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Abstract Surface bundles arising from periodic mapping classes may sometimes have

non-isomorphic, but profinitely isomorphic fundamental groups. Pairs of this kind have

been discovered by Hempel. This paper exhibits examples of nontrivial Hempel pairs where

the mapping tori can be distinguished by some Turaev-Viro invariants, and also examples

where they cannot be distinguished by any Turaev-Viro invariants.
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1 Introduction

Let S be a connected closed orientable surface. Denote by Mod(S) the mapping class group

of S, whose elements are the isotopy classes of orientation-preserving self-homeomorphisms of

S.

A Hempel pair as we call refers to a pair of periodic mapping classes [fA], [fB] ∈ Mod(S)

of identical order d ≥ 1, such that [fB] = [fk
A] holds for some integer k coprime to d. Hence

[fA] = [fk∗

B ] holds for any congruence inverse k∗ of k modulo d, (that is, k∗k ≡ 1 mod d).

Hempel studied such pairs in [11], and found out that the fundamental groups of their mapping

tori MA and MB always have identical collections of (isomorphism types of) finite quotient

groups. This is equivalent to saying that the profinite completions of π1(MA) and π1(MB) are

isomorphic groups. Hempel discovered examples of such pairs with non-isomorphic fundamental

groups. This is equivalent to saying that MA and MB are not homeomorphic 3-manifolds.

We call [fA] and [fB] a nontrivial Hempel pair, ifMA and MB are not homeomorphic. There

are no nontrivial Hempel pairs when S is a sphere or a torus, as the condition forces d = 1 or

d ∈ {1, 2, 3, 4, 6}, and hence k = ±1. One may obtain a nontrivial Hempel pair of order 5 when

S has genus 2. Nontrivial Hempel pairs are a source of distinct 3-manifold pairs that cannot

be distinguished by their profinite fundamental groups. Among 3-manifolds, the question as to

which topological invariants are determined by the profinite fundamental group has stimulated

a lot of fruitful study in recent years. See [14, Section 9] and [16] for past surveys on that

fast-growing topic.
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Turaev-Viro invariants are topological invariants of closed 3-manifolds, originally construct-

ed using quantum 6j-symbols in [24]. That they are generally not profinite invariants is evident

from their explicit values on all lens spaces (see [21]). Meanwhile, there are many homeo-

morphically distinct torus bundles over a circle, whose monodromies are Anosov and mutually

conjugate up to inverse in every congruence quotient of Mod(T 2) ∼= SL(2,Z). These torus

bundles have isomorphic profinite fundamental groups. Funar shows that no Turaev-Viro in-

variants (associated to any spherical fusion categories) distinguish these torus bundles (see [8,

Proposition 1.1]).

In this paper, we take up the question as to whether Turaev-Viro invariants distinguish

nontrivial Hempel pairs. We shall content ourselves with the SU(2) and the SO(3) Turaev-Viro

invariants, as they are mentioned the most often. The SU(2) series can be fully listed as TVr,s

for any integer r ≥ 3 and any integer s coprime to r; the SO(3) series can be fully listed as

TV′
r,s for any odd integer r ≥ 3 and any even integer s coprime to r. More economically, one

could focus on TVr,1 (r even) and TV′
r,r−1 (r odd), together with TV3,1 and TV3,2, which

depend only on the Z/2Z cohomology ring. These determine all the other ones. See Section 3

for the notations and more review.

Our conclusion can be summarized as follows.

Theorem 1.1 (1) For any integer d ≥ 5 other than 6, there exists some nontrivial Hempel

pair of order d, such that the mapping tori can be distinguished by some SU(2) Turaev-Viro

invariant, and if d is odd, also by some SO(3) Turaev-Viro invariant.

(2) For any prime integer p ≥ 5, there exists some nontrivial Hempel pair of order p, such

that the mapping tori cannot be distinguished by any SU(2) or SO(3) Turaev-Viro invariants.

Theorem 1.1 is proved in Section 5 by exhibiting concrete families of examples. Our simplest

distinguishable Hempel pair exists with order d on genus d− 2 ≥ 3. Our simplest indistinguish-

able nontrivial Hempel pair exists with prime order p on genus p−1
2 ≥ 2.

The technical heart of this paper is the following calculation.

Theorem 1.2 Let a ≥ 3 be an integer and b1, · · · , bn be integers coprime to a. Let M be a

Seifert fiber space with orientable orbifold base and orientable Seifert fibration, and with symbol

(g; (a, b1), · · · , (a, bn)). Suppose that g ≥ 0, a > n ≥ 0 and b1 + · · ·+ bn = 0.

(1) If there exists some integer b∗ coprime to a and ν1, · · · , νn ∈ {±1}, such that b∗bj ≡
νj mod a holds for all j ∈ {1, · · · , n}, then for any s coprime to a,

TVa,s(M) =
an+2g−2

22n+2g−4
· 1

sin2n+4g−4
(πb∗s

a

) ,

and moreover, if a is odd and s is even,

TV′
a,s(M) =

an+2g−2

22n+4g−4
· 1

sin2n+4g−4
(πb∗s

a

) .
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(2) Otherwise, for any integer r ≥ 3 divisible by a and any integer s coprime to r,

TVr,s(M) = 0,

and moreover, if r is odd and s is even,

TV′
r,s(M) = 0.

See Section 2 for review on Seifert fiber spaces and the standard notation for their symbols.

Theorem 1.2 is proved in Section 4, by applying a general formula for calculating the Witten-

Reshetikhin-Turaev invariant τr of oriented closed Seifert fiber spaces. The exact formula we

invoke is due to Hansen [9], while similar calculation in special cases or with likewise strategy

also appear in many other places (for instance, see [1, 13, 19, 22]).

Theorem 1.2 is formulated by first testing samples of Seifert fiber spaces (on computer), and

then observing interesting phenomena. Luckily, we find the assumptions as in Theorem 1.2,

which greatly simplify the situation and the answer.

In Section A, we prove a splitting formula

TVr,s(M) = TV3,1(M) · TV′
r,r−s(M)

for r odd and s odd. This complements a former formula

TVr,s(M) = TV3,2(M) · TV′
r,s(M)

for r odd and s even, proved by Detcherry-Kalfagianni-Yang [7, Theorem 2.9]. Our proof in

Section A automatically includes the non-orientable case, although the orientable case suffices

for our application.

This paper is organized as follows. In Section 2, we recall the preliminary description of

periodic mapping tori as Seifert fiber spaces with vanishing rational Euler number. In Section

3, we review Turaev-Viro invariants. In Section 4, we prove Theorem 1.2. In Section 5, we

prove Theorem 1.1. In Section A, we give an elementary proof of the aforementioned splitting

formula regarding SU(2) Turaev-Viro invariants at odd r and odd s.

2 Periodic Mapping Tori

Let S be a connected orientable closed surface. The mapping class group Mod(S) consists

of all the isotopy classes of orientation-preserving self-homeomorphism of S. For any mapping

class [f ] ∈ Mod(S), we denote by Mf the mapping torus

Mf =
S × R

(f(x), r) ∼ (x, r + 1)
,

which naturally fibers over the oriented circle R/Z with fiber type S and (backward) mon-

odromy type [f ]. The mapping torus Mf is a connected orientable closed 3-manifold, whose

homeomorphism type depends only on [f ].
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A periodic mapping class refers to a mapping class of finite order. In this case, the mapping

torus is a Seifert fiber space. The Seifert fibration is orientable over an orientable base orbifold,

and has vanishing rational Euler number. Moreover, the Seifert fibration on any periodic

mapping torus is unique up to isotopy. Conversely, any closed Seifert fiber space with orientable

orbifold base and orientable Seifert fibration of vanishing rational Euler number arises as the

mapping torus of some periodic mapping class. Moreover, the genus of surface and the conjugacy

class of the periodic mapping class up to inverse are both unique. This way, periodic mapping

classes can be described equivalently by indicating the symbol of its mapping torus, as a Seifert

fiber space (see [2, Chapter 1]).

