
Chin. Ann. Math. Ser. B

45(6), 2024, 971–978
DOI: 10.1007/s11401-024-0048-y

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2024

A Brief Approach to a Riemann-Hilbert Problem on
Quasi-circles∗

Tailiang LIU1 Yuliang SHEN1

Abstract The authors introduce the Sobolev space H
1
2 (Γ) on a quasi-circle Γ and give

a fast approach to the jump formula which gives a decomposition of an element in H
1
2 (Γ)

as the boundary values of two Dirichlet functions in the complementary domains of Γ.
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1 Introduction

The paper deals with a special case of the Riemann-Hilbert problem or the jump problem:

Given a function f on a closed Jordan curve Γ in the extended complex plane Ĉ, find functions

F1 and F2 holomorphic respectively in the complementary domains Ω+ and Ω− of Γ so that the

difference of their boundary values is exactly f . We are mainly concerned with the existence

and uniqueness of the pair F1, F2 and its continuous dependence on f .

The main issue in the jump problem is the regularity of the Jordan curve Γ and of the

boundary function f . When both Γ and f have nice properties, the classical Plemelj-Sokhotski

jump formula provides an affirmative answer to this question (see [7–9] for related materials).

To make this precise, let f be integrable on a locally rectifiable closed Jordan curve Γ. Then

the Cauchy integral

CΓf(z) =
1

2πi

∫

Γ

f(ζ)

ζ − z
dζ, z /∈ Γ (1.1)

defines a holomorphic function off Γ. Set F+ = CΓf |Ω+ , F− = CΓf |Ω− . When Γ is smooth and

f is Hölder continuous, F+ and F− can be continuously extended to Ω+ and Ω− respectively

such that the Plemelj-Sokhotski jump formula

F+ − F− = f (1.2)

holds on Γ. In general, it follows from the singular Cauchy integral theory (see [4]) that the

functions F+ and F− have non-tangential limit values almost everywhere in Γ (with respect to

the arc-length measure) and the jump formula (1.2) still holds on Γ when f is integrable on a

general locally rectifiable Jordan curve Γ. David [5] showed that both boundary value functions
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F+ and F− depend continuously on f ∈ Lp(Γ) (1 < p < ∞) precisely when Γ is AD-regular,

which means that there is a constant C(Γ) > 0 such that for all z ∈ C and r > 0 the arc-length

of Γ contained in the disk with center z and radius r is at most C(Γ)r. Later, Semmes [20]

gave a new approach to David’s result for un-bounded chord-arc curves with small constants

by means of quasiconformal mappings. Recall that a locally rectifiable closed Jordan curve Γ

is called a chord-arc curve with constant k if length(ζ̃z) ≤ (1 + k)|ζ − z| for the smaller (i.e.,

with less length) subarc ζ̃z of Γ joining any two finite points z and ζ of Γ.

In this paper, we will discuss the jump problem on quasi-circles. A closed Jordan curve Γ

is called a quasi-circle if there is a constant C(Γ) > 0 such that diameter(ζ̃z) ≤ C(Γ)|ζ − z| for

the smaller (i.e., with less diameter) subarc ζ̃z of Γ joining any two finite points z and ζ of Γ.

It is obvious that a chord-arc curve must be a quasi-circle. In fact, a closed Jordan curve is a

chord-arc curve if and only if it is an AD-regular quasi-circle (see [17]). In general a quasi-circle

might not be rectifiable (see [12]), and Gehring and Väisälä [10] even proved that the Hausdorff

dimension of a quasi-circle can take any value in [1, 2). Therefore, the Cauchy integral (1.1)

may not be available for a quasi-circle Γ. On the other hand, Schippers and Staubach [19] have

discussed the jump problem on quasi-circles by generalizing the Cauchy integral (1.1) using a

limiting process. The purpose of the paper is to give a fast and alternative approach to the

jump problem on quasi-circles based on Semmes’ idea (see [20–21]). The results turn to be

useful in our forthcoming paper [13] on chord-arc curves.

