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Abstract In this article the authors prove theorem on Lifting for the set of virtual pure
braid groups. This theorem says that if they know presentation of virtual pure braid group
V P4, then they can find presentation of V Pn for arbitrary n > 4. Using this theorem they
find the set of generators and defining relations for simplicial group T∗ which was defined
in [Bardakov, V. G. and Wu, J., On virtual cabling and structure of 4-strand virtual pure
braid group, J. Knot Theory and Ram., 29(10), 2020, 1–32]. They find a decomposition of
the Artin pure braid group Pn in semi-direct product of free groups in the cabled generators.
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1 Introduction

The operation cabling for classical braids was studied in [7]. Generators of virtual pure

braid group V Pn have geometric interpretation (see [1]). Using this interpretation, in [4] we

constructed cabling generators for V Pn. It was proved that for n ≥ 3, the group V Pn is

generated by the n-strand virtual braids obtained by taking (k, l)-cabling on the standard

generators λ1,2 and λ2,1 of V P2 together with adding trivial strands n − k − l to the end for

1 ≤ k ≤ n − 1 and 2 ≤ k + l ≤ n, where a (k, l)-cabling on a 2-strand virtual braid means to

take k-cabling on the first strand and l-cabling on the second strand.

Different from the classical situation (see [7]) that the n-strand braids cabled from the

standard generator A1,2 for P2 generates a free group of rank n − 1, the subgroup of V Pn

generated by n-strand virtual braids cabled from λ1,2 and λ2,1, which is denoted by Tn−1, is no

longer free for n ≥ 3.

For the first nontrivial case that n = 3, a presentation of T2 has been explored with producing

a decomposition theorem for V P3 using cabled generators (see [3]).
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In the present article we continue to study V Pn in cabled generators, which we started in

[4]. We find some sufficient condition under which a simplicial group G∗ is contractible. In

particular, we prove that the simplicial group V AP∗ = {V Pi}i=1,2,··· is contractible. Also, we

prove the lifting theorem for the virtual pure braid groups. From this theorem, it follows that if

we know the structure of V P4, T3 or P4, then using degeneracy maps we can find the structure

of V Pn, Tn or Pn for all bigger n. On the other side, we prove that if we know a presentation

of V Pn, n ≥ 4, then conjugate it by elements ρn, ρnρn−1, · · · , ρnρn−1 · · · ρ1 ∈ V Bn+1, we can

find the presentation of V Pn+1.

The article is organized as follows. In Section 2, we give a review on braid groups and virtual

braid groups. The simplicial structure on virtual pure braid groups will be discussed in Section

3. In Subsection 4.1 we prove the lifting theorem. In Section 6, we discuss the cabling operation

on classical pure braid group Pn as subgroup of V Pn. We know two types of decompositions of

Pn as semi-direct products (see [1]). In Section 6 we construct new decomposition of this type

in terms of the cabled generators. In the last Section 7 we formulate some questions for further

research.

2 Braid and Virtual Braid Groups

2.1 Braid group

The braid group Bn on n strings is generated by σ1, σ2, · · · , σn−1 and is defined by relations

σiσi+1σi = σi+1σiσi+1, i = 1, 2, · · · , n− 2,

σiσj = σjσi, |i − j| > 1.

Let Sn, n ≥ 1 be the symmetric group which is generated by ρ1, ρ2, · · · , ρn−1 and is defined

by relations

ρ2i = 1, i = 1, 2, · · · , n− 1,

ρiρi+1ρi = ρi+1ρiρi+1, i = 1, 2, · · · , n− 2,

ρiρj = ρjρi, |i− j| > 1.

There is a homomorphism Bn → Sn, which sends σi to ρi. Its kernel is the pure braid group

Pn. This group is generated by elements Ai,j , 1 ≤ i < j ≤ n, where

Ai,i+1 = σ2
i ,

Ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ

−1
i+1 · · ·σ

−1
j−2σ

−1
j−1, i+ 1 < j ≤ n,

and is defined by relations (where ε = ±1)

A−ε
ik AkjA

ε
ik = (AijAkj)

εAkj(AijAkj)
−ε,

A−ε
kmAkjA

ε
km = (AkjAmj)

εAkj(AkjAmj)
−ε, m < j,
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A−ε
imAkjA

ε
im = [A−ε

ij , A−ε
mj ]

εAkj [A
−ε
ij , A−ε

mj ]
−ε, i < k < m,

A−ε
imAkjA

ε
im = Akj , k < i, m < j or m < k.

Here and further [a, b] = a−1b−1ab is the commutator of a and b.

There is an epimorphism of Pn to Pn−1 what is removing of the n-th string. Its kernel

Un = 〈A1n, A2n, · · · , An−1,n〉 is a free group of rank n− 1 and Pn = Un ⋊Pn−1 is a semi-direct

product of Un and Pn−1. Hence,

Pn = Un ⋊ (Un−1 ⋊ (· · ·⋊ (U3 ⋊ U2)) · · · )

is a semi-direct product of free groups and U2 = 〈A12〉 is the infinite cyclic group.

2.2 Virtual braid group

The virtual braid group V Bn is generated by elements

σ1, σ2, · · · , σn−1, ρ1, ρ2, · · · , ρn−1,

where σ1, σ2, · · · , σn−1 generate the classical braid group Bn and the elements ρ1, ρ2, · · · , ρn−1

generate the symmetric group Sn. Hence, V Bn is defined by relations of Bn, relations of Sn

and mixed relation

σiρj = ρjσi, |i− j| > 1,

ρiρi+1σi = σi+1ρiρi+1, i = 1, 2, · · · , n− 2.

As for the classical braid groups there exists the canonical epimorphism of V Bn onto the

symmetric group V Bn → Sn with the kernel called the virtual pure braid group V Pn. So we

have a short exact sequence

1→ V Pn → V Bn → Sn → 1.

Define the following elements in V Pn:

λi,i+1 = ρi σ
−1
i , λi+1,i = ρi λi,i+1ρi = σ−1

i ρi, i = 1, 2, · · · , n− 1,

λij = ρj−1ρj−2 · · · ρi+1 λi,i+1ρi+1 · · · ρj−2ρj−1,

λji = ρj−1ρj−2 · · · ρi+1 λi+1,iρi+1 · · · ρj−2ρj−1, 1 ≤ i < j − 1 ≤ n− 1.

It is shown in [1] that the group V Pn, n ≥ 2 admits a presentation with the generators λij , 1 ≤

i 6= j ≤ n and the following relations

λijλkl = λklλij , (2.1)

λkiλkjλij = λijλkjλki, (2.2)

where distinct letters stand for distinct indices.

Like the classical pure braid groups, groups V Pn admit a semi-direct product decompositions

(see [1]): For n ≥ 2, the n-th virtual pure braid group can be decomposed as

V Pn = V ∗
n−1 ⋊ V Pn−1, n ≥ 2, (2.3)

where V ∗
n−1 is a subgroup of V Pn, V

∗
1 = F2, V P1 is supposed to be the trivial group.
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3 Simplicial Groups

3.1 Simplicial sets and simplicial groups

Recall the definition of simplicial groups (see [8, p.300, 5] ). A sequence of sets X∗ =

{Xn}n≥0 is called a simplicial set if there are face maps

di : Xn → Xn−1 for 0 ≤ i ≤ n

and degeneracy maps

si : Xn → Xn+1 for 0 ≤ i ≤ n,

that satisfy the following simplicial identities:

(1) didj = dj−1di if i < j,

(2) sisj = sj+1si if i ≤ j,

(3) disj = sj−1di if i < j,

(4) djsj = id = dj+1sj ,

(5) disj = sjdi−1 if i > j + 1.

Here Xn can be geometrically viewed as the set of n-simplices including all possible degenerate

simplices.

