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Abstract Let X be a complex smooth quasi-projective variety with a fixed epimorphism
ν : π1(X) ։ H , where H is a finitely generated abelian group with rankH ≥ 1. In this
paper, the authors study the asymptotic behaviour of Betti numbers with all possible field
coefficients and the order of the torsion subgroup of singular homology associated to ν,
known as the L

2-type invariants. When ν is orbifold effective, explicit formulas of these
invariants at degree 1 are give. This generalizes the authors’ previous work for H ∼= Z.
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1 Introduction

There is a general principle to consider a classical invariant of a finite CW complex X and to

define its analogues for some covering space of X . This leads to the L2-type invariants. Atiyah

[4] introduced the notion of L2-Betti numbers in the context of a regular covering of a closed

Riemannian manifold. After that, there have been vast literatures for the L2-invariant theory

see [19]. A particular important result is Lück’s approximation theorem (see [18]), which states

that the L2-Betti numbers of the universal cover of a finite CW complex can be found as limits

of normalized Betti numbers of finitely sheeted normal coverings. Then it becomes a classical

subject to study L2-type invariants focusing on its approximation by towers of finite coverings

(see [20–21]).

Let X be a connected finite CW complex with a fixed epimorphism ν : π1(X) ։ H , where H

is a finitely generated abelian group with rankH = n ≥ 1. We fix an isomorphism H ∼= Zn⊕T ,

where T is a finite abelian group. Consider Zn as a subgroup of H under this isomorphism.
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For a subgroup Γ ⊂ Zn of finite index, we set

〈Γ〉 = min
{

n
∑

j=1

x2
j | x = (x1, · · · , xn) ∈ Γ, x 6= 0

}

.

Let Xν,Γ denote the covering space of X associated to the corresponding composition of ν and

the quotient map H → H/Γ. Consider the following limits

αi(X
ν ,K) := lim

〈Γ〉→∞

dimHi(X
ν,Γ,K)

|H/Γ|

for any field coefficients K and

Mi(X
ν) := lim sup

〈Γ〉→∞

log |Hi(X
ν,Γ,Z)tor|

|H/Γ|
.

Here |Hi(X
ν,Γ,Z)tor| denotes the order of the torsion part of Hi(X

ν,Γ,Z). These two limits are

particular cases of L2-type invariants. Such kind of L2-type invariants have been studied by

many people (see [20–21] for more results in this direction).

When H is free abelian, Linnell, Lück, Sauer [17, Theorem 0.2] showed that the first limit

always exists. Meanwhile, the second limit also exists and can be computed by the Mahler

measure of the Alexander polynomial (see [15]).

Moreover, if H has non-trivial torsion part (i.e., T 6= 0), the computation of these limits

can be reduced to the free abelian case using a finite cover trick (see Section 3).

When X is a complex smooth quasi-projective variety and H ∼= Z, the authors of [16] gave

concrete formulas for these limits (at degree 1) in terms of the geometric information of X .

The main results in this paper are to generalize these formulas to arbitrary finitely generated

abelian group H with rankH ≥ 1, when ν is an orbifold effective morphism.

We first give the definition of orbifold morphism.

Definition 1.1 (see [16]) Let X be a smooth complex quasi-projective variety. An algebraic

map f : X → Σg,r is called an orbifold map, if f is surjective, has connected generic fiber and

Σg,r is a smooth algebraic curve of genus g with r points removed. We always assume that

Σg,r 6= CP1,C1. There exists a maximal Zariski open subset U ⊂ Σg,r such that f is a fibration

over U . Say B = Σg,r−U (could be empty) has s points, denoted by {q1, · · · , qs}. We assign the

multiplicity µj(the gcd of the coefficients of the divisor f∗qj) of the fiber f∗(qj) to the point qj.

Such orbifold map f is called of type (g, r, µ), where µ = (µ1, · · · , µs). When B = ∅,
s
∏

j=1

µj = 1

by convention.

The orbiford group πorb
1 (Σg,r, µ) associated to these data is defined as

πorb
1 (Σg,r , µ) := π1(Σg,r\{q1, · · · , qs})/〈γ

µj

j = 1 for all 1 ≤ j ≤ s〉,

where γj is a meridian of qj . An orbifold map f : X → Σ of type (g, r, µ) induces a surjective

map to the orbifold group (see [3, Proposition 1.4])

f∗ : π1(X) ։ πorb
1 (Σg,r, µ).
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When Σg,r is clear in the context, we simply write Σ.