The most general symbol describes any (connected, compact) Seifert fiber space with all

features, allowing possibly non-orientable orbifold base, non-orientable Seifert fibration, and

non-empty boundary. For discussing periodic mapping classes, we only need to consider closed

Seifert fiber spaces with orientable orbifold base and orientable Seifert fibration, whose (possibly

non-normalized) symbol is denoted as

(g; (a1, b1), · · · , (an, bn)), (2.1)

where g ≥ 0 is an integer, aj ≥ 1 is an integer and bj is an integer coprime to aj for all j ∈
{1, · · · , n}. This symbol presents a Seifert fiber space (with standard orientation) constructed

as follows.

Take a product 3-manifold Σ× S1 of a connected closed oriented surface Σ of genus g and

an oriented circle S1; take n disjoint embedded disks D1, · · · , Dn ⊂ Σ; remove the solid tori

Dj×S1 from Σ×S1, and refill with solid tori in other ways, such that the slopes aj [∂Dj ]+bj [S
1]

on ∂Dj × S1 bound disks in the new solid tori.

The base of this Seifert fiber space is a connected, closed, oriented 2-orbifold of genus g

with n cone points of order a1, · · · , an (ordinary and negligible if aj = 1). Its orbifold Euler

characteristic equals 2 − 2g −∑
j

(
1 − 1

aj

)
. The rational Euler number of the Seifert fibration

equals −∑
j

bj
aj
, where the minus sign comes from our convention on the orientation of ∂Dj (as

induced by the orientation of Dj, rather than S \ (D1 ∪ · · · ∪Dn).

The following operations of the symbol do not change the homeomorphism type of the

resulting Seifert fiber space: Re-ordering all (aj , bj); inserting or deleting a term (1, 0); replacing

one (aj , bj) with (aj , bj + aj) and another (aj′ , bj′) with (aj′ , bj′ − aj′) simultaneously; or

replacing all (aj , bj) with (aj ,−bj) simultaneously. Note that only the last operation changes

the orientation-preserving homeomorphism type of the resulting Seifert fiber space.

For homeomorphic periodic mapping tori, their symbols are all related by finitely many

steps of the above operations. This is a special case of the classification of Seifert fiber spaces

(see [10, Chapter 12, 15, Theorem 1.10]).

The following Lemmas 2.1–2.2 actually appear in [11] in equivalent forms. We include quick

(and slightly different) proofs here for the reader’s reference.
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Lemma 2.1 Let M be a closed Seifert fiber space with orientable orbifold base and orientable

Seifert fibration, and with symbol (g; (a1, b1), · · · , (an, bn)). If the Seifert fibration has vanishing

rational Euler characteristic, then M is homeomorphic to the mapping torus Mf of a periodic

mapping class [f ] ∈ Mod(S). Moreover, [f ] has order d = lcm(a1, · · · , an), and S has genus

1 + (g − 1)d+
∑
j

(
1− 1

aj

)
d
2 .

Proof The orbifold fundamental group of the base O has a presentation with generators

x1, y1, · · · , xg, yg, s1, · · · , sn and relations [x1, y1] · · · [xg, yg] = s1 · · · sn, and sa1
1 = · · · = san

n =

1. Under the assumption of vanishing rational Euler number, the assignments xi 7→ 0 mod d,

yi 7→ 0 mod d, and sj 7→ − bjd
aj

mod d yield a well-defined, surjective homomorphism π1(O) →
Z/dZ, where d = lcm(a1, · · · , an). The kernel of the homorphism corresponds to a cyclic orbifold

covering S → O of degree d, where S has no singular cone points. The generator 1 ∈ Z/dZ

corresponds to a deck transformation, representing a periodic mapping class [f ] ∈ Mod(S) of

order d. It is elementary to check that Mf is homeomorphic to M . The Euler characteristic of

the surface S is equal to d times the rational Euler number of O, which implies the asserted

genus of S.

Lemma 2.2 Let S be a connected, close, orientable surface, and [f ] ∈ Mod(S) be a periodic

mapping class of order d. If the mapping torus Mf has symbol (g; (a1, b1), · · · , (an, bn)), then
for any integer k coprime to d, the mapping torus Mfk of the iterate [fk] ∈ Mod(S) has symbol

(g; (a1, b1k
∗), · · · , (an, bnk∗)), where k∗ is any integer satisfying kk∗ ≡ 1 mod d.

Proof The mapping torus Mfk naturally cyclically cover Mf of degree k. Since f has

order d, we see that Mf = Mfkk∗ cyclically covers Mfk of degree k∗. Consider the covering

Mf → Mfk . The pull-back of the Seifert fibration ofMfk is a Seifert fibration on Mf . IfMf has

symbol (g; (a1, b1), · · · , (an, bn)), by definition, the preimage of (Σ\(D1∪· · ·∪Dn))×S1 ⊂ Mfk

is also a product (Σ \ (D1 ∪ · · · ∪Dn))×S1 ⊂ Mf , while ordinary fibers (that is, ∗×S1 ⊂ Mf )

cyclically cover the ordinary fibers in Mfk with degree k∗. Since the slope aj [Dj ] + bj [S
1] on

∂Dj×S1 is homotopically trivial inMf , the slope aj [Dj ]+bjk
∗[S1] on ∂Dj×S1 is homotopically

trivial in Mk. Therefore, (g; (a1, b1k
∗), · · · , (an, bnk∗)) is a symbol of Mfk .

3 Turaev-Viro Invariants

Turaev-Viro invariants are topological invariants of closed 3-manifolds, arising from repre-

sentation theory of quantum groups at roots of unity. Throughout this paper, we only discuss

Turaev-Viro invariants pertaining to the most basic quantum group Uq(sl2). In this setting,

there are essentially two series, namely, the SU(2) Turaev-Viro invariants TVr for all integers

r ≥ 3, and the SO(3) Turaev-Viro invariants TV′
r for all odd integers r ≥ 3.

Throughout this paper, a closed manifold only means a compact manifold with empty

boundary, possibly disconnected and possibly non-orientable.
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3.1 Abstract versions

Let q
1
2 be a square root of a root of unity q 6= ±1. Denote by r ≥ 3 the order of q. Note

that q
1
2 must have order 2r when r is even, but may have order 2r or r when r is odd. We

denote by Q(q
1
2 ) the abstract cyclotomic field generated by q

1
2 .

For any closed 3-manifold M , the Turaev-Viro invariant TV(M ; q
1
2 ) can be defined at q

1
2 .

If r is odd, the refined Turaev-Viro invariant TV′(M ; q
1
2 ) can be defined at q

1
2 of order r. Both

TV(M ; q
1
2 ) and TV′(M ; q

1
2 ) are topological invariants of M , with totally real values in Q(q

1
2 ).

We call TV and TV′ the abstract SU(2) and the abstract SO(3) Turaev-Viro invariants at q
1
2

(or at level r − 2), respectively.

More details about the actual construction of these invariants are not be necessary in the

sequel, except Section A. We record them below for the sake of clarity.

Let T = (V,E, F, T ) be any finite simplicial 3-complex, where the items denote the sets

of vertices, edges, faces and tetrahedra, respectively. Denote Ir = {0, 1, · · · , r − 2}. A triple

(i, j, k) ∈ Ir × Ir × Ir is said to be admissible if the numbers i+j+k
2 , i+j−k

2 , j+k−i
2 and k+i−j

2

all stay in Ir. An admissible coloring of (M,T ) (of level r − 2) refers to a map c : E → Ir ,

such that on any face, the edge colors (that is, values of c) form an admissible triple. Denote

by Ar = Ar(M,T ) the set of all admissible colorings of level r − 2. If r is odd, denote by

I ′r = {0, 2, · · · , r − 3} the subset of even elements of Ir. Denote by A′
r = A′

r(M,T ) the subset

of Ar consisting of admissible colorings with values in I ′r.

