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Abstract The authors introduce the Sobolev space H 2 (T') on a quasi-circle I and give
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1 Introduction

The paper deals with a special case of the Riemann-Hilbert problem or the jump problem:
Given a function f on a closed Jordan curve I' in the extended complex plane ((A:, find functions
Fy and Fy holomorphic respectively in the complementary domains Q1 and Q~ of I" so that the
difference of their boundary values is exactly f. We are mainly concerned with the existence
and uniqueness of the pair F}, F5 and its continuous dependence on f.

The main issue in the jump problem is the regularity of the Jordan curve I' and of the
boundary function f. When both I and f have nice properties, the classical Plemelj-Sokhotski
jump formula provides an affirmative answer to this question (see [7-9] for related materials).
To make this precise, let f be integrable on a locally rectifiable closed Jordan curve I'. Then

the Cauchy integral

Orf(z)—i/ 1) d¢, z¢rl (1.1)

27 Jp (-2
defines a holomorphic function off . Set '™ = Cr f|g+, F'~ = Cr fla-. When I is smooth and
f is Holder continuous, F* and F~ can be continuously extended to QF and Q— respectively

such that the Plemelj-Sokhotski jump formula
Ft—Fr =f (1.2)

holds on I'. In general, it follows from the singular Cauchy integral theory (see [4]) that the
functions F* and F'~ have non-tangential limit values almost everywhere in " (with respect to
the arc-length measure) and the jump formula (1.2) still holds on I" when f is integrable on a

general locally rectifiable Jordan curve I'. David [5] showed that both boundary value functions
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F* and F~ depend continuously on f € LP(T') (1 < p < oo) precisely when I' is AD-regular,
which means that there is a constant C(I') > 0 such that for all z € C and r > 0 the arc-length
of I contained in the disk with center z and radius r is at most C(I')r. Later, Semmes [20]
gave a new approach to David’s result for un-bounded chord-arc curves with small constants
by means of quasiconformal mappings. Recall that a locally rectifiable closed Jordan curve I'
is called a chord-arc curve with constant & if length(a) < (1 4+ k)|¢ — 2| for the smaller (i.e.,
with less length) subarc Z,; of I" joining any two finite points z and ¢ of T'.

In this paper, we will discuss the jump problem on quasi-circles. A closed Jordan curve I’
is called a quasi-circle if there is a constant C(I') > 0 such that diameter(¢z) < C(I')|¢ — z| for
the smaller (i.e., with less diameter) subarc Cz of T joining any two finite points z and ¢ of I.
It is obvious that a chord-arc curve must be a quasi-circle. In fact, a closed Jordan curve is a
chord-arc curve if and only if it is an AD-regular quasi-circle (see [17]). In general a quasi-circle
might not be rectifiable (see [12]), and Gehring and Véisila [10] even proved that the Hausdorff
dimension of a quasi-circle can take any value in [1, 2). Therefore, the Cauchy integral (1.1)
may not be available for a quasi-circle I'. On the other hand, Schippers and Staubach [19] have
discussed the jump problem on quasi-circles by generalizing the Cauchy integral (1.1) using a
limiting process. The purpose of the paper is to give a fast and alternative approach to the
jump problem on quasi-circles based on Semmes’ idea (see [20-21]). The results turn to be
useful in our forthcoming paper [13] on chord-arc curves.

In the paper, C, Cy, Cs, - -+ will denote universal constants that might change from one line
to another, while C(+), C1(-), Ca(+), - - - will denote constants that depend only on the elements
put in the brackets. The notation A < B (A 2 B) means that there is a constant C' such that
A< CB (A > CB). The notation A < B means both A < B and A > B.