Definition 1.2 Let X be a smooth complex quasi-projective variety with an epimorphism

ν : π1(X) ։ H. We say that ν is orbifold effective if there is an orbifold map f : X → Σg,r

such that ν factors through f∗ as follows :

π1(X)
ν

// //

f∗ && &&
MM

MM
MM

MM
MM

H

πorb
1 (Σg,r, µ)

:: ::tttttttttt

.

We say that ν is orbifold effective by f and call ν being of type (g, r, µ).

Our main result is the following.

Theorem 1.1 Let X be a complex smooth quasi-projective variety with a fixed epimorphism

ν : π1(X) ։ H, where H is a finitely generated abelian group with rankH ≥ 1. Suppose that ν

is orbifold effective of type (g, r, µ). Let K be a field with char(K) = p ≥ 0.

(a) If H is a free abelian group, then

α1(X
ν ,K) = 2g + r − 2 + #{j | p divides µj}

and

M1(X
ν) =

s
∑

j=1

logµj .

(b) If H has non-trivial torsion part, then we have that

α1(X
ν ,K) = 2g + r − 2 +

s
∑

j=1

(

1−
1

mj

)

+
∑

1≤j≤s,p|
µj

mj

1

mj

and

M1(X
ν ,K) =

s
∑

j=1

1

mj
log

µj

mj
,

where mj is a positive integer dividing µj and it only depends on X and ν. For its definition,

see Remark 3.1.

The proof of Theorem 1.1 is based on the theory of cohomogy jump loci. In Section 2, we

recall some basic properties of cohomology jump loci and give the proof of Theorem 1.1 for the

free abelian case. Section 3 is devoted to the proof of Theorem 1.1 for the non-free abelian case

using a finite cover trick.

2 The Free Abelian Case

In this section we consider the case when H is a free abelian group with rank n, i.e., Zn.
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2.1 Limits of Betti numbers

We recall the definition of cohomology jump loci. Let X be a connected finite CW complex

with π1(X) = G. The group of K-valued characters, Hom(G,K∗), is a commutative affine

algebraic group. Each character ρ ∈ Hom(G,K∗) defines a rank one local system on X , denoted

by Lρ. Note that Hom(G,K∗) only depends on H1(X,Z), the abelianization of G.

Definition 2.1 (see [24]) The cohomology jump loci of X are defined as

V i
k(X,K) := {ρ ∈ Hom(G,K∗) | dimK Hi(X,Lρ) ≥ k}.

When k = 1, we simply write V i(X,K).

Cohomology jump loci are closed sub-varieties of Hom(G,K∗) and homotopy invariants of

X . In degree 1, V1
k(X,K) depends only on π1(X) (e.g. see [24, Section 2.2]).

The map ν : G ։ H ∼= Zn induces an embedding (K∗)n ⊂ Hom(G,K∗). For a tuple

λ = (λ1, · · · , λn) ∈ (K∗)n, let ν−1Lλ denote the corresponding rank one local system on X

whose monodromy representation factors through ν.

Proposition 2.1 Let K be an algebraically closed field. With the notations as above, for

any i ≥ 0 and λ ∈ (K∗)n being general we have

αi(X
ν ,K) = dimHi(X, ν−1Lλ).

In particular, αi(X
ν ,K) is always an integer.

Proof Let π : Xν,Γ → X denote the covering map. Then

Hi(Xν,Γ,K) = Hi(X, π∗K),

where π∗K is the push forward of the K-constant sheaf on Xν,Γ, hence a rank |Zn/Γ| local

system.

[17, Theorem 0.2] and [1, Theorem 17] show that the limit αi(X
ν ,K) always exists. By

choosing a sub-sequence, we may assume that char(K) ∤ |Zn/Γ|. Since Γ is a sub-group of Zn

with finite index, Γ is also a free abelian group with rank n. Using Smith normal form, without

loss of generality we say Γ = N1Z⊕· · ·⊕NnZ for a tuple of positive integers, where Nn | Nn−1 |

· · · | N1. In particular, char(K) ∤ N1. Then the local system π∗K decomposes as the direct

sum of |Zn/Γ|-many rank one local systems. Suppose that Lλ with λ = (λ1, · · · , λn) ∈ (K∗)n

is to be one of the direct sum factors. Then λ
Nj

j = 1 for any 1 ≤ j ≤ n. Suppose that a is the

number such that

(K∗)n ⊆ V i
a(X,K) and (K∗)n * V i

a+1(X,K).

