406}2?3 ;3;‘;‘; sy St Chinese Annals of
DOT: 10.1007/s11401-025-0005-4 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2025

Lifting Theorem for the Virtual Pure Braid Groups*
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Abstract In this article the authors prove theorem on Lifting for the set of virtual pure
braid groups. This theorem says that if they know presentation of virtual pure braid group
V Py, then they can find presentation of V P, for arbitrary n > 4. Using this theorem they
find the set of generators and defining relations for simplicial group 7% which was defined
in [Bardakov, V. G. and Wu, J., On virtual cabling and structure of 4-strand virtual pure
braid group, J. Knot Theory and Ram., 29(10), 2020, 1-32]. They find a decomposition of
the Artin pure braid group P, in semi-direct product of free groups in the cabled generators.
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1 Introduction

The operation cabling for classical braids was studied in [7]. Generators of virtual pure
braid group V P, have geometric interpretation (see [1]). Using this interpretation, in [4] we
constructed cabling generators for V P,. It was proved that for n > 3, the group VP, is
generated by the m-strand virtual braids obtained by taking (k,)-cabling on the standard
generators A; o and Mg of VP, together with adding trivial strands n — k — [ to the end for
1<k<n-—1and 2 <k+1<n, where a (k,l)-cabling on a 2-strand virtual braid means to
take k-cabling on the first strand and [-cabling on the second strand.

Different from the classical situation (see [7]) that the n-strand braids cabled from the
standard generator A;, for P generates a free group of rank n — 1, the subgroup of VP,
generated by n-strand virtual braids cabled from A; 2 and Ag 1, which is denoted by 73,1, is no
longer free for n > 3.

For the first nontrivial case that n = 3, a presentation of T5 has been explored with producing

a decomposition theorem for V P; using cabled generators (see [3]).
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In the present article we continue to study V P, in cabled generators, which we started in
[4]. We find some sufficient condition under which a simplicial group G, is contractible. In
particular, we prove that the simplicial group VAP, = {V P;},—1 2,... is contractible. Also, we
prove the lifting theorem for the virtual pure braid groups. From this theorem, it follows that if
we know the structure of V Py, T3 or Py, then using degeneracy maps we can find the structure
of VP,, T, or P, for all bigger n. On the other side, we prove that if we know a presentation
of VP,, n > 4, then conjugate it by elements p,, pnpn—1, -+, PnpPn—1--+p1 € VByt1, we can
find the presentation of VP, 1.

The article is organized as follows. In Section 2, we give a review on braid groups and virtual
braid groups. The simplicial structure on virtual pure braid groups will be discussed in Section
3. In Subsection 4.1 we prove the lifting theorem. In Section 6, we discuss the cabling operation
on classical pure braid group P,, as subgroup of V' P,. We know two types of decompositions of
P, as semi-direct products (see [1]). In Section 6 we construct new decomposition of this type
in terms of the cabled generators. In the last Section 7 we formulate some questions for further

research.

2 Braid and Virtual Braid Groups

2.1 Braid group
The braid group B,, on n strings is generated by o1, 0s,- -+ ,0,—1 and is defined by relations
0i0i+10; = 0i4100i+1, ©=1,2,--- ,n—2,
0,0 = 004, |i—j|>1.

Let Sy, n > 1 be the symmetric group which is generated by p1, p2,- -, prn—1 and is defined

by relations

PiPi+1Pi = Pit1PiPit1, t=1,2,--- ,n—2,
pipj = pipi, |i—jl>1.
There is a homomorphism B,, — S,,, which sends o; to p;. Its kernel is the pure braid group
P,. This group is generated by elements A4; ;, 1 <1 < j < n, where
At =07,

2 1 -1 -1 . .
Ai7j =0j-10j-2" " 0i410;0,1 " 0;_ 50, "y, 1+1<j3<n,

and is defined by relations (where e = +1)
Ajy A A = (Aij Arj)" Apj (Aij Arj)
A Ak Afn = (A Amj)* Arj (Agj Amj) 5, m < j,

m
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A A Afy = (AT ARSI A [A7 A5, i<k <m,
ALEAR AL, = Ay, k<i, m<jorm<k.

Here and further [a,b] = a='b~'ab is the commutator of a and b.
There is an epimorphism of P, to P,_1 what is removing of the n-th string. Its kernel
U, = (Ain, Aon, -+, Ap_1.n) Is a free group of rank n — 1 and P,, = U,, x P,,_; is a semi-direct

product of U,, and P,_;. Hence,
P, =U, % (Up—1 % (- x (U3 xUs))--+)

is a semi-direct product of free groups and Us = (A12) is the infinite cyclic group.

2.2 Virtual braid group

The virtual braid group V B,, is generated by elements

01,02, ,0n—1,P1,P2, ", Pn—1,

where 01,09, -+ ,0,-1 generate the classical braid group B,, and the elements p1, p2, -+, pn—1
generate the symmetric group S,,. Hence, V B,, is defined by relations of B,, relations of S,
and mixed relation
oipj = pjoi,  |i—jl > 1,
PiPi+10; = Oix1piPiy1, =1,2,--- ,n—2.
As for the classical braid groups there exists the canonical epimorphism of V' B,, onto the
symmetric group V B,, — S, with the kernel called the virtual pure braid group V P,. So we

have a short exact sequence
1-VP,—-VB,—> S, —1.

Define the following elements in V P,:
Niid1 = pio; Y Nipri = pidii1pi = 0; piy i=1,2,--- ,n—1,
Aij = Pj—1Pj—2 " Pit1 Aijit1Pit1 - Pj—2Pj—1,
Aji = Pj—1Pj—2 " Pit1 NigLiPit1 - Pj—2pj—1, 1<i<j—1<n-—1

It is shown in [1] that the group V P, n > 2 admits a presentation with the generators A;;, 1 <

1 # j < n and the following relations
Nij Akl = ki Aij s (2.1)
AkiAkjNij = Nij Akj Akis (2.2)

where distinct letters stand for distinct indices.
Like the classical pure braid groups, groups V' P,, admit a semi-direct product decompositions

(see [1]): For n > 2, the n-th virtual pure braid group can be decomposed as
VP, =V, { xVP,_1, n>2, (2.3)

where V*_, is a subgroup of V P,, V|* = F5, VP, is supposed to be the trivial group.
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3 Simplicial Groups

3.1 Simplicial sets and simplicial groups

Recall the definition of simplicial groups (see [8, p.300, 5] ). A sequence of sets X, =

{Xn}n>0 is called a simplicial set if there are face maps
di:Xn—>Xn_1 fOI'OSZSTL

and degeneracy maps
SiZXn—>Xn+1 fOI'OSiSTL,

that satisfy the following simplicial identities:

(1) didj = dj_1d; if i < j,

(2) sisj = sjqr18; if @ < 4,

(3) disj = sj—1d; if i < j,

(4) djsj = id = djy1s5,

(5) disj = sjdi—q if i > j+ 1.
Here X, can be geometrically viewed as the set of n-simplices including all possible degenerate
simplices.