2 Basic Facts

A sense-preserving homeomorphism p of the complex plane C is called quasiconformal if it

has locally integrable distributional derivatives dp, Op which satisfy the Beltrami equation
dp = udp, (2.1)

where p € L>°(C) with [|p]|leo < 1 is called the Beltrami coefficient or complex dilatation of p.
Conversely, the measurable Riemann mapping theorem (see [1]) for quasiconformal mappings
says that for each p € L>°(C) with ||u||e < 1, there is a quasiconformal self-mapping p of C
with Beltrami coefficient u, and p is unique up to a Mobius transformation.

A sense-preserving self-homeomorphism A of the unit circle S! is said to be quasisymmetric
and belongs to the class QS(S?) if there exists a (least) positive constant C(h), called the
quasisymmetric constant of h, such that

1 |h(11)]
1 < c(n) (2.2)
C(h) = |h(I2)]
for all pairs of adjacent arcs I; and I on S! with the same arc-length |I;| = |I5|(< 7). Beurling

and Ahlfors [3] proved that a sense-preserving self-homeomorphism h is quasisymmetric if and
only if there exists some quasiconformal homeomorphism of the unit disk AT = {z : |2| < 1}
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onto itself which has boundary values h. Later Douady and Earle [6] gave a quasiconformal
extension of A to the unit disk which is conformally invariant.

It is known that a closed Jordan curve is a quasi-circle if and only if it is the image of the
extended real line R or the unit circle S! under a global quasiconformal self-mapping of C (see
[1]). A Jordan domain is called a quasidisk if it is bounded by a quasi-circle. Let T" be a closed
Jordan curve with complementary domains Q7 and Q~, ¢, and ¢_ map A" and A~ = C-A+
conformally onto Q7 and 27, respectively. Since ¢4 and ¢_ can be continuously extended to
the unit circle, we can form hr = ¢_' o ¢;, which is known to be a conformal sewing for I'. Tt
is well known that hr is quasisymmetric if and only if T' is a quasi-circle (see [1]).

In quasiconformal mapping theory, especially in the study of the Beltrami equation (2.1),
there are two operators that play fundamental roles (see [1]): The Cauchy operator on the plane

%//C %dudv, (2.3)

where f € LP(C), p > 2, with compact support. The other one is the Beurling operator S

defined by
N e (R,
z) = w//(c(w—z)Qd dv, (2.4)

where f € LP(C), p > 1. It is known that S is norm-preserving on L?(C), bounded on LP(C)
for general p > 1. It is also known that I — uS is invertible on LP(C) for 2 < p < 1+ |||t
(see [2]). Finally, the following relations

ATf)=[ oTf)=5f (2.5)

hold in the distributional sense.

3 Dirichlet and Sobolev Spaces Revisited

This is mostly a review section. It contains a description of old and recent results concerning

Dirichlet and Sobolev spaces on general quasi-circles. For more details (see [16, 19]).

3.1 Sobolev space

The Sobolev class H = (S1) on the unit circle S* is the set of all functions u on the unit circle

such that |
2
= 1
Il = 5rs [, [ = acasl < o (31)

H?z(S') has Mébius invariance. In fact, for each Mébius transformation 4 €éMb(S') keeping
the unit circle, it holds that

(7€) = 7(2))> =)V (2)(C — 2)? (3.2)

from which it follows immediately that ||u o 7||H% = HuHH% More generally, we have the
following result which shows that H 3 (S1) can be used to characterize the quasi-symmetry of a

homeomorphism.
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Proposition 3.1 (see [3, 15]) Let h be a sense-preserving self-homeomorphism of the
unit circle. Then the pull-back operator Py defined by Ppyu = wo h is a bounded operator from
H: (S1) into itself if and only if h is quasisymmetric.

