where c2 and c′2 are two positive constants.

The following hypothesis on the second energy may also be used in some specific case (the

case that s = 1 in Theorem 1.2, below):

(H5) (Second energy inequality) For any solution u to (P) on Rd × (0, T ), it satisfies the

energy inequality

d

dt
‖∆u‖2L2(Rd) + c3‖∇∆u‖2L2(Rd) ≤ c′3

∫

Rd

(|∇u||∇2u|2 + |∇u|4)dx

for t ∈ (0, T ), where c3 and c′3 are two positive constants.

Remark 1.1 It can be verified that both the Navier-Stokes system and the MHD system

meet the above conditions (H1)–(H4), (H4′) and (H5).

The first result of this paper is the following.

Theorem 1.1 Given a positive time T∗, let (P) be the Cauchy problem of an arbitrary

PDE system, such that it satisfies the hypothesises (H1)–(H4). Let u be a solution to (P) on

Rd × (0, T∗), satisfying

u ∈ Lq(0, T∗;B
−s
p,∞(Rd))
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for some constants s, p and q, such that

2

q
+

d

p
= 1− s with p ∈

( d

1− s
,∞

]
and s ∈ (0, 1).

Then the solution u can be extended uniquely beyond T∗.

Note that the hypothesis (H4′) is stronger than (H4). Therefore, one can expect that if the

system (P) satisfies the stronger hypothesis (H4′) instead of (H4), then a better result than

Theorem 1.1 should hold. In fact, we have the following theorem.

Theorem 1.2 Given a positive time T∗, let (P) be the Cauchy problem of an arbitrary PDE

system, such that it satisfies the hypothesises (H1)–(H3) and (H4’). Let u be a solution to (P)

on Rd × (0, T∗), satisfying

u ∈ Lq(0, T∗;B
s
p,∞(Rd))

for some constants s, p and q, such that

2

q
+

d

p
= 1 + s with p ∈

( d

1 + s
,∞

]
and s ∈ (−1, 1].

Then, for the case that (p, s) 6= (∞, 1), the solution u can be extended uniquely beyond T∗.

While for the case that (p, s) = (∞, 1), the solution u can also be extended uniquely beyond T∗,

if we have further that (H5) holds, and d = 2, 3.

Remark 1.2 (1) It should be noticed that if considering the Cauchy problem to the MHD

equations in three dimensions, Theorem 1.2 has already been obtained in [4]. However, com-

paring with their work, one of our biggest features here is that we need neither the concrete

structure of the equations nor the Bony decomposition and commutator estimates.

(2) Since Lp(Rd)  B0
p,∞(Rd) for s = 0, the classic Ladyzhenskaya-Prodi-Serrin criterion

is included in Theorem 1.2. Theorems 1.1–1.2 still hold if replacing the inhomogeneous Besov

spaces by the corresponding homogeneous ones. In fact, by checking the proof, it suffices to

verify that Lemmas 1.2–1.3 continue to hold if replacing the inhomogeneous Besov spaces there

by the homogeneous ones. Thanks to this and noticing that Ḃs
p,∞(Rd) ⊂ Bs

p,∞(Rd) for s < 0

and Ḃs
p,∞(Rd) ∩ Lp(Rd) = Bs

p,∞(Rd) for s > 0 , the condition for u in Theorem 1.2 can be

relaxed to
{
u ∈ Lq(0, T∗;B

s
p,∞(Rd)), −1 < s ≤ 0,

u ∈ Lq(0, T∗; Ḃ
s
p,∞(Rd)), 0 < s ≤ 1

with p, q, and s obeying the relations stated in Theorem 1.2. In particular, in the case that

(p, q, s) = (∞, 1, 1), the relaxed condition reduces to ∇u ∈ L1(0, T∗; Ḃ
0
∞,∞(Rd)), which meets

the well-known Beale-Kato-Majda type criteria.