A simplicial group is a simplicial set X, such that each X,, is a group and all face and
degeneracy operations are group homomorphism. Let G, be a simplicial group. The Moore
cycles Z,(G,) < G, is defined by

Zn(G.) = (Ker(di: Gp — Gn1)

i=0
and the Moore boundaries B,,(G.) < G, is defined by
n+1
Bo(G.) = do( M Ker(di: Grsr — Gn)).
i=1

Simplicial identities guarantee that B,(G.) is a (normal) subgroup of Z,(G,). The Moore
homotopy group m,(Gx) is defined by

Tn(Gx) = Zn(Gy) /[ Br(Gx).

It is a classical result due to Moore [9] that 7, (G,) is isomorphic to the n-th homotopy group

of the geometric realization of G,.

3.2 Simplicial group on virtual pure braid groups

By using the same ideas in the work [5, 7] on the classical braids, in [4] we introduced a

simplcial group

— ¢ N
VAP.: -+ 2 VP — VP, — VP — VP
p — —
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on pure virtual braid groups with VAP,, = V P, 11, the face homomorphism
d; : VAP, =V P,y - VAP, =VP,
given by deleting (i + 1)th strand for 0 < i < n, and the degeneracy homomorphism
s; : VAP, =V P,11 = VAP,11 =V P49

given by doubling the (i 4+ 1)th strand for 0 < i < n.
Let ¢,: VP, — V P,41 be the inclusion. Geometrically ¢,, is the group homomorphism by

adding a trivial strand on the end. From geometric information, we have the following formulae

Sjtp = tng15j: VP, = VP, for 0<j<n—1, (3.1)
o Ln_ldj, lf] <n,
djtn = {id, ifj=n. (3:2)

From the above formulae, the inclusion ¢,: VP, — V P,+1 gives an extra operation on the
simplicial group VAP, so that the simplicial identities still hold by regarding ¢,, as extra de-
generacy

Sn =tn: VAP,_1 =VP, =5 VAP, =V P,4.

Motivated from this example, a simplicial group G, is called conic if there exists an extra
degeneracy homomorphism s,,: G,—1 — G, so that simplicial identities (including formulae

involving s,,) hold.
Proposition 3.1 Any conic simplicial group G is contractible.

Proof Let z € Z,(G4) be a Moore cycle, that is z € G,, with djz =1 for 0 < j < n. Note
that we have the extra operation s, 4+1: G,, = Gp41. Let y = sp412 € Gp1. Then
djy = djspt12 = Spdjz = s,(1) =1
for 0 < j <n and
dp41Y = dnt1Sp 417 = .
It follows that 2 is a Moore boundary. Thus 7, (G,) = 0 for all n, and so G, is contractible.

Proposition 3.2 Let G, be a conic simplicial subgroup of VAP, such that G; = VAP, =
VPy. Then G, = VAP,.

Proof The proof is given by induction on the dimension n of G,,. From the hypothesis,
G1 = VAP;. Suppose that G,,—; = VAP,,_1 = V P,. In [4, Proposition 3.2], it was proved that
VPoi1 = (tn(VP,),s0(VP,), -+ ,8,—1(VP,)). From this equality we see that G,, = VAP, =
V P, +1 and hence the result holds.

The main point for introducing the new notion of conic simplicial group is to give a new
presentation of V' P, using degeneracy operations (including the extra degeneracies). From the

above proposition, the new generators for V P, with n > 2 are given by

Skn_2Skn_3 """ Skl/\l,Q and Skn_2Skn_3 """ Sky /\2,1
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for0 <k <ko<--+<kn_o<n-—1. Let
k,l ~
Bi'j = Sn—1Sn—2-*Si—1""*Sk—1"""S0Ai;

for (i,7) = (1,2) or (2,1) and 1 < k < I < n. Here the notation $; means that s; is removed.
Then
ko kil
VP = (19,151, 1 <k <1 <m.

The relations with a; ; and b; j, which were defined in [4] (in this paper we are also given their

geometric interpretation) are given by

th bl (3.3)

s

!
api—k = M1’y and by = p

By direct computations, we have the degeneracy formulae

. if ¢ > 1,
se(puii) = pitt, itk <t <l (3.4)
pi B0 <t <k

By writing it in terms of a; ; and b; j, we have

@i, ifk>1i+j, bi ifk>i+ 7,
Skij = \ Qi,j+1s ifi <k <i+j,  sibij=qbij1, ifi <k<i+j, (3.5)
Qit1,5+1, if0<k<i, bi+17j+17 if 0 <k<i.

. . kL k.l .
For obtaining a new presentation of V P, on generators p;’5 and p5’;, we need to rewrite
the relations

Sk 5Skn_a """ Sk (AkiNkjAij) = Sk _5Sky 4t Sky (Nij Akj Aki) (3.6)

for distinct 1 < 4,5,k <3 and 0 <k < ko < -+ <kp_3<n-—1,and

Sk aSkn_5 """ Ski(Nij)Sky 4 Sky 5 Sky (Akt)

= Sky 4Skn 5 Sk (ML) Skn 4 Sk st Sk (Nig) (3.7)

for distinct 1 < 4,5, k,l <4 and 0 < ky < ko < - < kp_g <n—1in terms ofuﬁj.

4 Lifting Defining Relations of VP,,_; to VP,

Let n > 4. Let RV (n) denote the defining relations (2.1)—(2.2) of VP,. By applying the

degeneracy homomorphism s;: VP, — VP11 to RV (n), we have the following equations
st(Xij)se(Akt) = se(Art)se(Aij), (4.1)
st(Aki)st(Arj)se(Xij) = se(Xij)se(Aij)se(Ari) (4.2)

in VP, for 1l <i,j k,l <nwith distinct letters standing for distinct indices, which is denoted

as 5¢(RY (n)).

The main aim of the present section is the proof of the following.
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Theorem 4.1 Letn > 4. Consider V P, as a subgroup of V P11 by adding a trivial strand
in the end. Then

n—1

RY (n) U U si(RY (n))

i=0
gives the full set of the defining relations for VP, y1.

We will use the following proposition.

Proposition 4.1 The degeneracy map sj : VP, = VP11, j=0,1,--- ,n—1 acts on the
generators Mgy and Ny, 1 <k <l <n of VP, by the rules

/\k+1,l+1 for i < k,

/\k,l+1/\k+1,l+1 for 1 = k,
Si—1(Mkt) = S A1 for k < i <1,

Akl 1 Akl for i =1,

Akl for i > 1,

Al41,k+1 for i <k,

Ait1,k+1 41,6 for i =k,
si—1(Ak) = Nit1.k for k <i <1,

ALEAL+ 1k for i =1,

ALk for i > [.