A simplicial group is a simplicial set X∗ such that each Xn is a group and all face and

degeneracy operations are group homomorphism. Let G∗ be a simplicial group. The Moore

cycles Zn(G∗) ≤ Gn is defined by

Zn(G∗) =
n⋂

i=0

Ker(di : Gn → Gn−1)

and the Moore boundaries Bn(G∗) ≤ Gn is defined by

Bn(G∗) = d0

( n+1⋂

i=1

Ker(di : Gn+1 → Gn)
)
.

Simplicial identities guarantee that Bn(G∗) is a (normal) subgroup of Zn(G∗). The Moore

homotopy group πn(G∗) is defined by

πn(G∗) = Zn(G∗)/Bn(G∗).

It is a classical result due to Moore [9] that πn(G∗) is isomorphic to the n-th homotopy group

of the geometric realization of G∗.

3.2 Simplicial group on virtual pure braid groups

By using the same ideas in the work [5, 7] on the classical braids, in [4] we introduced a

simplcial group

VAP∗ : · · ·

−→· · ·
−→←−· · ·
←−

V P4

−→
−→
−→
−→
←−
←−
←−

V P3

−→
−→
−→
←−
←−

V P2
−→
−→
←−

V P1
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on pure virtual braid groups with VAPn = V Pn+1, the face homomorphism

di : VAPn = V Pn+1 → VAPn−1 = V Pn

given by deleting (i + 1)th strand for 0 ≤ i ≤ n, and the degeneracy homomorphism

si : VAPn = V Pn+1 → VAPn+1 = V Pn+2

given by doubling the (i+ 1)th strand for 0 ≤ i ≤ n.

Let ιn : V Pn → V Pn+1 be the inclusion. Geometrically ιn is the group homomorphism by

adding a trivial strand on the end. From geometric information, we have the following formulae

sjιn = ιn+1sj : V Pn → V Pn+1 for 0 ≤ j ≤ n− 1, (3.1)

djιn =

{
ιn−1dj , if j < n,
id, if j = n.

(3.2)

From the above formulae, the inclusion ιn : V Pn → V Pn+1 gives an extra operation on the

simplicial group VAP∗ so that the simplicial identities still hold by regarding ιn as extra de-

generacy

sn = ιn : VAPn−1 = V Pn → VAPn = V Pn+1.

Motivated from this example, a simplicial group G∗ is called conic if there exists an extra

degeneracy homomorphism sn : Gn−1 → Gn so that simplicial identities (including formulae

involving sn) hold.

Proposition 3.1 Any conic simplicial group G∗ is contractible.

Proof Let x ∈ Zn(G∗) be a Moore cycle, that is x ∈ Gn with djx = 1 for 0 ≤ j ≤ n. Note

that we have the extra operation sn+1 : Gn → Gn+1. Let y = sn+1x ∈ Gn+1. Then

djy = djsn+1x = sndjx = sn(1) = 1

for 0 ≤ j ≤ n and

dn+1y = dn+1sn+1x = x.

It follows that x is a Moore boundary. Thus πn(G∗) = 0 for all n, and so G∗ is contractible.

Proposition 3.2 Let G∗ be a conic simplicial subgroup of VAP∗ such that G1 = VAP1 =

V P2. Then G∗ = VAP∗.

Proof The proof is given by induction on the dimension n of Gn. From the hypothesis,

G1 = VAP1. Suppose that Gn−1 = VAPn−1 = V Pn. In [4, Proposition 3.2], it was proved that

V Pn+1 = 〈ιn(V Pn), s0(V Pn), · · · , sn−1(V Pn)〉. From this equality we see that Gn = VAPn =

V Pn+1 and hence the result holds.

The main point for introducing the new notion of conic simplicial group is to give a new

presentation of V Pn using degeneracy operations (including the extra degeneracies). From the

above proposition, the new generators for V Pn with n ≥ 2 are given by

skn−2
skn−3

· · · sk1
λ1,2 and skn−2

skn−3
· · · sk1

λ2,1
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for 0 ≤ k1 < k2 < · · · < kn−2 ≤ n− 1. Let

µk,l
i,j = sn−1sn−2 · · · ŝl−1 · · · ŝk−1 · · · s0λi,j

for (i, j) = (1, 2) or (2, 1) and 1 < k < l ≤ n. Here the notation ŝl means that sl is removed.

Then

V Pn = 〈µk,l
1,2, µ

k,l
2,1, 1 ≤ k < l ≤ n〉.

The relations with ai,j and bi,j , which were defined in [4] (in this paper we are also given their

geometric interpretation) are given by

ak,l−k = µk,l
1,2 and bk,l−k = µk,l

2,1. (3.3)

By direct computations, we have the degeneracy formulae

st(µ
k,l
i,j ) =





µk,l
i,j , if t ≥ l,

µk,l+1
i,j , if k ≤ t < l,

µk+1,l+1
i,j , if 0 ≤ t < k.

(3.4)

By writing it in terms of ai,j and bi,j , we have

skai,j =





ai,j , if k ≥ i + j,
ai,j+1, if i ≤ k < i+ j,
ai+1,j+1, if 0 ≤ k < i,

skbi,j =





bi,j, if k ≥ i+ j,
bi,j+1, if i ≤ k < i+ j,
bi+1,j+1, if 0 ≤ k < i.

(3.5)

For obtaining a new presentation of V Pn on generators µk,l
1,2 and µk,l

2,1, we need to rewrite

the relations

skn−3
skn−4

· · · sk1
(λkiλkjλij) = skn−3

skn−4
· · · sk1

(λijλkjλki) (3.6)

for distinct 1 ≤ i, j, k ≤ 3 and 0 ≤ k1 < k2 < · · · < kn−3 ≤ n− 1, and

skn−4
skn−5

· · · sk1
(λi,j)skn−4

skn−5
· · · sk1

(λk,l)

= skn−4
skn−5

· · · sk1
(λk,l)skn−4

skn−5
· · · sk1

(λi,j) (3.7)

for distinct 1 ≤ i, j, k, l ≤ 4 and 0 ≤ k1 < k2 < · · · < kn−4 ≤ n− 1 in terms of µk,l
i,j .

4 Lifting Defining Relations of V Pn−1 to V Pn

Let n ≥ 4. Let RV (n) denote the defining relations (2.1)–(2.2) of V Pn. By applying the

degeneracy homomorphism st : V Pn → V Pn+1 to RV (n), we have the following equations

st(λij)st(λkl) = st(λkl)st(λij), (4.1)

st(λki)st(λkj)st(λij) = st(λij)st(λkj)st(λki) (4.2)

in V Pn+1 for 1 ≤ i, j, k, l ≤ n with distinct letters standing for distinct indices, which is denoted

as st(R
V (n)).

The main aim of the present section is the proof of the following.
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Theorem 4.1 Let n ≥ 4. Consider V Pn as a subgroup of V Pn+1 by adding a trivial strand

in the end. Then

RV (n) ∪
n−1⋃

i=0

si(R
V (n))

gives the full set of the defining relations for V Pn+1.

We will use the following proposition.

Proposition 4.1 The degeneracy map sj : V Pn → V Pn+1, j = 0, 1, · · · , n− 1 acts on the

generators λk,l and λl,k, 1 ≤ k < l ≤ n of V Pn by the rules

si−1(λk,l) =





λk+1,l+1 for i < k,
λk,l+1λk+1,l+1 for i = k,
λk,l+1 for k < i < l,
λk,l+1λk,l for i = l,
λk,l for i > l,

si−1(λl,k) =





λl+1,k+1 for i < k,
λl+1,k+1λl+1,k for i = k,
λl+1,k for k < i < l,
λl,kλl+1,k for i = l,
λl,k for i > l.