In the paper, C, C1, C2, · · · will denote universal constants that might change from one line

to another, while C(·), C1(·), C2(·), · · · will denote constants that depend only on the elements

put in the brackets. The notation A . B (A & B) means that there is a constant C such that

A ≤ CB (A ≥ CB). The notation A ≍ B means both A . B and A & B.

2 Basic Facts

A sense-preserving homeomorphism ρ of the complex plane C is called quasiconformal if it

has locally integrable distributional derivatives ∂ρ, ∂ρ which satisfy the Beltrami equation

∂ρ = µ∂ρ, (2.1)

where µ ∈ L∞(C) with ‖µ‖∞ < 1 is called the Beltrami coefficient or complex dilatation of ρ.

Conversely, the measurable Riemann mapping theorem (see [1]) for quasiconformal mappings

says that for each µ ∈ L∞(C) with ‖µ‖∞ < 1, there is a quasiconformal self-mapping ρ of C

with Beltrami coefficient µ, and ρ is unique up to a Möbius transformation.

A sense-preserving self-homeomorphism h of the unit circle S1 is said to be quasisymmetric

and belongs to the class QS(S1) if there exists a (least) positive constant C(h), called the

quasisymmetric constant of h, such that

1

C(h)
≤

|h(I1)|

|h(I2)|
≤ C(h) (2.2)

for all pairs of adjacent arcs I1 and I2 on S1 with the same arc-length |I1| = |I2|(≤ π). Beurling

and Ahlfors [3] proved that a sense-preserving self-homeomorphism h is quasisymmetric if and

only if there exists some quasiconformal homeomorphism of the unit disk ∆+ = {z : |z| < 1}
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onto itself which has boundary values h. Later Douady and Earle [6] gave a quasiconformal

extension of h to the unit disk which is conformally invariant.

It is known that a closed Jordan curve is a quasi-circle if and only if it is the image of the

extended real line R̂ or the unit circle S1 under a global quasiconformal self-mapping of C (see

[1]). A Jordan domain is called a quasidisk if it is bounded by a quasi-circle. Let Γ be a closed

Jordan curve with complementary domains Ω+ and Ω−, φ+ and φ− map ∆+ and ∆− .
= Ĉ−∆+

conformally onto Ω+ and Ω−, respectively. Since φ+ and φ− can be continuously extended to

the unit circle, we can form hΓ = φ−1
− ◦ φ+, which is known to be a conformal sewing for Γ. It

is well known that hΓ is quasisymmetric if and only if Γ is a quasi-circle (see [1]).

In quasiconformal mapping theory, especially in the study of the Beltrami equation (2.1),

there are two operators that play fundamental roles (see [1]): The Cauchy operator on the plane

Tf(z) = −
1

π

∫∫

C

f(w)

w − z
dudv, (2.3)

where f ∈ Lp(C), p > 2, with compact support. The other one is the Beurling operator S

defined by

Sf(z) = −
1

π

∫∫

C

f(w)

(w − z)2
dudv, (2.4)

where f ∈ Lp(C), p > 1. It is known that S is norm-preserving on L2(C), bounded on Lp(C)

for general p > 1. It is also known that I − µS is invertible on Lp(C) for 2 ≤ p < 1 + ‖µ‖−1
∞

(see [2]). Finally, the following relations

∂(Tf) = f, ∂(Tf) = Sf (2.5)

hold in the distributional sense.

3 Dirichlet and Sobolev Spaces Revisited

This is mostly a review section. It contains a description of old and recent results concerning

Dirichlet and Sobolev spaces on general quasi-circles. For more details (see [16, 19]).