4.1 Lifting defining relations of VP3; to VP,
In the group V P3 we have 6 relations:
A12A13A23 = A23A13A12,  A21A23Aiz3 = A1zAazdar,  AzAi2Az2 = Aza 23,

A31A32 12 = A12A32 031, A23A21A31 = A31A2123,  Az2A31d21 = A21A31A30.

Acting on these relations by degeneracy map s, we get 6 relations in V Py. Let us analyze these
relations.

(1) The image of the first relation has the form
A1z - A14(A13 - A2a) A2z = A2a (a3 - Adra) i3 - Ao
Using the commutativity relation
A13A24 = A2aA1z,  A2szAia = A,

we get
A2A14A24 - A3 a3 = AoaAia(A2sA13A12).

Using the following relation of V' Ps:
A23A13A12 = A2 A13A23,

we get
A12A 14224 = Aag A g A2,
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that is the long relation in V Py.

(2) The image of the second relation has the form

21 - A2a(A23 - A1) A1z = Aia (A3 - Aaa) Aoz - Aot

Using the commutativity relations
A23A14 = A1ad23,  A13dog = Aoz,

we get
A21 A2a A 14 A23A13 = A1g Ao (A1 A2z Aot ).

From the relation of V Ps:
A13A23A21 = A2gA1a)12,

we get
A21A24 A 14 = A1gda4 )01,

i.e., the long relation in V Pj.
(3) The image of the third relation has the form

A1a(A13 - A2 - Ag2)Aaa = Aza a2 - A2 - AraAs.
Using the following relation from V Ps:
A13A 12232 = Aza A 1213,

we get
(A14A32) A12(A13Aa2) = Az2da2 A2 1413,

Using the commutativity relations
A1aAs2 = Az2A14,  A1sAa2 = Aa2as,

we have
A32A14 A 12 02013 = A32 A2 A 12 14 13-

After cancellation we get
A14A12A2 = Aga 1214,

i.e., the long relation in V Pj.

(4) The image of the fourth relation has the form

)\31 (/\41 : )\32)/\42 : )\12 = /\12 : )\32(/\42 : )\31))\41-

Using the commutativity relations

)\41/\32 = )\32/\415 )\42 : )\31 = )\31 : /\427

V. G. Bardakov and J. Wu
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we get
A31A32 041 A 1212 = (A12A32A31) A2 Aa1 -

Using the following relation from V Ps:
A12A32A31 = A31A32A12,

after cancelations we get
A1 Aa2A12 = A2 A2 A,

i.e., the long relation in V Pj.
(5) The image of the fifth relation has the form

A24(A23 - A21 - Az1) A1 = Az1 a1 - Aar - Azaas.
Using the following relation from V Ps:
A23A21A31 = Az1A21A23,
and the commutativity relations
A2aA13 = A13A21, A2z Aa1 = Aar e,

we get
A24A21 A 41 = Ag1 )21 A2y,

i.e., the long relation in V Py.

(6) The image of the sixth relation has the form
Az2(Adz - A31)Aa1 - Aa1 = Aa1 - Az1 (A1 - Az2) Ao
Using the commutativity relations
A12A31 = A1 A2, Aa1As2 = Az2Aa,

we get
A32A31 A2 a1 A21 = (A21A31 A32) A1 A2

Using the following relation from V Ps:
A21A31A32 = Az2A31 21,

we get
Aa2A41 221 = Aa1da1 a2,

i.e., the long relation in V P;. Hence, we proved the following lemma.

Lemma 4.1 From relations RY (3), relations so(RY (3)) and the commutativity relations
in RV (4), it follows the next set of relations in R (4) :

/\12)\14)\24 = )\24/\14/\125 )\21/\24)\14 = /\14)\24/\217 /\14)\12/\42 = )\42/\12)\14;
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AsrAa2A12 = A2A2 A1, A2aA2i A = A A21dea, AaaAarAor = Ao Aaidaz,
i.e., the set of relations where the indices of the generators lie in the set {1,2,4}.
Considering the set s1(RY(3)), we can prove the following lemma.

Lemma 4.2  From relations RV (3), relations s1(RY(3)), s2(RY (3)) and commutativity
relations in RY (4), it follows the next set of relations in RY (4):

A3A14A34 = Az4A1aA13, A1 A34A14 = AgA3aA31,  AadizAaz = Az A3,

A1 Aa3A13 = AzAaz a1, AzaAziAar = A AsiAsa,  Aas A Az = Az1 Aaa A,
i.e., the set of relations where the indices of the generators lie in the set {1,3,4}.
Considering the set of relations so(RY (3)), we can prove the following lemma.
Lemma 4.3 From relations RY (3), relations s;(RY(3)), i = 0,1,2 and commutativity
relations in RY (4), it follows the next set relations in RY (4) :

A23A24A34 = A34A22A23,  A32A3424 = AosgA34)32,  A2ad23Aa3 = Aaz3Aa3day,

Aa2A43A23 = A23Ma3Aa2,  AsaAzoda2 = A2A32A34,  Aa3Ma2A32 = AzaAg24s,

i.e., the set of relations where the indices of the generators lie in the set {2,3,4}.

4.2 Lifting the commutativity relations from RV (4) into RY (5)

We have to show that RY (5) = (RY (4),s;(RY (4)),i = 0,1,2,3). At first, we consider the
commutativity relations
AL, 1<i<3, 1<k<l<3

in RV (4). We divide them into four groups:
L-st group: [As4, A12] = [A2g, A1) = [Ag, Az = 15
2-nd group: [As4, A21] = [Aag, As1] = [M1a, As2] = 15
3-d group: [A43, A21] = [Aa2, Az1] = [Aa1, Az2] = 1;
4-th group: [Ag3, A12] = [M2, Mi3] = [Aa1, Aas] = 1.
Taking the third relation from the 1-st group and acting on it by s;, ¢ = 0,1, 2, 3, we get the

following relations
[A15A25, Aza] = [A15, A2aAsa] = [A15, AasAas] = [AisAia, Aos] = 1.

Using the commutativity relation
A14A23 = A2z A14,

which holds in V P4, and from the last relation, we have

[A15, A2s] = 1. (4.3)
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With considering (4.3) we get
[A15, A2a] = 1.

Then the second relation follows relation [A15, As4] = 1 and the first relation follows [Aa5, A\34] =

1. Hence, we have proved the following lemma.

Lemma 4.4 From the lifting s;, i = 0,1,2,3 of the relation [A4, \23] = 1 and the com-

mutativity relations in RY (4), it follows the commutativity relations
[A15, A2s3] = [A15, A2a] = [A15, Aza] = [Aos, Asa] =1

from RV (5).

Taking the second relation in the 1-st group and acting on it by s;, ¢ = 0,1, 2, 3, we get the

following relations

[A35, AMadaa] = [AosAss, A1a] = [Aas, Aadis] = [AasAaa, A1) = 1.