4.1 Lifting defining relations of V P3 to V P4

In the group V P3 we have 6 relations:

λ12λ13λ23 = λ23λ13λ12, λ21λ23λ13 = λ13λ23λ21, λ13λ12λ32 = λ32λ12λ13,

λ31λ32λ12 = λ12λ32λ31, λ23λ21λ31 = λ31λ21λ23, λ32λ31λ21 = λ21λ31λ32.

Acting on these relations by degeneracy map s2 we get 6 relations in V P4. Let us analyze these

relations.

(1) The image of the first relation has the form

λ12 · λ14(λ13 · λ24)λ23 = λ24(λ23 · λ14)λ13 · λ12.

Using the commutativity relation

λ13λ24 = λ24λ13, λ23λ14 = λ14λ23,

we get

λ12λ14λ24 · λ13λ23 = λ24λ14(λ23λ13λ12).

Using the following relation of V P3:

λ23λ13λ12 = λ12λ13λ23,

we get

λ12λ14λ24 = λ24λ14λ12,
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that is the long relation in V P4.

(2) The image of the second relation has the form

λ21 · λ24(λ23 · λ14)λ13 = λ14(λ13 · λ24)λ23 · λ21.

Using the commutativity relations

λ23λ14 = λ14λ23, λ13λ24 = λ24λ13,

we get

λ21λ24λ14λ23λ13 = λ14λ24(λ13λ23λ21).

From the relation of V P3:

λ13λ23λ21 = λ24λ14λ12,

we get

λ21λ24λ14 = λ14λ24λ21,

i.e., the long relation in V P4.

(3) The image of the third relation has the form

λ14(λ13 · λ12 · λ32)λ42 = λ32λ42 · λ12 · λ14λ13.

Using the following relation from V P3:

λ13λ12λ32 = λ32λ12λ13,

we get

(λ14λ32)λ12(λ13λ42) = λ32λ42λ12λ14λ13.

Using the commutativity relations

λ14λ32 = λ32λ14, λ13λ42 = λ42λ13,

we have

λ32λ14λ12λ42λ13 = λ32λ42λ12λ14λ13.

After cancellation we get

λ14λ12λ42 = λ42λ12λ14,

i.e., the long relation in V P4.

(4) The image of the fourth relation has the form

λ31(λ41 · λ32)λ42 · λ12 = λ12 · λ32(λ42 · λ31)λ41.

Using the commutativity relations

λ41λ32 = λ32λ41, λ42 · λ31 = λ31 · λ42,
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we get

λ31λ32λ41λ42λ12 = (λ12λ32λ31)λ42λ41.

Using the following relation from V P3:

λ12λ32λ31 = λ31λ32λ12,

after cancelations we get

λ41λ42λ12 = λ12λ42λ41,

i.e., the long relation in V P4.

(5) The image of the fifth relation has the form

λ24(λ23 · λ21 · λ31)λ41 = λ31λ41 · λ21 · λ24λ23.

Using the following relation from V P3:

λ23λ21λ31 = λ31λ21λ23,

and the commutativity relations

λ24λ13 = λ13λ24, λ23λ41 = λ41λ23,

we get

λ24λ21λ41 = λ41λ21λ24,

i.e., the long relation in V P4.

(6) The image of the sixth relation has the form

λ32(λ42 · λ31)λ41 · λ21 = λ21 · λ31(λ41 · λ32)λ42.

Using the commutativity relations

λ42λ31 = λ31λ42, λ41λ32 = λ32λ41,

we get

λ32λ31λ42λ41λ21 = (λ21λ31λ32)λ41λ42.

Using the following relation from V P3:

λ21λ31λ32 = λ32λ31λ21,

we get

λ42λ41λ21 = λ21λ41λ42,

i.e., the long relation in V P4. Hence, we proved the following lemma.

Lemma 4.1 From relations RV (3), relations s2(R
V (3)) and the commutativity relations

in RV (4), it follows the next set of relations in RV (4) :

λ12λ14λ24 = λ24λ14λ12, λ21λ24λ14 = λ14λ24λ21, λ14λ12λ42 = λ42λ12λ14,
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λ41λ42λ12 = λ12λ42λ41, λ24λ21λ41 = λ41λ21λ24, λ42λ41λ21 = λ21λ41λ42,

i.e., the set of relations where the indices of the generators lie in the set {1, 2, 4}.

Considering the set s1(R
V (3)), we can prove the following lemma.

Lemma 4.2 From relations RV (3), relations s1(R
V (3)), s2(R

V (3)) and commutativity

relations in RV (4), it follows the next set of relations in RV (4):

λ13λ14λ34 = λ34λ14λ13, λ31λ34λ14 = λ14λ34λ31, λ14λ13λ43 = λ43λ13λ14,

λ41λ43λ13 = λ13λ43λ41, λ34λ31λ41 = λ41λ31λ34, λ43λ41λ31 = λ31λ41λ43,

i.e., the set of relations where the indices of the generators lie in the set {1, 3, 4}.

Considering the set of relations s0(R
V (3)), we can prove the following lemma.

Lemma 4.3 From relations RV (3), relations si(R
V (3)), i = 0, 1, 2 and commutativity

relations in RV (4), it follows the next set relations in RV (4) :

λ23λ24λ34 = λ34λ24λ23, λ32λ34λ24 = λ24λ34λ32, λ24λ23λ43 = λ43λ23λ24,

λ42λ43λ23 = λ23λ43λ42, λ34λ32λ42 = λ42λ32λ34, λ43λ42λ32 = λ32λ42λ43,

i.e., the set of relations where the indices of the generators lie in the set {2, 3, 4}.

4.2 Lifting the commutativity relations from RV (4) into RV (5)

We have to show that RV (5) = 〈RV (4), si(R
V (4)), i = 0, 1, 2, 3〉. At first, we consider the

commutativity relations

[λ∗
i4, λ

∗
kl], 1 ≤ i ≤ 3, 1 ≤ k < l ≤ 3

in RV (4). We divide them into four groups:

1-st group: [λ34, λ12] = [λ24, λ13] = [λ14, λ23] = 1;

2-nd group: [λ34, λ21] = [λ24, λ31] = [λ14, λ32] = 1;

3-d group: [λ43, λ21] = [λ42, λ31] = [λ41, λ32] = 1;

4-th group: [λ43, λ12] = [λ42, λ13] = [λ41, λ23] = 1.

Taking the third relation from the 1-st group and acting on it by si, i = 0, 1, 2, 3, we get the

following relations

[λ15λ25, λ34] = [λ15, λ24λ34] = [λ15, λ24λ23] = [λ15λ14, λ23] = 1.

Using the commutativity relation

λ14λ23 = λ23λ14,

which holds in V P4, and from the last relation, we have

[λ15, λ23] = 1. (4.3)
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With considering (4.3) we get

[λ15, λ24] = 1.

Then the second relation follows relation [λ15, λ34] = 1 and the first relation follows [λ25, λ34] =

1. Hence, we have proved the following lemma.

Lemma 4.4 From the lifting si, i = 0, 1, 2, 3 of the relation [λ14, λ23] = 1 and the com-

mutativity relations in RV (4), it follows the commutativity relations

[λ15, λ23] = [λ15, λ24] = [λ15, λ34] = [λ25, λ34] = 1

from RV (5).

Taking the second relation in the 1-st group and acting on it by si, i = 0, 1, 2, 3, we get the

following relations

[λ35, λ14λ24] = [λ25λ35, λ14] = [λ25, λ14λ13] = [λ25λ24, λ13] = 1.

Using the commutativity relation

λ24λ13 = λ13λ24,

which holds in V P4, and from the last relation, we have

[λ25, λ14] = 1. (4.4)

Then the third relation follows [λ25, λ13] = 1, the second relation follows [λ35, λ14] = 1 and the

first relation follows [λ35, λ24] = 1. Hence, we have proved the following lemma.