Note that (K∗)n ∩ V i
a+1(X,K) is a subvariety of (K∗)n with less dimension. There exists a

hypersurface V such that

(K∗)n ∩ V i
a+1(X,K) ⊂ V = {(t1, · · · , tn) ∈ (K∗)n | u(t1, · · · , tn) = 0},
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where u is a polynomial. Without loss of generality, suppose that the degree of t1 for u is d ≥ 1.

Then for a fixed (λ2, · · · , λn), u(t1, λ2, · · · , λn) has at most d-many solutions. Hence we have

a ·
n
∏

j=1

Nj ≤ dimHi(Xν,Γ,K) ≤ a ·
n
∏

j=1

Nj + c · d ·
n
∏

j=2

Nj ,

where c is some constant number which only depends on X (e.g. c can be taken as the number

of i-cells in X). It implies

a ≤
dimHi(Xν,Γ,K)

n
∏

j=1

Nj

≤ a+ c ·
d

N1
.

For field coefficients, dimHi(Xν,Γ,K) = dimHi(X
ν,Γ,K). Taking 〈Γ〉 → ∞, we are done since

N1 goes to infinity.

When K = C, the cohomology jump loci of complex smooth quasi-projective variety have

been intensively studied. In particular, the following structure theorem for V i
k(X,C) puts strong

constraints for the homotopy type of complex smooth quasi-projective variety. It is contributed

by many people and we name a few here: Arapura [2], Dimca-Papadima [12], Dimca-Papadima-

Suciu [13], Green-Lazarsfeld [14], Simpson [23], etc. It is finalized by Budur and Wang in [6–7].

Theorem 2.1 (see [6–7]) If X is a complex smooth variety, then V i
k(X,C) is a finite union

of torsion translated sub-tori of Hom(G,C∗).

2.2 Limits of torsion

The second type limit also exists, see [15, Theorem 5]. It can be computed by the Mahler

measure of the i-th integral Alexander polynomial ∆i(X
ν) ∈ Z[t±1 , · · · , t

±
n ]. Let us recall the

definitions of multivariable Alexander polynomials and Mahler measures.

Recall that X is a connected finite CW-complex with a group epimorphism ν : π1(X) ։ Zn.

Then the group of covering transformations of the covering space Xν is isomorphic to Zn and

acts on it. By choosing fixed lifts of the cells of X to Xν, we obtain a free basis for the cellular

chain complex of Xν as Rn-modules, where Rn = Z[Zn] = Z[t±1 , · · · , t
±
n ]. So the cellular chain

complex of Xν , C∗(X
ν ,Z), is a bounded complex of finitely generated free Rn-modules:

· · · → Ci+1(X
ν,Z)

∂i−→ Ci(X
ν ,Z)

∂i−1

−→ Ci−1(X
ν ,Z)

∂i−2

−→ · · ·
∂0−→ C0(X

ν ,Z) → 0. (2.1)

With the above free basis for C∗(X
ν ,Z), ∂i can be written down as a matrix with entries in

Rn. Note that Rn is a Notherian UFD. Assume that ∂i has rank ri.

Let ∆i(X
ν) denote the greatest common divisor of all non-zero (ri×ri)-minors of ∂i. When

∂i = 0, ∆i(X
ν) = 1 by convention.

Definition 2.2 (see [24]) ∆i(X
ν) is called the i-th n-variable Alexander polynomial of

(X, ν). Then ∆i(X
ν) is defined uniquely up to a multiplication with a unit of Rn.
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Definition 2.3 (see [22]) Let h ∈ Rn be a nonzero polynomial. The Mahler measure of h

is defined by

M(h) :=

∫

(S1)n
log |h(s)|ds,

where ds indicates integration with respect to normalized Haar measure, and (S1)n is the multi-

plicative subgroup of n-dimensional complex space Cn consisting of all vectors (s1, · · · , sn) with

|s1| = · · · = |sn| = 1. Here h is regarded as a function on Cn.