Let M be a (possibly disconnected, possibly non-orientable) closed 3-manifold. Take a

triangulation T = (V,E, F, T ) of M . Then invariants TV and TV′ of M at q
1
2 can be expressed

in terms of T as follows:

TV(M ; q
1
2 ) =

((q 1
2 − q−

1
2 )2

−2r

)|V |
·
∑

c∈Ar

|T |c ; (3.1)

if r is odd and q
1
2 has order r,

TV′(M ; q
1
2 ) =

((q 1
2 − q−

1
2 )2

−r

)|V |
·
∑

c∈A′

r

|T |c , (3.2)

where |V | denotes the number of vertices in T and |T |c is explained in Notation 3.1 below.

Note that our notations follow the reformulation as in [7, Appendix A], where the factors in

|e|c, |f |c and |t|c are grouped slightly differently than those in [24], so as to avoid unnecessary

square roots.

As it turns out, the values of the above expressions in Q(q
1
2 ) are independent of the auxiliary

choice of the triangulation T (see [24]). Therefore, TV(M ; q
1
2 ) and TV′(M ; q

1
2 ) are indeed

topological invariants of M .

Notation 3.1 (1) Denote

[n]! =

{
[1] · [2] · · · · · [n], n = 1, 2, · · · , r − 1,

1, n = 0,
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where

[n] =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

.

Note that the quantum integers [1], [2], · · · , [r− 1] take totally real nonzero values in Q(q
1
2 ), as

q is a primitive r-th root of unity (r ≥ 3).

(2) For any e ∈ E and c ∈ Ar,

|e|c = (−1)i · [i+ 1],

where i is the color of e under c.

(3) For any f ∈ F and c ∈ Ar,

|f |c = (−1)−S · [S − i]! · [S − j]! · [S − k]!

[S + 1]!
,

where i, j, k are the edge colors of f under c and S = i+j+k
2 .

(4) For any t ∈ T and c ∈ Ar, denote

|t|c =
∑

z

(−1)z [z + 1]!∏

a

[z − Ta]! ·
∏

b

[Qb − z]!
,

where (i, j, k), (i,m, n), (j, l, n), (k, l,m) are the edge colors of the faces of t under c and T1 =
i+j+k

2 , T2 = i+m+n
2 , T3 = j+l+n

2 , T4 = k+l+m
2 , Q1 = i+j+l+m

2 , Q2 = i+k+l+n
2 , Q3 = j+k+m+n

2 .

The index a ranges in {1, 2, 3, 4}, b ranges in {1, 2, 3} and z is from max
a

Ta to min
b

Qb.

(5) For any c ∈ Ar, denote

|T |c =
∏

e∈E

|e|c ·
∏

f∈F

|f |c ·
∏

t∈T

|t|c.

3.2 Specialized versions

In the literature, the SU(2) and the SO(3) Turaev-Viro invariants often refer to specialization

of the abstract versions at customary complex roots of unity. To be precise, these refer to the

numerical quantities TVr and TV′
r below.

Notation 3.2 Let r ≥ 3 be an integer and s be an integer coprime to r. The following

expressions are all evaluated by specializing Q(q
1
2 ) → C.

(1) Denote

TVr,s(M) = TV
(
M ; q

1
2 = e

√
−1·πs

r

)
.

(2) If r is odd and s is even, denote

TV′
r,s(M) = TV′

(
M ; q

1
2 = e

√
−1·πs

r

)
.

(3) In informal discussion, we often write TVr and TV′
r, assuming s implicitly fixed.
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Lemma 3.1 Let M,N be any closed 3-manifolds. Then we have

(1) TVr,s(M) ∈ R,

(2) TVr,s(M ⊔N) = TVr,s(M) · TVr,s(N),

(3) TVr,s(S
2 × S1) = 1.

If r is odd and s is even, the same statements hold with TV′
r,s in place of TVr,s.

The first statement follows immediately from the observation that TV and TV′ can be

written as rational functions over Q in [1], · · · , [r−1] and (q
1
2 −q−

1
2 )2 (see (3.1)–(3.2), Notation

3.1). Note [n] = sin
(
πsn
r

)
/ sin

(
πs
r

)
and (q

1
2 − q−

1
2 )2 = −4 sin2

(
πs
r

)
evaluated at q

1
2 = e

√
−1·πs

r .

The second statement is also obvious by definition. The last statement appears in Turaev and

Viro’s original paper [24, Section 8.1.B].

Lemma 3.2 Let M be any closed 3-manifold. Then we have

(1) TVr,s(M) = TVr,−s(M) = TVr,s+2r(M). If r is odd and s is even, the same identities

hold with TV′ in place of TV.

(2) If s is odd, TVr,s(M) is Galois conjugate to TVr,1(M); if s is even (hence r odd),

TVr,s(M) is Galois conjugate to TVr,r−1(M). If r is odd and s is even, the same statements

hold with TV′
r,s in place of TVr,s.

(3) If r is odd,

TVr,s(M) =




TV3,2(M) · TV′

r,s(M), s even,

TV3,1(M) · TV′
r,r−s(M), s odd.

(4) Denote by βi the dimension of Hi(M ;Z/2Z) over Z/2Z and w1 ∈ H1(M ;Z/2Z) the first

Stifel-Whitney class of M . Then we have

TV3,2(M) = 2−β0(M)+β2(M)

and

TV3,1(M) = 2−β0(M) ·
∑

t

(−1)〈t
3+w2

1t, [M ]〉,

where the index t ranges over H1(M ;Z/2Z).

The first and the second statements are again obvious properties of the defining expressions.

The third statement is proved when s is even by Detcherry-Kalfagianni-Yang [7, Theorem 2.9],

and can be easily derived from well-known facts when s is odd, assuming M orientable (see

Lemmas 3.4–3.5). We supply a proof without assuming orientability in Section A.

The formulas for TV3,s in the fourth statement are due to Turaev-Viro [24, Section 9.3.A].

3.3 Relation to Witten-Reshetikhin-Turaev invariants

For connected oriented closed 3-manifolds, the Witten-Reshetikhin-Turaev invariants are

invariant under orientation-preserving homeomorphisms. These invariants were suggested by
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Witten [26], and the first mathematically rigorous construction was due to Reshetikhin-Turaev

[17].

Following Kirby-Melvin [12], we denote by τr the SU(2) Witten-Reshetikhin-Turaev invari-

ants, defined for any integer r ≥ 3, and by τ ′r the SO(3) Witten-Reshetikhin-Turaev invariants,

defined for any odd integer r ≥ 3. Note that τr is slight modification of the original construction

by Reshetikhin-Turaev [17], differing by a factor of absolute value 1 (depending on the first Betti

number), and τ ′r is introduced by Kirby-Melvin [12, Section 8]. The invariant τr corresponds to

the 4r-th primitive complex root of unity q
1
4 = e

√
−1· 2π4r by construction, whereas τ ′r is obtained

by modifying the defining expression of τr when r is odd. Upon suitable interpretation, τ ′r

appears to correspond to the 2r-th primitive complex root of unity q
1
4 = e

√
−1·π(r−1)

4r (compare

[4, Theorem B]). Both τr and τ ′r take values in C.

The following properties characterize the normalization of τr and τ ′r.

Lemma 3.3 Let M,N be any connected oriented closed 3-manifolds. Then we have

(1) τr(M) = τr(−M),

(2) τr(M#N) = τr(M) · τr(N),

(3) τr(S
2 × S1) =

√
r
2 / sin

(
π
r

)
. Hence, τr(S

3) = 1.

If r is odd, the same statements hold with τ ′r in place of τr, and
√

r
4 in place with

√
r
2 .

See [4, Proposition 6.10] and [12, Section 1 and (5.11)].