(3) Note that the endpoint case (p, q, s) = (∞,∞,−1), i.e., the case that u ∈ L∞(0, T ;B−1
∞,∞)

is excluded in both Theorems 1.1–1.2. In fact, through the regularity of the Leray-Hopf weak

solutions to the three dimensional Navier-Stoke equation were obtained under the condition that

u ∈ C((0, T ];B−1
∞,∞) (see [5]), it is still unknown if it can be relaxed to u ∈ L∞(0, T ;B−1

∞,∞).
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The rest of this paper is organized as follows. In Section 2, we introduce the definition

of Besov space and several new interpolation inequalities of Besov type, which are our main

technical tools. In Section 3, we prove Theorems 1.1–1.2 under the abstract assumptions (H1)–

(H5).

1.1 Littlewood-Paley decomposition

Let us recall some basic facts on Littlewood-Paley theory (see [2] for more details). Choose

two nonnegative radial functions χ, φ ∈ S(Rn) supported respectively in
{
ξ ∈ Rn, |ξ| ≤ 4

3

}
and{

ξ ∈ Rn, 34 ≤ |ξ| ≤ 8
3

}
such that for any ξ ∈ Rn,

χ(ξ) +
∑

j≥0

φ(2−jξ) = 1.

The frequency localization operators ∆j and Sj are defined by

∆jf = φ(2−jD)f = 2nj
∫

Rn

h(2jy)f(x− y)dy for j ≥ 0,

Sjf = χ(2−jD)f =
∑

−1≤k≤j−1

∆kf = 2nj
∫

Rn

h̃(2jy)f(x− y)dy,

∆−1f = S0f, ∆jf = 0 for j ≤ −2,

where h = F−1φ, h̃ = F−1χ. With this choice of φ, it is easy to verify that

∆j∆kf = 0 if |j − k| ≥ 2; ∆j(Sk−1g∆kf) = 0 if |j − k| ≥ 5. (1.1)

In terms of ∆j , the norm of the inhomogeneous Besov space Bs
p,q for s ∈ R and p, q ≥ 1 is

defined by

‖f‖Bs
p,q

.
=

∥∥{2js‖∆jf‖p}j≥−1

∥∥
ℓq

and

‖f‖Bs
p,∞

.
= sup

j≥−1
{2js‖∆jf‖p}.

We will constantly use the following Bernstein’s inequality (see [2]).

Lemma 1.1 (Bernstein inequality) Let c ∈ (0, 1) and R > 0. Assume that 1 ≤ p ≤ q ≤ ∞

and f ∈ Lp(Rn). Then

suppf̂ ⊂ {|ξ| ≤ R} ⇒ ‖∂αf‖q ≤ CR|α|+n( 1
p
− 1

q
)‖f‖p,

suppf̂ ⊂ {cR ≤ |ξ| ≤ R} ⇒ ‖f‖p ≤ CR−|α| sup
|β|=|α|

‖∂βf‖p,

where the constant C is independent of f and R.
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1.2 New interpolation inequalities of Besov type

Lemma 1.2 Let s ∈ (0,∞). Then, for any nonzero function f ∈ H2∩B−s
∞,∞, the following

interpolation inequality holds

‖f‖p ≤ Cn,p,s‖f‖
1− 2

p

B−s
∞,∞

‖f‖
4
p
−s(1− 2

p
)

H1 ‖f‖
s(1− 2

p
)− 2

p

H2

for any p ∈
(
2 + 2

s
, 2 + 4

s

)
, where

Cn,p,s = Cn max
{ 1

2s(1−
2
p
)− 2

p − 1
,

1

1− 2s(1−
2
p
)− 4

p

}

for a positive constant Cn depending only on n.