Lemma 4.5 From the lifting si, i = 0, 1, 2, 3, of the relation [λ24, λ13] = 1 and the com-

mutativity relations in RV (4), it follows the commutativity relations

[λ25, λ14] = [λ25, λ13] = [λ35, λ14] = [λ35, λ24] = 1

from RV (5).

Taking the first relation in the 1-st group and acting on it by si, i = 0, 1, 2, 3, we can prove

the following lemma.

Lemma 4.6 From the lifting si, i = 0, 1, 2, 3 of the relation [λ34, λ12] = 1, the commuta-

tivity relations in RV (4) and relations from Lemma 4.5, it follows the commutativity relations

[λ35, λ12] = [λ45, λ12] = [λ45, λ13] = [λ45, λ23] = 1

from V P5.

Considering the 2-nd group of commutativity relations we can prove the following lemma.

Lemma 4.7 Acting by lifting si, i = 0, 1, 2, 3 and using the commutativity relations of

V P4, it is possible to get
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(1) from the commutativity relation [λ14, λ32] = 1 relations that

[λ15, λ32] = [λ15, λ42] = [λ15, λ43] = [λ25, λ43] = 1,

(2) from the commutativity relation [λ24, λ31] = 1 relations that

[λ25, λ31] = [λ25, λ41] = [λ35, λ41] = [λ35, λ42] = 1,

(3) from the commutativity relation [λ34, λ21] = 1 relations that

[λ35, λ21] = [λ45, λ21] = [λ45, λ31] = [λ45, λ32] = 1.

In V P5 we have 24 commutativity relations of the form [λi5, λ
∗
kl] = 1, λ∗

kl ∈ {λkl, λlk}, where

1 ≤ i < 5, 1 ≤ k < l ≤ 4,

[λ45, λ
∗
12] = [λ45, λ

∗
13] = [λ45, λ

∗
23] = [λ35, λ

∗
12] = [λ35, λ

∗
14] = [λ35, λ

∗
24] = 1,

[λ25, λ
∗
13] = [λ25, λ

∗
14] = [λ25, λ

∗
34] = [λ15, λ

∗
23] = [λ15, λ

∗
24] = [λ15, λ

∗
34] = 1.

These relations follow from the 1-st and the 2-nd groups of commutativity relations in RV (4).

The other commutativity relations from RV (5) \ RV (4) follow by the same way from the 3-d

and the 4-th groups of relations.

4.3 Lifting the commutativity relations from RV (n) to RV (n + 1), n ≥ 5

We have to show that RV (n + 1) = 〈RV (n), si(R
V (n)), i = 0, 1, · · · , n − 1〉. At first, we

consider the commutativity relations

[λ∗
mn, λ

∗
kl], 1 ≤ m < n, 1 ≤ k < l < n

in V Pn, which are not commutativity relations in V Pn−1. We divide them into four groups:

1-st group: [λmn, λkl] = 1;

2-nd group: [λmn, λlk] = 1;

3-d group: [λnm, λlk] = 1;

4-th group: [λnm, λkl] = 1.

Consider the relations from the 1-st group and divide them into some subgroups.

(1) Suppose that m < k < l < n.

Acting on the relation [λmn, λkl] = 1 by sn−1 and using Proposition 4.1, we get the following

relations.

[λm,n+1λmn, λkl] = 1.

Since [λmn, λkl] = 1 and this relation is a relation in V Pn, we have relation in V Pn+1:

[λm,n+1, λkl] = 1. (4.5)

Let i be such that m < k < l < i < n. Acting by si−1 on the relation [λmn, λkl] = 1, we get

si−1([λmn, λkl]) = [λm,n+1, λkl] = 1,
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that is a relation in V Pn+1.

Let i = l, then

sl−1([λmn, λkl]) = [λm,n+1, λk,l+1λkl] = 1.

Using the commutativity relations in V Pn and relation (4.5), we have

[λm,n+1, λk,l+1] = 1, (4.6)

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality m < k < i < l < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm,n+1, λk,l+1] = 1,

that is a relation in V Pn+1.

Let i = k. Acting by sk−1, we get

sk−1([λmn, λkl]) = [λm,n+1, λk,l+1λk+1,l+1] = 1.

Using relation (4.6), we have

[λm,n+1, λk+1,l+1] = 1, (4.7)

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality m < i < k < l < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm,n+1, λk+1,l+1] = 1,

that is a relation in V Pn+1.

Let i = m. Acting by sm−1, we get

sm−1([λmn, λkl]) = [λm,n+1λm+1,n+1, λk+1,l+1] = 1.

Using relation (4.7), we have

[λm+1,n+1, λk+1,l+1] = 1,

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality i < m < k < l < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm+1,n+1, λk+1,l+1] = 1,

that is a relation in V Pn+1.

(2) Suppose that k < m < l < n.

Acting on the relation [λmn, λkl] = 1 by sn−1, we get the relation

[λm,n+1λmn, λkl] = 1.

Since [λmn, λkl] = 1 that follows from the relations in V Pn, we have relation

[λm,n+1, λkl] = 1.
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Let i be such that k < m < l < i < n. Acting by si−1 on the relation [λmn, λkl] = 1, we get

si−1([λmn, λkl]) = [λm,n+1, λkl] = 1, (4.8)

that is a relation in V Pn+1.

Let i = l, then

sl−1([λmn, λkl]) = [λm,n+1, λk,l+1λkl] = 1.

Using the commutativity relations in V Pn and relation (4.8), we have

[λm,n+1, λk,l+1] = 1,

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality k < m < i < l < n. Acting by si−1, we get

si([λmn, λkl]) = [λm,n+1, λk,l+1] = 1, (4.9)

that is a relation in V Pn+1.

Let i = m. Acting by sm−1, we get

sm([λmn, λkl]) = [λm,n+1λm+1,n+1, λk,l+1] = 1. (4.10)

Using relation (4.9), we have

[λm+1,n+1, λk,l+1] = 1,

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality k < i < m < l < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm+1,n+1, λk,l+1] = 1, (4.11)

that is a relation in V Pn+1.

Let i = k. Acting by sk−1 we get

sk−1([λmn, λkl]) = [λm+1,n+1, λk,l+1λk+1,l+1] = 1. (4.12)

Using relation (4.11), we have

[λm+1,n+1, λk+1,l+1] = 1,

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality i < k < m < l < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm+1,n+1, λk+1,l+1] = 1, (4.13)

that is a relation in V Pn+1.

(3) Suppose that k < l < m < n.

Acting on [λmn, λkl] = 1 by sn−1, we get the relation

sn−1([λmn, λkl]) = [λm,n+1λmn, λkl] = 1.
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Using commutativity relations in V Pn and the commutativity relations in V Pn+1, which were

proved in (2), from our relation it follows

[λm,n+1, λkl] = 1. (4.14)

Let i be such that k < l < m < i < n. Acting by si−1 on the relation [λmn, λkl] = 1, we get

si−1([λmn, λkl]) = [λm,n+1, λkl] = 1,

that is a relation in V Pn+1.

Let i = m, then

sm−1([λmn, λkl]) = [λm,n+1λm+1,n+1, λkl] = 1.

Using relation (4.14), we have

[λm+1,n+1, λk,l] = 1, (4.15)

i.e., a commutativity relation in V Pn+1.

Let i satisfy the inequality k < l < i < m < n. Acting by si−1, we get

si([λmn, λkl]) = [λm+1,l+1, λkl] = 1,

that is a relation in V Pn+1.

Let i = l. Acting by sl−1, we get

sl−1([λmn, λkl]) = [λm+1,n+1, λk,l+1λkl] = 1.

