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1 Introduction

The study of fundamental theory of single-valued operators has a long history and their

spectral theory has been investigated widely and deeply (cf. e.g. [12, 15, 27]). However,

many multi-valued operators have been found in the study of some problems. For example,

in the case that an operator is not densely defined, its adjoint is multi-valued; for symmetric

linear differential expressions, the associated minimal operators are non-densely defined, and

the associated maximal operators are multi-valued when the differential expressions do not

satisfy the definiteness condition (cf. [13]); the minimal and maximal operators generated by

discrete Hamiltonian systems are multi-valued or non-densely defined in general even though

the corresponding definiteness conditions are satisfied (cf. [16–17]). Therefore, it is required to

establish the theory of multi-valued linear operators.

Multi-valued linear operators are often called linear relations (briefly, relations) or subspaces

of the related product spaces (cf. [1, 5, 26]). Linear relations include both single-valued and
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multi-valued operators. In 1950, von Neumann introduced linear relations in order to study

adjoints of non-densely defined linear differential operators (cf. [26]). In 1961, Arens [1] initiated

the study of linear relations. He decomposed a closed relation in the product space X2 as an

operator part and a purely multi-valued part. This decomposition provides a bridge between

closed relations in X2 and linear operators in X so that we can apply the theory of linear

operators to study some properties of closed relations. His work was followed by many scholars

(cf. [5–6, 11, 21–23] and references cited therein). The study of relations has been growing

interest in recent years because of its wide applications. In 2011, Ren and Shi studied the defect

indices and definiteness conditions, and later, gave out complete characterizations of self-adjoint

extensions for discrete Hamiltonian systems (cf. [16–17]). Recently, Shi and Sun studied some

spectral properties of discrete Hamiltonian systems (cf. [25]). In addition, some fundamental

results of Hermitian relations were established (cf. [20–22]). In particular, applying the theory

of Fredholm relations, Wilcox [28] introduced the concepts of different types of essential spectra

of relations and obtained basic properties of them. However, compared with the operator theory,

many important problems about relations have not been studied. We shall investigate essential

numerical ranges of relations in a Hilbert space.

The essential numerical range of a linear operator is an important concept in the spectral

analysis, and the original idea of it was to give a convex enclosure of the essential spectrum.

It was introduced for bounded operators in a Hilbert space by Stampfli and Williams in 1968

(cf. [24]), and later, several other characterizations were given by Fillmore et al in [10]. For the

further relevant research of it for bounded operators, the reader is referred to [2, 8, 14, 19]. More

recently, the concept of essential numerical ranges has been generalized to unbounded operators

in a Hilbert space by Bögli et al. [4] and fundamental properties of essential numerical ranges

including possible equivalent characterizations were studied. Some examples were given in [4]

to illustrate that many of properties for bounded operators do not carry over to the unbounded

cases. Moreover, one of advantages of the essential numerical range is that it captures all

possible spectral pollution in a unified and minimal way when approximating an operator T by

projection methods or domain truncation methods for PDEs (cf. [4, Theorems 6.3 and 7.1]).

Now, the essential numerical range has been introduced for linear operator pencils and discussed

in details by Bögli and Marletta in [3].

In this paper, the concept of the essential numerical range We(T ) of a linear relation T

in a Hilbert space is given, other various essential numerical ranges Wei(T ), i = 1, 2, 3, 4,

are introduced, and relationships among We(T ) and Wei(T ) are established. Furthermore,

singular discrete linear Hamiltonian systems which may be non-symmetric are considered, and

the associated maximal, pre-minimal, and minimal relations H , H00 and H0 are introduced in

a product Hilbert space. It is noted that the sufficient and necessary conditions for the minimal

relation H0 to be an operator are given for singular symmetric discrete linear Hamiltonian

systems (cf. [17]). We first extend them to non-symmetric case, and then derive a sufficient

condition for the minimal relation H0 to be not densely defined. Finally, we apply the above

results for abstract linear relations to H0.

The paper is organized as follows. In Section 2, some notations and basic concepts are



Essential Numerical Ranges of Linear Relations and Singular Discrete Linear Hamiltonian Systems 65

introduced, and several fundamental properties of closed relations related to its operator parts

are presented. In Section 3, the concept of the essential numerical range We(T ) of a relation

T is given, other various essential numerical ranges Wei(T ), i = 1, 2, 3, 4, are introduced, and

relationships among We(T ) and Wei(T ) are established. In Section 4, singular discrete linear

Hamiltonian systems and their essential numerical ranges are discussed.

2 Basic Concepts and Fundamental Results About Linear Relations

In this section, we introduce some notations, recall some basic concepts, and give several

fundamental properties of closed relations related to its operator parts.

We denote by C and R the sets of complex and real numbers, respectively, and by N the set

of positive integer numbers, throughout this paper. Let X be a Hilbert space over C with the

inner product 〈·, ·〉 and the induced norm ‖ · ‖, and X2 := X ×X be the product space with

the following induced inner product, still denoted by 〈·, ·〉 without any confusion:

〈(x, f), (y, g)〉 = 〈x, y〉+ 〈f, g〉, (x, f), (y, g) ∈ X2.

A linear subspace T ⊂ X2 is called a linear relation (briefly, relation) in X . A (linear)

operator T in X is always identified with a relation in X via its graph G(T ). The domain

D(T ), range R(T ) and null space N(T ) of T are respectively defined by

D(T ) := {x ∈ X : (x, f) ∈ T for some f ∈ X},

R(T ) := {f ∈ X : (x, f) ∈ T for some x ∈ X},

N(T ) := {x ∈ X : (x, 0) ∈ T }.

Further, we denote

T (x) := {f ∈ X : (x, f) ∈ T }, T−1 := {(f, x) : (x, f) ∈ T }. (2.1)

It is evident that T (0) = {0} if and only if T can uniquely determine an operator from D(T )

into X whose graph is T . For convenience, if T (0) = {0}, then the relation T in X is called

an operator in X . The restriction of T to M , denoted by T |M , is defined by T |M := {(x, f) ∈

X2, x ∈ D(T ) ∩M}. The adjoint relation T ∗ of T is defined by

T ∗ = {(y, g) ∈ X2 : 〈g, x〉 = 〈y, f〉 for all (x, f) ∈ T }.

Then, T is said to be Hermitian in X if T ⊂ T ∗ and to be self-adjoint in X if T = T ∗.

Let S and T be relations in X , α ∈ C. We denote

αT := {(x, αf) : (x, f) ∈ T },

T + S := {(x, f + g) : (x, f) ∈ T, (x, g) ∈ S},

ST := {(x, f) ∈ X2 : (x, g) ∈ T, (g, f) ∈ S for some g ∈ X}.

Let S and T be orthogonal, i.e., 〈(x, f), (y, g)〉 = 0 for all (x, f) ∈ T and (y, g) ∈ S. Then we

set

T ⊕ S = T +̇S,
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where T +̇S := {(x+ y, f + g) : (x, f) ∈ T, (y, g) ∈ S} and T ∩ S = {(0, 0)}.

Let T be a closed relation in X , i.e., T = T, where T is the closure of T . Then T (0) is a

closed subspace of X . Arens [1] introduced the following decomposition for a closed relation T :

T = Ts ⊕ T∞, (2.2)

where

T∞ := {(0, g) ∈ X2 : (0, g) ∈ T }, Ts := T ⊖ T∞.

Then Ts is an operator with D(Ts) = D(T ). Ts and T∞ are called the operator and pure

multi-valued parts of T, respectively. Further, for a closed relation T in X , Arens [1] showed

the following result.

Lemma 2.1 (cf. [1, Lemma 5.2]) Let T be a closed relation in X. Then T (0) = D(T ∗)
⊥
,

D(Ts) = T ∗(0)⊥ and R(Ts) ⊂ T (0)⊥.

The following corollary can be proved by Lemma 2.1.

Corollary 2.1 Let T be a closed relation in X. Then D(T ) = T (0)
⊥
if and only if T ∗(0) =

T (0).

Proof The result can be obtained by D(T ) = D(Ts) = T ∗(0)
⊥
and the fact that T (0) and

T ∗(0) are closed. This completes the proof.

Now, let T be a relation in X . By QT or simply Q, when there is no ambiguity about the

relation T , we denote the natural quotient map X → X/T (0). Clearly QT is a single-valued

operator from X to X/T (0). For simplicity, we write T (x) defined in (2.1) as Tx. The norm

‖T ‖ of T is given by

‖T ‖ := ‖QT ‖ = sup{‖QTx‖ : x ∈ D(T ) with ‖x‖ = 1}.