Let I" be a bounded quasi-circle with complementary domains Q% and 2~ > oo, and as before
¢y and ¢_ with ¢_(00) = oo map AT and A~ conformally onto QT and Q~, respectively.
We denote by HT(T') the set of all functions f on I' such that f o ¢™ € H2(S'). By the
conformal invariance of harmonic measure, f € HT(T') is defined almost everywhere in T’
with respect to the harmonic measure. H (') can be defined in the same way. Noting that
hr = ¢~ ' o ¢, is quasisymmetric, we conclude by Proposition 3.1 that H*(I') = H~(I"), which
will be denoted by H 2 (I') later. Each element f in H 2 (I') can be assigned a norm HfHH% equal
to |[fll+=|fo ¢+||H% or [[fll-=|feo ¢_||H%, which are equivalent by Proposition 3.1 again.
3.2 Dirichlet space

Let © be a domain in the Riemann sphere C. The harmonic Dirichlet space H () is the set
of all harmonic functions F' on €2 such that the Dirichlet integral

Do (F) = %//Q(|8F(z)|2 + [FF(2))dady < oo. (3.3)

We can assign a semi-norm on H(Q) by HF||$_[(Q) = Dq(F). The (analytic) Dirichlet space D(§2)
consists of the analytic functions in H(2). Both H(Q) and D(Q2) are conformally invariant,
namely, a conformal mapping ¢ between two domains 2; and {22 induces a norm-preserving
isomorphism F +— F o ¢ from H(3) onto H(£21) and from D(€s) onto D(€2y).

It is well known that the Dirichlet problem has a unique solution on the unit circle. Precisely,
a harmonic function F'in H(A™) (or H(A ™)) has non-tangential limit values almost everywhere
in S* (with respect to the arc-length measure) such that u = F|g € Hz(S") satisfies HuHH% =
| Fll4a+) (or [|[Fllga-y). Conversely, the usual Poisson extension operator P takes each
element u € HZ(S') to F = Pu in H(A*) such that [|[F|l3a+) = [ull ;1. Similarly, there
exists an extension operator also denoted by P which takes each element v € H %(Sl) to
F = Puin H(A™) such that ||F|lya-) = HuHH%

Similarly, the Dirichlet problem has a unique solution on a quasi-circle I' with complementary
domains O and 2~ 3 co. Let F be a harmonic function in % (Q7). Then F = Fog, € H(A™)
and has non-tangential limit values almost everywhere in S! (with respect to the arc-length
measure) such that u = Flsi € H3(S!) with [lu] .3 = [Fllaar) = [Flaur) Since T is
a quasi-circle, ¢4 can be extended a quasiconformal mapping to the whole plane. Then ¢
takes a non-tangential limit value to a non-tangential limit value so that F' has non-tangential
limit values almost everywhere in I' (with respect to the harmonic measure) such that f = F|p
satisfies f o ¢, = u. Consequently, f € Hz(T) with ||f|l+ = | Fll4(a+)- Each element F
in H(Q7) also has non-tangential limit values almost everywhere in I' (with respect to the

harmonic measure) such that f = F|p € H2(T') with || f||- = | Fll3(0-). Conversely, let
f e H2(T) so that u = fo ¢, € H2(S'). Then F = Pu € H(A") and F = Fo (¢,)"! €
H(QT) with [|[F|lyqr) = ”ﬁHH(Aﬂ = |lull ,; = Ilfll+. F has non-tangential limit values

almost everywhere in I" (with respect to the harmonic measure) such that f = F|p. Therefore,
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the correspondence f — F induces a linear operator Py from Hz (I') onto H(Q2) such that
P+ fllz+ry = Ifll+- By the same way, there exists a linear operator P_ from Hz(T) onto
H(Q") such that | P-fllya-) = |f]—-

o . 1
4 Jump Decomposition for Hz(T")
Now we can state and prove the main result of the paper.

Theorem 4.1 Let I' be a quasi-circle in the complex plane with complementary domains
QT and Q= 3 oco. Then for each f € H%(I‘) there exists a pair of functions Fy, Iy such
that Fi € DY), Fy € DQ), |IFill+ S Ifll,,5. IBl- S 1], 3. and the jump formula
Fy — F5 = f holds on T'. The pair Fy, F5 is unique up to a constant.