Using relation (4.15), we get

[λm+1,n+1, λk,l+1] = 1. (4.16)

Let i satisfy the inequality k < i < l < m < n. Acting by si−1, we get

si−1([λmn, λkl]) = [λm+1,n+1, λk,l+1] = 1, (4.17)

that is a relation in V Pn+1.

Let i = k. Acting by sk−1, we get

sk([λmn, λkl]) = [λm+1,n+1, λk,l+1λk+1,l+1] = 1.

Using relation (4.16), we have

[λm+1,n+1, λk+1,l+1] = 1.

Let i satisfy the inequality i < k < l < m < n. Acting by si−1, we get

si([λmn, λkl]) = [λm+1,n+1, λk+1,l+1] = 1.

We considered only the 1-st group of relations. The proof for the other groups is similar.



100 V. G. Bardakov and J. Wu

4.4 Lifting the long relations from RV (n) to RV (n + 1), n ≥ 4

Denote by Rijk the following set of long relations:

λijλikλjk = λjkλikλij , λjiλjkλik = λikλjkλji,

λikλijλkj = λkjλijλik, λkiλkjλij = λijλkjλki,

λjkλjiλki = λkiλjiλjk, λkjλkiλji = λjiλkiλkj ,

i.e., relations which contain the generators with indices from the set {i, j, k}.

We have to prove that relations Ri,j,n+1 follow from relations of RV (n), sl(R
V (n)), l =

0, 1, · · · , n− 1 and commutativity relations of RV (n+ 1).

Theorem 4.1 The long relations Ri,j,n+1 in RV (n+1) follow from the relations of RV (n),

sl(R
V (n)), l = 0, 1, · · · , n− 1 and commutativity relations of RV (n+ 1).

To prove this theorem we start with the following lemma.

Lemma 4.8 Let n ≥ 4 and for the set of integer numbers {i, j, n+ 1}, 1 ≤ i < j ≤ n+ 1,

one of the following conditions holds

(1) i ≥ 3 ;

(2) j − i ≥ 3 ;

(3) n+ 1− j ≥ 3.

Then there is an integer k, 1 ≤ k ≤ n, such that the relations Ri,j,n+1 ⊆ R
V (n+ 1) follow

from the relations sk−1(R
V (n)).

Proof (1) Suppose that the condition (1) holds. Put k = 1 and consider the relations

Ri−1,j−1,n in RV (n). It is not difficult to see that s0(Ri−1,j−1,n) = Ri,j,n+1.

(2) Suppose that the condition (2) holds. Put k = i+ 1 and consider the relations Ri,j−1,n

in RV (n). It is not difficult to see that si(Ri,j−1,n) = Ri,j,n+1.

(3) Suppose that the condition(3) holds. Put k = j + 1 and consider the relations Ri,j,n in

RV (n). It is not difficult to see that sj(Ri,j,n) = Ri,j,n+1.

Now suppose that i = 2 and for the set {i, j, n+ 1}, none of the conditions of the lemma is

satisfied. Take the set of relations R1,j−1,n and find s0(R1,j−1,n). The first relation in R1,j−1,n

has the form

λ1,j−1λ1nλj−1,n = λj−1,nλ1nλ1,j−1.

Acting by s0 we get the relation

(λ1,jλ2,j)(λ1,n+1λ2,n+1)λj,n+1 = λj,n+1(λ1,n+1λ2,n+1)(λ1,jλ2,j).

Since λ2,jλ1,n+1 = λ1,n+1λ2,j and λ2,n+1λ1,j = λ1,jλ2,n+1, we rewrite the last relation in the

form

λ1,jλ1,n+1λ2,jλ2,n+1λj,n+1 = (λj,n+1λ1,n+1λ1,j)λ2,n+1λ2,j . (4.18)
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Take the set {1, j, n + 1}. Since n ≥ 4, for this set condition (2) or condition (3) of Lemma

(4.8) holds. Then the set of relation R1,j,n+1 comes from relations of V Pn. In particular, the

relation

λj,n+1λ1,n+1λ1,j = λ1,jλ1,n+1λj,n+1

holds. Using this relation, we rewrite (4.18) as

λ1,jλ1,n+1λ2,jλ2,n+1λj,n+1 = (λ1,jλ1,n+1λj,n+1)λ2,n+1λ2,j .

After cancelations we have

λ2,jλ2,n+1λj,n+1 = λj,n+1λ2,n+1λ2,j .

It is the first relation from R2,j,n+1.

The second relation in R1,j−1,n has the form

λj−1,1λj−1,nλ1,n = λ1,nλj−1,nλj−1,1.

Acting by s0, we get the relation

(λj2λj1)λj,n+1(λ1,n+1λ2,n+1) = (λ1,n+1λ2,n+1)λj,n+1(λj2λj1).

As we saw before, the set of relation R1,j,n+1 holds in V Pn+1. Using the relation

λj1λj,n+1λ1,n+1 = λ1,n+1λj,n+1λj1,

we rewrite our relation in the form

λj2(λ1,n+1λj,n+1λj1)λ2,n+1 = λ1,n+1λ2,n+1λj,n+1λj2λj1.

Using the commutativity relations λj2λ1,n+1 = λ1,n+1λj2 and λj1λ2,n+1 = λ2,n+1λj1 we have

(λ1,n+1λj2)λj,n+1(λ2,n+1λj1) = λ1,n+1λ2,n+1λj,n+1λj2λj1.

After cancelations we get

λj2λj,n+1λ2,n+1 = λ2,n+1λj,n+1λj2.

It is the second relation from R1,j,n+1.

The third relation in R1,j−1,n has the form

λ1nλ1,j−1λn,j−1 = λn,j−1λ1,j−1λ1n.

Acting by s0 we get the relation

(λ1,n+1λ2,n+1)(λ1jλ2j)λn+1,j = λn+1,j(λ1jλ2j)(λ1,n+1λ2,n+1).

Since λ2,n+1λ1j = λ1jλ2,n+1 and λ2jλ1,n+1 = λ1,n+1λ2j , we rewrite the last relation in the form

λ1,n+1λ1jλ2,n+1λ2jλn+1,j = (λn+1,jλ1jλ1,n+1)λ2jλ2,n+1. (4.19)
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As we saw, the set of relation R1,j,n+1 comes from relations of V Pn. In particular, the relation

λn+1,jλ1jλ1,n+1 = λ1,n+1λ1jλn+1,j

holds. Using this relation, we rewrite (4.19) as

λ1,n+1λ1jλ2,n+1λ2jλn+1,j = (λ1,n+1λ1jλn+1,j)λ2jλ2,n+1.

After cancelations we have

λ2,n+1λ2jλn+1,j = λn+1,jλ2jλ2,n+1.

It is the third relation from R1,j,n+1.

The fourth relation in R1,j−1,n has the form

λn1λn,j−1λ1,j−1 = λ1,j−1λn,j−1λn1.

Acting by s0, we get the relation

(λn+1,2λn+1,1)λn+1,j(λ1jλ2j) = (λ1jλ2j)λn+1,j(λn+1,2λn+1,1).

As we saw before, the set of relation R1,j,n+1 holds in V Pn+1. Using the relation

λn+1,1λn+1,jλ1j = λ1jλn+1,jλn+1,1,

we rewrite our relation in the form

λn+1,2(λ1jλn+1,jλn+1,1)λ2j = λ1jλ2jλn+1,jλn+1,2λn+1,1.

Using the commutativity relations λn+1,2λ1j = λ1jλn+1,2 and λn+1,1λ2j = λ2jλn+1,1 we have

(λ1jλn+1,2)λn+1,j(λ2jλn+1,1) = λ1jλ2jλn+1,jλn+1,2λn+1,1.

After cancelations we get

λn+1,2λn+1,jλ2j = λ2jλn+1,jλn+1,2.

It is the fourth relation from R1,j,n+1.

The fifth relation in R1,j−1,n has the form

λj−1,nλj−1,1λn1 = λn1λj−1,1λj−1,n.