Proof For any integer k ≥ 0 and p ∈ [2,∞], it follows from the Hölder and Bernstein

inequalities that

‖∆kf‖p ≤ ‖∆kf‖
2
p

2 ‖∆kf‖
1− 2

p

∞ ≤ Cn2
− 2k

p ‖∇∆kf‖
2
p

2 (2
ks2−ks‖∆kf‖∞)1−

2
p

≤ Cn2
k[s(1− 2

p
)− 2

p
]‖∇∆kf‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

,

from which, using the Bernstein inequality again, one arrives at

‖∆kf‖p ≤ Cn2
k[s(1− 2

p
)− 4

p
]‖∆∆kf‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

for any integer k ≥ 0. Thus, noticing that ‖∆kg‖2 ≤ Cn‖g‖2, we obtain

‖∆kf‖p ≤ Cn2
k[s(1− 2

p
)− 2

p
]‖∇f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

, (1.2)

‖∆kf‖p ≤ Cn2
−k[ 4

p
−s(1− 2

p
)]‖∆f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

(1.3)

for any integer k ≥ 0 and p ∈ [2,∞]. For k = −1, by the Hölder inequality, and noticing that

‖∆−1f‖2 ≤ Cn‖f‖2, one deduces

‖∆−1f‖p ≤ ‖∆−1f‖
2
p

2 ‖∆−1f‖
1− 2

p

∞ ≤ Cn2
−s(1− 2

p
)‖f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

≤ Cn2
−[s(1− 2

p
)− 2

p
]‖f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

(1.4)

for any p ∈ [2,∞].

For any p ∈
(
2 + 2

s
, 2 + 4

s

)
, one can easily verify

s
(
1−

2

p

)
−

2

p
> 0 and

4

p
− s

(
1−

2

p

)
> 0. (1.5)

On account of this, for any integer k0 ≥ 0, it follows from (1.2)–(1.4) that

‖f‖p =
∥∥∥

∞∑

k=−1

∆kf

∥∥∥
p
≤ ‖∆−1f‖p +

k0∑

k=0

‖∆kf‖p +

∞∑

k=k0+1

‖∆kf‖p

≤ Cn2
−[s(1− 2

p
)− 2

p
]‖f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

+ Cn

k0∑

k=0

2k[s(1−
2
p
)− 2

p
]‖∇f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞
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+ Cn

∞∑

k=k0+1

2−k[ 4
p
−s(1− 2

p
)]‖∆f‖

2
p

2 ‖f‖
1− 2

p

B
−s
∞,∞

≤ Cn‖f‖
1− 2

p

B
−s
∞,∞

( k0∑

k=−1

2k[s(1−
2
p
)− 2

p
]‖f‖

2
p

H1 +

∞∑

k=k0+1

2−k[ 4
p
−s(1− 2

p
)]‖∆f‖

2
p

2

)

≤ Cn,p,s‖f‖
1− 2

p

B
−s
∞,∞

(
2k0[s(1−

2
p
)− 2

p
]‖f‖

2
p

H1 + 2−(k0+1)[ 4
p
−s(1− 2

p
)]‖∆f‖

2
p

2

)
(1.6)

for any p ∈
(
2 + 2

s
, 2 + 4

s

)
.

Noting that
‖∆f‖2+‖f‖

H1

‖f‖
H1

≥ 1, there is a unique integer k0 ≥ 0, such that

2k0 ≤
‖∆f‖2 + ‖f‖H1

‖f‖H1

< 2k0+1.

Choosing such k0 in (1.6), and recalling (1.5), we obtain

‖f‖p ≤ Cn,p,s‖f‖
1− 2

p

B
−s
∞,∞

(‖∆f‖2 + ‖f‖H1

‖f‖H1

)s(1− 2
p
)− 2

p

‖f‖
2
p

H1

+ Cn,p,s‖f‖
1− 2

p

B
−s
∞,∞

( ‖f‖H1

‖∆f‖2 + ‖f‖H1

) 4
p
−s(1− 2

p
)

‖∆f‖
2
p

2

≤ Cn,p,s‖f‖
1− 2

p

B
−s
∞,∞

‖f‖
4
p
−s(1− 2

p
)

H1 ‖f‖
s(1− 2

p
)− 2

p

H2

for any p ∈
(
2 + 2

s
, 2 + 4

s

)
. This completes the proof.