Proof Consider the conformal mapping ¢_ which maps A~ conformally onto Q= with
¢_(00) = 00. ¢_ can be extended a quasiconformal mapping p to the whole plane whose
Beltrami coefficient 1 is supported in A+, Given f € Hz(T), we set u = fop Then u € Hz(S1)
so that €, € L?(C) with ||C]|r2@c) S |u HH2 = HfHH , where C), = Cgiu is the Cauchy

integral of u on the unit circle and C’ (z) = d(cdz( 2) is defined on C in the distributional sense

(see [23]). We will prove the result by a standard density argument.
Choose p > 2 such that p < 1+ ||u||!. Set

1
2

HF (D) ={f € H>(I): C}, € L*(C)}.
Clearly, Ho% (T') is dense in H2(T'). We first assume that f € Ho% (T"). Set

9= —pS)~ (uC,) = pI — S~ (C})

and G = Tg. Noting that I — wS is invertible on L?(C) we conclude that g € LP(C), and has
support in A1, so G is continuous on the whole plane with G = g, 9G = Sg. Thus

G — pdG = g — pSg = (I — pS)g = puC;.

Letting H = G + C,,, we conclude that H has jump u across the unit circle S, and 0H = g,
OH = Sg+ C!. Thus H satisfies the Beltrami equation 0H = pudH. Then F = H o p~! is
holomorphic off T'. Set Fy = F|g+, Fo» = F|g-. Now we show that Fy, F, is the desired pair.
It is clear that both F} and F» have non-tangential limit values almost everywhere in T' (with
respect to the harmonic measure) such that the jump formula Fy — F, = f holds on I'. Tt
remains to prove the norm estimates. Actually, by the quasi-invariance of the Dirichlet integral

under quasiconformal mappings, we have

171113 = [ Fill3y0r) = Do+ (H 0 p~1) < Crlllulloc) D+ (H)
< 201([|plls0)(Pa+(G) + Da+(Cu))
< Ca(llullso)lglZzc) + 1 CulIT2 ()
< Colllpllso) (I = pS)THZ + DICHI2(c)
< Ca(lllloo)llull? 3 =< Cs(llullo) 1 £17, 4



976 T. L. Liv and Y. L. Shen

A similar estimate can be obtained for || F5||—. Having these estimates for || F} ||+ and ||F2||_7
we may obtain the jump decomposition for a general f € Hz 2(T") by the density of H0 (T') in
Hz(T).

To prove the uniqueness part, we need a further result on the pull-back operator. Recall
that H(A1) = D(A1) & D(AT), or precisely, for each F € H(A'), there exists a unique pair
of holomorphic functions ¢ and ¥ in D(AT) with ¢(0) — F(0) = 1(0) = 0 such that F' = ¢+ ).
Thus we may form two basic operators on the harmonic Dirichlet space H(A™T). They are Pt
and P, defined respectively by PTF = ¢ and P~ F = WE) for F' = ¢+1. On the other hand,
for each quasisymmetric homeomorphism h € QS(S!), we consider the pull-back operator Py
in the statement of Proposition 3.1. P, (or more precisely, P o P,) can also be considered as a
linear operator from H(A™T) into itself. Setting P,f = Pt o P, and P, = P~ o P, we conclude
that both P;7 and P, can be considered as bounded-linear operators from D(A*) into itself,

and
IPFoll3a+y = 1Py ¢lFiasy + 1615 asy, ¢ € DAY). (4.1)

A proof of (4.1) can be found in our paper [22, Proposition 4.3] .