Using the commutativity relation
A24A13 = A13A24,

which holds in V P4, and from the last relation, we have
Then the third relation follows [Aa5, A13] = 1, the second relation follows [As5, A\14] = 1 and the
first relation follows [As5, A24] = 1. Hence, we have proved the following lemma.
Lemma 4.5 From the lifting s;, i = 0,1,2,3, of the relation [Aag, \13] = 1 and the com-
mutativity relations in RY (4), it follows the commutativity relations
[A2s, A1a] = [A2s, Ais] = [A3s, Adia] = [Ass, Aa] = 1
from RV (5).

Taking the first relation in the 1-st group and acting on it by s;, ¢ = 0,1, 2, 3, we can prove

the following lemma.

Lemma 4.6 From the lifting s;, i = 0,1,2,3 of the relation [As4, A12] = 1, the commuta-

tivity relations in RY (4) and relations from Lemma 4.5, it follows the commutativity relations
[A35, A2] = [Aas, A12] = [Aas, A1) = [Aas, Aag] = 1

from V Ps.
Considering the 2-nd group of commutativity relations we can prove the following lemma.

Lemma 4.7 Acting by lifting s;, i = 0,1,2,3 and using the commutativity relations of

V' Py, it is possible to get
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(1) from the commutativity relation [A14, A32] = 1 relations that
[A15, As2] = [A1s, Aa2] = [Ai5, Aas] = [Aas, Aaz] = 1,

(2) from the commutativity relation [Aag, A31] = 1 relations that
[A25, As1] = [A2s, Ada1] = [As5, A1 = [As5, Aae] = 1,

(3) from the commutativity relation [As4, A21] = 1 relations that
[As5, A21] = [Aas, A21] = [Aas, As1] = [Aas, Ase] = 1.

In V Ps we have 24 commutativity relations of the form [Ai5, A5;] = 1, Af; € { Ak, Ak}, where
1<i1<b5,1<k<l <4,

[Aas, ATa] = [Aas, Al3] = [Aas, A53] = [Ass, Alo] = [As5, ATy] = [A3s5, A%4] = 1,

[A2s, ATs] = [Aas, AT4] = [A25, A3l = [A15, Ads) = [Mis, Asa] = [Ai5, Agy] = 1.
These relations follow from the 1-st and the 2-nd groups of commutativity relations in RY (4).

The other commutativity relations from RY (5) \ RY (4) follow by the same way from the 3-d
and the 4-th groups of relations.

4.3 Lifting the commutativity relations from RY (n) to RY(n +1),n > 5

We have to show that RY (n + 1) = (RY(n),s;(RY(n)),i = 0,1,--- ,n — 1). At first, we

consider the commutativity relations

A

mn’

Al 1<m<n, 1<k<l<n

in V P,, which are not commutativity relations in V' P,_;. We divide them into four groups:
1-st group: [Amn, Akt] = 1;
2-nd group: [Apmn, \ix] = 1;
3-d group: [Aum, k] = 1;
4-th group: [Apm, Ax] = 1.
Consider the relations from the 1-st group and divide them into some subgroups.
(1) Suppose that m < k <1 < n.
Acting on the relation [Ayn, Ai] = 1 by s,—1 and using Proposition 4.1, we get the following

relations.
[Am7n+1)\mna Akl] =1.

Since [Amn, Aki] = 1 and this relation is a relation in V P,,, we have relation in VP, 1:
Mot 1, At] = 1. (4.5)
Let ¢ be such that m < k <1 < i < n. Acting by s;_1 on the relation [\, \pi] = 1, we get

Si—1([Mmns Akt]) = [Amnt1, Aw] = 1,
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that is a relation in VP, 4.
Let ¢ = [, then
S1—1([Amns Awt]) = [Amont1s Meir1 Am] = 1

Using the commutativity relations in V P, and relation (4.5), we have
[)\m,n+1a Ak,l-i-l] = 17 (46)

i.e., a commutativity relation in VP, 1.

Let 4 satisfy the inequality m < k < i <[ < n. Acting by s;_1, we get
Si—1([Amns Akt]) = PMmons1s Akas1] = 1,

that is a relation in VP, 4.

Let i = k. Acting by sx_1, we get
Sk—1([Amns Akt]) = Aot 15 Abyi+1 A et1,041) = 1.

Using relation (4.6), we have
A1, Aeri+1] = 1, (4.7)

i.e., a commutativity relation in VP, 4.

Let ¢ satisfy the inequality m < i < k <1 < n. Acting by s;_1, we get
Si—1([Amns Aet]) = PMmont1 Megr,i+1] = 1,

that is a relation in V P,41.

Let ¢ = m. Acting by s,,—1, we get
Sm—l([)\mny)\kl]) = [)\m,n+1)\m+l,n+1; Ak+l,l+1] =1

Using relation (4.7), we have
At tm41 Abt1,i41] = 1,

i.e., a commutativity relation in VP, 4.

Let ¢ satisfy the inequality i < m < k <[ < n. Acting by s;_1, we get
Si—1([Amns Akt]) = Amtt,n1 Meg1,i41] = 1,

that is a relation in VP, 4.

(2) Suppose that k <m <1 < n.
Acting on the relation [Ayn, Aki] = 1 by s,—1, we get the relation

[Am7n+1)\mna Akl] =1.

Since [Apn, Aki] = 1 that follows from the relations in V P, we have relation

[)\m,n+1a Akl] =1
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Let i be such that k < m <1 < i < n. Acting by s;_1 on the relation A, Agi] = 1, we get
Si—1([Amns Akt]) = PMmona1, Akt] = 1, (4.8)

that is a relation in V P,41.
Let ¢ = [, then
S1—1([Mmns> Art]) = [PMmnt 15 A1 ] = 1.

Using the commutativity relations in V P, and relation (4.8), we have
[)\m,n+1a Ak,l—i—l] =1,

i.e., a commutativity relation in VP, 4.

Let ¢ satisfy the inequality k < m < i <l < n. Acting by s;_1, we get
Si([)\mna)\kl]) = [)\m,n—i-la A/’c,l—i—l] = 17 (49)

that is a relation in VP, 4.

Let i« = m. Acting by s,,_1, we get
Sm([)\mna)\k:l]) = [Am7n+1)\m+1,n+lu A/’c,l—i—l] =1. (410)

Using relation (4.9), we have
At tm41, A1) =1,
i.e., a commutativity relation in VP, 1.
Let ¢ satisfy the inequality k < i < m <[ < n. Acting by s;_1, we get

Si—1([Mmns Akt]) = [Amat,n41, A1) = 1, (4.11)

that is a relation in V P,41.

Let ¢ = k. Acting by sp_1 we get
Sk—1([Amn> Art]) = Mg 1n41 Mei41 A kg1,041] = 1 (4.12)

Using relation (4.11), we have
Amt1,n41, Met1,041) = 1,
i.e., a commutativity relation in VP, 1.
Let ¢ satisfy the inequality i < k < m <l < n. Acting by s;_1, we get
Si—1([Amns Akt]) = Pmt1,n415 Aet1,i41] = 1, (4.13)
that is a relation in VP, 4.
(3) Suppose that k <1 <m < n.