Lemma 3.4 Let M be any connected oriented closed 3-manifold. If r is odd,

τr(M) =




τ3(M) · τ ′r(M), r ≡ 3 mod 4,

τ3(M) · τ ′r(M), r ≡ 1 mod 4.

See [12, Corollary 8.9, Theorem 8.10, Theorem 6.11] for characterization of τ3(M) in terms

of classical topological invariants.

The Turaev-Viro invariants TVr and TV′
r are essentially the absolute value squares of

Witten-Reshetikhin-Turaev invariants, or precisely as follows.

Lemma 3.5 Let M be a connected closed 3-manifold and r ≥ 3 be any integer.

(1) If M is oriented, then
TVr,1(M)

TVr,1(S3)
= |τr(M)|2,

and if r is odd, then
TV′

r,r−1(M)

TV′
r,r−1(S

3)
= |τ ′r(M)|2.

(2) If M is non-orientable, then

TVr,1(M)

TVr,1(S3)
= τr(W ),
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and if r is odd, then
TV′

r,r−1(M)

TV′
r,r−1(S

3)
= τ ′r(W ),

where W denotes the orientable connected double cover of M . Note that W can be canonically

constructed, with a canonical orientation and an orientation-reserving deck transformation.

(3)

TVr,1(S
3) =

2

r
· sin2

(π
r

)
,

and if r is odd, then

TV′
r,r−1(S

3) =
4

r
· sin2

(π
r

)
.

See [23, Theorems 4.1.1 and 4.4.1] for systematic proofs of the formulas regarding TVr and

[18] for an elegant proof for the oriented case regarding TVr. The formulas regarding TV′
r can

be easily derived from the TVr formulas using Lemmas 3.2 and 3.4. The values for TVr,1(S
3)

and TV′
r,r−1(S

3) can be obtained immediately by taking M = S2 × S1 and applying Lemmas

3.1 and 3.4.

3.4 Perspective of TQFT

The Turaev-Viro invariants fit into the general framework of (2+1)-dimensional topological

quantum field theories (TQFT for short) (see [3]). We describe below focusing on the SU(2)

Turaev-Viro invariants. The discussion regarding SO(3) Turaev-Viro invariants is completely

similar.

Turaev and Viro constructed a functor ZTV from the (2+1)-dimensional cobordism category

to the category of Hermitian vector spaces (and linear homomorphisms) over the abstract

cyclotomic field K = Q(q
1
2 ), with respect to the involution ∗ on K as provided by the Galois

transformation q
1
2 7→ q−

1
2 . To any oriented closed surface S, there is a finite-dimensional vector

space ZTV(S), equipped with a nondegenerate Hermitian pairing

〈 , 〉 : ZTV(S)×ZTV(S) → K

(Being Hermitian means K-sesquilinear and ∗-symmetric). To any cobordism M from S0 to S1

(that is, an oriented compact 3-manifold M with bipartite boundary ∂M = ∂−M ⊔ ∂+M =

(−S0) ⊔ S1, up to boundary-fixing homomeorphisms), there is a linear homomorphism

ZTV(M) : ZTV(S0) → ZTV(S1).

The assignment ZTV is functorial, and satisfies Atiyah’s Hermitian TQFT axioms (see [3,

Section 2]): ZTV(−S) = ZTV(S)∗, ZTV(−M) = ZTV(M)∗, ZTV(S′ ⊔ S′′) = ZTV(S′) ⊗K

ZTV(S′′) and ZTV(∅) = K (∅ denoting the empty surface, having a unique orientation by

convention).
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Turaev and Viro showed that TV comes from a functor ZTV as above, in the sense that the

identity

TV(M ; q
1
2 ) = ZTV(M)

holds for any closed 3-manifold M . Here, M is treated as a cobordism between empty surfaces

and ZTV(∅, ∅) = EndK(K) is identified as K (see [24, Section 2.3]).

Being a TQFT functor, ZTV naturally induces a K-linear representation

Mod(S) → GL(ZTV(S))

of the mapping class group Mod(S) for any oriented closed surface S (see [24, Section 2.4]).

Specializing q
1
2 to complex roots of unity as in Notation 3.2, we obtain a complex linear repre-

sentation, denoted as

ρTV
r,s : Mod(S) → GL(ZTV

r,s (S)) (3.3)

for each integer r ≥ 3 and any integer s coprime to r. These representations preserve the

specialized Hermitian pairings 〈 , 〉r,s, whose signatures depend on both r and s, but are not

necessarily (Hilbert) unitary. We refer to these as the SU(2) Turaev-Viro TQFT representations

(at level r − 2) of Mod(S).

The following formula is useful implication of TQFT axioms (see [3, Section 2]).

Lemma 3.6 Let r ≥ 3 be any integer and s be any integer coprime to r. For any oriented

closed surface Σ and any mapping class [f ] ∈ Mod(S),

TVr,s(Mf ) = trC(ρ
TV
r,s ([f ])),

where Mf denotes the mapping torus of f .

If S is connected, the complex dimension of the representation ρTV
r,s depends only on r

and genus g of S. This fact can be derived from Lemmas 3.2 and 3.6 by considering the

mapping torus of f = idS . Verlinde type formulas for these dimensions can be derived from

Lemma 3.5 and known formulas about Witten-Reshetikhin-Turaev invariants (see [5, Corollary

1.16]). However, Witten-Reshetikhin-Turaev invariants only come from generalized TQFTs,

which require extra structures for resolving framing anomaly (see [5]). That is why they only

naturally lead to projective linear representations of surface mapping class groups.

4 Calculations

This section is devoted to the proof of Theorem 1.2.

To restate our task, we consider a closed Seifert fiber space M with orientable orbifold base

and orientable fibration, and with symbol (g; (a1, b1), · · · , (an, bn)), such that

a1 = a2 = · · · = an = a
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and

b1 + b2 + · · ·+ bn = 0.

Moreover, we suppose a ≥ 3 and a > n ≥ 0. We compute TVr and TV′
r of M for r = a, and

once they vanish, we show that they must also vanish for any r divisible by a.

We invoke the following explicit formula for computing the Witten-Reshetikhin-Turaev in-

variant τr of Seifert fiber spaces. Recall τr(S
1 × S2) =

√
r
2/ sin

(
π
r

)
(see Lemma 3.3).

Lemma 4.1 Let M be a closed Seifert fiber space with orientable orbifold base and orientable

fibration, and with symbol (g; (a1, b1), · · · , (an, bn)), where g, n ≥ 0 are integers, aj ≥ 0 and bj

are coprime pairs of integers for j = 1, · · · , n. Orient M by orienting the base and the fibers,

such that the rational Euler number of the Seifert fibration is

E = −
∑

j

bj
aj

.

Then
τr(M)

τr(S2 × S1)
=

rg−1 · Ur · Zr

2n+g−1
√∏

j

aj
,

where

Zr =
∑

(γ,µ,m)

{ e
√
−1·πγ2E

2r

sinn+2g−2
(πγ

r

) ·
∏

j

µje
√
−1·(−π(2rmj+µj)γ

ajr
+

−2π(rm2
j
+µjmj)b

∗

j
aj

)
}

and

Ur = (−1)n · e
√
−1·( 3π

2r − 3π
4 )·sgn(E) · e

√
−1·

π(E+12·
∑

j
s(bj ,aj))

2r .

Here, any j ranges over {1, · · · , n} and (γ,µ,m) = (γ, (m1, · · · ,mn), (µ1, · · · , µn)) ranges over

{1, 2, · · · , r−1}×{±1}n×Z/a1Z×· · ·×Z/anZ. The notation b∗j denotes any congruence inverse

of bj modulo aj, namely, bjb
∗
j ≡ 1 mod aj; sgn(E) denotes the sign of E, with value ±1 or 0;

s(bj, aj) denotes the Dedekind sum (4aj)
−1 · ∑

l∈{1,2,··· ,aj−1}
cot

(
πl
aj

)
cot

(πlbj
aj

)
.