If ‖T ‖ is finite, then T is said to be bounded. It is noted that ‖T ‖ = 0 implies R(QT ) ⊂ T (0).

By d(U, V ) := inf{‖u− v‖ : u ∈ U, v ∈ V } we denote the distance between U and V , where U

and V are non-empty subsets of X . From [7, Chapter II, Proposition 1.4], we have

‖QTx‖ = d(Tx, T (0)) = d(Tx, 0), x ∈ D(T ). (2.3)

Let I := {(x, x) : x ∈ X} be the identity relation on X . We usually write λI − T as λ− T .

For the following concepts, the reader is referred to [5, 21–22, 25, 28].

Definition 2.1 Let T be a relation in X.

(1) The set ρ(T ) := {λ ∈ C : (λ − T )−1 is a bounded operator defined on X} is called the

resolvent set of T .

(2) The set σ(T ) := C\ρ(T ) is called the spectrum of T .

(3) For λ ∈ C, if there exists x 6= 0 such that λx ∈ Tx, then λ is called an eigenvalue of T ,

while x is called an eigenvector of T with respect to the eigenvalue λ. Further, the set of all the

eigenvalues of T is called the point spectrum of T , denoted by σp(T ).

(4) The set σe(T ) := {λ ∈ C : ∃ {xn}n∈N ⊂ D(T ) with ||xn|| = 1, xn
w

−→ 0, and ‖Q(λ −

T )xn‖ → 0, n → ∞} is called the essential spectrum of T .
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Remark 2.1 Edmunds and Evans [9] gave five distinct essential spectra σei (T ), 1 ≤ i ≤ 5,

of a closed operator T in terms of its semi-Fredholm properties in the case that X is a Banach

space. If T is a closed and densely defined operator in X , then σe(T ) given in Definition

2.1 is the second type of essential spectra in [9] by Q(λ − T ) = λ − T and [9, Chapter IX,

Theorem 1.3]. Recently, Wilcox generalized these concepts of essential spectra to relations.

The essential spectrum σe(T ) given in Definition 2.1 is the second one of [28, Definition 2.2] by

[28, Proposition 3.3].

Proposition 2.1 Let T be a closed relation in X. Then σe(T ) = σe(Ts), and if, in addition,

D(T ) ⊂ T (0)
⊥
, then σp(T ) = σp(Ts).

Proof Let T be a closed relation in X. Then (2.2) holds. It follows from (2.2) that

‖Q(λ− T )x‖ = ‖Q(λ− Ts)x+QT (0)‖ = ‖Q(λ− Ts)x‖, x ∈ D(T ),

which implies that σe(T ) = σe(Ts) since D(T ) = D(Ts).

Next, we show σp(T ) = σp(Ts). It suffices to show

N(λ− T ) = N(λ− Ts), λ ∈ C. (2.4)

Clearly, N(λ − Ts) ⊂ N(λ − T ). Consequently, for x ∈ N(λ − T ), we have (x, λx) ∈ T.

Then, λx = Tsx + g for some g ∈ T (0) by (2.2), which implies λx = Tsx and g = 0 since

D(T ) = D(Ts) ⊂ T (0)
⊥

and R(Ts) ⊂ T (0)
⊥

by Lemma 2.1. Therefore, (x, λx) ∈ Ts and then

N(λ− T ) ⊂ N(λ− Ts). Hence, (2.4) holds. This completes the proof.

The following result can be easily verified by the closed graph theorem.

Lemma 2.2 Let T be a closed relation in X. Then λ ∈ ρ(T ) if and only if R(λ− T ) = X

and N(λ− T ) = {0}.

Now, let T be a closed relation in X . Then R(Ts) ⊂ T (0)
⊥

by Lemma 2.1. Further, if

D(T ) ⊂ T (0)
⊥
, then Ts is an operator from T (0)

⊥
to T (0)

⊥
. In the following, we consider Ts

in (T (0)⊥)
2
. For clarity, let ρ̃(Ts) be the resolvent set of Ts in the space T (0)⊥, i.e.,

ρ̃(Ts) := {λ ∈ C : (λ− Ts)
−1

is a bounded operator defined on T (0)
⊥},

and let σ̃(Ts) := C\ρ̃(Ts). Then we have the result below.

Proposition 2.2 Let T be a closed relation in X with D(T ) ⊂ T (0)
⊥
. Then

ρ(T ) = ρ̃(Ts) and σ(T ) = σ̃(Ts).

Proof Let T be a closed relation in X with D(T ) ⊂ T (0)
⊥
. We shall show ρ(T ) = ρ̃(Ts).

By Lemma 2.2 and (2.4), it suffices to show that R(λ−T ) = X if and only if R(λ−Ts) = T (0)
⊥

for any λ ∈ C.

First, suppose that R(λ − T ) = X . Then there exists (x, f) ∈ T such that λx − f = h for

every h ∈ T (0)
⊥ ⊂ X . By (2.2), there exists g ∈ T (0) such that f = Tsx+ g. From the above

two equations, we have
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h− (λx− Tsx) = −g. (2.5)

Note that D(T ) ⊂ T (0)
⊥

and R(Ts) ⊂ T (0)
⊥

by Lemma 2.1. Then we get from (2.5) that

h− (λx − Tsx) = −g = 0. Hence, h = λx − Tsx. Then T (0)
⊥ ⊂ R(λ − Ts), and consequently,

R(λ− Ts) = T (0)
⊥
since R(Ts) ⊂ T (0)

⊥
and D(T ) ⊂ T (0)

⊥
.

Next, suppose that R(λ− Ts) = T (0)
⊥
. Let h ∈ X . Then h can be written as h = h1 + h2

with h1 ∈ T (0) and h2 ∈ T (0)⊥. Note that h2 ∈ T (0)⊥ = R(λ−Ts). Then there exists x ∈ D(Ts)

such that h2 = λx−Tsx. Obviously, (x, Tsx−h1) ∈ T and it is evident that h = λx−(Tsx−h1),

which implies that h ∈ R(λ− T ). Then X ⊂ R(λ− T ), and hence X = R(λ− T ).

Based on the above discussions, ρ(T ) = ρ̃(Ts), and hence σ(T ) = σ̃(Ts). This completes the

proof.

Remark 2.2 If T is Hermitian, then T (0) ⊂ T ∗(0). Hence, D(T ) ⊂ T (0)
⊥

by Lemma 2.1,

and then Proposition 2.2 holds if T is closed. Therefore, Proposition 2.2 extends [22, Theorem

2.1] for closed Hermitian relations to general closed relations in X .

3 Essential Numerical Ranges of Linear Relations and Equivalent Char-

acterizations

In this section, the concept of the essential numerical range We(T ) of a linear relation T

in a Hilbert space is given, other various essential numerical ranges Wei(T ), i = 1, 2, 3, 4, are

introduced, and relationships among We(T ) and Wei(T ) are established. This section is divided

into two parts.

3.1 Essential numerical ranges of linear relations

First, for a relation T in X , the numerical range is the set

W (T ) := {〈f, x〉 : (x, f) ∈ T, ‖x‖ = 1},

which was given by Rofe-Beketov in [18]. From [18, Theorem 1], W (T ) is a convex subset of C,

and if dimD(T ) < ∞, then W (T ) is closed and bounded or W (T ) = C. Further, the following

result holds.

Lemma 3.1 (cf. [18, Lemma 1]) Let T be a relation in X. If there exists h ∈ T (0) such

that h /∈ D(T )⊥, then W (T ) = C. Consequently, if W (T ) 6= C, then T (0) ⊥ D(T ).

Next, we define the essential numerical range We(T ) of a relation T in X as follows.

Definition 3.1 Let T be a relation in X. Then the set

We(T ) := {λ ∈ C : ∃ {(xn, fn)}n∈N ⊂ T with ‖xn‖ = 1, xn
w

−→ 0, and 〈fn, xn〉 → λ}

is called the essential numerical range of T .

It is evident that We(T ) ⊂ W (T ) and We(zT ) = zWe(T ) and We(T + zI) = We(T ) + z for

z ∈ C by the definitions. For the concept of essential numerical ranges of bounded operators
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in a Hilbert space, the reader is referred to [10, 24]. Recently, Bögli et al [4] introduced the

concept of essential numerical ranges of general operators including unbounded operators as

follows:

We(T ) := {λ ∈ C : ∃ {xn}n∈N ⊂ D(T ) with ||xn|| = 1, xn
w

−→ 0, and 〈Txn, xn〉 → λ},

which is a generalization of the corresponding concept for bounded operators. Clearly, Definition

3.1 extends the above concept to relations in X .