3.1 Sobolev space

The Sobolev class H
1
2 (S1) on the unit circle S1 is the set of all functions u on the unit circle

such that

‖u‖2
H

1
2

=
1

4π2

∫

S1

∫

S1

|u(ζ) − u(z)|2

|ζ − z|2
|dζ||dz| <∞. (3.1)

H
1
2 (S1) has Möbius invariance. In fact, for each Möbius transformation γ ∈Möb(S1) keeping

the unit circle, it holds that

(γ(ζ)− γ(z))2 = γ′(ζ)γ′(z)(ζ − z)2 (3.2)

from which it follows immediately that ‖u ◦ γ‖
H

1
2

= ‖u‖
H

1
2
. More generally, we have the

following result which shows that H
1
2 (S1) can be used to characterize the quasi-symmetry of a

homeomorphism.
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Proposition 3.1 (see [3, 15]) Let h be a sense-preserving self-homeomorphism of the

unit circle. Then the pull-back operator Ph defined by Phu = u ◦ h is a bounded operator from

H
1
2 (S1) into itself if and only if h is quasisymmetric.

Let Γ be a bounded quasi-circle with complementary domains Ω+ and Ω− ∋ ∞, and as before

φ+ and φ− with φ−(∞) = ∞ map ∆+ and ∆− conformally onto Ω+ and Ω−, respectively.

We denote by H+(Γ) the set of all functions f on Γ such that f ◦ φ+ ∈ H
1
2 (S1). By the

conformal invariance of harmonic measure, f ∈ H+(Γ) is defined almost everywhere in Γ

with respect to the harmonic measure. H−(Γ) can be defined in the same way. Noting that

hΓ = φ−1
− ◦φ+ is quasisymmetric, we conclude by Proposition 3.1 that H+(Γ) = H−(Γ), which

will be denoted by H
1
2 (Γ) later. Each element f in H

1
2 (Γ) can be assigned a norm ‖f‖

H
1
2
equal

to ‖f‖+
.
= ‖f ◦ φ+‖

H
1
2
or ‖f‖−

.
= ‖f ◦ φ−‖

H
1
2
, which are equivalent by Proposition 3.1 again.

3.2 Dirichlet space

Let Ω be a domain in the Riemann sphere Ĉ. The harmonic Dirichlet space H(Ω) is the set

of all harmonic functions F on Ω such that the Dirichlet integral

DΩ(F ) =
1

π

∫∫

Ω

(|∂F (z)|2 + |∂F (z)|2)dxdy <∞. (3.3)

We can assign a semi-norm on H(Ω) by ‖F‖2
H(Ω) = DΩ(F ). The (analytic) Dirichlet space D(Ω)

consists of the analytic functions in H(Ω). Both H(Ω) and D(Ω) are conformally invariant,

namely, a conformal mapping φ between two domains Ω1 and Ω2 induces a norm-preserving

isomorphism F 7→ F ◦ φ from H(Ω2) onto H(Ω1) and from D(Ω2) onto D(Ω1).

It is well known that the Dirichlet problem has a unique solution on the unit circle. Precisely,

a harmonic function F in H(∆+) (orH(∆−)) has non-tangential limit values almost everywhere

in S1 (with respect to the arc-length measure) such that u
.
= F |S1 ∈ H

1
2 (S1) satisfies ‖u‖

H
1
2
=

‖F‖H(∆+) (or ‖F‖H(∆−)). Conversely, the usual Poisson extension operator P takes each

element u ∈ H
1
2 (S1) to F

.
= Pu in H(∆+) such that ‖F‖H(∆+) = ‖u‖

H
1
2
. Similarly, there

exists an extension operator also denoted by P which takes each element u ∈ H
1
2 (S1) to

F
.
= Pu in H(∆−) such that ‖F‖H(∆−) = ‖u‖

H
1
2
.