See [9, Theorem 8.4] for this formula and Remark 4.1 below for clarification about different

notations and normalizations. Hansen actually obtained the most general formula that applies

to any orientable closed Seifert fiber space, including those with non-orientable orbifold base.

We have only stated here the case with orientable orbifold base. An equivalent formula for this

case is formerly obtained by Rozansky [19].

Remark 4.1 Our notation τr agrees with Kirby-Melvin [12], differing from Hansen’s nota-

tion by our factor 1
τr(S2×S1) . In [9, Section 8], Hansen’s τr(M) is defined as τ(Vt,D)(M) therein;

as pointed out in [9, Appendix A], Kirby-Melvin’s τr(M) is equal to τA(M) = D · τ(Vt,D)(M),

where D is specified as
√

r
2

/
sin

(
π
r

)
in the equation (38) therein. More directly, one may check

by evaluating the formula in [9, Theorem 8.4] for S3 (setting g = 0, b = 1 and n = 0) and

S2 × S1 (setting g = 0, b = 0 and n = 0) in the simplest case r = 3.
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Lemma 4.2 Under the assumptions of Theorem 1.2 and assuming r divisible by a, the term

Zr = Zr(M) as in Lemma 4.1 becomes

Zr =
∑

(γ,µ)

{e
√
−1·

−πγ
∑

j
µj

ar ·
∏

j

µj

sinn+2g−2
(πγ

r

) ·
∏

j

∑

mj

e
√
−1·

−2π(γ+b∗
j
µj)mj

a

}
,

where (γ,µ,m) ranges over {1, · · · , r − 1} × {±1}n × (Z/aZ)n.

Proof In the expression of Zr in Lemma 4.1, if any aj divides r, we can ignore the term

rm2
j in the exponent of the j-th factor in the product; if E = 0, we can ignore the factor that

involves γ2 on the exponent. Therefore, under these conditions, the expression of Zr can be

rearranged into

Zr(M) =
∑

(γ,µ)

{
∏

j

µje
√
−1·−πγµj

ajr

sinn+2g−2
(πγ

r

) ·
∑

m

e

√
−1·

∑

j

(
−2πγmj

aj
+

−2πb∗
j
µjmj

aj
)}

=
∑

(γ,µ)

{e

√
−1·

∑

j

−πγµj

ajr ·
∏

j

µj

sinn+2g−2
(πγ

r

) ·
∑

m

e

√
−1·∑

j

−2π(γ+b∗
j
µj)mj

aj

}

=
∑

(γ,µ)

{e

√
−1·

∑

j

−πγµj
ajr ·

∏

j

µj

sinn+2g−2
(πγ

r

) ·
∏

j

∑

mj

e
√
−1·

−2π(γ+b∗
j
µj)mj

aj

}
,

where (γ,µ) ranges in {1, 2, · · · , r−1}×{±1}n, j in {1, · · · , n} and mj in Z/ajZ. In particular,

the simplification applies as we assume a1 = a2 = · · · = an = a, b1 + b2 + · · · + bn = 0 and r

divisible by a.

Lemma 4.3 Under the assumptions of Theorem 1.2 and assuming r divisible by a, if there

does not exist any µ ∈ {±1}n that satisfies the congruence equations

b∗1µ1 ≡ b∗2µ2 ≡ · · · ≡ b∗nµn mod a,

then

Zr = 0,

where Zr is the term as in Lemma 4.1.

Proof For any fixed (γ,µ), we observe

∑

mj ∈Z/aZ

e
√
−1·

−2π(γ+b∗
j
µj)mj

a =




a, if γ + b∗jµj ≡ 0 mod a,

0, otherwise.
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Therefore, in the simplified expression of Zr as in Lemma 4.2, the summand corresponding to

(γ,µ) is nonzero if and only if γ + b∗jµj ≡ 0 mod a holds for all j ∈ {1, · · · , n}. For the sum Zr

to be nonzero, there has to be some γ ∈ {1, 2, · · · , r − 1} that satisfies the above condition for

some µ ∈ {±1}n, then there has to be some µ that satisfies b∗1µ1 ≡ b∗2µ2 ≡ · · · ≡ b∗nµn mod a.

Lemma 4.4 Under the assumptions of Theorem 1.2, if there exists some integer b∗ coprime

to a and some ν ∈ {±1}n, such that b∗ ≡ b∗jνj mod a holds for all j ∈ {1, · · · , n}, then

Za =

2 · an ·
∏

j

νj

sinn+2g−2
(πb∗

a

) ,

where Za is the term as in Lemma 4.1 with r = a.

Proof Possibly after permuting {1, · · · , n}, we may assume νj = 1 for j = 1, · · · ,m and

νj = −1 for j = m+ 1, · · · , n. We may also assume b∗ ∈ {1, 2, · · · , a− 1} without changing its

residue class modulo a.

For r = a ≥ 3, there are only two nonzero summands in Zr and their corresponding to

(γ,µ) are

(γ,µ) = (a− b∗, (1, · · · , 1︸ ︷︷ ︸
m

,−1, · · · ,−1︸ ︷︷ ︸
n−m

))

and

(γ,µ) = (b∗, (−1, · · · ,−1︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
n−m

)).

By our assumption
∑
j

bj = 0 in Theorem 1.2, (2m − n)b ≡ mb + (n − m)(−b) ≡ ∑
j

bj =

0 mod a, so n− 2m is divisible by a. By our assumption a > n ≥ 0 in Theorem 1.2, we must

have |n− 2m| < a, hence n− 2m = 0. So, we observe

(−1)n−m = (−1)m,

which is useful below.

We compute

Za(M) =
(−1)n−m · e

√
−1·−π(2m−n)(a−b∗)

a2

sinn+2g−2
(π(a− b∗)

a

) · an +
(−1)m · e

√
−1·−π(n−2m)b∗

a2

sinn+2g−2
(πb∗

a

) · an

=
2 · an · (−1)n−m

sinn+2g−2
(πb∗

a

)

=

2 · an ·
∏

j

νj

sinn+2g−2
(πb∗

a

)

as desired.
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Lemma 4.5 Let M be a closed Seifert fiber space with orientable orbifold base and orientable

fibration, and with symbol (g; (a1, b1), · · · , (an, bn)), where g, n ≥ 0 are integers, aj ≥ 1 and bj

are coprime pairs of integers for j = 1, · · · , n, and satisfy b1
a1

+ · · ·+ bn
an

= 0. If a1, · · · , an are

all odd, then

TV3,1(M) = TV3,2(M) = 22g.

Proof Denote

lcm(a1, · · · , an) = d.

If a1, · · · , an are all odd, d is also odd.

The fundamental group of M has a presentation with generators

x1, y1, · · · , xg, yg, s1, · · · , sn, f

and relations 



s1 · · · sn = [x1, y1] · · · [xg, yg],

xif = fxi, i = 1, · · · , g,
yif = fyi, i = 1, · · · , g,
sjf = fsj , j = 1, · · · , n,
s
aj

j f bj = 1, j = 1, · · · , n.
With Z/2Z coefficients, we can eliminate any [sj ] using the relation aj [sj ] + bj [f ] = 0, since aj

is odd. Then the first relation is equivalent to −
(
b1d
a1

+ · · ·+ bnd
an

)
[f ] = 0 over Z/2Z, having no

effect by our assumption b1
a1

+ · · ·+ bn
an

= 0. It follows that H1

(
M ;Z/2Z

)
is freely generated by

[x1], [y1], · · · , [xg], [yg], [f ] over Z/2Z. Then the Z/2Z Betti numbers of M are β0 = β3 = 1 and

β2 = β1 = 2g + 1, by the Poincaré duality with Z/2Z coefficients. Therefore, we obtain

TV3,2(M) = 22g

by Lemma 3.2.