Now, let T be a closed relation in X . Then (2.2) holds. The relationships between the

numerical, essential numerical ranges of the relation T in X and those of its operator part Ts

are given as follows.

Proposition 3.1 Let T be a closed relation in X. If D(T ) ⊂ T (0)⊥, then

W (T ) = W (Ts) and We(T ) = We(Ts). (3.1)

In particular, if W (T ) 6= C, then (3.1) holds.

Proof Let T be a closed relation in X . Then, for (x, f) ∈ T , there exists g ∈ T (0) such

that f = Tsx + g by (2.2). If D(T ) ⊂ T (0)
⊥
, then 〈f, x〉 = 〈Tsx, x〉, which yields (3.1). In

addition, if W (T ) 6= C, then D(T ) ⊂ T (0)
⊥

by Lemma 3.1. Then (3.1) holds by the above

discussions. This completes the proof.

Remark 3.1 Here we point out that if W (T ) = C, then (3.1) may be false. In fact, let E

be a non-zero closed subspace of X and P be an orthogonal projection in X onto E⊥. Then we

define Tx = Px + E for every x ∈ D(T ) = X. Clearly, T is a closed relation in X , T (0) = E,

Ts = {(x, Px) ∈ X2 : x ∈ X} and T∞ = {(0, g) ∈ X2 : g ∈ E}. It is easy to see that

W (T ) = C by Lemma 3.1 and W (Ts) ⊂ [0, 1]. Hence W (T ) 6= W (Ts). In particular, in the case

of W (T ) = C, we shall show that We(T ) = W (T ) = C by the conclusion (iv) of Proposition 3.3

below. However, We(Ts) ⊂ W (Ts) ⊂ [0, 1]. Hence, we also have We(T ) 6= We(Ts).

It is noted that the inclusion σe(T ) ⊂ We(T ) for T being an operator is immediate from the

definitions. However, it is not obvious for relations. Now, we prove it as follows.

Proposition 3.2 Let T be a relation in X. Then σe(T ) ⊂ We(T ).

Proof Let λ ∈ σe(T ). Then there exists a sequence {xn}n∈N
⊂ D(T ) satisfying ‖xn‖ =

1, xn
w

−→ 0 and ‖Q(λ− T )xn‖ → 0 as n → ∞. For every fixed n ∈ N, we get from (2.3) that

‖Q(λ− T )xn‖ = d((λ − T )xn, 0) = inf
fn∈Txn

‖λxn − fn‖. (3.2)

For convenience, we denote εn = inf
fn∈Txn

‖λxn − fn‖. Then there exists f
(n)
n ∈ Txn such that

‖λxn − f
(n)
n ‖ ≤ 2εn for n ∈ N. It follows from (3.2) and ‖Q(λ − T )xn‖ → 0 that εn → 0 as

n → ∞. Therefore,

‖λxn − f (n)
n ‖ → 0 as n → ∞. (3.3)
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From (3.3), we have

|〈f (n)
n , xn〉 − λ| = |〈f (n)

n − λxn, xn〉| ≤ ‖f (n)
n − λxn‖‖xn‖ → 0 as n → ∞.

Then λ ∈ We(T ), and hence σe(T ) ⊂ We(T ). This completes the proof.

For a relation T in X , the following proposition is a generalization of the corresponding [4,

Propositions 2.2–2.4, Corollary 2.5] for operators.

Proposition 3.3 Let T be a relation in X.

(a) We(T ) is a closed and convex subset of C and conv σe(T ) ⊂ We(T ), where conv σe(T )

is convex hull of σe(T ).

(b) If W (T ) is a line or a strip or if W (T ) = C, then We(T ) 6= ∅.

(c) If there exist z ∈ We(T ) and w ∈ C\{0} with z + w(0,∞) ⊂ W (T ), then z + w[0,∞) ⊂

We(T ).

(d) The following five results hold:

(i) If W (T ) is a line, then so is We(T ), and thus We(T ) = W (T ).

(ii) If W (T ) is a strip, then We(T ) is a strip or a line.

(iii) If W (T ) is a half-plane and We(T ) 6= ∅, then We(T ) is a half-plane.

(iv) If W (T ) = C, then We(T ) = C, and vice versa.

(v) If W (T ) is or contains a sector and We(T ) 6= ∅, then We(T ) contains each subsector

with vertex in We(T ).

Proof By Proposition 3.2 and the proof of [4, Proposition 2.2] with some corresponding

changes, e.g., (xn, T xn) and (yn, T yn) in [4, Proposition 2.2] replaced by (xn, fn) and (yn, gn),

respectively, the conclusion (a) can be proved. Further, conclusions (b) and (c) can be proved

with a similar argument to those of [4, Proposition 2.3] and [4, Proposition 2.3], respectively,

with some corresponding changes mentioned as the above. The conclusion (d) follows from

(a–c). Therefore, we omit the details here.

Finally, let T be a self-adjoint relation in X . The extended essential spectrum σ̂e(T ) of T

is defined by

σ̂e(T ) :=





σe(T ), T is bounded,
σe(T ) ∪ {+∞}, T is unbounded from above,
σe(T ) ∪ {−∞}, T is unbounded from below,
σe(T ) ∪ {±∞}, T is unbounded from above and below.

Then, it is a generalization of the concept of the extended essential spectrum of an operator in

a Hilbert space defined in [4]. It is always assumed that X is a separable infinite dimensional

Hilbert space in the remainder of this paper. The following result extends [19, Corollary 5.1]

for bounded operators and [4, Theorem 3.8] for unbounded operators to relations.

Theorem 3.1 Let T be a self-adjoint relation in X. Then

We(T ) =

{
conv(σ̂e(T )), T is bounded,
conv(σ̂e(T ))\{±∞}, T is unbounded.

(3.4)
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Proof Let T be a self-adjoint relation in X . Then T is closed and (2.2) holds. Since

W (T ) ⊂ R, we have D(T ) ⊂ T (0)
⊥

by Lemma 3.1. Together with R(Ts) ⊂ T (0)
⊥

by Lemma

2.1, we get that Ts is a self-adjoint operator from T (0)
⊥

to T (0)
⊥
. The essential spectrum

and essential numerical range of Ts in (T (0)
⊥
)
2
are denoted by σe(Ts) and We(Ts) without any

confusion. Then σe(T ) = σe(Ts) by Proposition 2.1 and We(T ) = We(Ts) by Proposition 3.1.

In addition, the boundedness of T and Ts are equivalent by ‖Q(λ− T )x‖ = ‖Q(λ− Ts)x‖, x ∈

D(T ) = D(Ts). Then, from [19, Corollary 5.1] and [4, Theorem 3.8], it follows that

We(Ts) =

{
conv(σ̂e(Ts)), Ts is bounded,
conv(σ̂e(Ts))\{±∞}, Ts is unbounded,

which implies that (3.4) holds by the above discussions. This completes the proof.

3.2 Equivalent characterizations of We(T )

In this subsection, we first introduce four varieties of essential numerical ranges Wei(T ),

i = 1, 2, 3, 4, of a relation T in X and study the relationships of them.

Now, let T be a relation in X , V be the set of all finite-dimensional subspaces of X , and

L(X) be the space of all bounded linear operators acting on X . For a relation T , we define

We1(T ) : =
⋂

V ∈V

W (T |V ⊥∩D(T )) ;

We2(T ) : =
⋂

K∈L(X)
rankK<∞

W (T +G(K)) ;

We3(T ) : =
⋂

K∈L(X)
K compact

W (T +G(K)) ;

We4(T ) : = {λ ∈ C : ∃{(en, hn)}n∈N ⊂ T with 〈hn, en〉
n→∞
−−−−→ λ

and {en} is an orthonormal sequence},

whereG(K) is the graph of the operatorK. These various essential numerical rangesWei(T ), i =

1, 2, 3, 4, were firstly introduced for bounded operators (cf. [10, 24]). They were extended to

unbounded operators by Bögli et al. [4]. The essential numerical ranges Wei(T ), i = 1, 2, 3, 4,

defined here are generalizations of the corresponding concepts for bounded and unbounded

operators to relations.