Acting on [Ayn, Ai] = 1 by 8,1, we get the relation

Sn—l([Amna Akl]) = [Am,n+1Amn7 )\kl] =1
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Using commutativity relations in V P, and the commutativity relations in V P, 41, which were

proved in (2), from our relation it follows
[)\m,n—i-lu Akl] =1. (414)
Let i be such that k <! < m < i < n. Acting by s;_1 on the relation M\, Agi] = 1, we get

Si—1([Amns Akt]) = PMmona1: Akt] = 1,

that is a relation in VP, 4.

Let ¢ = m, then

Sm—l([)\mna)\kl]) = [)\m,n—i-l)\m-i-l,n—i-lu Akl] =1

Using relation (4.14), we have
[)\m-l-l,n—i-lu /\k,l] = 17 (415)

i.e., a commutativity relation in VP, 1.

Let ¢ satisfy the inequality k < < i < m < n. Acting by s;_1, we get

Si([Amns Akt]) = Mmgri+1, At = 1,

that is a relation in V P,41.

Let i = [. Acting by s;_1, we get
S1—1([Amn, Axt]) = [Amt1,n415 Aeip1Am] = 1

Using relation (4.15), we get
Am41,n415 A1) = 1. (4.16)

Let ¢ satisfy the inequality k < i <l < m < n. Acting by s;_1, we get
8i—1([Amn, Au]) = Mt 1,41, Akir1] = 1, (4.17)

that is a relation in V P,41.

Let i = k. Acting by sx_1, we get
Sk([Amns Akt]) = Mt 1,n415 Akit1 Met1,041] = 1

Using relation (4.16), we have

At tm41, Aeg1,41] = 1.

Let 7 satisfy the inequality i < k <l < m < n. Acting by s;_1, we get
Si([Amns Akt]) = [Amt1,n41 Meg1,041] = 1.

We considered only the 1-st group of relations. The proof for the other groups is similar.
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4.4 Lifting the long relations from RY (n) to RV (n +1), n > 4

Denote by R;ji. the following set of long relations:
Aij ik ik = AjpAirAij,  ANjidjrAie = NirAjeAji,
AikAij Ak = AjAij ik, AkiAkjAij = Nij kg ki
AjENjidki = Akidjidjk,  AkjAkiNji = Aji ki Ak,

i.e., relations which contain the generators with indices from the set {i, j, k}.
We have to prove that relations R; ;,+1 follow from relations of RY (n), s;(RY (n)), | =

0,1,---,n — 1 and commutativity relations of RY (n + 1).

Theorem 4.1  The long relations R; j n+1 in RY (n+1) follow from the relations of RV (n),
51(RV(n)), 1=0,1,--- ,n— 1 and commutativity relations of RV (n + 1).

To prove this theorem we start with the following lemma.

Lemma 4.8 Let n > 4 and for the set of integer numbers {i,j,n+ 1}, 1 <i<j<n-+1,
one of the following conditions holds

(1) i>3;

(2) j—i>3;

B)n+1—-j>3.

Then there is an integer k, 1 < k < n, such that the relations R; j 11 C Rv(n + 1) follow

from the relations sx_1(RY (n)).

Proof (1) Suppose that the condition (1) holds. Put &k = 1 and consider the relations
Ri—1j-1,, in RV (n). It is not difficult to see that so(Ri—1,j-1.n) = Rijnt1-

(2) Suppose that the condition (2) holds. Put k =i+ 1 and consider the relations R; ;1
in RY (n). Tt is not difficult to see that s;(Rij—1.n) = Rijnt1-

(3) Suppose that the condition(3) holds. Put k = j + 1 and consider the relations R; ;,, in
RY (n). It is not difficult to see that s;(R; ;) = Rijn+t1-

Now suppose that i = 2 and for the set {7, j,n + 1}, none of the conditions of the lemma is
satisfied. Take the set of relations Ry j_1,, and find so(R1,j—1,,). The first relation in Ry j_1.»
has the form

ALj—1AnAj—1n = Nj—1 nAlpALj—1-

Acting by s we get the relation

(/\1,j)\2,j)()\1,n+1 /\2,n+1)/\j,n+l = /\j,n+l (Al,n+1)\2,n+1)(Al,j)\Q,j)-

Since A2 jA1nt1 = Ant1A2,j and Ao iA1= A1 jA2 g1, We rewrite the last relation in the
form
A G122, 22 04125 nt1 = (Njntb 1At 1 A1) A2 np1 A2 5 (4.18)
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Take the set {1,7,n 4+ 1}. Since n > 4, for this set condition (2) or condition (3) of Lemma
(4.8) holds. Then the set of relation Ry j 41 comes from relations of V P,. In particular, the
relation

Ajnt1 A L nt1A1,) = AL AL 1 A ngt

holds. Using this relation, we rewrite (4.18) as
ALiAL 1 A2, A2 1 A ng 1 = (A1 A1 Nt 1) A2 nr1 A2 -
After cancelations we have
A2 A2 nt1Ajndl = Njnt1A2nt1A2 5.

It is the first relation from Ry j,41-

The second relation in Ry ;_1, has the form
ANj—11 =10 A0 = AL Aj—1nAj—11-
Acting by sg, we get the relation
(N2 ANt 1 (A1 A2ng1) = A1 A2t 1) N1 (N2 A1)
As we saw before, the set of relation Ry j,4+1 holds in V P,4;. Using the relation
AN+ 1 A L nt1 = AL 1N nt1Aj15
we rewrite our relation in the form
Aj2( A1+ 1An10j1) A2, 41 = ALng1 Azn1 Aj 14241
Using the commutativity relations Ajo A1 ny1 = A pt1Aj2 and Aj1 A2 i1 = A2 ng1Aj1 we have
(A1 A2) N1 (A2t 1A51) = M onp1A2nt1 A nr1 A2 051
After cancelations we get
Nj2Ajn+1A2,n41 = A2 n41 N nt1Aj2-

It is the second relation from Ry j 1.
The third relation in Ry j_1,, has the form

AnALj—1Anj—1 = An j—1A1j—1A1n-
Acting by so we get the relation
(A1 A2, 41) (A1 A2j) Ant1,5 = Ant1,5(A1jA2j) (AL nt1A2,n41)-
Since A2 nt1A1j = AijA2,nt+1 and AgjAi nt1 = A1 nt1A25, we rewrite the last relation in the form

M1 A1 A2, 04122 A 41,5 = (A1, A A ngb1) A2 A2 g1 (4.19)
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As we saw, the set of relation Ry j 41 comes from relations of V P,. In particular, the relation
At 1A A L1 = M1 AL Ang1,

holds. Using this relation, we rewrite (4.19) as
A1 A A2 n 11225 An+1,5 = (AL nt1 A1 Ant1,5)A2j A2, 1
After cancelations we have
A2n+1A25 Ant1,5 = Ang1,j A2 A2 n41.