Lemma 1.3 Let s ∈ (−∞, 1). Then, for any nonzero function f ∈ Bs
∞,∞ such that ∇f ∈

H1, we have

‖∇f‖q ≤ Cn,q,s‖f‖
1− 2

q

Bs
∞,∞

‖∇f‖
2
q
−(1−s)(1− 2

q
)

2 ‖∇f‖
(1−s)(1− 2

q
)

H1

for any q ∈
(
2, 2 + 2

1−s

)
, where

Cn,q,s = Cn max
{ 1

2(1−s)(1− 2
q
) − 1

,
1

1− 2−[ 2
q
−(1−s)(1− 2

q
)]

}

for a positive constant Cn depending only on n.

Proof For any q ∈ [2,∞] and any integer k ≥ 0, it follows from the Hölder and Bernstein

inequalities that

‖∇∆kf‖q ≤ ‖∇∆kf‖
2
q

2 ‖∇∆kf‖
1− 2

q
∞ ≤ Cn2

k(1−s)(1− 2
q
)‖∇∆kf‖

2
q

2 ‖f‖
1− 2

q

Bs
∞,∞

,

from which, using the Bernstein inequality again, we have

‖∇∆kf‖q ≤ Cn2
−k[ 2

q
−(1−s)(1− 2

q
)]‖∆∆kf‖

2
q

2 ‖f‖
1−2

q

Bs
∞,∞

.

Thanks to the above two inequalities, noticing that ‖∆kg‖2 ≤ Cn‖g‖2, we get

‖∇∆kf‖q ≤ Cn2
k(1−s)(1− 2

q
)‖∇f‖

2
q

2 ‖f‖
1− 2

q

Bs
∞,∞

, (1.7)

‖∇∆kf‖q ≤ Cn2
−k[ 2

q
−(1−s)(1− 2

q
)]‖∆f‖

2
q

2 ‖f‖
1− 2

q

Bs
∞,∞

(1.8)
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for any q ∈ [2,∞] and integer k ≥ 0. For k = −1, by the Hölder and Bernstein inequalities, we

have

‖∇∆−1f‖q ≤ ‖∇∆−1f‖
2
q

2 ‖∇∆−1f‖
1− 2

q

∞ ≤ Cn2
s(1− 2

q
)‖∇f‖

2
q

2 ‖f‖
1− 2

q

Bs
∞,∞

≤ Cn2
−(1−s)(1− 2

q
)‖∇f‖

2
q

2 ‖f‖
1− 2

q

Bs
∞,∞

(1.9)

for any q ∈ [2,∞].

For any q ∈
(
2, 2 + 2

1−s

)
, one can easily check that

(1− s)
(
1−

2

q

)
> 0 and

2

q
− (1− s)

(
1−

2

q

)
> 0.

Thus, it follows from (1.7)–(1.9) that

‖∇f‖q =
∥∥∥

∞∑

k=−1

∇∆kf
∥∥∥
q
≤

k0∑

k=−1

‖∇∆kf‖q +

∞∑

k=k0+1

‖∇∆kf‖q

≤ Cn‖f‖
1− 2

q

Bs
∞,∞

( k0∑

k=−1

2k(1−s)(1− 2
q
)‖∇f‖

2
q

2 +

∞∑

k=k0+1

2−k[ 2
q
−(1−s)(1− 2

q
)]‖∆f‖

2
q

2

)

≤ Cn,p,s‖f‖
1− 2

q

Bs
∞,∞

(2k0(1−s)(1− 2
q
)‖∇f‖

2
q

2 + 2−(k0+1)[ 2
q
−(1−s)(1− 2

q
)]‖∆f‖

2
q

2 ) (1.10)

for any k0 ≥ 0. Take k0 ≥ 0 be the unique integer such that

2k0 ≤
‖∆f‖2 + ‖∇f‖2

‖∇f‖2
< 2k0+1,

then it follows from (1.10) that

‖∇f‖q ≤ Cn,p,s‖f‖
1− 2

q

Bs
∞,∞

(‖∆f‖2 + ‖∇f‖2
‖∇f‖2

)(1−s)(1− 2
q
)