It is known that T = Ts ⊕ T∞ if T is a closed relation in X. Note that R(Ts) ⊂ T (0)
⊥

by

Lemma 2.1. If D(T ) ⊂ T (0)⊥, then Ts is an operator from T (0)⊥ to T (0)⊥. For clarity, let

W̃e(Ts) and W̃ei(Ts), i = 1, 2, 3, 4, be defined similarly to We(T ) and Wei(T ) with T and X

replaced by Ts and T (0)
⊥
, respectively. Then, we have the following result.

Proposition 3.4 Let T be a closed relation in X. If D(T ) ⊂ T (0)
⊥
, then

We(T ) = W̃e(Ts) and Wei(T ) = W̃ei(Ts), i = 1, 2, 3, 4. (3.5)

Proof Let T be a closed relation in X with D(T ) ⊂ T (0)
⊥
. It is evident that We(T ) =

W̃e(Ts) and We4(T ) = W̃e4(Ts) by their definitions and D(Ts) = D(T ) ⊂ T (0)⊥.
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Next, we shall show that Wei(T ) = W̃ei(Ts), i = 1, 2, 3. First, we prove We1(T ) = W̃e1(Ts).

It can be easily verified that We1(T ) ⊂ W̃e1(Ts). We shall show W̃e1(Ts) ⊂ We1(T ). Let V

be an arbitrary finite-dimensional subspace of X and P be an orthogonal projection in X onto

T (0)⊥. Define a finite-dimensional subspace Ṽ of T (0)⊥ by Ṽ := PV . Then, we claim that

V ⊥ ∩D(T ) = (T (0)
⊥ ⊖ Ṽ ) ∩D(T ), i.e.,

(X ⊖ V ) ∩D(T ) = (T (0)
⊥ ⊖ Ṽ ) ∩D(T ). (3.6)

In fact, for every x ∈ (X ⊖ V ) ∩D(T ) and v ∈ V , there exists a unique x1 ∈ X such that

x = x1 − v with 〈x, v〉 = 0. (3.7)

Further, x1 = x̃1 + x̃2 and v = v1 + v2, where x̃1 = Px1, x̃2 = x1 − Px1, v1 = Pv and

v2 = v − Pv. Then from (3.7), one has

x = (x̃1 − v1) + (x̃2 − v2). (3.8)

Note that x ∈ T (0)⊥ by D(T ) ⊂ T (0)⊥, x̃1 − v1 ∈ T (0)⊥ and x̃2 − v2 ∈ T (0). Then (3.8) yields

x = x̃1 − v1. In addition, it follows from 〈x, v〉 = 0 and D(T ) ⊂ T (0)
⊥

that 〈x, v1〉 = 0. Then

x ∈ (T (0)⊥ ⊖ Ṽ ), and consequently, x ∈ (T (0)⊥ ⊖ Ṽ ) ∩D(T ). Then “ ⊂ ” in (3.6) holds, and

the reverse inclusion is obvious. Therefore, (3.6) holds. In addition, for (x, f) ∈ T , there exists

h ∈ T (0) such that f = Tsx+ h, and hence 〈f, x〉 = 〈Tsx, x〉 by D(T ) ⊂ T (0)⊥. Then, together

with (3.6) and D(T ) = D(Ts), we have

W (T |(X⊖V )∩D(T )) = W (Ts|(X⊖V )∩D(T )) = W (Ts|(T (0)⊥⊖Ṽ )∩D(Ts)
).

Hence, W̃e1(Ts) ⊂ We1(T ).

Now, we prove We3(T ) = W̃e3(Ts). Let K̃ ∈ L(T (0)
⊥
) be compact. Then we define

K := K̃P , where P is given on the above. Then K ∈ L(X) and it is compact. On the other

hand, for (x, f) ∈ T , one has 〈f, x〉 = 〈Tsx, x〉 by D(T ) ⊂ T (0)
⊥
. It follows that

W (T +G(K)) = W (Ts +G(K̃)). (3.9)

Conversely, let K ∈ L(X) be compact. Then we define K̃ := PK|T (0)⊥ . Clearly, K̃ ∈ L(T (0)⊥)

and it is compact. For this pair of K and K̃, (3.9) also holds. Then We3(T ) = W̃e3(Ts) by their

definitions.

Finally, note that if K is a finite rank operator, then it is compact. Then by the above

discussions, one sees that We2(T ) = W̃e2(Ts). This completes the proof.

In what follows, we shall study the relationships among We(T ) and Wei(T ), i = 1, 2, 3, 4, for

a relation T in X . For bounded and unbounded operators, the relationships were established in

[10, Theorem 5.1] and [4, Theorem 3.1], respectively. For a closed relation T in X , the following

result can be derived by Proposition 3.4 and [4, Theorem 3.1].

Theorem 3.2 Let T be a closed relation in X.

(1) If D(T ) ⊂ T (0)
⊥
, then

We1(T ) ⊂ We4(T ) ⊂ We2(T ) = We3(T ) = We(T ). (3.10)
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(2) If T ∗(0) = T (0), then

We1(T ) ⊂ We4(T ) = We2(T ) = We3(T ) = We(T ), (3.11)

in addition, if W (T ) 6= C, then

Wei(T ) = We(T ), i = 1, 2, 3, 4. (3.12)

(3) If D(T ) ∩D(T ∗) = T (0)⊥, then (3.12) holds.

Proof Let T be a closed relation in X . Then T = Ts ⊕ T∞ and Ts is an operator in T (0)
⊥

since D(Ts) = D(T ) ⊂ T (0)⊥ and R(Ts) ⊂ T (0)⊥ by Lemma 2.1. Then, from [4, Theorem 3.1],

we have

W̃e1(Ts) ⊂ W̃e4(Ts) ⊂ W̃e2(Ts) = W̃e3(Ts) = W̃e(Ts),

which, together with (3.5), implies that (3.10) holds.

If T ∗(0) = T (0), then D(T ) = T (0)
⊥

by Corollary 2.1. Hence, Ts is a densely defined

operator in T (0)⊥. Then, from [4, Theorem 3.1], we have

W̃e1(Ts) ⊂ W̃e4(Ts) = W̃e2(Ts) = W̃e3(Ts) = W̃e(Ts),

which, together with (3.5), implies that (3.11) holds. Further, if W (T ) 6= C, by [4, p. 12, Claim

1)], we get

W̃ei(Ts) = W̃e(Ts), i = 1, 2, 3, 4. (3.13)

Then (3.12) holds by (3.5) and (3.13).

If D(T ) ∩D(T ∗) = T (0)⊥, then D(T ) = T (0)⊥, which implies that Ts is a densely defined

operator from T (0)
⊥
to T (0)

⊥
. Let (Ts)

∗
be the adjoint operator of Ts in T (0)

⊥
and (T ∗)s be

the operator part of T ∗. We claim that (Ts)
∗ = (T ∗)s. In fact, for y ∈ D((T ∗)s) = D(T ∗) and

(x, f) ∈ Ts ⊂ T, we have 〈(T ∗)sy, x〉 = 〈g, x〉 = 〈y, f〉, where (y, g) ∈ T ∗ and g = (T ∗)sy + h

for some h ∈ T (0). Then y ∈ D((Ts)
∗) and (T ∗)sy = (Ts)

∗y, and consequently, (T ∗)s ⊂ (Ts)
∗.

Conversely, for y ∈ D((Ts)
∗
) and x ∈ D(Ts), we have 〈(Ts)

∗
y, x〉 = 〈y, Tsx〉. In addition, for

(x, f) ∈ T , we have 〈y, Tsx〉 = 〈y, f〉 by y ∈ D((Ts)
∗
) ⊂ T (0)

⊥
. Then, it follows that

〈(Ts)
∗y, x〉 = 〈y, f〉, y ∈ D((Ts)

∗), (x, f) ∈ T.

Then y ∈ D(T ∗) = D((T ∗)s), which, together with (T ∗)s ⊂ (Ts)
∗
, implies that (T ∗)s = (Ts)

∗
.

Hence

D(Ts) ∩D((Ts)
∗
) = D(Ts) ∩D((T ∗)s) = D(T ) ∩D(T ∗) = T (0)

⊥
.

Then, by [4, Theorem 3.1], (3.13) holds. Together with (3.5), we get that (3.12) holds. This

completes the proof.

Remark 3.2 (1) If T is self-adjoint, then D(T ) ∩D(T ∗) = D(T ) = T (0)
⊥
, and hence

(3.12) holds. For a general relation T in X , if W (T ) 6= C and some open connected component
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of C \ W (T ) is contained in ρ(T ), then T (0) = T ∗(0) by [11, Lemma 2.32], and hence (3.11)

holds.

