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Abstract In this paper, the authors study the well-posedness and the asymptotic esti-

mate of solution for a mixed-order time-fractional diffusion equation in a bounded domain

subject to the homogeneous Dirichlet boundary condition. Firstly, the unique existence

and regularity estimates of solution to the initial-boundary value problem are considered.

Then combined with some important properties, including a maximum principle for a

time-fractional ordinary equation and a coercivity inequality for fractional derivatives, the

energy method shows that the decay in time of the solution is dominated by the term t
−α

as t goes to infinity.
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1 Introduction

Within the last few decades, an abundance of anomalous processes was observed and con-

firmed by more and more experiments in several different application areas in natural sci-

ences including biology, geological sciences, medicine (see [11, 16–17, 36, 38]). For example, to

characterize these diffusion processes, an important micro statistic quantity– the mean square

displacement which describes how fast particles diffuse was used. In most of the anomalous

diffusion cases, one observes a fractional power-law mean square displacement (see [28]), which

shows that the diffusion is slower than that in the classical diffusion case.

For the mathematical modeling of the anomalous diffusion, we refer to, for example, Roman

and Alemany [32] in which some macro models in the form of fractional diffusion equations

were derived by the continuous-time random walk under some suitable conditions posed on

the probability density functions for the jumps length and the waiting times between two
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successive jumps. In more detail, these macro models have forms of the single or multi-term

time-, space-, or time-space-fractional differential equations, which are discussed in [2, 25–26]

and the references therein.

During the last two decades, the time-fractional diffusion equations have attracted great

attention from many aspects mostly due to the applications in the modeling of anomalous

diffusion. For example, we mention important applications on some amorphous semiconductors

(see [28, 38]), the modeling of dynamic processes in polymer materials, heat conduction with

memory (see [31]) and the diffusion in fluids in porous media (see [3, 9, 13]). We refer to [4, 12,

20–21, 23] for the mathematical theory of the fractional differential equations, while we refer

to [8, 14, 27, 29, 34–35] for the numerical study.

The main goal of this paper is to establish the decay estimate for the solution to our mixed-

order fractional diffusion equation by an energy method. As is known, the asymptotic behavior

of solutions to the equations which describe some physical processes is important both by itself

and as a basis for developing suitable numerical methods and analyzing inverse problems for

these equations. Researches are rapidly growing on the asymptotic behavior for the time-

fractional diffusion equations and we only give a brief and typical review of the existing works

instead of a comprehensive list. The asymptotic behavior as t → ∞ for the single or multi-

term time-fractional diffusion equations in a bounded domain was studied in [20–21, 33], where

one can find that the decay of the solutions is dominated by the lowest order of the fractional

derivatives. The proof of this fact is based on an explicit representation formula for the solution

by the Fourier expansion method. From this explicit formula, by evaluating the inversion

transform of the solutions, the decay in time of the solutions can be obtained. In unbounded

domains, we refer to [4, 15], in which the authors used several special functions including the

H-functions, the Mittag-Leffler functions, and their properties to obtain the solution formula.

It turns out that all of the above arguments heavily rely on the explicit representation of the

solution. Indeed, the coefficients of the equation are required to be at least t-independent so

that the Fourier method and the Laplace transform work well and thus derivation of explicit

representation formula of the solution becomes possible.

In this paper, we continue the researches initiated in [20–21, 33], and consider the case of

mixed-order fractional diffusion equation with t-dependent coefficients. In order to overcome

the difficulty that results from the lack of explicit representation formula of the solution, we

employ an energy method which has been widely used to deal with the asymptotic estimate for

several types of evolution equations, see e.g., [18, 39] and the references therein.

The rest of the paper is organized as follows: In Section 2, we formulate our problem and

show our main results including the well-posedness and the long-time asymptotic behavior of

the solution to the initial-boundary value problem for the mixed-order time-fractional diffusion

equation. The proof of the well-posedness result is given in Section 3, while the long-time

asymptotic estimate is established in Section 4. Finally, the last section is devoted to the

conclusions and some open problems.