‖∇f‖
2
q

2

+ Cn,p,s‖f‖
1− 2

q

Bs
∞,∞

( ‖∇f‖2
‖∆f‖2 + ‖∇f‖2

) 2
q
−(1−s)(1− 2

q
)

‖∆f‖
2
q

2

≤ Cn,p,s‖f‖
1− 2

q

Bs
∞,∞

‖∇f‖
2
q
−(1−s)(1− 2

q
)

2 ‖∇f‖
(1−s)(1− 2

q
)

H1

for any q ∈
(
2, 2 + 2

1−s

)
, proving the conclusion.

We also will use an integral in time version of the logarithmic type inequality stated in the

next lemma. Some similar inequalities can be found in Huang-Wang [12] and Hong-Li-Xin [11].

Lemma 1.4 Suppose that n = 2, 3. Then the following inequality holds

∫ t2

t1

‖∇f‖∞dt ≤ C
[( ∫ t2

t1

‖f‖B1
∞,∞

dt
)
log

(∫ t2

t1

‖∇∆f‖2dt+ e
)
+ 1

]

for any f such that the quantities in the formulas make sense and are finite, where C is a

positive constant independent of t1 and t2.

Proof By the definition of B1
∞,∞, and the Bernstein inequality, it is obvious that

‖∇∆kf‖∞ ≤ C2k‖∆kf‖∞ ≤ C‖f‖B1
∞,∞

(1.11)
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for any integer k ≥ −1. Using the Bernstein inequality again, and noticing that ‖∆kg‖2 ≤

Cn‖g‖2, we deduce

‖∇∆kf‖∞ ≤ C2(
n
2
−2)k‖∇∆∆kf‖2 ≤ C2−k(2−n

2
)‖∇∆f‖2 (1.12)

for any integer k ≥ 0. With the aid of the above two inequalities, we have

‖∇f‖∞ =
∥∥∥

∞∑

k=−1

∇∆kf
∥∥∥
∞

≤

k0∑

k=−1

‖∇∆kf‖∞ +
∞∑

k=k0+1

‖∇∆kf‖∞

≤ C(k0 + 1)‖f‖B1
∞,∞

+ C

∞∑

k=k0+1

2−k(2−n
2
)‖∇∆f‖2

≤ C[(k0 + 1)‖f‖B1
∞,∞

+ 2−(k0+1)(2−n
2
)‖∇∆f‖2]

for any integer k0 ≥ 0. Integrating the above inequality with respect to t over the interval

(t1, t2), and choosing k0 ≥ 0 be the unique integer such that

k0 ≤
[(

2−
n

2

)
log 2

]−1

log
( ∫ t2

t1

‖∇∆f‖2 + 1
)
< k0 + 1,

we obtain
∫ t2

t1

‖∇f‖∞dt ≤ C(k0 + 1)

∫ t2

t1

‖f‖B1
∞,∞

dt+ C2−(k0+1)(2−n
2
)

∫ t2

t1

‖∇∆f‖2dt

≤ C
(∫ t2

t1

‖f‖B1
∞,∞

dt
)[

log
(∫ t2

t1

‖∇∆f‖2 + 1
)
+ 1

]

+ Ce−[(2−n
2
) log 2](k0+1)

∫ t2

t1

‖∇∆f‖2dt

≤ C
[(∫ t2

t1

‖f‖B1
∞,∞

dt
)
log

(∫ t2

t1

‖∇∆f‖2 + e
)
+ 1

]
,

proving the inequality.

2 Proofs of Theorem 1.1 and Theorem 1.2

In this section, we give the proof of Theorems 1.1–1.2.

Proof of Theorem 1.1 Noticing that B−s
p,∞ →֒ B

−s−n
p

∞,∞ , it follows that

Lq(0, T ;B−s
p,∞) →֒ Lq(0, T ;B−s1

∞,∞), s1 := s+
n

p
.