It is the third relation from Ry j 1.

The fourth relation in Ry j_1,, has the form
AntAnj—1A1j—1 = A j—1An j—1An1-
Acting by s, we get the relation
(Ant1.220041,1) A 11,5 (A1 A25) = (A A2i) At (Ant1,2An41,1)-
As we saw before, the set of relation Ry j,4+1 holds in V P,4,. Using the relation
At 1,1 An4+1,jAj = AjAnt1,jAn+1,1,
we rewrite our relation in the form
Ant1,2(A1j An41,jAn41,1)A25 = A1jA2i An11,5 An+1,2 41,1
Using the commutativity relations A, 41,2A1; = AijAn41,2 and Apy1,1X25 = A2jAn41,1 we have
(AjAn+1,2) 0415 (A2 Ant1,1) = AjA2j At 1 jAnt1,2A0411-
After cancelations we get
An+12An41,jA25 = A2jAnt1jAn+1 .2

It is the fourth relation from Ry jn41.
The fifth relation in Ry j_1, has the form

Aj—1nAj—1,1An1 = An1Aj—1,1Aj—1,n-
Acting by sg, we get the relation
g1 (N2 A1) Ant1.2An41,1) = (Aat1,20041,1) (N2 A1) Aj -
Since A\j1An+1,2 = Anr1,2A51 and Ap1,1Aj2 = AjaAn41,1, we rewrite the last relation in the form

A1 22(Ant1,2251) Ant1.1 = Ant1,2(Nj2 Ant1,1) Aj1 At (4.20)
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As we noted before, the set of relation R1 ;41 comes from relations of V P, and in particular,
the relation

Ant+1,1A1 A5 n41 = Ajnt1Aj1 Ant1,1
holds. Using this relation, we rewrite (4.20) as
A1 22250411 A0 41,1 = At 1,202 nr1 A1 Adn 1,1
After cancelations we have
Ajnt1 X2 Aj b1 = Ajnr1Aj2 Nt

It is the fifth relation from Ry j,41.

The sixth relation in Ry j_1,, has the form
Anj—1An1Aj—1,1 = Nj—1,1 A1 Anj—1-
Acting by s, we get the relation

Ant1,5(Ana1,22n41,1) (A2 A1) = (Nj2 A1) (Ang1,2An41,1) Anga -
Using the commutativity relations Ap41,10j2 = AjaAng1,1 and AjiAni12 = Apg1,2A;1 we have
Ant1,jAn+1,222 A0+ 1,1A051 = AjaAnt1,2(Aj1 Adn41,1An41,5)-
Using the relation
A1 ARH1,1 41, = Ant1,j An+1,1 251,

we rewrite our relation in the form
Ant1,5A4+1,2 02 041,101 = A2 Ang12(Ant1,jAng1,1051)-
After cancelations we get
And1,A 41,2852 = N2 Ant1,2 1,5

It is the sixth relation from Rg j n41.

Hence, we have proved the following lemma.

Lemma 4.9 Let n > 4. Acting on the relations Ri j—1,, of VP, by so and using the

relations, which we got in Lemma 4.8, we get relations Ry jn+1 in V Py,

Next, suppose that ¢ = 1 in the set {4, j,n+1}. Since n > 4 and we can not use Lemma 4.8
for the relations R; j n41, we see that it is possible only in the case j = 3, n +1 = 5. Hence we
have to prove that the relations Rj 35 follow from relations si(RY (4)) for some k.

Consider relations R 2.4 in V P, and act on them by s;. The first relation in R; 24 has the

form

)\12/\14)\24 = /\24)\14/\12-
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Acting on it by s, we get
(A13A12)A15(A25A35) = (A25A35) A5 (A13A12).

Note that relations Ry 25 satisfy condition (3) in Lemma 4.8. Using the first relation from this
set
A12A15A25 = AasA15 12,

we get
A3(A25A15A12) X35 = Aas Azs A1 A13A12.

Using the commutativity relations AjgAaos = AasA13 and A2 A35 = A35A12, we have
(A25A13)A15(As5A12) = AasAzs A5 13 A1z
After cancelation we arrive to the relation
A13A15A35 = AzsA15A13.

This is the first relation from R; 3 5.

The second relation in R 2 4 has the form
A21A24A14 = A1aA24A21.
Acting on it by s1, we get
(A21A31)(A25A35) A5 = A15(A25A35) (A21 a1 ).
Using the commutativity relation A3;Aos = AasA31 and Ag5 21 = A21A35, we have
A21(A25A31) A5 A15 = A5 A25(A21A35) A3
By Lemma 4.8, we have relation
A15A25A21 = A21 A25 A1s.

Using it we get
A21 A25A31A35 A 15 = (A21A25A15) A5 A1

After cancelation we arrive to the relation
A31A35A15 = A15A35A31.

This is the second relation from R 3 5.

Using the third relation in the set Rq 2.4

)\14)\12/\42 = /\42/\12)\14
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and acting by s1, we get
A15(A13A12) (As3A52) = (As3As2)(A13A12) A1s.
Using the commutativity relation A\jaA\53 = As3A12 and As2A13 = A13A52, we have
A15A13(As3A12) As2 = Asz(A13As2) A2 Ais.

Using the relation
As2A12A15 = A15A12A52,

which we have by Lemma 4.8, we get
A15A13A53 A 12052 = As3A13(A15A12A52).
After cancelation we arrive to the relation
A15A13A53 = AszA13A15.

This is the third relation in Ry 3 5.

The fourth relation in R; 4 has the form
A11A12A12 = A2 a2 a1
Acting on it by s1, we get
A51(As3A52) (A13A12) = (M3 A12) (As3A52) As1.
Using the commutativity relation AsoAi3 = A13As2 and A2 53 = As53A12, we have
A51A53(A13A52) A2 = A13(As3A12) As2 A1
By Lemma 4.8, we have relation
A12A52A51 = As1A52A12.

Using it, we get
A51A53A13A52 012 = A13As53(A51A52A12).

After cancelation we arrive to the relation
A51A53A13 = A13A53A51.

This is the fourth relation in R 3 5.
Using the fifth relation in the set Ry 2.4

)\24)\21 /\41 = /\41 /\21 )\24

105
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and acting by s1, we get
(A25A35)(A21A31)A51 = As51(A21A31)(A25A35)-
Using the commutativity relation AzsA21 = A21A35 and A31 25 = A25A31, we have
A25(A21A35) A31A51 = As1A21 (A25A31) Ass.

Using the relation

A51A21A25 = Aas 21 As1,

which we have by Lemma 4.8, we get
A25A21 A35A31A51 = (A25A21A51) A31A35.
After cancelation we arrive to the relation
A35A31A51 = A51A31 A35.

This is the fifth relation from R; 3 5.