(2) It was shown that (3.12) holds for a bounded operator T on X by [10, Theorem 5.1],

where We(T ) = We1(T ) is not explicitly stated in [10, Theorem 5.1], but it can be read off

from the proof. This work was extended to unbounded operators and it has been proved in

[4, Theorem 3.1] that (3.10) holds for a general operator T , (3.11) holds for T to be densely

defined, and (3.12) holds for T satisfying D(T ) = X and W (T ) 6= C, or D(T ) ∩D(T ∗) = X .

Hence, Theorem 3.2 extends [10, Theorem 5.1] and [4, Theorem 3.1] for operators to closed

relations.

Theorem 3.2 presents relationships among We(T ) and Wei(T ), i = 1, 2, 3, 4, for a closed

relation T under certain conditions. Further, we give the relationships for general relations.

Theorem 3.3 Let T be a relation in X. Then (3.10) holds. Further, if D(T ) is infinite-

dimensional and W (T ) = C, then

We1(T ) ⊂ We4(T ) = We2(T ) = We3(T ) = We(T ) = C. (3.14)

In particular, if D(T ) = X and W (T ) 6= C, then (3.12) holds.

Before proving Theorem 3.3, we first prepare the following lemma, which can be derived

with a similar argument to that of [4, Lemma 2.7]. Therefore, we omit the details here.

Lemma 3.2 Let T be a relation in X, W (T ) = C and (y, g) ∈ T with ‖y‖ = 1. If

{y}⊥ ∩D(T ) 6= {0}, then, for every ε > 0, there exists (wε, hε) ∈ T with ‖wε‖ = 1 such that

W (T |{wε}
⊥∩D(T )) = C, |〈hε, wε〉 − 〈g, y〉| < ε. (3.15)

Proof of Theorem 3.3 It is easy to see that We4(T ) ⊂ We(T ) ⊂ We3(T ) ⊂ We2(T ). Since

every compact operator is the norm limit of finite rank operators, we have We3(T ) ⊃ We2(T ).

Similar to the proof of [4, Theorem 3.1], the conclusion We1(T ) ⊂ We4(T ) can be proved by

inductively constructing a sequence. By the above discussions, one has

We1(T ) ⊂ We4(T ) ⊂ We(T ) ⊂ We3(T ) = We2(T ). (3.16)

In order to prove (3.10), it suffices to show We3(T ) = We(T ). First, we consider the case of

W (T ) 6= C. Let P be an orthogonal projection in X onto T (0)
⊥
. Then PT (0) = 0, which

yields that PT is single-valued. Then, for every (x, f) ∈ T , there exists g ∈ T (0) such that

f = PTx+ g. If W (T ) 6= C, then T (0) ⊥ D(T ) by Lemma 3.1, which implies

〈f, x〉 = 〈PTx, x〉, (x, f) ∈ T. (3.17)

Then

We(T ) = We(PT ) and We3(T ) = We3(PT ). (3.18)

Note that PT is an operator. Then, by [4, Theorem 3.1, formula (3.1)], we have We(PT ) =

We3(PT ). Hence, We3(T ) = We(T ) by (3.18). If W (T ) = C, then We(T ) = C by (iv) of

Proposition 3.3, and hence We3(T ) = We(T ) = C by (3.16). This completes the proof of (3.10).
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Next, we prove (3.14). Suppose that W (T ) = C. Then We2(T ) = We3(T ) = We(T ) =

W (T ) = C by (iv) of Proposition 3.3 and (3.16). It remains to show that We4(T ) = C. It

is noted that if N ⊂ D(T ) is a finite-dimensional subspace, then it can be easily verified that

N⊥ ∩ D(T ) 6= {0}. Next, we shall show the result by mathematical induction method. Take

λ ∈ C. Since W (T ) = C, there exists (y1, g1) ∈ T with ‖y1‖ = 1 satisfying 〈g1, y1〉 = λ. Noting

that {y1}⊥ ∩ D(T ) 6= {0} by {y1} ⊂ D(T ), and applying Lemma 3.2 with ε = 1 and (y, g)

replaced by (y1, g1), one sees that there exists (e1, h1) ∈ T with ‖e1‖ = 1 such that

W (T |{e1}⊥∩D(T )) = C, |〈h1, e1〉 − λ| < 1.

Since W (T |{e1}⊥∩D(T )) = C, we can choose (y2, g2) ∈ T such that ‖y2‖ = 1, y2 ∈ {e1}
⊥ and

〈g2, y2〉 = λ. Next, it is assumed that we have constructed (e1, h1),· · · ,(en−1, hn−1) ∈ T and

(y1, g1), · · · , (yn, gn) ∈ T such that ‖en−1‖=‖yn−1‖ = 1, yn ∈ X⊥
n−1∩D(T ), W (T |X⊥

n−1∩D(T )) =

C and

〈gn, yn〉 = λ, |〈hn−1, en−1〉 − λ| <
1

n− 1
, n > 1,

where Xn−1 := {e1, · · · , en−1}. Note that {yn} ⊂ X⊥
n−1 ∩D(T ) implies that {yn}

⊥ ∩ X⊥
n−1 ∩

D(T ) 6= {0}. Then, applying Lemma 3.2 with ε = 1
n
, T replaced by T |X⊥

n−1∩D(T ), and (y, g)

replaced by (yn, gn), one sees that there exists (en, hn) ∈ T with ‖en‖ = 1 such that

W (T |{e1,··· ,en}⊥∩D(T )) = W (T |{en}⊥∩X⊥
n−1∩D(T )) = C (3.19)

and

|〈hn, en〉 − λ| <
1

n
.

Now, (3.19) allows us to choose (yn+1, gn+1) ∈ T with ‖yn+1‖ = 1 satisfying

yn+1 ∈ {e1, · · · , en}
⊥ ∩D(T ) and 〈gn+1, yn+1〉 = λ.

This completes the induction. It implies that there exists an orthonormal sequence {(en, hn)}n∈N

satisfying 〈hn, en〉
n→∞
−−−−→ λ. Since λ is arbitrary, we get We4(T ) = C.

Finally, suppose that D(T ) = X and W (T ) 6= C. Then, one has T (0) = {0} by Lemma 3.1,

which implies that T can determine an operator. Hence, (3.12) holds by [4, p. 12, Claim 1].

This completes the proof.

Remark 3.3 (1) From Theorem 3.3, for a general relation T , if D(T ) = X and W (T ) 6= C,

then (3.12) holds. Here, we point out that the restriction W (T ) 6= C is necessary. In fact, let

T be the relation defined in Remark 3.1 with E being finite-dimensional. Then (3.14) holds

for this T by Theorem 3.3. However, We1(T ) ⊂ W (T |E⊥∩D(T )) = {1} by the definition. Then

We1(T ) ⊂ We(T ) in (3.14) is strict, which implies that (3.12) is false for this T .

(2) From Theorem 3.3, We1(T ) ⊂ We(T ) holds for a general relation T with D(T ) being

infinite-dimensional and W (T ) = C. Here, we point out that We1(T ) = We(T ) maybe hold. In

fact, let T be the relation defined in Remark 3.1 with E = X . Then it follows from Lemma 3.1

that W (T |V ⊥∩D(T )) = C for every finite-dimensional subspace V . It implies that We1(T ) = C,

and hence We1(T ) = We(T ) = C.
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(3) If D(T ) is finite-dimensional, then We1(T ) = We4(T ) = ∅, which implies that (3.14) is

false.

4 Singular Discrete Linear Hamiltonian Systems and Their Essential

Numerical Ranges

In this section, we consider singular discrete linear Hamiltonian systems which may be non-

symmetric. First, we introduce the associated maximal, pre-minimal and minimal relations in a

product Hilbert space. Then, some sufficient and necessary conditions for the minimal relation

to be an operator are given under certain conditions, and a sufficient condition for the minimal

relation to be not densely defined is derived. Finally, we consider various essential numerical

ranges of the minimal relation H0. This section is divided into two parts.