Acting by s0, we get the relation

λj,n+1(λj2λj1)(λn+1,2λn+1,1) = (λn+1,2λn+1,1)(λj2λj1)λj,n+1.

Since λj1λn+1,2 = λn+1,2λj1 and λn+1,1λj2 = λj2λn+1,1, we rewrite the last relation in the form

λj,n+1λj2(λn+1,2λj1)λn+1,1 = λn+1,2(λj2λn+1,1)λj1λj,n+1. (4.20)
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As we noted before, the set of relation R1,j,n+1 comes from relations of V Pn and in particular,

the relation

λn+1,1λj1λj,n+1 = λj,n+1λj1λn+1,1

holds. Using this relation, we rewrite (4.20) as

λj,n+1λj2λj,n+1λj1λn+1,1 = λn+1,2λj2λj,n+1λj1λn+1,1.

After cancelations we have

λj,n+1λj2λj,n+1 = λj,n+1λj2λj,n+1.

It is the fifth relation from R1,j,n+1.

The sixth relation in R1,j−1,n has the form

λn,j−1λn1λj−1,1 = λj−1,1λn1λn,j−1.

Acting by s0, we get the relation

λn+1,j(λn+1,2λn+1,1)(λj2λj1) = (λj2λj1)(λn+1,2λn+1,1)λn+1,j .

Using the commutativity relations λn+1,1λj2 = λj2λn+1,1 and λj1λn+1,2 = λn+1,2λj1 we have

λn+1,jλn+1,2λj2λn+1,1λj1 = λj2λn+1,2(λj1λn+1,1λn+1,j).

Using the relation

λj1λn+1,1λn+1,j = λn+1,jλn+1,1λj1,

we rewrite our relation in the form

λn+1,jλn+1,2λj2λn+1,1λj1 = λj2λn+1,2(λn+1,jλn+1,1λj1).

After cancelations we get

λn+1,jλn+1,2λj2 = λj2λn+1,2λn+1,j .

It is the sixth relation from R2,j,n+1.

Hence, we have proved the following lemma.

Lemma 4.9 Let n ≥ 4. Acting on the relations R1,j−1,n of V Pn by s0 and using the

relations, which we got in Lemma 4.8, we get relations R2,j,n+1 in V Pn+1.

Next, suppose that i = 1 in the set {i, j, n+1}. Since n ≥ 4 and we can not use Lemma 4.8

for the relations Ri,j,n+1, we see that it is possible only in the case j = 3, n+ 1 = 5. Hence we

have to prove that the relations R1,3,5 follow from relations sk(R
V (4)) for some k.

Consider relations R1,2,4 in V P4 and act on them by s1. The first relation in R1,2,4 has the

form

λ12λ14λ24 = λ24λ14λ12.
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Acting on it by s1, we get

(λ13λ12)λ15(λ25λ35) = (λ25λ35)λ15(λ13λ12).

Note that relations R1,2,5 satisfy condition (3) in Lemma 4.8. Using the first relation from this

set

λ12λ15λ25 = λ25λ15λ12,

we get

λ13(λ25λ15λ12)λ35 = λ25λ35λ15λ13λ12.

Using the commutativity relations λ13λ25 = λ25λ13 and λ12λ35 = λ35λ12, we have

(λ25λ13)λ15(λ35λ12) = λ25λ35λ15λ13λ12.

After cancelation we arrive to the relation

λ13λ15λ35 = λ35λ15λ13.

This is the first relation from R1,3,5.

The second relation in R1,2,4 has the form

λ21λ24λ14 = λ14λ24λ21.

Acting on it by s1, we get

(λ21λ31)(λ25λ35)λ15 = λ15(λ25λ35)(λ21λ31).

Using the commutativity relation λ31λ25 = λ25λ31 and λ35λ21 = λ21λ35, we have

λ21(λ25λ31)λ35λ15 = λ15λ25(λ21λ35)λ31.

By Lemma 4.8, we have relation

λ15λ25λ21 = λ21λ25λ15.

Using it we get

λ21λ25λ31λ35λ15 = (λ21λ25λ15)λ35λ31.

After cancelation we arrive to the relation

λ31λ35λ15 = λ15λ35λ31.

This is the second relation from R1,3,5.

Using the third relation in the set R1,2,4

λ14λ12λ42 = λ42λ12λ14
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and acting by s1, we get

λ15(λ13λ12)(λ53λ52) = (λ53λ52)(λ13λ12)λ15.

Using the commutativity relation λ12λ53 = λ53λ12 and λ52λ13 = λ13λ52, we have

λ15λ13(λ53λ12)λ52 = λ53(λ13λ52)λ12λ15.

Using the relation

λ52λ12λ15 = λ15λ12λ52,

which we have by Lemma 4.8, we get

λ15λ13λ53λ12λ52 = λ53λ13(λ15λ12λ52).

After cancelation we arrive to the relation

λ15λ13λ53 = λ53λ13λ15.

This is the third relation in R1,3,5.

The fourth relation in R1,2,4 has the form

λ41λ42λ12 = λ12λ42λ41.

Acting on it by s1, we get

λ51(λ53λ52)(λ13λ12) = (λ13λ12)(λ53λ52)λ51.

Using the commutativity relation λ52λ13 = λ13λ52 and λ12λ53 = λ53λ12, we have

λ51λ53(λ13λ52)λ12 = λ13(λ53λ12)λ52λ51.

By Lemma 4.8, we have relation

λ12λ52λ51 = λ51λ52λ12.

Using it, we get

λ51λ53λ13λ52λ12 = λ13λ53(λ51λ52λ12).

After cancelation we arrive to the relation

λ51λ53λ13 = λ13λ53λ51.

This is the fourth relation in R1,3,5.

Using the fifth relation in the set R1,2,4

λ24λ21λ41 = λ41λ21λ24
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and acting by s1, we get

(λ25λ35)(λ21λ31)λ51 = λ51(λ21λ31)(λ25λ35).

Using the commutativity relation λ35λ21 = λ21λ35 and λ31λ25 = λ25λ31, we have

λ25(λ21λ35)λ31λ51 = λ51λ21(λ25λ31)λ35.

Using the relation

λ51λ21λ25 = λ25λ21λ51,

which we have by Lemma 4.8, we get

λ25λ21λ35λ31λ51 = (λ25λ21λ51)λ31λ35.

After cancelation we arrive to the relation

λ35λ31λ51 = λ51λ31λ35.

This is the fifth relation from R1,3,5.

The sixth relation in R1,2,4 has the form

λ42λ41λ21 = λ21λ41λ42.

Acting on it by s1, we get

(λ53λ52)λ51(λ21λ31) = (λ21λ31)λ51(λ53λ52).

By Lemma 4.8, we have relation

λ52λ51λ21 = λ21λ51λ52,

from which

λ53(λ21λ51λ52)λ31 = λ21λ31λ51λ53λ52.

Using the commutativity relation λ53λ21 = λ21λ53 and λ52λ31 = λ31λ52, we have

(λ21λ53)λ51(λ31λ52) = λ21λ31λ51λ53λ52.

After cancelation we arrive to the relation

λ53λ51λ31 = λ31λ51λ53.

This is the sixth relation from R1,3,5.
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4.5 Simplicial group T∗

The simplicial group T∗ was defined in the paper [4]. In the same paper it was proved that

T3 is generated by elements

a31, a22, a13, b31, b22, b13

and is defined by relations

[a31, a22]
ck
11

cm
21 = [a31, a13]

ck
11

cm
21 = [a22, a13]

ck
11

cm
21 = 1,

[b31, b22]
ck
11

cm
21 = [b31, b13]

ck
11

cm
21 = [b22, b13]

ck
11

cm
21 = 1

that can be written in the form

[a31, a
cm
22

c
−m
31

22 ] = [a31, a
ck
13

c
m−k
22

c
−m
31

13 ] = [a
cm
22

c
−m
31

22 , a
ck
13

c
m−k
22

c
−m
31

13 ] = 1,

[b31, b
cm
22

c−m
31

22 ] = [b31, b
ck
13

cm−k
22

c−m
31

13 ] = [b
cm
22

c−m
31

22 , b
ck
13

cm−k
22

c−m
31

13 ] = 1,

where k,m ∈ Z.