The sixth relation in R; 24 has the form
A12A11A21 = A21 a1 Aga.
Acting on it by s, we get
(As53A52)A51(A21A31) = (A21A31)As51(A53A52)-
By Lemma 4.8, we have relation
As2A51A21 = A21 A51A52,

from which

A53(A21A51A52) A1 = A21A31A51 A53A52.
Using the commutativity relation AssAa1 = A21As53 and As2A31 = A31A52, we have
(A21A53) A51(A31A52) = A21A31 A51 A53A52.
After cancelation we arrive to the relation
A53A51A31 = A31A51A53.

This is the sixth relation from R; 3 5.
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4.5 Simplicial group T,

The simplicial group T, was defined in the paper [4]. In the same paper it was proved that
T3 is generated by elements

agy, a2, a3, b3y, bz, bi3

and is defined by relations

k m k

[a31, ag] 1120 = [agy, a13]° 110

k .m
C C.
= [aga, a1z 12 =1,

[b31, boa] 15 = [b31, bus] T = [ba, by = 1

that can be written in the form

— —k _—m m m k m—k _—m
C35C31 ] _ Cllcscg; C31 1 _ [,%22C31 C13C22  C31 1 _
[az1, as3 ] = [as1, a13 ] = lags )13 J=1,
— k m—k_—m m o —m k m—k_—m
Ch5Ca ] €13€22  C31 1 __ [}%22%31 €13€22 €31 1 _
[b31, 0557 | = [b31, b3 ] = [b5 by ]=1,

where k,m € Z.

In the general case we will prove the following theorem.

Theorem 4.2 The group T, n > 2 is generated by elements
Qi n+1—1i, bi7n+17i; 1= ]_7 2’ ceen,

and is defined by relations
k1 ko kp—1

Lk
R B R

cklckz___ckn—1
[bi nt1—i5 bjng1—5] 11 2o

where 1 <i#£j<mn, k €Z.

5 VP, as a Subgroup of VB, 1,

In the previous section we showed how it is possible to construct V P, from V P, 1 using
operation cabling. In this section we will show how it is possible to construct V P, 41, using
the action of the symmetric group S,11 = (p1,p2, -+ , pn, ), Which is a subgroup of the virtual
braid group VBj,411 = VP11 X Spt+1. Recall that S, 1 acts on the generators of VP, by
the rule

pk/\ijpk:/\pk(i),pk(j)a k=1,2,--- ,n—1

The symmetric group S,,41 ia s disjoint union of cosets by S,:
Sn+1 = Sne u Snpn u Snpnpn—l U---u Snpnpn—l crpP1-
We will denote X}, the set of generators of V Py, k > 2, i.e.,

Xe={Nij [1<i#j <k}
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Ry will denote the set of defining relations of V Py. In particular, LR will denote the set of

long relations and CRj, will denote the set of commutativity relations. It is evident that
Ri = LR UCRL.

Since V P3 does not contain commutativity relations, R3 = LR 3.
Let Kk >2and 1 < i < j <[ < k be three distinct integer numbers. Denote by szl the

following set of long defining relations from Ry:
Aig At Aje = NjidiAigs  AjiAjidie = XAt A,
AitAig Ay = Aijig A, AudigAig = NijAij A,
At Agide = AiNjidjis A = A A

Then
LRe= || R
1<i<j<I<k
In particular,
Rs = R3™.

Let the integers i,j,l,m € {1,2,--- , k} satisfy the conditions
1<j, l<m, j>m.

Denote
RN * *
R;cj "= {/\?jAzm = ATmAij}

the set of four commutativity relations with fixed indices, then

CRe= || ®mZ
i<j, l<m, j>m
is the full set of the commutativity relations in V Py
Taking the set of generators of V Ps:
A3 = {12, A1, A1, Aos, Az, Asa )

and acting on it by coset representatives of Sy by S3, we get

X?f)g = {A127)\217)\147)\247A41’A42}’
X§3p2 = {Alg,)\317)\147)\34? A41’ A43}’
X?f)?’pzpl = {/\23, )\32, )\247 )\347 /\42a /\43}'
We see that
Xy = X3 U X U X,

In the general case we have the similar result.
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Proposition 5.1 For n > 3 the following equality holds

X1 = Xy U XPm U XPnPn—t,

Proof Any generator in X, 11 \ A, has the form A} g1 for some 4, 1 <@ <n. Taking the

generator \},, € X, and acting on it by conjugation of p,,:

( 91ﬁn)pn = /\T,n+17 ()‘;n)pn = /\;,n+17 T 7( :;—1,11)/)” = AZ—l,n+l'

*

n—1,n, and acting of conjugation by

To find the last generator A} , ., taking the generator A
PnpPn—1, We get

M)t = (Nt )™ = ANt

To find the set of defining relations in R4, taking the defining relations of Rz = R'?? and

acting by coset representatives, we get
124 134 234
R§3 — R4 , Rgspz — R4 , R§3P2P1 — R4 .
Since
LRy =RPURPPURP URP and R} =RE™ =R,

we get
LRy =TRsU R§3 I_IRg’sp2 U Rg”’zpl,

In V P; we don’t have commutativity relations, hence we have the following proposition

Proposition 5.2
R4 = Rs URE LUREP? LUREPP LCR,.

In the general case we can prove the following theorem.

Theorem 5.1 Forn > 4 we have
Rn-‘,—l — Rn L Rfln L Rflnpn—l [ Rﬁnﬁn—l"'ﬂl.

Proof Consider the set of long relations R;iflﬂ'l which does not lie in R,,. If j # n, then

the relations R%7™ lie in R, acting by p,,, we get
o il
(Rigmyn = R,

If j=n,but i #n—1, then

(R;L{n_lwn)pnpn—l _ (R:;i;lﬂl"rl)ﬂn—l _ R:ziln-i_l

If j=n,i=n-—1, then

(R2_27n_17n)pnpn71pn72 _ (Rz_—i_%n—l-,n-i-l)pnflpnﬂ _ (Rz;?mn-ﬁ-l)pnq _ Rz;inrwl
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Consider a set of commutativity relations
i,n+1,1,
R € Rygr \ R

We will assume that ¢ < [ < m. Proofs for other cases are similar.
If m # n, then

(Rf{nJ,m)Pn — Ri;i—{-l,l,m.
If m =n, but [ # n — 1, then

n,l,n—1\pnpn_1 _ i,n+1,0n—1\p,_1 _ pin+liln
(Rn ) e - (Rn—i-l ) " - Rn+1 .

Ifm=n,l=n—1buti#n—2, then

(Rgn,n—ln—l)pnpnflpnﬂ =( 21?17n_27n_1)pn—lpn—2 _ (R:'Z,n+1,n—2,n)pnfz _ Rilxi-{lm—lm.

Ifm=n,l=n-—1andi=n—2, then

n—=3,n,n=2,n—1\pnpn-1pn—2pn—3 — (o —3n+tLn=2n=1\p, 1pp_2pn_3
®; presecsonamncs = (RIS oot

n—3n+1,n—2n\pn_2pn—3 __ n—3,n+ln—1n\p,_3 _ pn—2n+ln—-1n
(Rn ) - (Rn-l-l ) - Rn—i—l .