Since M is homeomorphic to the mapping torus of a periodic surface automorphism of order

d, there is a cyclic cover M̃ → M of degree d, and M̃ is a product of a closed orientable surface

with a circle. Since d is odd, the induced homomorphism H∗(M ;Z/2Z) → H∗(M̃ ;Z/2Z) is

injective (because of the Poincaré duality pairing with Z/2Z coefficients and the isomorphism on

the top dimension). However, H1(M̃ ;Z/2Z) contains no element whose cube is nontrivial, (by

the Künneth theorem which determines the cohomology ring of M̃ over Z/2Z). It follows that

t3 = 0 ∈ H3(M ;Z/2Z
)
holds for any t ∈ H1(M ;Z/2Z

)
. Moreover, the first Stiefel-Whitney

class w1 of M vanishes, as M is orientable. Therefore, we obtain

TV3,1(M) = 22g

by Lemma 3.2.

Under the assumptions of Theorem 1.2, we compute the Turaev-Viro invariants in Theorem

1.2 as follows.
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Suppose that b∗bj ≡ νj mod a holds for some integer b∗ coprime to a and some νj ∈ {±1},
and for all j ∈ {1, · · · , n}. Then

TVa,1(M) = TVa,1(S
3) · |τa(M)|2

=
∣∣∣ τa(M)

τa(S2 × S1)

∣∣∣
2

=
∣∣∣ ag−1

2n+g−1a
n
2

· 2 · an

sinn+2g−2
(πb∗

a

)
∣∣∣
2

=
an+2g−2

22n+2g−4
· 1

sin2n+4g−4
(πb∗

a

)

by Lemmas 3.5, 4.1 and 4.4.

When a is even, we apply Galois conjugacy (transforming e
√
−1·π

a 7→ e
√
−1·πs

a ) for any s

coprime to a, obtaining

TVa,s(M) =
an+2g−2

22n+2g−4
· 1

sin2n+4g−4
(πb∗s

a

)

by Lemma 3.2.

When a is odd, we apply Lemmas 3.2 and 4.5, obtaining

TVa,a−1(M) = TV3,2(M) · TV′
a,a−1(M) =

TV3,2(M)

TV3,1(M)
· TVa,1(M) = TVa,1(M)

and

TV′
a,a−1(M) =

TVa,1(M)

TV3,1(M)
=

1

22g
· TVa,1(M).

Again, we apply Galois conjugacy (transforming e
√
−1·π

a 7→ e
√
−1·πs

a or e
√
−1·π(a−1)

a 7→ e
√
−1·πs

a

depending on s odd or even), obtaining for any s coprime to a

TVa,s(M) =
an+2g−2

22n+2g−4
· 1

sin2n+4g−4
(πb∗s

a

) ,

and if s is even,

TV′
a,s(M) =

an+2g−2

22n+4g−4
· 1

sin2n+4g−4
(πb∗s

a

)

by Lemma 3.2. This completes the computation of the nonvanishing values in Theorem 1.2.

Suppose the otherwise case. Then, for all r ≥ 3 divisible by a, we obtain

TVr,1(M) = 0

by Lemmas 3.5, 4.1 and 4.3. Similarly, we derive TVr,r−1(M) = TV′
r,r−1(M) = 0 in this

case, using Lemmas 3.2 and 4.5. Finally, by Galois conjugacy (see Lemma 3.2), we see that

TVr,s(M) = 0 and TV′
r,s(M) = 0 for any applicable s.

This completes the proof of Theorem 1.2.
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5 Examples

In this section, we prove Theorem 1.1 by exhibiting nontrivial Hempel pairs that can or

cannot be distinguished by Turaev-Viro invariants. See Example 5.1 for our distinguishable

ones and Example 5.2 for our indistinguishable ones.

We need the following lemma for verifying our examples. A rationality statement would be

good enough for our application, but the integrality here is also well-known to experts.

Lemma 5.1 Let S be a connected orientable closed surface of genus g ≥ 0 and [f ] ∈ Mod(S)

be a periodic mapping class of order d ≥ 1. Then, for any integer r ≥ 3 coprime to d and integer

s coprime to r,

TVr,s(Mf ) ∈ Z,

and if r is odd and s is even,

TV′
r,s(Mf ) ∈ Z,

where Mf denotes the mapping torus of f .

Proof By Lemma 3.6, TVr,s(Mf ) ∈ C is equal to the trace of the Turaev-Viro TQFT

representation ρTV
r,s ([f ]) ∈ GL(ZTV

r,s (S)). If [f ] ∈ Mod(S) is periodic of order d, the eigenvalues

of ρTV
r,s ([f ]) are all complex roots of unity of order divisible by d. In particular, TVr,s(Mf ) is

an algebraic integer.

On the other hand, entries of ρTV
r,s ([f ]) lie in the cyclotomic subfield Q

(
e
√
−1·πs

r

)
of C. For

any roots of unity ζm, ζn ∈ C of coprime orders m,n ≥ 1, respectively, it is an elementary

fact that Q(ζm) ∩ Q(ζn) equals Q (see [25, Chapter 2, Proposition 2.4]). Applying with m|d
and n = r

(
taking ζn = e

√
−1·πs

r , or if r is odd and s is even, ζn = e
√
−1·π(r−s)

r

)
, we obtain

TVr,s(Mf ) ∈ Q. Together with the algebraic integrality, we obtain TVr,s(Mf ) ∈ Z.

With Lemmas 3.2 and 4.5, one may derive TV′
r,s(Mf ) ∈ Q from TVr,s(Mf ) ∈ Z. To obtain

TV′
r,s(Mf ) ∈ Z, it is possible to appeal to a similar lemma as Lemma 3.6 with a TQFT functor

associated to TV′. In fact, this case has been established by Detcherry and Kalfagianni. We

refer to [6, Corollary 6.1] for their proof of this case.

Example 5.1 (Distinguishable pairs) Let g ≥ 0, d = 5 or d ≥ 7 be integers and k be an

integer coprime to d. Let MA and MB be closed Seifert fiber spaces with orientable orbifold

base and orientable Seifert fibration. We assign their symbols as

MA : (g; (d, 1), (d, 1), (d,−1), (d,−1)),

MB : (g; (d, k∗), (d, k∗), (d,−k∗), (d,−k∗)),

where k∗ is an integer satisfing k∗k ≡ 1 mod p. The 3-manifold MA is homeomorphic to

the mapping torus of some periodic mapping class [fA] ∈ Mod(S) of order d, where S is a

connected orientable closed surface of genus dg+d− 2 (see Lemma 2.1). The 3-manifold MB is

homeomorphic to the mapping torus of the iterate mapping class [fB] = [fk
A] (see Lemma 2.2).
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By Theorem 1.2, we compute

TVd,1(MA) =
d2g+2

22g+4
· 1

sin4g+4
(π
d

) ,

TVd,1(MB) =
d2g+2

22g+4
· 1

sin4g+4
(πk

d

) .

The values are equal if and only if k ≡ ±1 mod d, namely, [fB] = [fA] or [fB] = [f−1
A ]. For k

other than these values, one may also check that TVd,s(MA) 6= TVd,s(MB) for any integer s

coprime to d, and if d is odd, TV′
d,s(MA) 6= TV′

d,s(MB) for any even integer s coprime to d.

Under our assumption on d, such k does exist, so MA and MB form a nontrivial Hempel pair.

Example 5.2 (Indistinguishable pairs) Let g ≥ 0 be any integers, p ≥ 5 be a prime integer

and k be an integer coprime to p. Let MA and MB be closed Seifert fiber spaces with orientable

orbifold base and orientable Seifert fibration. We assign their symbols as

MA : (g; (p, 1), (p, 1), (p,−2)),

MB : (g; (p, k∗), (p, k∗), (p,−2k∗)),

where k∗ is an integer satisfying k∗k ≡ 1 mod p. Obtain the connected orientable closed surface

S of genus pg+ p−1
2 and the periodic mapping classes [fB] = [fk

A] of order p, similarly as in the

previous example (see Lemmas 2.1 and 2.2).