Recall that an element h ∈ Rn is called a generalized cyclotomic polynomial (see [22, page

47]) if it is of the form h(t1, · · · , tn) = tmΦ(tn), where m,n ∈ Zn,n 6= 0, and Φ is a cyclotomic

polynomial in a single variable.

Theorem 2.2 (see [22, Theorem 19.5]) Let h ∈ Rn. Then M(h) = 0 if and only if ±h is

a product of generalized cyclotomic polynomials.

Theorem 2.3 (see [15, Theorem 5]) With the notations above, we have

lim sup
〈Γ〉→∞

log |Hi(X
ν,Γ,Z)tor|

|Zn/Γ|
= M(∆i(X

ν)).

When n = 1, then lim sup can be replaced by the ordinary lim.

Theorem 2.1 implies the following property for the Alexander polynomial associated to the

pair (X, ν). For the one-variable version of the following result, see [5, Proposition 1.4] and [16,

Proposition 3.7].

Proposition 2.2 Let X be a complex smooth variety with a fixed epimorphism ν : π1(X) ։

Zn. Then ∆i(X
ν) is a product of an integer ci with some generalized cyclotomic polynomials,

where ci is the leading coefficient of ∆i(X
ν). In particular, M(∆i(X

ν)) = log ci.

Proof The structure theorem for cohomology jump loci V i
k(X,C) implies that (C∗)n ∩

V i
k(X,C) is a finite union of torsion translated sub-tori. From now on, we consider ∆i(X

ν) as

an element in C[t±1 , · · · , t
±
n ]. We claim that the irreducible factors of ∆i(X

ν) can be observed

by the irreducible hypersurfaces in (C∗)n ∩ V i
k(X,C). Suppose that h is a irreducible factor of

∆i(X
ν). Then h generates a prime ideal with height 1. Let C[t±1 , · · · , t

±
n ](h) be its localization

at the prime ideal (h), which is a PID. Consider Hi(X
ν ,C) as a finitely generated C[t±1 , · · · , t

±
n ]-

module and its localization Hi(X
ν ,C)(h). Then by a similar proof to that of [11, Theorem 4.2],

we have

dimHi(X, ν−1Lλ) = rankHi(X
ν ,C)(h) + Ji + Ji−1,

where λ is a general point in the zero locus of h, rankHi(X
ν ,C)(h) is its rank as a finitely

generated module over the PID C[t±1 , · · · , t
±
n ](h) and Ji is the number of direct summands of the

torsion part of Hi(X
ν ,C)(h). By universal coefficients theorem over the PID C[t±1 , · · · , t

±
n ](h),

one can translate from homology to cohomology. Then by structure theorem, we get that h

has the form
n
∏

j=1

t
dj

j = ε, where (d1, · · · , dn) is a non-zero tuple of integers and ε is a roots
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of unity. Since ∆i(X
ν) has integer coefficients, ∆i(X

ν) is a product of generalized cyclotomic

polynomial with some integer ci by Galois theory. Then the claim follows. In particular, it

follows from Theorem 2.2 that M(∆i(X
ν)) = log ci.

Proof of Theorem 1.1(a) Note that since bi(X,K) only depend on char(K), not on the

specific choice of the field K. So without loss of generality, we can assume that K is algebraically

closed. The first equation follows from Proposition 2.1 and [16, Theorem 1.7].

For the second equation, consider the following commutative diagram

π1(X)
ν

// //

f∗ %% %%
KK

KK
KK

KK
KK

Zn κ
// // Z,

πorb
1 (Σg,r)

:: ::uuuuuuuuuu

where κ is a surjective morphism to Z. Suppose that κ is represented by a tuple (a1, · · · , an) with

gcd(a1, · · · , an) = 1. Then it is easy to see that if we substitute (t1, · · · , tn) by (ta1 , · · · , tan)

in the matrix ∂1 of the chain complex (2.1), we get the corresponding matrix for the chain

complex of Xκ◦ν. By choosing a general tuple (a1, · · · , an), the rank of ∂1 does not change

after substituting. Hence ∆1(X
κ◦ν) = ∆1(X

ν)(ta1 , · · · , tan) in this case. Note that κ ◦ ν is an

orbifold effective morphism of the type (g, r, µ). By [16, Theorem 1.11] we know that ∆1(X
κ◦ν)

has leading coefficient
s
∏

j=1

µj . It coincides with the leading coefficient of ∆1(X
ν). Then the

claim follows from the above proposition.