6 Cabling of the Artin Pure Braid Group

In the paper [7] it was defined a cabling on the set of pure braid groups {P,}n=23,.... It
was proved that in fact all generators of P, come from the unique generator Ajs of Us, using
cabling. In this section we find a set of defining relation of P, in these generators.

In the previous section we define elements ¢;; = b;;a;;. Put
Ti={cj |i+j=k+1), k=1,2,---,n—1.
Any group Ty for k > 1 is getting from 7} _, using cabling, i.e.,
Ty = (so(Ti—1), 51(Ti 1)+ se—2(Ti_1))-

Then P, = (T{,T%,--- ,T5_4).
In the paper [4] it was found the set of defining relations of P, in the cabled generators ¢;;,

which was more precisely proved.

Proposition 6.1 The group Py is generated by elements

C11, C21, C12, €31, C22, C13

and is defined by relations (where e = +1)

cih el _ ot ciy cih cih Con
Co1 = C21, Cg =Cy , C31 =C31, Cop =C22, C13 = (13,

C51 C31 _ Ca1 €31 Co2Cay
C3] = €31, Cop = Coy , €13 = Ci3 )
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Cgif = €31, Cﬁf = Cgf
-1
55 = [es1, ciy ) ey, coa] ea2 (31, cin | = 53 i eanledy . ei5 s
2 —1
58 = [er2, ¢577] eaa ey, eas] [eas, €5)'] = [c12, 7] €152 can c7

Define the following subgroups of Pj:
Vi = (ci1,c12,¢13), Vo = (ca1,¢2), V3 = (ca1).
Then we have the following theorem.
Theorem 6.1 Py =V; x (Vo x V3).
Proof At first we prove that (Va, V3) = V5 x V3. Indeed, this group is defined by relations
1

_ c21 __ .C31
[car,ca] =1, 53! = o)

Since the first relation we can write in the form
C,
eyl = ca1,

we have the need decomposition.
From the defining relations of P;, we find the following formulas of conjugation by c3;:
—1

C31 __ 31 __ c31 __ Ci2
€11 =C11, €3 =C12, C13 =C13 -

Hence
Py = (Vi,Va) x V3.
Find the formulas of conjugations by ca1:
6126;11

—1
C21 __ c21 __ C11 C21 __
€11 = €1, €G3 =Cg ;. €3 = Cy3

Also we have two formulas of conjugation by cao:

-1
C22 __ c22 __ Ci1
€11 =€, €13 =C3 -

—1
To finish the proof we need to find a formula for the conjugation ¢{3* and ¢;3* .

In the proof of the previous theorem, we have found relation
-1 -1 -1,-12 —1/,—1
€21Co9 C13C19 = Cay C3 Ca1Ca (Con C13C22).
Multiplying both sides on 02_11 to the left and using relation
-1 _ -1
Cgog C13C22 = C11C13Cqq

we get

—1 -1 _ ,.-2.-12 —1\coo —1
Cap C13C12 = (Co1 €12 €31)(c11€13¢7; )¢ -
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Using the conjugation formulas
-2 —12 2 -1 -2 —1ye 2 -2
Ca1 C12 €31 = Cl1C1p €11, (Cricasery )™ = cqpcaseqys

we get
(01301_21)C22 = C%101_2101301_12-
Using the conjugation formula
o = i
we have
cisery €3 = enepy cscry

From this relation we get the need formula

C22 2 —1 —1 —1
C12° = €11€13 C12€qy C13Cyy -
Conjugating both sides by ¢, we find
Y Coo s

-1
v | -1 —1 2
C12° = €1 C13€yp C12€13 €11

In this theorem we used full set of defining relations for P;. Let us consider the group Ps.

It has the following presentation

-1
c c c
Py = (c11,¢21,¢12 | €] = c11, €3 =15 ).
Using degeneracy maps sg, S1, S2, we construct the following subgroups of Pj:

1
s0(Ps) = (ca1, 31, C20 | 53" = ca1, 53 = co3' ),

1

s1(Ps) = (c12,¢31,¢13 | §3! = 12, €§% = 1§ ),
1
C11

so(P3) = (c11, €22, c13 | €132 = 11, 1% = ¢ ).

From the list of relations in Ps, s;(Ps3), i = 0,1, 2, we see that it is not the full list of relations

for Py. To have a full list we can add the relations

—1
c31 co1 _ C12Cqq coo 2 —1 —1 —1
Cj1 = C11, €13 = Cy3 » G127 = €11 €63 €C12Cq1 C13Cq -

But as follows from Theorem 4.1, for n > 5 the full list of relations for P, comes from
relations of P,_1, s;(P,—1), 71 =10,1,--- ,n — 2. Using induction by n, we can find relations of
P,. We get the following relations:

— conjugations by ¢,—1,1,

1 k,k—1 _ . Cn—1,1 __ . . . .
Cokk = Cn—kk > k=2,3,---,n—1; ¢ =cy, fi+j<n

Cn—2,2 Cn—k,k—2 _ . Cn-22 _ 2 —1 —1 1 . . .
c,” =c, k=23,---,n—-1; ¢ =ci1C13 CijC1y C13C1, t+7<mn;
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Cn_2,

¢ = Cim  in all other cases.

In the general case we prove the following theorem, which gives a new semi-direct product

decompositon of the pure braid groups.
Theorem 6.2 Forn > 3 the pure braid group P, is the semi-direct product of free groups:
Po=Vix(Vax (- (Va2 X Vp_q)--)),
where

Vn—l - <Cn—1,1>a

Ve = <ch72,17n—272>’

Vi = {ci1,¢12, -+, Cln—1).

Proof The theorem is true for n = 4. We prove that P, = V3 x P,,_1 for n > 4. By the
lifting theorem, the set of defining relations for P, comes from the set of defining relations for

P, _1 by degeneracy maps. Using this fact, let us prove that V; is normal in P,.

7 Directions for Further Research

We know some generalizations of the Artin braid group B, for example, welded braid
group, singular braid groups and others (see [1]). In these groups it is possible to define pure
subgroups. It is interesting to study presentations of these subgroups in cabled generators,
define analogs of simplicial group 7, and find its homotopy type.

For example, the welded braid group W B,, contains the group of basis conjugating auto-
morphisms Cb,,.

Question 1 The group of basic conjugating automorphisms Cbs is generated by two auto-
morphisms €97 and €12 which generate a free group of rank 2. Using operation cabling can we
find a presentation of Cb,, in the cable generators?

Question 2 Let ¢ : VP, — Cb,, be a homomorphism which sends A;; to ;5. Is it true that
T,,—1 is isomorphic to its image ¢(T,—1)7

We know Artin and Gassner representations of P, (see [6, Chapter 3]).

Question 3 Find analogs of Artin and Gassner representations of P,, using decomposition

from Section 6. Are they equivalent to the classical representations?
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