Again, [fA] and [fB] form a nontrivial Hempel pair exactly when k 6≡ ±1 mod p, existing

under the assumption on p.

If r ≥ 3 is divisible by p, applying Theorem 1.2 and Lemma 5.1, we see that TVr,s(MA) =

TVr,s(MB) = 0 holds for any s coprime to r, and moreover, if r is odd and s is even,

TV′
r,s(MA) = TV′

r,s(MB) = 0 also holds.

If r ≥ 3 is not divisible by p, then it is coprime to p. By Lemma 5.1, TVr,s(MA) and

TVr,s(MB) are rational. Since TVr,s(MA) and TVr,s(MB) are the traces of the Turaev-Viro

TQFT representations ρTV
r,s of the periodic mapping class [fA] and [fB] = [fk

A], respectively, the

eigenvalues of [fA] are roots of unity of order dividing d and the eigenvalues of [fB] are their

Galois conjugates under the transformation e
√
−1· 2π

d 7→ e
√
−1· 2πk

d . Then by the rationality, we

obtain TVr,s(MA) = TVr,s(MB) for any s coprime to r. Moreover, if r is odd and s is even,

we apply Lemmas 3.2 and 4.5 to deduce TV′
r,s(MA) = TV′

r,s(MB).

A Splitting of Turaev-Viro Invariants at Odd Levels

In this appendix section, we prove the formula in Lemma 3.2 about TVr,s when r and s are

both odd. We restate this part as a separate theorem and make a couple of remarks regarding

former results.
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Theorem A.1 Let M be any closed 3-manifold. Let r ≥ 3 be an odd integer and s be an

integer coprime to r. Adopt Notation 3.2.

If s is odd, then the following formula holds : TVr,s(M) = TV3,1(M) · TV′
r,r−s(M).

Remark A.1 (1) Sokolov obtains a canonical splitting of TVr,s into the sum of three refined

invariants [20]. When r is odd and s is odd, one may identify the three refined invariants

(the zeroth, the first and the second in Sokolov’s definition) as TV′
r,r−s,

TVr,s−TVr,r−s

2 and
TVr,s+TVr,r−s

2 − TV′
r,r−s. In this case, the splitting of TVr,s is proportional to the splitting

of TV3,1. Similarly, when r is odd and s is even, the splitting of TVr,s is proportional to the

splitting of TV3,2. Compare [5, Theorem 1.5].

(2) In the same paper, Sokolov quickly points out Lemma A.4 below, with assumption of

orientability. See the formula (1) in [20, Proof of Lemma 2.2].

The rest of this section is devoted to the proof of Theorem A.1.

Our strategy is to derive needed ingredients from the proof of Detcherry, Kalfagianni and

Yang for the case with r odd and s even (see [7, Appendix A]). We count sign change from

their case for individual terms in the defining state-sum expression, and verify that overall, the

factors TV3,1 and TVr,s are result of proportional change from factors in their case.

We denote by evr,s : Q(q
1
2 ) → C the evaluation which assigns the abstract root of unity q

1
2

to be e
√
−1·πs

r .

For any odd integer r ≥ 3, recall that Ir = {0, 1, · · · , r− 2} denotes the set of colors on this

level. It contains the subset of even colors I ′r = {0, 2, · · · , r − 3} and also I3 = {0, 1}. For any
finite simplicial 3-complex T = (V,E, F, T ). From any coloring c : E → Ir, we obtain a pair

of colorings c3 : E → I3 and c′ : E → I ′r as follows: For any e ∈ E, we assign c3(e) = 0 and

c′(e) = c(e) if c(e) is even, or c3(e) = 1 and c′(e) = r − 2 − c(e) if c(e) is odd. By observation,

this operation preserves admissible colorings and yields a bijective correspondence between Ar

and A3 ×A′
r.

Lemma A.1 Let T = (V,E, F, T ) be any finite simplicial 3-complex. Let r ≥ 3 be an odd

integer and s be an integer coprime to r. Adopt Notation 3.1. Identify Ar = A3 ×A′
r. If s is

even, then, for any x ∈ E ⊔ F ⊔ T and any c = (c3, c
′) ∈ Ar,

evr,s(|x|c) = ev3,2(|x|c3) · evr,s(|x|c′)

and hence

evr,s(|T |c) = ev3,2(|T |c3) · evr,s(|T |c′).

The identities in Lemma A.1 are key to the proof of Detcherry-Kalfagianni-Yang for the

s even case (see [7, Theorem 2.9]). We refer to [7, Lemma A.4] for the proof. Note that the

identity (A.1) therein essentially relies on the parity assumption of s.
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For proving the s odd case, our next few lemmas examine the sign difference between

evr,s(|x|c) and evr,r−s(|x|c), and between evr,s(|T |c) and evr,r−s(|T |c).

Lemma A.2 Let T = (V,E, F, T ) be any finite simplicial 3-complex. Let r ≥ 3 be an

integer and s be an integer coprime to r. Adopt Notation 3.1. Then, for any x ∈ E ⊔ F ⊔ T

and any c ∈ Ar,

evr,s(|x|c) = (−1)δ(x,c) · evr,r−s(|x|c),

where δ(x, c) ∈ Z is assigned as follows.

(1) For x ∈ E, having color i under c,

δ(x, c) = i.

(2) For x ∈ F , having edge colors (i, j, k) under c,

δ(x, c) =
i2 + j2 + k2

2
.

(3) For x ∈ T , having edge colors (i, j, k), (i,m, n), (j,m, n), (k, l, n) on each face under c,

δ(x, c) = i+ j + k + l +m+ n+
il + jm+ kn

2
.

Proof We prove for x ∈ T . The formulas with x ∈ E and x ∈ F can be proved by similar

means, and are simpler. Suppose the tetrahedron x has edge colors i, j, k, l,m, n given by c.

Note that the value of the quantum integer only change by a sign determined by its parity

evr,s([w]) = (−1)w−1 · evr,r−s([w]).

For any fixed z, the total sign change of the summand is −1 to the power

(z + 1)z

2
+
∑

a

(z − Ta)(z − Ta − 1)

2
+
∑

b

(Qb − z)(Qb − z − 1)

2

= 4z2 − 2zW +
1

2
·
(∑

a

T 2
a +

∑

b

Q2
b

)
,

where W = i + j + k + l +m+ n =
∑
a
Ta =

∑
b

Qb is an integer. The first two terms are even

integers, having no effect to the total change of sign and the last term is independent of z.

Therefore, we obtain

evr,s(|x|c) = (−1)δ(x,c) · evr,r−s(|x|c),

where

δ(x, c) ≡ 1

2
·
(∑

a

T 2
a +

∑

b

Q2
b

)
mod 2.

The expression
∑
a
T 2
a +

∑
b

Q2
b is equal to the sum of all the quadratic monomials in i, j, k, l,m, n,

namely, i2 + ij + · · ·+ in+ j2 + jk + · · ·+mn. We rearrange

∑

a

T 2
a +

∑

b

Q2
b = X2 + Y 2 + Z2 +XY +XZ + Y Z − il− jm− kn,
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whereX = i+l, Y = j+m and Z = k+n. Note that the parity pattern of (X,Y, Z) may only be

(0, 0, 0) or (1, 1, 1), up to permutation of the components. Indeed, the only possible patterns of

(i3+ l3, j3+m3, k3+n3) are (0, 0, 0), (1, 1, 1) and (0, 2, 2), up to permutation of the components,

because of admissible coloring. So, the part X2 + Y 2 +Z2 +XY +XZ + Y Z = (X + Y )(X +

Z)+Y 2+Z2 is congruent to 0 modulo 4 if (X,Y, Z) ≡ (0, 0, 0) mod 2, or congruent to 2 modulo

4 if (X,Y, Z) ≡ (1, 1, 1) mod 2. In both cases, we see that X2+Y 2+Z2+XY+XZ+Y Z
2 ≡ X + Y +

Z mod 2. This yields δ(x, c) ≡ X+Y +Z− il+jm+kn
2 ≡ i+ j+k+ l+m+n+ il+jm+kn

2 mod 2,

as desired.