Similarly, the Dirichlet problem has a unique solution on a quasi-circle Γ with complementary

domains Ω+ and Ω− ∋ ∞. Let F be a harmonic function in H(Ω+). Then F̃
.
= F ◦φ+ ∈ H(∆+)

and has non-tangential limit values almost everywhere in S1 (with respect to the arc-length

measure) such that u
.
= F̃ |S1 ∈ H

1
2 (S1) with ‖u‖

H
1
2
= ‖F̃‖H(∆+) = ‖F‖H(Ω+). Since Γ is

a quasi-circle, φ+ can be extended a quasiconformal mapping to the whole plane. Then φ+

takes a non-tangential limit value to a non-tangential limit value so that F has non-tangential

limit values almost everywhere in Γ (with respect to the harmonic measure) such that f
.
= F |Γ

satisfies f ◦ φ+ = u. Consequently, f ∈ H
1
2 (Γ) with ‖f‖+ = ‖F‖H(Ω+). Each element F

in H(Ω−) also has non-tangential limit values almost everywhere in Γ (with respect to the

harmonic measure) such that f
.
= F |Γ ∈ H

1
2 (Γ) with ‖f‖− = ‖F‖H(Ω−). Conversely, let

f ∈ H
1
2 (Γ) so that u

.
= f ◦ φ+ ∈ H

1
2 (S1). Then F̃

.
= Pu ∈ H(∆+) and F

.
= F̃ ◦ (φ+)

−1 ∈

H(Ω+) with ‖F‖H(Ω+) = ‖F̃‖H(∆+) = ‖u‖
H

1
2

= ‖f‖+. F has non-tangential limit values

almost everywhere in Γ (with respect to the harmonic measure) such that f = F |Γ. Therefore,
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the correspondence f 7→ F induces a linear operator P+ from H
1
2 (Γ) onto H(Ω+) such that

‖P+f‖H(Ω+) = ‖f‖+. By the same way, there exists a linear operator P− from H
1
2 (Γ) onto

H(Ω−) such that ‖P−f‖H(Ω−) = ‖f‖−.

4 Jump Decomposition for H
1

2 (Γ)

Now we can state and prove the main result of the paper.

Theorem 4.1 Let Γ be a quasi-circle in the complex plane with complementary domains

Ω+ and Ω− ∋ ∞. Then for each f ∈ H
1
2 (Γ) there exists a pair of functions F1, F2 such

that F1 ∈ D(Ω+), F2 ∈ D(Ω−), ‖F1‖+ . ‖f‖
H

1
2
, ‖F2‖− . ‖f‖

H
1
2
, and the jump formula

F1 − F2 = f holds on Γ. The pair F1, F2 is unique up to a constant.

Proof Consider the conformal mapping φ− which maps ∆− conformally onto Ω− with

φ−(∞) = ∞. φ− can be extended a quasiconformal mapping ρ to the whole plane whose

Beltrami coefficient µ is supported in ∆+. Given f ∈ H
1
2 (Γ), we set u = f◦ρ. Then u ∈ H

1
2 (S1)

so that C′
u ∈ L2(C) with ‖C′

u‖L2(C) . ‖u‖
H

1
2

≍ ‖f‖
H

1
2
, where Cu

.
= CS1u is the Cauchy

integral of u on the unit circle and C′
u(z)

.
= d(Cu(z))

dz is defined on C in the distributional sense

(see [23]). We will prove the result by a standard density argument.

Choose p > 2 such that p < 1 + ‖µ‖−1
∞ . Set

H
1
2

0 (Γ) = {f ∈ H
1
2 (Γ) : C′

u ∈ Lp(C)}.

Clearly, H
1
2

0 (Γ) is dense in H
1
2 (Γ). We first assume that f ∈ H

1
2

0 (Γ). Set

g = (I − µS)−1(µC′

u) = µ(I − Sµ)−1(C′

u)

and G = Tg. Noting that I − µS is invertible on Lp(C) we conclude that g ∈ Lp(C), and has

support in ∆+, so G is continuous on the whole plane with ∂G = g, ∂G = Sg. Thus

∂G− µ∂G = g − µSg = (I − µS)g = µC′

u.

Letting H = G + Cu, we conclude that H has jump u across the unit circle S1, and ∂H = g,

∂H = Sg + C′
u. Thus H satisfies the Beltrami equation ∂H = µ∂H . Then F

.
= H ◦ ρ−1 is

holomorphic off Γ. Set F1 = F |Ω+ , F2 = F |Ω− . Now we show that F1, F2 is the desired pair.