We proceed to prove the theorem. Let Fy € D(QY), F, € D(Q~) and F, € D(QY),
132 € D(227) be two pairs such that 131 —132 = F; — F; = fholds on I". Then 131 —F = ﬁg —F
onl. Set F=F, —F, F=F,—F,. Then F € D(Q"), F € D(Q~) and F|p = Flp € H2(I).
We need to show that F and F are the same constant. Consider the conformal sewing map

r = ¢_' o ¢, and the corresponding operator P;" . Set ¢ = F o ¢, ¥ = Fog¢_. Then

¢ € D(AY), 1 € D(A™). Letting ¢)(z) = ¢(z 1), then ) € D(A*). Noting that on ' we have

Puty=tpohp=gohr=Fog_o¢ top, =Fop, =9

which implies that P,j'r 1 = ¢(0). We conclude by (4.1) that 1 is a constant, which implies that

F and F are the same constant. This completes the proof of Theorem 4.1.

5 Chord-Arc Curve Case

A natural question is how to define the Sobolev space H %(I‘) on a quasi-circle I' without
using the Riemann mapping ¢4 (or ¢—). To answer this question, we assume that I is a locally
rectifiable closed Jordan curve. Inspired by the definition of Hz(S'), we denote by H(I') the

set of all functions f on I' such that

11 = oz [ [ LL=LE g < o (5.1

Just like H2(SY), H(T) also has Mébius invariance, namely, for each Mébius transformation
v €M6b(C) on the complex plane, it holds that || f o ||y = [|.f || #(yr))-
We recall the following classical result of Lavrentiev [11].

Proposition 5.1 (see [11]) Let T’ be a bounded chord-arc curve with complementary do-
mains QT and Q™ 3 oo, ¢4 and ¢p_ with ¢_(o0) = co map AT and A~ conformally onto QT
and Q2 , respectively. Then both |¢'_ | and |¢"_| are A>-weights introduced by Muckenhoupt [14]
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(see also [9]). In particular, the harmonic measure and arc-length measure on I' are absolutely

continuous to each other.
Now we prove the following proposition.
Proposition 5.2 Let I' be a bounded chord-arc curve. Then H=(T') = H(T') ¢ L(I).

Proof First we point out by Proposition 5.1 that each element in Hz(T') or H(T') is well-
defined almost everywhere in I' with respect to the harmonic measure, or equivalently, with
respect to the arc-length measure. It is known that there exists some bi-Lipschitz map ¢ of
the complex plane onto itself such that ¢(S1) =T (see [17]). By definition (5.1) it is clear that
fe HI)ifand only if fo¢ € Hz (S1). On the other hand, since h = ¢~Log, is quasisymmetric
and fo¢g, = fogpoh = Py(f o), we conclude by Proposition 3.1 that fo¢ € H%(Sl) if and
only if fo ¢, € Hz(S1), or equivalently, f € Hz(T'). Consequently, H2 (') = H(T). It is also
clear that f € L2(T) if and only if fo ¢ € L2(S1). Since H2(S') C L%(S), we find out that
H(T) C L2(T).

A consequence of Theorem 4.1 and Proposition 5.2 is in the following.

Theorem 5.1 Let I' be a bounded chord-arc curve with complementary domains Q% and
Q7 > 00. Let f € H%(l—‘) and Ft*, F~ be defined by the Cauchy integral as in Section 1.
Then F* € D), F~ € DO), [F¥4 S Iy, 1771 S 151,y and the jump formua
FT — F~ = f holds on I'. The jump decomposition is unique.

Proof Given f € H%(F), we have a pair Iy, Fy satisfying the conditions in Theorem
4.1, in particular, we have the jump formula F; — F, = f on I'. On the other hand, since
H(T') C L*(T"), we also have the jump formula F* — F~ = f on I'. By the uniqueness of such a
pair of functions in both cases, we obtain that F'* = F, F~ = I up to a constant. The proof

is completed.

Remark 5.1 Radnell, Schippers and Staubach [18] obtained a jump formula for H(T') on
a so-called Weil-Petersson quasi-circle I" by a different approach. A Weil-Petersson quasi-circle
must be a chord-arc curve, but not the converse.

Problem 5.1 Proposition 5.2 says that Hz(I') = H(T') for a chord-arc curve I'. It is not

known whether the same result holds for other locally rectifiable quasi-circles.
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