By assumption
2

q
+

n

p
= 1− s with p ∈

( n

1− s
,∞

]
and s ∈ (0, 1),

it has

s1 := s+
n

p
= 1−

2

q
∈ [s, 1) ⊆ (0, 1).

Thus, by the aid of the assumption in Theorem 1.1, we always has u ∈ Lq(0, T ;B−s1
∞,∞) for some

s1 ∈ (0, 1). As a result, to prove Theorem 1.1, it suffice to prove the case that p = ∞. Because
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of this, without loss of generality, we suppose that u ∈ Lq(0, T ;B−s
∞,∞) for some s ∈ (0, 1) in

the following proof.

We first note that for any s ∈ (0, 1), one can choose the numbers ps ∈
(
2 + 2

s
, 2 + 4

s

)
and

qs ∈
(
2, 2 + 2

s+1

)
, such that

2

ps
+

2

qs
= 1.

In fact, when p and q run in the intervals
(
2 + 2

s
, 2 + 4

s

)
and

(
2, 2 + 2

s+1

)
, respectively, then

the quantity 2
p
+ 2

q
runs in the interval

(
1+2s
2+s

, 1 + s
s+1

)
, and each point in this interval can be

arrived at by 2
p
+ 2

q
. The validity of the above equality then follows from the observation that

1+2s
2+s

< 1 < 1 + s
s+1 for any s ∈ (0, 1). By Lemmas 1.2–1.3, we have the following estimates

‖u‖ps
≤ C‖u‖

1− 2
ps

B
−s
∞,∞

‖u‖
4
ps

−s(1− 2
ps

)

H1 ‖u‖
s(1− 2

ps
)− 2

ps

H2 ,

‖∇u‖qs ≤ C‖u‖
1− 2

qs

B
−s
∞,∞

‖u‖
2
qs

−(1+s)(1− 2
qs

)

H1 ‖u‖
(1+s)(1− 2

qs
)

H2 ,

and thus

‖u‖ps
‖∇u‖qs ≤ C‖u‖

2− 2
ps

− 2
qs

B
−s
∞,∞

‖u‖
4
ps

−s(1− 2
ps

)+ 2
qs

−(1+s)(1− 2
qs

)

H1

× ‖u‖
s(1− 2

ps
)− 2

ps
+(1+s)(1− 2

qs
)

H2 = C‖u‖B−s
∞,∞

‖u‖1−s
H1 ‖u‖sH2 ,

where C is a positive constant.

With the aid of the above estimate, by hypothesis (H4), it follows from the Hölder and

Young inequalities that

d

dt
‖∇u‖22 + c1‖∆u‖22 ≤ c′1

∫

Rn

|u|2|∇u|2dx

≤ c′1‖u‖
2
ps
‖∇u‖2qs ≤ C‖u‖2

B
−s
∞,∞

‖u‖
2(1−s)
H1 ‖u‖2sH2

≤ C‖u‖2
B

−s
∞,∞

(‖u‖
2(1−s)
H1 ‖∆u‖2s2 + ‖u‖2H1)

≤
c1

2
‖∆u‖22 + C(‖u‖

2
1−s

B−s
∞,∞

+ ‖u‖B−s
∞,∞

)‖u‖2H1

≤
c1

2
‖∆u‖22 + C(‖u‖

2
1−s

B
−s
∞,∞

+ 1)‖u‖2H1 ,

and thus

d

dt
‖∇u‖22 +

c1

2
‖∆u‖22 ≤ C(‖u‖

2
1−s

B
−s
∞,∞

+ 1)(‖∇u‖22 + ‖u‖22)

for any t ∈ (0, T ). Applying the Gronwall inequality to the above inequality and recalling the

hypothesis (H3), we obtain

sup
0≤τ≤t

‖∇u‖22 +
c1

2

∫ t

0

‖∆u‖22dτ

≤ e
C

∫
t

0
(1+‖u‖

2
1−s

B
−s
∞,∞

)dτ(
‖∇u0‖

2
2 +M(t)