In the general case we will prove the following theorem.

Theorem 4.2 The group Tn, n ≥ 2 is generated by elements

ai,n+1−i, bi,n+1−i, i = 1, 2, · · · , n,

and is defined by relations

[ai,n+1−i, aj,n+1−j ]
c
k1
11

c
k2
21

···c
kn−1

n−1,1 ,

[bi,n+1−i, bj,n+1−j]
c
k1
11

c
k2
21

···c
kn−1

n−1,1 ,

where 1 ≤ i 6= j ≤ n, kl ∈ Z.

5 V Pn as a Subgroup of V Bn+1

In the previous section we showed how it is possible to construct V Pn from V Pn−1 using

operation cabling. In this section we will show how it is possible to construct V Pn+1, using

the action of the symmetric group Sn+1 = 〈ρ1, ρ2, · · · , ρn1
〉, which is a subgroup of the virtual

braid group V Bn+1 = V Pn+1 ⋊ Sn+1. Recall that Sn+1 acts on the generators of V Pn+1 by

the rule

ρkλijρk = λρk(i),ρk(j), k = 1, 2, · · · , n− 1.

The symmetric group Sn+1 ia s disjoint union of cosets by Sn:

Sn+1 = Sne ⊔ Snρn ⊔ Snρnρn−1 ⊔ · · · ⊔ Snρnρn−1 · · · ρ1.

We will denote Xk the set of generators of V Pk, k ≥ 2, i.e.,

Xk = {λij | 1 ≤ i 6= j ≤ k};
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Rk will denote the set of defining relations of V Pk. In particular, LRk will denote the set of

long relations and CRk will denote the set of commutativity relations. It is evident that

Rk = LRk ∪ CRk.

Since V P3 does not contain commutativity relations, R3 = LR3.

Let k > 2 and 1 ≤ i < j < l ≤ k be three distinct integer numbers. Denote by Rijl
k the

following set of long defining relations from Rk:

λijλilλjl = λjlλilλij , λjiλjlλil = λilλjlλji,

λilλijλlj = λljλijλil, λliλljλij = λijλljλli,

λjlλjiλli = λliλjiλjl, λljλliλji = λjiλliλlj .

Then

LRk =
⊔

1≤i<j<l≤k

Rijl
k .

In particular,

R3 = R123
3 .

Let the integers i, j, l,m ∈ {1, 2, · · · , k} satisfy the conditions

i < j, l < m, j > m.

Denote

Ri,j,l,m
k = {λ∗

ijλ
∗
lm = λ∗

lmλ∗
ij}

the set of four commutativity relations with fixed indices, then

CRk =
⊔

i<j, l<m, j>m

Ri,j,l,m
k

is the full set of the commutativity relations in V Pk

Taking the set of generators of V P3:

X3 = {λ12, λ21, λ13, λ23, λ31, λ32}

and acting on it by coset representatives of S4 by S3, we get

X ρ3

3 = {λ12, λ21, λ14, λ24, λ41, λ42},

X ρ3ρ2

3 = {λ13, λ31, λ14, λ34, λ41, λ43},

X ρ3ρ2ρ1

3 = {λ23, λ32, λ24, λ34, λ42, λ43}.

We see that

X4 = X3 ∪ X
ρ3

3 ∪ X
ρ3ρ2

3 .

In the general case we have the similar result.
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Proposition 5.1 For n ≥ 3 the following equality holds

Xn+1 = Xn ∪ X
ρn
n ∪ X

ρnρn−1

n .

Proof Any generator in Xn+1 \ Xn has the form λ∗
i,n+1 for some i, 1 ≤ i ≤ n. Taking the

generator λ∗
1n ∈ Xn and acting on it by conjugation of ρn:

(λ∗
1n)

ρn = λ∗
1,n+1, (λ∗

2n)
ρn = λ∗

2,n+1, · · · , (λ
∗
n−1,n)

ρn = λ∗
n−1,n+1.

To find the last generator λ∗
n,n+1, taking the generator λ∗

n−1,n and acting of conjugation by

ρnρn−1, we get

(λ∗
n−1,n)

ρnρn−1 = (λ∗
n−1,n+1)

ρn−1 = λ∗
n,n+1.

To find the set of defining relations in R4, taking the defining relations of R3 = R123 and

acting by coset representatives, we get

Rρ3

3 = R124
4 , Rρ3ρ2

3 = R134
4 , Rρ3ρ2ρ1

3 = R234
4 .

Since

LR4 = R123
4 ⊔R124

4 ⊔R134
4 ⊔R234

4 and R123
4 = R123

3 = R3,

we get

LR4 = R3 ⊔R
ρ3

3 ⊔R
ρ3ρ2

3 ⊔Rρ3ρ2ρ1

3 .

In V P3 we don’t have commutativity relations, hence we have the following proposition

Proposition 5.2

R4 = R3 ⊔R
ρ3

3 ⊔R
ρ3ρ2

3 ⊔Rρ3ρ2ρ1

3 ⊔ CR4.

In the general case we can prove the following theorem.

Theorem 5.1 For n ≥ 4 we have

Rn+1 = Rn ⊔R
ρn

n ⊔R
ρnρn−1

n ⊔ · · · ⊔ Rρnρn−1···ρ1

n .

Proof Consider the set of long relations Ri,j,n+1
n+1 which does not lie in Rn. If j 6= n, then

the relations Ri,j,n
n lie in Rn, acting by ρn, we get

(Ri,j,n
n )ρn = Ri,j,n+1

n+1 .

If j = n, but i 6= n− 1, then

(Ri,n−1,n
n )ρnρn−1 = (Ri,n−1,n+1

n+1 )ρn−1 = Ri,n,n+1
n+1 .

If j = n, i = n− 1, then

(Rn−2,n−1,n
n )ρnρn−1ρn−2 = (Rn−2,n−1,n+1

n+1 )ρn−1ρn−2 = (Rn−2,n,n+1
n+1 )ρn−2 = Rn−1,n,n+1

n+1 .
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Consider a set of commutativity relations

Ri,n+1,l,m
n+1 ∈ Rn+1 \ Rn.

We will assume that i < l < m. Proofs for other cases are similar.

If m 6= n, then

(Ri,n,l,m
n )ρn = Ri,n+1,l,m

n+1 .

If m = n, but l 6= n− 1, then

(Ri,n,l,n−1
n )ρnρn−1 = (Ri,n+1,l,n−1

n+1 )ρn−1 = Ri,n+1,l,n
n+1 .

If m = n, l = n− 1 but i 6= n− 2, then

(Ri,n,n−2,n−1
n )ρnρn−1ρn−2 = (Ri,n+1,n−2,n−1

n+1 )ρn−1ρn−2 = (Ri,n+1,n−2,n
n )ρn−2 = Ri,n+1,n−1,n

n+1 .

If m = n, l = n− 1 and i = n− 2, then

(Rn−3,n,n−2,n−1
n )ρnρn−1ρn−2ρn−3 = (Rn−3,n+1,n−2,n−1

n+1 )ρn−1ρn−2ρn−3

= (Rn−3,n+1,n−2,n
n )ρn−2ρn−3 = (Rn−3,n+1,n−1,n

n+1 )ρn−3 = Rn−2,n+1,n−1,n
n+1 .