It is clear that both F1 and F2 have non-tangential limit values almost everywhere in Γ (with

respect to the harmonic measure) such that the jump formula F1 − F2 = f holds on Γ. It

remains to prove the norm estimates. Actually, by the quasi-invariance of the Dirichlet integral

under quasiconformal mappings, we have

‖F1‖
2
+ = ‖F1‖

2
H(Ω+) = DΩ+(H ◦ ρ−1) . C1(‖µ‖∞)D∆+(H)

≤ 2C1(‖µ‖∞)(D∆+(G) +D∆+(Cu))

. C2(‖µ‖∞)(‖g‖2L2(C) + ‖C′

u‖
2
L2(C))

≤ C2(‖µ‖∞)(‖(I − µS)−1‖2 + 1)‖C′

u‖
2
L2(C)

. C3(‖µ‖∞)‖u‖2
H

1
2

≍ C3(‖µ‖∞)‖f‖2
H

1
2

.
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A similar estimate can be obtained for ‖F2‖−. Having these estimates for ‖F1‖+ and ‖F2‖−,

we may obtain the jump decomposition for a general f ∈ H
1
2 (Γ) by the density of H

1
2

0 (Γ) in

H
1
2 (Γ).

To prove the uniqueness part, we need a further result on the pull-back operator. Recall

that H(∆+) = D(∆+) ⊕ D(∆+), or precisely, for each F ∈ H(∆+), there exists a unique pair

of holomorphic functions φ and ψ in D(∆+) with φ(0)−F (0) = ψ(0) = 0 such that F = φ+ψ.

Thus we may form two basic operators on the harmonic Dirichlet space H(∆+). They are P+

and P−, defined respectively by P+F = φ and P−F = ψ(z) for F = φ+ψ. On the other hand,

for each quasisymmetric homeomorphism h ∈ QS(S1), we consider the pull-back operator Ph

in the statement of Proposition 3.1. Ph (or more precisely, P ◦ Ph) can also be considered as a

linear operator from H(∆+) into itself. Setting P+
h = P+ ◦Ph and P−

h = P− ◦Ph, we conclude

that both P+
h and P−

h can be considered as bounded-linear operators from D(∆+) into itself,

and

‖P+
h φ‖

2
H(∆+) = ‖P−

h φ‖
2
H(∆+) + ‖φ‖2

H(∆+), φ ∈ D(∆+). (4.1)

A proof of (4.1) can be found in our paper [22, Proposition 4.3] .

We proceed to prove the theorem. Let F1 ∈ D(Ω+), F2 ∈ D(Ω−) and F̂1 ∈ D(Ω+),

F̂2 ∈ D(Ω−) be two pairs such that F̂1− F̂2 = F1−F2 = f holds on Γ. Then F̂1−F1 = F̂2−F2

on Γ. Set F = F̂1 − F1, F̂ = F̂2 − F2. Then F ∈ D(Ω+), F̂ ∈ D(Ω−) and F |Γ = F̂ |Γ ∈ H
1
2 (Γ).

We need to show that F and F̂ are the same constant. Consider the conformal sewing map

hΓ = φ−1
− ◦ φ+ and the corresponding operator P+

hΓ
. Set φ = F ◦ φ+, ψ̂ = F̂ ◦ φ−. Then

φ ∈ D(∆+), ψ̂ ∈ D(∆−). Letting ψ(z) = ψ̂(z−1), then ψ ∈ D(∆+). Noting that on Γ we have

PhΓ
ψ = ψ ◦ hΓ = ψ̂ ◦ hΓ = F̂ ◦ φ− ◦ φ−1

− ◦ φ+ = F ◦ φ+ = φ,

which implies that P+
hΓ
ψ = φ(0). We conclude by (4.1) that ψ is a constant, which implies that

F and F̂ are the same constant. This completes the proof of Theorem 4.1.