4.1 Singular discrete linear Hamiltonian systems and their minimal relations

Consider the following singular discrete linear Hamiltonian system

L(y)(t) := J∆y(t)− P (t)R(y)(t) = λW (t)R(y)(t), t ∈ I, (4.1)

where

(a) I := {t}+∞
t=a is an integer set with a being a finite integer;

(b) ∆ is the forward difference operator, i.e., ∆y(t) = y(t+ 1)− y(t);

(c) J is the canonical symplectic matrix, i.e., J =
(

0 −Id
Id 0

)
, where Id is the d × d

identity matrix;

(d) for t ∈ I, the weight function W (t) = diag {W1(t),W2(t)} , where W1(t) and W2(t) are

d× d matrices and W1(t),W2(t) ≥ 0;

(e) for t ∈ I, P (t) =
( −C(t) D(t)

A(t) B(t)

)
, where A(t), B(t), C(t) and D(t) are d×d matrices;

(f) R(y)(t) = (xT(t+1), uT(t))T is the partial right shift operator with y(t) = (xT(t), uT(t))T

for x(t), u(t) ∈ Cd;

(g) λ is a complex spectral parameter.

By the condition (e), system (4.1) can be written as

{
∆x(t) = A(t)x(t + 1) +B(t)u(t) + λW2(t)u(t),

∆u(t) = C(t)x(t + 1)−D(t)u(t)− λW1(t)x(t + 1), t ∈ I.
(4.2)

If P = P ∗, i.e., D = A∗, B and C are Hermitian matrices, then system (4.1) is (formally)

symmetric. To ensure the existence and uniqueness of the solution of any initial value problem

associated with system (4.1), it is always assumed that

(A1) Id −A(t) and Id −D(t) are invertible in I.

Next, we introduce the following space

l2W (I) :=
{
y = {y(t)}t∈I ⊂ C

2d :
∑

t∈I

R(y)∗(t)W (t)R(y)(t) < +∞
}
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with the semi-inner product

〈y, z〉W :=
∑

t∈I

R∗(z)(t)W (t)R(y)(t).

We denote ‖y‖W := 〈y, y〉
1
2

W for y ∈ l2W (I). Since the weight function W (t) may be singular in

I, ‖ · ‖W is a semi-norm. Set

L2
W (I) := l2W (I)/{y ∈ l2W (I) : ‖y‖W = 0}.

Then L2
W (I) is a Hilbert space with the inner product 〈·, ·〉W . For a function y ∈ l2W (I), we

denote by ỹ the corresponding equivalent class in L2
W (I). Then, 〈ỹ, z̃〉W = 〈y, z〉W for any

ỹ, z̃ ∈ L2
W (I). In order to avoid confusion, we write 0̃ to denote the zero element in L2

W (I).

Set

l2W,0(I) : = {y ∈ l2W (I) : There exist s, k ∈ I with s ≤ k such that

y(t) = 0 for t ≤ s and t ≥ k + 1}

and

H : = {(ỹ, g̃) ∈ (L2
W (I))2 : There exists y ∈ ỹ such thatL(y)(t) = W (t)R(g)(t)

for any g ∈ g̃, t ∈ I},

H00 : = {(ỹ, g̃) ∈ H : There exists y ∈ ỹ such that y ∈ l2W,0(I) and

L(y)(t) = W (t)R(g)(t) for any g ∈ g̃, t ∈ I}.

Clearly, H and H00 are subspaces of (L2
W (I))2. Then H , H00 and H0 := H00 are called the

maximal, pre-minimal and minimal relations associated with system (4.1), respectively. The

definiteness condition for system (4.1) is given by

(A2) there exists a finite subinterval I0 := [s0, t0] = {t}t0t=s0
⊂ I such that for all λ ∈ C any

non-trivial solution y of system (4.1) satisfies that

∑

t∈I0

R(y)∗(t)W (t)R(y)(t) > 0.

Remark 4.1 (1) From (A2), for every (ỹ, g̃) ∈ H, there exists a unique y ∈ ỹ such that

L(y)(t) = W (t)R(g)(t) for any g ∈ g̃ and t ∈ I. In this case, we write (y, g̃) ∈ H for brevity.

(2) It was pointed out that H0 may be non-densely defined or multivalued, even if (A2)

holds, see [17, Section 6] or Theorem 4.1 and Proposition 4.2 below. This is an important

difference between the discrete and continuous Hamiltonian systems.

Furthermore, we have the following result for the minimal relation H0.

Proposition 4.1 Assume that (A1) and (A2) hold. If y ∈ D(H0), then y(a) = 0.

Proof Let (y, g̃) ∈ H0. Then there exists a sequence {(yn, g̃n)} ⊂ H00 such that

‖yn − y‖W → 0 and ‖gn − g‖W → 0 for any g ∈ g̃ and gn ∈ g̃n as n → ∞. (4.3)
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Let ynk = yn − yk and gnk = gn − gk. Then ynk is the solution of the initial value problem

{
L(z)(t) = W (t)R(gnk)(t), t ∈ I,

z(a) = 0.

Now, let Φ(t) be the fundamental solution matrix of the system L(z)(t) = 0 on I with

Φ(a) = Id. For every t ∈ I, we define

H(t) := P (t)
( 0 0

0 Id

)
+ J =

( 0 −Id +D(t)
Id B(t)

)
.

Since Id −D(t) is invertible, we get that H(t) is invertible on t ∈ I. Let Y (t) := Φ(t)C(t) be a

solution of L(z)(t) = W (t)R(gnk)(t). Then we have

P (t)[R(Φ)(t)C(t + 1)−R(ΦC)(t)] + JΦ(t)∆C(t) = W (t)R(gnk)(t),

which yields that H(t)Φ(t)∆C(t) = W (t)R(gnk)(t) by the direct calculation. Hence, ynk can

be expressed by

ynk(t) = Φ(t)
t−1∑

s=a

Φ−1(s)H−1(s)W (s)R(gnk)(s), t ∈ I. (4.4)

Here, we use the convention that
a−1∑
s=a

Φ−1(s)H−1(s)W (s)R(gnk)(s) = 0.

Take t0 ∈ I \ {a}. Clearly, Φ(t) and Φ−1(t)H−1(t) are bounded on [a, t0] := {t}t0t=a ⊂ I.

Then, together with ‖gnk‖W → 0 and (4.4), we have ynk(t) → 0 for t ∈ [a, t0] as n, k → ∞. Set

ŷ(t) = lim
n→∞

yn(t), t ∈ I.

Then ŷ(a) = 0 and it is clear that lim
n→∞

L(yn)(t) = L(ŷ)(t) for t ∈ I, which, together with the

second relation of (4.3) and L(yn)(t) = W (t)R(gn)(t), t ∈ I, yields that

L(ŷ)(t) = W (t)R(g)(t) for any g ∈ g̃, t ∈ I.

Then (˜̂y, g̃) ∈ H. Clearly, ‖y − ŷ‖W = 0. By (1) of Remark 4.1, we get y(t) = ŷ(t) for t ∈ I.

Then y(a) = ŷ(a) = 0. This completes the proof.

In [17, Section 6], they give some sufficient and necessary conditions for the minimal relation

H0 to be an operator in the symmetric case; that is, H0(0̃) = {0̃}. By Proposition 4.1, we

extended these results to non-symmetric systems with a similar method, i.e., Theorem 4.1

below. First, we introduce some notations. Since W1(t) and W2(t) are Hermitian matrices for

every t ∈ I, one has

C
d = KerW1(t)⊕ RanW1(t) = KerW2(t)⊕ RanW2(t), t ∈ I.

For every t ∈ I, by P1(t) and P2(t) we denote the projection maps from Cd to KerW1(t) and

KerW2(t), respectively. Then, the following result is obtained.
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Theorem 4.1 Assume that (A1) and (A2) hold.

(1) In the case of W1(t) > 0 for t ∈ I, H0 is an operator if and only if for all t ∈ I \ {a},

KerW2(t) ∩KerB(t) = {0} and RanW2(t) ∩ Ran(B(t)P2(t)) = {0}. (4.5)

(2) In the case of W2(t) > 0 for ∈ I, H0 is an operator if and only if for all t ∈ I,

KerW1(t) ∩KerC(t) = {0} and RanW1(t) ∩ Ran(C(t)P1(t)) = {0}. (4.6)

Proof We first consider the sufficiency of assertion (1). Let (0̃, g̃) ∈ H0. Then, by (1) of

Remark 4.1, there exists a unique y = (xT, uT)T ∈ 0̃ such that L(y)(t) = W (t)R(g)(t) for any

g = (gT1 , g
T
2 )

T ∈ g̃, i.e.,
{
∆x(t) = A(t)x(t + 1) +B(t)u(t) +W2(t)g2(t),

∆u(t) = C(t)x(t + 1)−D(t)u(t)−W1(t)g1(t+ 1), t ∈ I.