3 The General Case

In this section, we study the case where H has non-trivial torsion part. Say H ∼= Zn ⊕ T ,

where T is a finitely generated torsion abelian group. Let q be the quotient map H → T and

XT denote the corresponding finite cover of X associated to q ◦ ν. Then it is easy to see that

there exists an epimorphism νT : π1(X
T ) → Zn such that the following diagram commutes

π1(X
T )

νT

// //

��

Zn // //

��

Zn/Γ

��

π1(X)
ν

// // Zn ⊕ T // // Zn/Γ⊕ T.

Due to the choice of Γ, we can identify the finite index covering spaces associated to the two

composed horizontal maps. Then we have the following result, which reduces the computations

to the free abelian case.

Lemma 3.1 With the notations above, we have the following equations

α1(X
ν ,K) =

1

|T |
α1((X

T )ν
T

,K) (3.1)

and

M1(X
ν) =

1

|T |
M1((X

T )ν
T

). (3.2)
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We can choose XT to be a smooth quasi-projective variety and the corresponding cover

map XT → X to be algebraic. Assume that the epimorphism ν : π1(X) ։ H is orbifold

effective by some orbifold map f : X → C for some smooth curve C. By projectivising, we get

a map h : XT → C for the map XT f◦π
−→ C. Using Stein factorization, we get the following

commutative diagram

XT

g

��

// XT

h′

��

h

  
A
A
A
A
A
A
A
A

S // S
h′′

// C,

where h′′ is a finite map, h′ has connected fiber and g := h′|XT : XT → S := Im(g). Then [9,

Lemma 2.2] shows that g has connected generic fiber. Hence g is an orbifold map and we have

the following commutative diagram

XT g
//

π

��

S

π′

��

X
f

// C,

where π is the covering map and π′ is obtained from h′′ by taking restrictions over S.

The image of the following composed map

π1(X
T ) → π1(X) → πorb

1 (C) → Zn ⊕ T

is Zn (the last map exists since f is orbifold effective), hence one has the following commutative

diagram

π1(X
T )

��

// π1(S)

��

π1(X) // π1(C) // Zn.

In particular, the orbifold map g makes π1(X
T )

νT

։ Zn orbifold effective.

Using Lemma 3.1, one can reduce the computation to the free abelian case. All we need to

know is the orbifold information of g. For any point b ∈ C, let Db be a small enough open disc

of b. Set Tb = f−1(Db). Next we study the point b in two cases.

Case 1 b /∈ B. Then F = f−1(b) is the generic fiber of f and Tb is smooth over Db, hence

admits a trivial fibaration over Db. Dimca proved the following short exact sequence (see [9,

Section 5] and [10, Section 6.3])

H1(F,Z) → H1(X,Z) → H1(π
orb
1 (C)),

where H1(π1(C)orb) is the abelization of πorb
1 (C). Then the following composed group homo-

morphism is trivial

π1(F ) → π1(X) ։ πorb
1 (C) ։ H ։ T,
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since T is abelian. Hence π−1(F ) has |T |-many disjoint copies of F . Note that g is an orbifold

map, which has connected generic fiber. Therefore (π′)−1(b) = g(π−1(F )) consists of |T |-many

points. In particular, F is also a generic fiber for g.

Case 2 b ∈ B. Consider the following composed group homomorphism

π1(Tb) → π1(X) ։ πorb
1 (C) ։ H ։ T.

Let mb denote the order of the image group of the above composed group homomorphism.

Then π−1(Tb) has |T |
mb

-many connected components. Note that g is an orbifold morphism,

which has connected generic fiber. Hence g(π−1(Tb)) = (π′)−1(Db) also has
|T |
mb

-many connected

components, i.e., π′−1
(b) has |T |

mb
many points. Therefore we have the following commutative

diagram

π−1(Tb)
µb/mb

g
//

��

(π′)−1(Db)

π′ mb

��

Tb
µb

f
// Db.

Let us explain the integers appearing in the diagram. µb for the bottom horizontal map

means that f has multiplicity µb over b. Note that for any point a ∈ Db \ {b}, (π′)−1(a) has

|T |-many points and (π′)−1(b) has |T |
mb

-many points. Due to the construction of g, (π′)∗b as a

divisor has the same coefficients for every point in (π′)−1(b) (since composing with the deck

transformation over XT does not change g). So π′ has multiplicity mb over b. On the other

hand, since π is a finite cover map, the left vertical map has multiplicity 1. Putting these

together, we get that g has multiplicity µb

mb
over every point in (π′)−1(b).