∫ t

0

(1 + ‖u‖
2

1−s

B
−s
∞,∞

)dτ
)

≤ e
C

∫
T

0
(1+‖u‖

2
1−s

B
−s
∞,∞

)dτ(
‖∇u0‖

2
2 +M(T )

∫ T

0

(1 + ‖u‖
2

1−s

B−s
∞,∞

)dτ
)
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for any t ∈ (0, T ). On account of this, and recalling the hypothesis (H3), we obtain the a priori

estimate

sup
0≤t<T

‖u‖2H1 +

∫ T

0

‖u‖2H2dt ≤ G1 < ∞

for any t ∈ (0, T ), where G1 is a positive constant.

Choose a positive time T∗∗ ∈ (0, T∗). By the hypothesis (H1) and recalling the above a priori

estimate, starting from the time T∗∗, there is a unique solution u∗∗ to (P) on Rn×(T∗∗, T∗∗+T ),

with initial data u(T∗∗), such that u∗∗ ∈ C([T∗∗, T∗∗ + T ];H1), where T = T (G1). Define

ũ =

{
u(x, t), t ∈ [0, T∗∗),
u∗∗(x, t), t ∈ [T∗∗, T∗∗ + T (G1)],

then, by hypothesis (H2), ũ is a solution to (P) on Rn × (0, T∗∗ + T (G1)). Note that T (G1) is

independent of T∗∗, therefore, one can choose T∗∗ close enough to T∗, such that T∗∗ + T > T∗,

and as a result ũ is an extension of u to a time beyond T∗. This completes the proof.

Proof of Theorem 1.2 Similarly to the situation encountered in the proof of Theorem

1.1, it suffices to consider the case p = ∞. Besides, without loss of generality, we suppose that

sup
0≤t≤T

‖∇u‖22 ≥ 1,

otherwise, we then already have the a priori estimate sup
0≤t≤T

‖∇u‖22 ≤ 1, on account of which,

by the same argument as that in the last paragraph of the proof of Theorem 1.1, one can easily

prove the conclusion.

We first consider the case that s ∈ (−1, 1). By Lemma 1.3, it follows from the Young

inequality that

‖∇u‖33 ≤ C‖u‖Bs
∞,∞

‖∇u‖1+s
2 ‖∇u‖1−s

H1

≤ C‖u‖Bs
∞,∞

(‖∇u‖22 + ‖∇u‖1+s
2 ‖∆u‖1−s

2 )

≤
c2

2
‖∆u‖22 + C(‖u‖Bs

∞,∞
+ ‖u‖

2
1+s

Bs
∞,∞

)‖∇u‖22

≤
c2

2
‖∆u‖22 + C(1 + ‖u‖

2
1+s

Bs
∞,∞

)‖∇u‖22, (2.1)

and thus it follows from the hypothesis (H4’) that

d

dt
‖∇u‖22 +

c2

2
‖∆u‖22 ≤ C(1 + ‖u‖

2
1+s

Bs
∞,∞

)‖∇u‖22

for any t ∈ (0, T ). Applying the Gronwall inequality to the above inequality yields

sup
0≤τ≤t

‖∇u‖22 +
c2

2

∫ t

0

‖∆u‖22dτ

≤ e
C

∫
t

0
(1+‖u‖

2
1+s

Bs
∞,∞

)dτ
‖∇u0‖

2
2 ≤ e

C
∫

T

0
(1+‖u‖

2
1+s

Bs
∞,∞

)dτ
‖∇u0‖

2
2

for any t ∈ (0, T ). With the aid of this a priori estimate and recalling the hypothesis (H3), we

have the a priori estimate

sup
0≤τ≤t

‖u‖2H1 +

∫ t

0

‖u‖2H2dτ ≤ G2 < ∞
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for any t ∈ (0, T ), where G2 is a positive constant. Thanks to this a priori estimate, the same

argument as that for the proof of Theorem 1.1 yields the conclusion for the case s ∈ (−1, 1).