Then we have



(Id −A(t))x(t + 1)− x(t) −B(t)u(t) = W2(t)g2(t),

(Id −D(t))u(t)− u(t+ 1) + C(t)x(t + 1) = W1(t)g1(t+ 1), t ∈ I.
(4.7)

It follows from W1(t) > 0 for t ∈ I and y ∈ 0̃ that

x(t+ 1) = 0 and W2(t)u(t) = 0, t ∈ I, (4.8)

which implies u(t) ∈ KerW2(t). In addition, x(a) = 0 by Proposition 4.1. Then, by (4.7) and

the first relation of (4.8), we have



−B(t)u(t) = W2(t)g2(t),

(Id −D(t))u(t)− u(t+ 1) = W1(t)g1(t+ 1), t ∈ I.
(4.9)

From u(t) ∈ KerW2(t), the first relation of (4.9), and the second relation of (4.5), one has

−B(t)u(t) = W2(t)g2(t) = 0 for t ∈ I \ {a}. Therefore, u(t) ∈ KerW2(t) ∩KerB(t). Then, by

the first relation of (4.5), one has u(t) = 0 for t ∈ I \ {a}, which, together with u(a) = 0 by

Proposition 4.1, yields that u(t) = 0 for t ∈ I. Hence, g1(t + 1) = 0 for t ∈ I by the second

relation of (4.9), W1(t) > 0 and u(t) = 0 for t ∈ I. In addition, one has W2(t)g2(t) = 0 for

t ∈ I by the first relation of (4.9) and u(t) = 0 for t ∈ I. Then g ∈ 0̃ ∈ L2
W (I), which implies

H0(0̃) = {0̃}. Hence, H0 is an operator.

Next, we consider the necessity of assertion (1). Let H0 be an operator. Suppose on the

contrary that the first relation of (4.5) does not hold. Then there exist t0 ∈ I \ {a} and

0 6= ξ ∈ Cd such that ξ ∈ KerW2(t0) ∩ KerB(t0). Since W1(t) > 0 and Id −D(t) is invertible

for t ∈ I, there exist 0 6= η1, η2 ∈ Cd such that W1(t0−1)η1 = −ξ and W1(t0)η2 = (Id−D(t0))ξ.

Set

y(t) =

{
(0T, ξT)T, t = t0,

0, t ∈ I \ {t0},
R(g)(t) =





(ηT1 , 0
T)T, t = t0 − 1,

(ηT2 , 0
T)T, t = t0,

0, t ∈ I \ {t0 − 1, t0}.
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Then y ∈ 0̃, g /∈ 0̃, and it is easy to verify that L(y)(t) = W (t)R(g)(t) for t ∈ I. It follows that

g̃ ∈ H0(0̃), and hence H0 is not an operator. This is a contradiction. Hence, the first relation of

(4.5) holds. Now, suppose on the contrary that the second relation of (4.5) does not hold. Then

there exist t0 ∈ I \{a} and 0 6= ν ∈ Cd such that ν ∈ RanW2(t0)∩Ran(B(t0)P2(t0)). It follows

from ν ∈ Ran(B(t0)P2(t0)) that there exists 0 6= ξ ∈ KerW2(t0) such that −B(t0)ξ = ν. In

addition, ν ∈ RanW2(t0) implies that there exists 0 6= ζ such thatW2(t0)ζ = ν. SinceW1(t) > 0

and Id −D(t) is invertible for t ∈ I, there exist 0 6= η1, η2 ∈ Cd such that W1(t0 − 1)η1 = −ξ

and W1(t0)η2 = (Id −D(t0))ξ. Set

y(t) =

{
(0T, ξT)T, t = t0,

0, t ∈ I \ {t0},
R(g)(t) =





(ηT1 , 0
T)T, t = t0 − 1,

(η2
T, ζT)T, t = t0,

0, t ∈ I \ {t0 − 1, t0}.

Then y ∈ 0̃, g /∈ 0̃, and it is easy to verify that L(y)(t) = W (t)R(g)(t) for t ∈ I. It follows

that g̃ ∈ H0(0̃), and hence H0 is not an operator. This is a contradiction. Hence, (4.5) holds.

Assertion (2) can be proved similarly. This completes the proof.

The following specific conditions for H0 to be an operator can be obtained by Theorem 4.1

directly.

Corollary 4.1 Assume that (A1) and (A2) hold.

(1) H0 is an operator if one of the following conditions holds :

(i) W1(t) > 0 for t ∈ I and W2(t) > 0 for t ∈ I \ {a};

(ii) W1(t) > 0 for t ∈ I and B(t) ≡ Id for t ∈ I \ {a};

(iii) W2(t) > 0 for t ∈ I and C(t) ≡ Id for t ∈ I.

(2) Let W1(t) > 0 for t ∈ I and W2(t) ≡ 0 for t ∈ I \ {a}. Then H0 is an operator if and

only if B(t) is invertible for each t ∈ I \ {a}.

(3) Let W1(t) ≡ 0 for t ∈ I and W2(t) > 0 for t ∈ I. Then H0 is an operator if and only if

C(t) is invertible for each t ∈ I.

Next, we present a sufficient condition for H0 to be non-densely defined in any significant

case

Proposition 4.2 Assume that (A1) and (A2) hold. If there exists t0 ∈ I such that W (t0) 6=

0, then H0 is non-densely defined.

Proof Let t0 ∈ I be the minimal point such thatW (t0) 6= 0, i.e., W (t) = 0 for a ≤ t ≤ t0−1.

The proof is divided into two cases:

Case 1 t0 = a. If W2(a) 6= 0, then there exists 0 6= ξ ∈ Cd such that W2(a)ξ 6= 0. Take

z(a) = (0, ξT)T and z(t) = 0, t ≥ a + 1. It is clear that z̃ ∈ L2
W (I). For any (y, g̃) ∈ H0, it

follows from Proposition 4.1 that y(a) = 0, and consequently,

‖z − y‖2W ≥ ξ∗W2(a)ξ > 0,

which implies that there exists no sequence {(yn, g̃n)} ⊂ H0 such that ỹn → z̃ in L2
W (I). Hence,

H0 is non-densely defined in L2
W (I). On the other hand, if W2(a) = 0, then W1(a) 6= 0 by the
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assumption. Take z̃ ∈ L2
W (I) and z = (ηT, νT)T ∈ z̃ with η(a + 1) 6= 0. For any (y, g̃) ∈ H0

with y = (xT, uT)T, it follows from Proposition 4.1 that y(a) = 0. Consequently, by the first

relation of (4.7), (A1) and W2(a) = 0, we get x(a+ 1) = 0. Then

‖z − y‖2W ≥ η(a+ 1)
∗
W1(a)η(a+ 1) > 0.

Therefore, H0 is non-densely defined in L2
W (I).

Case 2 t0 > a. If W2(t0) 6= 0, then we take z̃ ∈ L2
W (I) and z = (ηT, νT)T ∈ z̃ with

ν(t0) 6= 0. For any (y, g̃) ∈ H0 with y = (xT, uT)T, one has y(t) = 0 for t ∈ [a, t0] by

Proposition 4.1, (4.7), (A1) and W (t) = 0 for t ≤ t0 − 1. Then

‖y − z‖2W ≥ ν(t0)
∗
W2(t0)ν(t0) > 0.

Therefore,H0 is non-densely defined in L2
W (I). On the other hand, ifW2(t0) = 0, thenW1(t0) 6=

0. Take z̃ ∈ L2
W (I) and z = (ηT, νT)T ∈ z̃ with η(t0 + 1) 6= 0. For any (y, g̃) ∈ H0 with

y = (xT, uT)T, one has y(t) = 0 for t ∈ [a, t0] and x(t0 +1) = 0 by Proposition 4.1, (4.7), (A1),

W2(t0) = 0 and W (t) = 0 for t ≤ t0 − 1. Then

‖y − z‖2W ≥ η(t0 + 1)
∗
W1(t0)η(t0 + 1) > 0,

which implies that H0 is non-densely defined in L2
W (I). This completes the proof.