5 Chord-Arc Curve Case

A natural question is how to define the Sobolev space H
1
2 (Γ) on a quasi-circle Γ without

using the Riemann mapping φ+ (or φ−). To answer this question, we assume that Γ is a locally

rectifiable closed Jordan curve. Inspired by the definition of H
1
2 (S1), we denote by H(Γ) the

set of all functions f on Γ such that

‖f‖2H(Γ) =
1

4π2

∫

Γ

∫

Γ

|f(ζ) − f(z)|2

|ζ − z|2
|dζ||dz| <∞. (5.1)

Just like H
1
2 (S1), H(Γ) also has Möbius invariance, namely, for each Möbius transformation

γ ∈Möb(C) on the complex plane, it holds that ‖f ◦ γ‖H(Γ) = ‖f‖H(γ(Γ)).

We recall the following classical result of Lavrentiev [11].

Proposition 5.1 (see [11]) Let Γ be a bounded chord-arc curve with complementary do-

mains Ω+ and Ω− ∋ ∞, φ+ and φ− with φ−(∞) = ∞ map ∆+ and ∆− conformally onto Ω+

and Ω−, respectively. Then both |φ′+| and |φ′−| are A
∞-weights introduced by Muckenhoupt [14]
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(see also [9]). In particular, the harmonic measure and arc-length measure on Γ are absolutely

continuous to each other.

Now we prove the following proposition.

Proposition 5.2 Let Γ be a bounded chord-arc curve. Then H
1
2 (Γ) = H(Γ) ⊂ L2(Γ).

Proof First we point out by Proposition 5.1 that each element in H
1
2 (Γ) or H(Γ) is well-

defined almost everywhere in Γ with respect to the harmonic measure, or equivalently, with

respect to the arc-length measure. It is known that there exists some bi-Lipschitz map φ of

the complex plane onto itself such that φ(S1) = Γ (see [17]). By definition (5.1) it is clear that

f ∈ H(Γ) if and only if f◦φ ∈ H
1
2 (S1). On the other hand, since h = φ−1◦φ+ is quasisymmetric

and f ◦ φ+ = f ◦ φ ◦ h = Ph(f ◦ φ), we conclude by Proposition 3.1 that f ◦ φ ∈ H
1
2 (S1) if and

only if f ◦ φ+ ∈ H
1
2 (S1), or equivalently, f ∈ H

1
2 (Γ). Consequently, H

1
2 (Γ) = H(Γ). It is also

clear that f ∈ L2(Γ) if and only if f ◦ φ ∈ L2(S1). Since H
1
2 (S1) ⊂ L2(S1), we find out that

H(Γ) ⊂ L2(Γ).

A consequence of Theorem 4.1 and Proposition 5.2 is in the following.

Theorem 5.1 Let Γ be a bounded chord-arc curve with complementary domains Ω+ and

Ω− ∋ ∞. Let f ∈ H
1
2 (Γ) and F+, F− be defined by the Cauchy integral as in Section 1.

Then F+ ∈ D(Ω+), F− ∈ D(Ω−), ‖F+‖+ . ‖f‖
H

1
2
, ‖F−‖− . ‖f‖

H
1
2
and the jump formula

F+ − F− = f holds on Γ. The jump decomposition is unique.

Proof Given f ∈ H
1
2 (Γ), we have a pair F1, F2 satisfying the conditions in Theorem

4.1, in particular, we have the jump formula F1 − F2 = f on Γ. On the other hand, since

H(Γ) ⊂ L2(Γ), we also have the jump formula F+−F− = f on Γ. By the uniqueness of such a

pair of functions in both cases, we obtain that F+ = F1, F
− = F2 up to a constant. The proof

is completed.

Remark 5.1 Radnell, Schippers and Staubach [18] obtained a jump formula for H(Γ) on

a so-called Weil-Petersson quasi-circle Γ by a different approach. A Weil-Petersson quasi-circle

must be a chord-arc curve, but not the converse.

Problem 5.1 Proposition 5.2 says that H
1
2 (Γ) = H(Γ) for a chord-arc curve Γ. It is not

known whether the same result holds for other locally rectifiable quasi-circles.
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