Now we consider the case that (p, s) = (∞, 1). Let ε be a sufficiently small positive number

which will be determined later. Since u ∈ L1(0, T∗;B
1
∞,∞(Rd)), by the absolutely continuity of

the integrals, there is a positive constant δ > 0, such that

∫ T∗

T∗−δ

‖u‖B1
∞,∞

dt ≤ ε,

from which, by Lemma 1.4, we have

∫ t

T∗−δ

‖∇u‖∞ds ≤ C
[
ε log

(∫ t

T∗−δ

‖∇∆u‖2ds+ e
)
+ 1

]
(2.2)

for any t ∈ [T − δ, T ). We set

f1(t) = ‖∇u‖22(t) + c2

∫ t

T∗−δ

‖∆u‖22ds,

f2(t) = ‖∆u‖22(t) + c3

∫ t

T∗−δ

‖∇∆u‖22ds

for any t ∈ [T∗ − δ, T∗).

By the Ladyzhenskaya and Sobolev embedding inequalities, we deduce

∫ t

T∗−δ

‖∇u‖44ds ≤ C

∫ t

T∗−δ

‖∇u‖22‖∆u‖22ds

≤ C sup
T∗−δ≤s≤t

f2
1 (s), t ∈ [T∗ − δ, T∗) (2.3)

for d = 2, and

∫ t

T∗−δ

‖∇u‖44ds ≤ C

∫ t

T∗−δ

‖∇u‖2‖∆u‖32ds ≤ C

∫ t

T−δ

f
1
2

1 (s)f
1
2

2 (s)‖∆u‖22ds

≤ Cf1(t) sup
T∗−δ≤s≤t

f
1
2

1 (s)f
1
2

2 (s), t ∈ [T∗ − δ, T∗) (2.4)

for d = 3. It follows from (H4′) and (H5) that

f ′
1(t) ≤ C‖∇u‖∞f1(t),

f ′
2(t) ≤ C‖∇u‖∞f2(t) + C‖∇u‖44,

from which, by the Gronwall inequality, recalling (2.2)–(2.4), and choosing ε small enough, we

have

f1(t) ≤ C
( ∫ t

T∗−δ

‖∇∆u‖2ds+ 1
)Cε

f1(T∗ − δ)

≤ C(f2(t) + 1)Cε ≤ C(f2(t) + 1)
1
6 (2.5)

and

f2(t) ≤ C
( ∫ t

T∗−δ

‖∇∆u‖2ds+ 1
)Cε(

f2(T∗ − δ) +

∫ t

T∗−δ

‖∇u‖44ds
)
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≤





C(f2(t) + 1)
1
6

(
1 + sup

T∗−δ≤s≤t

f2
1 (s)

)
, δ = 2,

C(f2(t) + 1)
1
6

(
1 + f1(t) sup

T∗−δ≤s≤t

f
1
2

1 (s)f
1
2

2 (s)
)
, δ = 3

(2.6)

for any t ∈ [T∗ − δ, T∗).

Define

F1(t) = sup
T∗−δ≤s≤t

f1(s) + 1, F2(t) = sup
T∗−δ≤s≤t

f2(s) + 1

for any t ∈ [T∗ − δ, T∗). Then, it follows from (2.5) that F1(t) ≤ CF
1
6

2 (t), and thus it follows

from (2.6) that F2(t) ≤ CF
1
2

2 (t) for d = 2; similarly, F2(t) ≤ CF
1
6

2 (t)F
1
4

2 (t)F
1
2

2 (t) = CF
11
12

2 (t) for

d = 3. Hence F1(t), F2(t) ≤ C < ∞ for any t ∈ [T∗ − δ, T∗). On account of this uniform in time

estimates, and recalling the hypothesis (H3), one can easily obtain the a priori estimate

sup
δ≤τ≤t

‖u‖2H2 +

∫ t

δ

‖u‖2H3dτ ≤ G3 < ∞

for any t ∈ (T∗ − δ, T∗), where G3 is a positive constant. On account of this estimate, the same

argument as before yields the conclusion.
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