4.2 Essential numerical ranges of singular discrete linear Hamiltonian systems

In this subsection, we apply some results for abstract relations to the minimal relation H0

and consider various essential numerical ranges of H0. By Propositions 2.1–2.2, 3.1, 3.4 and

Theorem 3.2, if D(H0) ⊂ H0(0̃)
⊥
, then we get

σp(H0) = σp(H0,s), σ(H0) = σ̃(H0,s),

W (H0) = W (H0,s), We(H0) = We(H0,s) (4.10)

and

We1(H0) ⊂ We4(H0) ⊂ We2(H0) = We3(H0) = We(H0), (4.11)

where H0,s is the operator part of H0. Furthermore, for H0 being an operator, we get that

D(H0) ⊂ H0(0̃)
⊥

holds since H0(0̃) = {0̃}, and thus (4.10)–(4.11) hold. This implies that

Theorem 4.1 gives sufficient conditions for (4.10)–(4.11). Next, we shall present some sufficient

conditions for general cases. Before giving them, we introduce the following notations:

I1 := {t ∈ I : W1(t) > 0, W2(t) = 0},

I2 := {t ∈ I : W1(t) = 0, W2(t) > 0},

I3 := {t ∈ I : W1(t) = 0, W2(t) = 0}

and I4 := I \ (I1 ∪ I2 ∪ I3) = {t ∈ I : W1(t) > 0, W2(t) > 0}.
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Theorem 4.2 Assume that (A1) and (A2) hold. If B(t) is Hermitian for t ∈ I1 ∪I3, C(t)

is Hermitian for t ∈ I2 ∪ I3 and A(t) = D∗(t) for t ∈ I1 ∪ I2 ∪ I3, then (4.10)–(4.11) hold.

Proof By the above discussions, we only need to proveD(H0) ⊂ H0(0̃)
⊥
. IfH0(0̃) ⊂ H∗

0 (0̃),

then we get D(H0) ⊂ H0(0̃)
⊥
since D(H0) ⊂ H∗

0 (0̃)
⊥
by Lemma 2.1. Hence, it suffices to show

H0(0̃) ⊂ H∗
0 (0̃). Let (y, g̃) ∈ H0 and y ∈ 0̃. We shall show (y, g̃) ∈ H∗

00 = H∗
0 . For (z, f̃) ∈ H00,

we have

〈ỹ, f̃〉W − 〈g̃, z̃〉W =
∑

t∈I

R(f)∗(t)W (t)R(y)(t) −R(z)∗(t)W (t)R(g)(t)

=
∑

t∈I

[L(z)∗(t)R(y)(t)−R(z)∗(t)L(y)(t)]

=
∑

t∈I

R(z)∗(t)(P − P ∗)(t)R(y)(t) =

4∑

i=1

∑

t∈Ii

K(z, P, y)(t), (4.12)

where K(z, P, y)(t) := R(z)∗(t)(P − P ∗)(t)R(y)(t). In addition, we have

x(t + 1) = 0, t ∈ I1; u(t) = 0, t ∈ I2; R(y)(t) = 0, t ∈ I4 (4.13)

by y ∈ 0̃, i.e.,
∑
t∈I

R(y)∗(t)W (t)R(y)(t) = 0. Clearly, by the third relation of (4.13), one has
∑
t∈I4

K(z, P, y)(t) = 0. Let y = (xT, uT)T and z = (ηT, νT)T. Then, by the first two relations of

(4.13), one has

∑

t∈I1

K(z, P, y)(t) =
∑

t∈I1

(η∗(t+ 1)(D −A∗)(t) + ν∗(t)(B −B∗)(t))u(t),

∑

t∈I2

K(z, P, y)(t) =
∑

t∈I2

(η∗(t+ 1)(−C + C∗)(t) + ν∗(t)(A −D∗)(t))x(t + 1).

Therefore,
∑
t∈I1

K(z, P, y)(t) =
∑
t∈I2

K(z, P, y)(t) = 0 by the assumptions. On the other hand,

we have P (t) = P ∗(t) for t ∈ I3 since D(t) = A∗(t), B(t) = B∗(t) and C(t) = C∗(t) for

t ∈ I3, which yields
∑
t∈I3

K(z, P, y)(t) = 0. Then 〈ỹ, f̃〉W − 〈g̃, z̃〉W = 0 by (4.12). This implies

(0̃, g̃) ∈ H∗
00. Hence, H0(0̃) ⊂ H∗

0 (0̃) since H∗
00 = H∗

0 . This completes the proof.

Remark 4.2 If system (4.1) is symmetric, i.e., P ∗(t) = P (t) for t ∈ I, then the conditions

in Theorem 4.2 hold, and hence (4.10)–(4.11) hold.

Now, we give another sufficient condition.

Theorem 4.3 Assume that (A1) and (A2) hold and A(t), B(t), C(t) and D(t) satisfy the

conditions of Theorem 4.2 except the point a. If C(a) is Hermitian or W1(a) > 0, then (4.10)–

(4.11) hold.

Proof Similarly, we shall proveH0(0̃) ⊂ H∗
0 (0̃). Let (y, g̃) ∈ H0 and y ∈ 0̃. For (z, f̃) ∈ H00,

we get from (4.12) and the assumptions that

〈ỹ, f̃〉W − 〈g̃, z̃〉W = K(z, P, y)(a) +
4∑

i=1

∑

t∈Ii\{a}

K(z, P, y)(t) = K(z, P, y)(a).
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Let y = (xT, uT)T and z = (ηT, νT)T. Then u(a) = 0 by Proposition 4.1, which together with

ν(a) = 0, one has

K(z, P, y)(a) = η∗(a+ 1)(−C + C∗)(a)x(a + 1).

If C(a) is Hermitian, then K(z, P, y)(a) = 0. On the other hand, if W1(a) > 0, then x(a+1) = 0

by y ∈ 0̃, which yields K(z, P, y)(a) = 0. Hence, 〈ỹ, f̃〉W−〈g̃, z̃〉W = 0. This implies (0̃, g̃) ∈ H∗
00,

i.e., H0(0̃) ⊂ H∗
0 (0̃). This completes the proof.

Finally, we can get the following result when I is replaced by I ′ = {t}+∞
t=−∞.

Theorem 4.4 Assume that (A1), (A2) and P ∗(t) = P (t) hold for t ∈ I ′. If there exist

k1, k2 ∈ I ′ with k1 < k2 such that one of the following conditions holds :

(1) W (t) > 0 for t ≤ k1 and t ≥ k2,

(2) W2(t) = 0 for t ∈ I ′ and W1(t) > 0, B(t) is invertible for t ≤ k1 and t ≥ k2,

(3) W1(t) = 0 for t ∈ I ′ and W2(t) > 0, C(t) is invertible for t ≤ k1 and t ≥ k2,

then

Wei(H0) = We(H0), i = 1, 2, 3, 4. (4.14)

Proof Since P (t) = P ∗(t) for t ∈ I ′, we get thatH0 is Hermitian andH∗
00 = H∗

0 = H by [16,

Theorem 3.1]. Further, if D(H0) = H0(0)
⊥
, then we get D(H0) ∩D(H∗

0 ) = D(H0) = H0(0)
⊥
,

and thus (4.14) holds by (3) of Theorem 3.2. Hence, by Corollary 2.1, it suffices to show

H∗
0 (0̃) = H0(0̃). It follows from [17, Theorem 3.2] that

H0 = {(z, f̃) ∈ H : lim
t→−∞

η∗Jz(t) = lim
t→+∞

η∗Jz(t) = 0 for all η ∈ D(H)}. (4.15)

Note that H0(0̃) ⊂ H(0̃) = H∗
0 (0̃). We shall show that H∗

0 (0̃) ⊂ H0(0̃). Let (0̃, g̃) ∈ H∗
0 = H .

Then it implies that there exists a unique y = (xT, uT)T ∈ 0̃ such that L(y)(t) = W (t)R(g)(t)

for any g ∈ g̃ and t ∈ I ′. If condition (1) holds, then we have R(y)(t) = 0 by W (t) > 0 for t ≤ k1

and t ≥ k2. Then, together with (4.15), we have (y, g̃) ∈ H0, and hence g̃ ∈ H0(0̃). Therefore,

H∗
0 (0̃) ⊂ H0(0̃), and hence H∗

0 (0̃) = H0(0̃). On the other hand, if condition (2) holds, then

x(t + 1) = 0 for t ≤ k1 and t ≥ k2. It is noted that W2(t) = 0 for t ∈ I ′, x(t + 1) = 0 and

B(t) is invertible for t ≤ k1 and t ≥ k2. Then, by the first relation of (4.7), we have u(t) = 0

for t ≤ k1 and t ≥ k2 + 1. Therefore, y(t) = 0 for t ≤ k1 and t ≥ k2 + 1, which, together with

(4.15), yields that (y, g̃) ∈ H0. Hence H∗
0 (0̃) = H0(0̃). In addition, if condition (3) holds, then

H∗
0 (0̃) = H0(0̃) can be proved similarly. This completes the proof.
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