Remark 3.1 The above proof shows that mb divides µb. To explain this fact, we fist recall

the proof of [3, Proposition 1.4]. Consider the following commutative diagram

π1(f
−1(U)) //

��

π1(U)

��

π1(X) // π1(C).

All the vertical maps are surjective since they are induced by inclusions. All the horizontal

maps are surjective since the generic fiber is connected. For any point b ∈ B, say f∗(b) :=

µ1
bE1 + · · · + µk

bEk, where {E1, · · · , Ek} are reduced irreducible components of f−1(b). Then

the point b has the signed multiplicity µb := gcd(µ1
b , · · · , µ

k
b ). Since f maps γEi

to (γb)
µi
b , where

γEi and γb are the meridians for Ei and b, respectively, it is easy to see that the first horizontal

map in the above diagram factors through π1(X) ։ πorb
1 (C).

By the same proof, we get a surjective map π1(Tb) ։ Z/µbZ. In particular, we get the
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following commutative diagram

π1(Tb) //

��

π1(X)

��

Z/µbZ // πorb
1 (C) // H,

where Z/µbZ → πorb
1 (C) is given by the natural injective map. Hence mb can be defined as the

order of the image group for the composition of the bottom horizontal maps. In particular, mb

divides µb.

Proof of Theorem 1.1(b) To finish the proof, we need to compute χ(S). Note that

χ(S)−
∑

b∈B

|T |

mb
= |T |(χ(C)− |B|), (3.3)

hence

χ(S) = |T |
(

χ(C) +
∑

b∈B

( 1

mb
− 1

))

. (3.4)

Using the results in Section 2 and Lemma 3.1, we get

α1(X
ν,K) = −χ(C) +

∑

b∈B

(

1−
1

mb

)

+
∑

b∈B,p|
µb
mb

1

mb
(3.5)

and

M1(X
ν ,K) =

∑

b∈B

1

mb
log

µb

mb
. (3.6)

Remark 3.2 Let K be an algebraically closed filed with characteristic p ≥ 0. If p does not

divide |T |, then Rπ∗KXT is a direct sum of |T |-many rank one local systems and Hom(H,K∗)

has exactly |T |-many connected components, where each of them is a copy of Hom(Zn,K∗). By

[16, Theorem 4.8], the formula (3.5) should be understood as the average of dimH1(X, ν−1Lλ)

for λ being general in every connected components.

Example 3.1 (see [8, Example 6.12]) Fix an integer µ ≥ 2. LetAµ be the deleted monomial

arrangement, where its defining equation in CP2 is yz(xµ − yµ)(xµ − zµ)(yµ − zµ). Ordering

the hyperplanes as the factors of the defining polynomial. Its projective complement X admits

an orbifold map X → C∗ given by
zµ(xµ − yµ)

yµ(xµ − zµ)
,

which is of type (0, 2, µ).

Let m be a positive integer, which divides µ. Consider ν as the composition of the following

maps

π1(X) ։ Z ∗ Z/µZ ։ Z⊕ Z/mZ,

where the first map is induced by the orbifold map and the second map is the quotient map.

Let K be an algebraically closed field with characteristic p ≥ 0. Then we have
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α1(X
ν ,K) =

{

1, if p | µ
m ,

1− 1
m , otherwise

and M1(X
ν) = 1

m log µ
m .

On the other hand, if p does not divide m, then [16, Theorem 4.8] shows that for general

λ ∈ Hom(Z ⊕ Z/mZ,K∗),

dimH1(X, ν−1Lλ) =

{

0, if p ∤ µ and λ is general in Hom(Z,K∗),

1, otherwise,

where its average is same as the formula given above.
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43–72.

[5] Budur, N., Liu, Y. and Wang, B., The monodromy theorem for compact Kähler manifolds and smooth
quasi-projective varieties, Math. Ann., 371(3–4), 2018, 1069–1086.

[6] Budur, N. and Wang, B., Cohomology jump loci of quasi-projective varieties, Ann. Sci. Éc Norm. Supér.,
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