Lemma A.3 Let T = (V,E, F, T ) be any finite simplicial 3-complex. Let r ≥ 3 be an odd

integer and s be an integer coprime to r. Adopt Notation 3.1. Identify Ar = A3 × A′
r. Let

δ : (E ⊔ F ⊔ T )×Ar → Z be expressed as in Lemma A.2.

(1) For any x ∈ E ⊔ F and any c = (c3, c
′) ∈ Ar,

δ(x, c) ≡ δ(x, c3) mod 2,

treating A3 as a subset of Ar.

(2) For x ∈ T , having edge colors (i, j, k), (i,m, n), (j,m, n), (k, l, n) on each face under c,

δ(x, c) ≡ δ(x, c3) + λ(x, c) mod 2,

where

λ(x, c) =
i3l

′ + l3i
′ + j3m

′ +m3j
′ + k3n

′ + n3k
′

2
.

Proof We make use of the relation

c(e) = c3(e) · (r − 2− c′(e)) + (1 − c3(e)) · c′(e) = (r − 2) · c3(e)− c′(e)− 2 · c3(e) · c′(e)

for any e ∈ E. Since r is odd and i′, l′ are even, we obtain

il = ((r − 2)i3 − i′ − 2i3i
′) · ((r − 2)l3 − l′ − 2l3l

′)

≡ (r − 2)2i3l3 − (r − 2) · (i3l′ + l3i
′)

≡ i3l3 + (i3l
′ + l3i

′) mod 4

and similarly we manipulate jk and kn. Taking the sum, we obtain

il+ jm+ kn ≡ i3l3 + j3m3 + k3n3 + 2 · λ(x, c) mod 4.

Moreover, we observe

i + j + k + l +m+ n ≡ i3 + j3 + k3 + l3 +m3 + n3 mod 2.

By Lemma A.2, the above congruence equalities imply δ(x, c) ≡ δ(x, c3) + λ(x, c) mod 2, as

desired.
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For any c3 ∈ A3, there is a canonical subsurface S(c3) ⊂ M , in normal position with respect

to T , such that c3(e) indicates the number of intersection points of any edge e ∈ E with

S(c3). The subsurface S(c3) is formed by taking one normal disk in each tetrahedron that has

nonzero color, and then taking their union matching the sides. The types of the normal disks

(among four triangular types and three quadrilateral types for each tetrahedron) are forced by

the admissible coloring c3. The subsurface S(c3) is closed, as M does not have boundary.

Lemma A.4 Let (M,T ) be any triangulated closed 3-manifold. Let r ≥ 3 be an odd integer

and s be an integer coprime to r. Adopt Notation 3.1. Identify Ar = A3 ×A′
r. Then , for any

c = (c3, c
′) ∈ Ar,

evr,s(|T |c) = (−1)χ(S(c3)) · evr,r−s(|T |c),
where χ(S(c3)) denotes the Euler characteristic of the normal subsurface S(c3) ⊂ M determined

by c3.

Proof For all x ∈ E⊔F⊔T , the nonempty intersections x∩S(c3) give rise to a polygonal cell
decomposition of S(c3). Denote by ν0, ν1, ν2,△, ν2,� the numbers of vertices, edges, triangular

normal disks and quadrilateral normal disks in S(c3), respectively.
Let δ : (E ⊔ F ⊔ T ) × Ar → Z be expressed as in Lemma A.2. For any x ∈ E ⊔ F ⊔ T ,

it is direct to check that δ(x, c3) = 1 if and only if x ∩ S(c3) is a vertex or an edge or a

quadrilateral normal disk of S(c3), otherwise δ(x, c3) = 0, treating A3 as a subset of Ar. This

means ν0 =
∑
x∈E

δ(x, c3), ν1 =
∑
x∈F

δ(x, c3) and ν2,� =
∑
x∈T

δ(x, c3). Moreover, the relation

3 ·ν2,△+4 ·ν2,� = 2 ·ν1 implies that ν2,△ is even, as S(c3) is closed. By Lemma A.3, we obtain

χ(S(c3)) = ν0 − ν1 + ν2,△ + ν2,�

≡
∑

x∈E⊔F⊔T

δ(x, c3)

≡
∑

x∈E⊔F⊔T

δ(x, c) +
∑

x∈T

λ(x, c) mod 2.

Therefore, to derive the asserted formula evr,s(|T |c) = (−1)χ(S(c3)) ·evr,r−s(|T |c) from Lemma

A.2, it remains to prove ∑

x∈T

λ(x, c) ≡ 0 mod 2.

To this end, we observe that
∑
x∈T

λ(x, c) is the sum of c′(e)
2 , where e ranges over the edges of

x whose opposite edge in x meets S(c3). For any edge e∗ ∈ E, the link of e∗ refers to the union

of all the opposite edges e1, · · · , eh in all the tetrahedra t1, · · · , th ∈ T that contain e∗, denoted

as lk(e∗) ⊂ M . The link lk(e∗) is a contractible loop in M (bounding a disk transverse to e∗).

On the other hand, any edge either misses S(c3), or meets S(c3) at exactly one point. Then the

number of edges in lk(e∗) that meet S(c3) must be even and the integer c′(e∗)
2 contributes exactly

this even number of times to
∑
x∈T

λ(x, c). Because
∑
x∈T

λ(x, c) is the total of the contribution

from each edge e∗ ∈ E, we conclude
∑
x∈T

λ(x, c) ≡ 0 mod 2 as desired, completing the proof.



On Hempel Pairs and Turaev-Viro Invariants 23

Lemma A.5 Let (M,T ) be any triangulated closed 3-manifold. Let r ≥ 3 be an odd integer

and s be an integer coprime to r. Adopt Notation 3.1. Identify Ar = A3 ×A′
r. If s is odd, then

evr,s(|T |c) = ev3,1(|T |c3) · evr,r−s(|T |c′).

Proof By Lemma A.4, we obtain evr,s(|T |c)=(−1)χ(S(c3))·evr,r−s(|T |c) and ev3,1(|T |c3)=
(−1)χ(S(c3)) · ev3,2(|T |c). Then the asserted identity follows from the s even case (see Lemma

A.1).

To complete the proof of Theorem A.1, we observe

evr,s(Yr) =




ev3,2(Y3) · evr,s(Y ′

r ), s even,

ev3,1(Y3) · evr,r−s(Y
′
r ), s odd,

(A.1)

where Yr = − (q
1
2 −q−

1
2 )2

2r and Y ′
r = − (q

1
2 −q−

1
2 )2

r (indeed, evr,s(q
1
2 − q−

1
2 ) = −

√
−1 · 2 sin

(
πs
r

)
).

Let M be any closed 3-manifold. If r is odd and s is even, we obtain

TVr,s(M) = evr,s

(
Yr ·

∑

c∈Ar

|T |c
)

= evr,s(Yr) ·
∑

c∈Ar

evr,s(|T |c)

= ev3,1(Y3) · evr,r−s(Y
′
r ) ·

∑

c3∈A3

∑

c′∈A′

r

ev3,1(|T |c) · evr,r−s(|T |c′)

= ev3,1

(
Y3 ·

∑

c3∈A3

|T |c
)
· evr,r−s

(
Y ′
r ·

∑

c′∈A′

r

|T |c′
)

= TV3,1(M) · TV′
r,r−s(M)

by (3.1)–(3.2), (A.1) and Lemma A.5. This completes the proof of Theorem A.1.
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