6 Cabling of the Artin Pure Braid Group

In the paper [7] it was defined a cabling on the set of pure braid groups {Pn}n=2,3,···. It

was proved that in fact all generators of Pn come from the unique generator A12 of U2, using

cabling. In this section we find a set of defining relation of P4 in these generators.

In the previous section we define elements cij = bijaij . Put

T c
k = 〈cij | i+ j = k + 1〉, k = 1, 2, · · · , n− 1.

Any group T c
k for k > 1 is getting from T c

k−1 using cabling, i.e.,

T c
k = 〈s0(T

c
k−1), s1(T

c
k−1), · · · , sk−2(T

c
k−1)〉.

Then Pn = 〈T c
1 , T

c
2 , · · · , T

c
n−1〉.

In the paper [4] it was found the set of defining relations of P4 in the cabled generators cij ,

which was more precisely proved.

Proposition 6.1 The group P4 is generated by elements

c11, c21, c12, c31, c22, c13

and is defined by relations (where ε = ±1)

c
cε
11

21 = c21, c
cε
11

12 = c
c
−ε
21

12 , c
cε
11

31 = c31, c
cε
11

22 = c22, c
cε
11

13 = c
c
−ε
22

13 ,

c
cε
21

31 = c31, c
cε
21

22 = c
c
−ε
31

22 , c
cε
21

13 = c
cε
22

c
−ε
31

13 ,
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c
cε
12

31 = c31, c
cε
12

13 = c
c
−ε
31

13 .

c
c
−1

12

22 = [c31, c
−1
13 ] [c

−1
13 , c22] c22 [c

2
21, c

−1
12 ] = cc3113 c−c22

13 c22[c
2
21, c

−1
12 ],

cc1222 = [c12, c
−2
21 ] c22 [c

−3
22 , c13] [c13, c

−1
31 ] = [c12, c

−2
21 ] c

−c
−2

22

13 c22 c
c
−1

31

13 .

Define the following subgroups of P4:

V1 = 〈c11, c12, c13〉, V2 = 〈c21, c22〉, V3 = 〈c31〉.

Then we have the following theorem.

Theorem 6.1 P4 = V1 ⋊ (V2 ⋊ V3).

Proof At first we prove that 〈V2, V3〉 = V2 ⋊V3. Indeed, this group is defined by relations

[c31, c21] = 1, cc2122 = c
c
−1

31

22 .

Since the first relation we can write in the form

cc3121 = c21,

we have the need decomposition.

From the defining relations of P4, we find the following formulas of conjugation by c31:

cc3111 = c11, cc3112 = c12, cc3113 = c
c
−1

12

13 .

Hence

P4 = 〈V1, V2〉⋊ V3.

Find the formulas of conjugations by c21:

cc2111 = c11, cc2112 = c
c
−1

11

12 , cc2113 = c
c12c

−1

11

13 .

Also we have two formulas of conjugation by c22:

cc2211 = c11, cc2213 = c
c
−1

11

13 .

To finish the proof we need to find a formula for the conjugation cc2212 and c
c
−1

22

12 .

In the proof of the previous theorem, we have found relation

c21c
−1
22 c13c

−1
12 = c−1

21 c
−1
12 c

2
21c

−1
22 (c

−1
22 c13c22).

Multiplying both sides on c−1
21 to the left and using relation

c−1
22 c13c22 = c11c13c

−1
11 ,

we get

c−1
22 c13c

−1
12 = (c−2

21 c
−1
12 c

2
21)(c11c13c

−1
11 )

c22c−1
22 .
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Using the conjugation formulas

c−2
21 c

−1
12 c

2
21 = c211c

−1
12 c

−2
11 , (c11c13c

−1
11 )

c22 = c211c13c
−2
11 ,

we get

(c13c
−1
12 )

c22 = c211c
−1
12 c13c

−2
11 .

Using the conjugation formula

cc2213 = c
c
−1

11

13 ,

we have

c13c
−1
11 c

−c22
12 = c11c

−1
12 c13c

−2
11 .

From this relation we get the need formula

cc2212 = c211c
−1
13 c12c

−1
11 c13c

−1
11 .

Conjugating both sides by c−1
22 , we find

c
c
−1

22

12 = c−1
11 c13c

−1
11 c12c

−1
13 c

2
11.

In this theorem we used full set of defining relations for P4. Let us consider the group P3.

It has the following presentation

P3 = 〈c11, c21, c12 | c
c21
11 = c11, cc2112 = c

c
−1

11

12 〉.

Using degeneracy maps s0, s1, s2, we construct the following subgroups of P4:

s0(P3) = 〈c21, c31, c22 | c
c31
21 = c21, cc3122 = c

c
−1

21

22 〉,

s1(P3) = 〈c12, c31, c13 | c
c31
12 = c12, cc3113 = c

c
−1

12

13 〉,

s2(P3) = 〈c11, c22, c13 | c
c22
11 = c11, cc2213 = c

c
−1

11

13 〉.

From the list of relations in P3, si(P3), i = 0, 1, 2, we see that it is not the full list of relations

for P4. To have a full list we can add the relations

cc3111 = c11, cc2113 = c
c12c

−1

11

13 , cc2212 = c211 c
−1
13 c12 c

−1
11 c13 c

−1
11 .

But as follows from Theorem 4.1, for n ≥ 5 the full list of relations for Pn comes from

relations of Pn−1, si(Pn−1), i = 0, 1, · · · , n− 2. Using induction by n, we can find relations of

Pn. We get the following relations:

– conjugations by cn−1,1,

c
cn−1,1

n−k,k = c
c
−1

n−k,k−1

n−k,k , k = 2, 3, · · · , n− 1; c
cn−1,1

ij = cij , if i + j < n;

– conjugations by cn−2,2,

c
cn−2,2

n−k,k = c
c
−1

n−k,k−2

n−k,k , k = 2, 3, · · · , n− 1; c
cn−2,2

ij = c211 c
−1
13 cij c

−1
11 c13 c

−1
11 , i+ j < n;
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c
cn−2,

lm = clm in all other cases.

In the general case we prove the following theorem, which gives a new semi-direct product

decompositon of the pure braid groups.

Theorem 6.2 For n ≥ 3 the pure braid group Pn is the semi-direct product of free groups :

Pn = V1 ⋊ (V2 ⋊ (· · · (Vn−2 ⋊ Vn−1) · · · )),

where

Vn−1 = 〈cn−1,1〉,

Vn−2 = 〈ccn−2,1,n−2,2〉,

...

V1 = 〈c11, c12, · · · , c1,n−1〉.

Proof The theorem is true for n = 4. We prove that Pn = V1 ⋊ Pn−1 for n > 4. By the

lifting theorem, the set of defining relations for Pn comes from the set of defining relations for

Pn−1 by degeneracy maps. Using this fact, let us prove that V1 is normal in Pn.

7 Directions for Further Research

We know some generalizations of the Artin braid group Bn, for example, welded braid

group, singular braid groups and others (see [1]). In these groups it is possible to define pure

subgroups. It is interesting to study presentations of these subgroups in cabled generators,

define analogs of simplicial group T∗ and find its homotopy type.

For example, the welded braid group WBn contains the group of basis conjugating auto-

morphisms Cbn.

Question 1 The group of basic conjugating automorphisms Cb2 is generated by two auto-

morphisms ε21 and ε12 which generate a free group of rank 2. Using operation cabling can we

find a presentation of Cbn in the cable generators?

Question 2 Let ϕ : V Pn → Cbn be a homomorphism which sends λij to εij . Is it true that

Tn−1 is isomorphic to its image ϕ(Tn−1)?

We know Artin and Gassner representations of Pn (see [6, Chapter 3]).

Question 3 Find analogs of Artin and Gassner representations of Pn, using decomposition

from Section 6. Are they equivalent to the classical representations?
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