2 Problem Formulation and Main Results

Let T > 0 and Ω be an open bounded domain in Rd with a smooth boundary ∂Ω. We deal
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with the time-fractional differential equation

∂tu+ q(t)∂αt u = −Au+ c(x, t)u + f(x, t), (x, t) ∈ Ω× (0, T ) (2.1)

with the initial-boundary conditions
{
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
(2.2)

where the coefficients q, c are smooth enough, e.g., c ∈ L∞(0, T ;W 2,∞(Ω)), q ∈ L∞(0, T ) and

A is a symmetric uniformly elliptic operator defined by

Au(x) := −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u(x)

)
, u ∈ D(A) := H2(Ω) ∩H1

0 (Ω)

with aij(x) = aji(x), 1 ≤ i, j ≤ d, x ∈ Ω and aij ∈ C1(Ω) such that

d∑

i,j=1

aij(x)ξiξj ≥ ν|ξ|2, ∀x ∈ Ω, ∀ξ = (ξ1, · · · , ξd) ∈ R
d

for some constant ν > 0. By ∂αt we denote the Caputo fractional derivative of order α ∈ (0, 1):

∂αt ϕ(t) :=
1

Γ(1− α)

∫ t

0

(t− τ)−α
d

dτ
ϕ(τ) dτ, ϕ ∈ W 1,1(0, T ).

Here and henceforth, L2(Ω), H1(0, T ), H1(Ω) and H1
0 (Ω) denote the usual Lebesgue space

and the Sobolev spaces, and H−1(Ω) denotes the dual space of H1
0 (Ω). Meanwhile we write

‖ · ‖L2(Ω), ‖ · ‖H1(0,T ), ‖ · ‖H1(Ω), ‖ · ‖H1
0 (Ω) and ‖ · ‖H−1(Ω) as the corresponding norms.

In this paper, we mainly discuss the unique existence and the long-time asymptotic behavior

of the solution to the initial-boundary value problem (2.1)–(2.2). Our main results are presented

in Theorems 2.1–2.2 formulated below and the proofs are given in Sections 3 and 4, respectively.

We start with a result of the unique existence and the regularity of the solution. For arbitrarily

fixed T > 0, we have the following theorem.

Theorem 2.1 Let u0 ∈ L2(Ω), f ∈ L2(0, T ;H−1(Ω)). Then there exists a unique solution

u ∈ H1(0, T ;H−1(Ω))∩L2(0, T ;H1
0 (Ω))∩C([0, T ];L

2(Ω)) to the initial-boundary value problem

(2.1)–(2.2), and there exists a constant C1 > 0 such that

‖u‖H1(0,T ;H−1(Ω)) + ‖u‖L2(0,T ;H1
0 (Ω)) ≤ C1(‖u0‖L2(Ω) + ‖f‖L2(0,T ;H−1(Ω))). (2.3)

In addition, we assume that u0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;L2(Ω)). Then the solution u further

belongs to H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)), and there exists a constant C2 > 0

satisfying

‖u‖H1(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H2(Ω)) ≤ C2(‖u0‖H1
0 (Ω) + ‖f‖L2(0,T ;L2(Ω))). (2.4)

Furthermore, we assume that u0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ H1(0, T ;L2(Ω)). Then u ∈

W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), and there exists a constant C3 > 0 satisfying

esssup
0≤t≤T

(‖∂tu(t)‖L2(Ω) + ‖u(t)‖H2(Ω)) ≤ C3(‖u0‖H2(Ω) + ‖f‖H1(0,T ;L2(Ω))).
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Here the constants C1, C2, C3 depend on α, T, ν and some norms of the coefficients c, aij

and q. Moreover, we mention that by a classical result for parabolic equations, we have actually

u ∈ C1((0, T ];L2(Ω)) provided that the coefficients q, c are sufficiently smooth, but we do not

discuss the details here.

Next we propose the result for the long-time asymptotic behavior. For the asymptotic

estimate, we further assume that q and c satisfy q0 ≤ q(t) ≤ q1, t > 0 for some positive

constants q1 ≥ q0 > 0 and c(x, t) ≤ 0, (x, t) ∈ Ω× (0,∞). Then we have the following theorem.

Theorem 2.2 Assume that f = 0, u0 ∈ L2(Ω) and q, c satisfy the above conditions. Let

u be the solution to the initial-boundary value problem (2.1)–(2.2). Then for arbitrarily fixed

t0 > 0, there exists a constant C > 0, depending only on α, q1, ν,Ω and t0, such that the

following long-time asymptotic estimate

‖u( · , t)‖L2(Ω) ≤ C‖u0‖L2(Ω)t
−α

holds true for any t ≥ t0.

We also mention that the decay rate is the best possible. In fact, we can consider a special

case where q is a positive constant, c is a nonnegative constant and A = −∆. Then by the

Fourier method, we find the long-time asymptotic behavior of the solution is exactly t−α.

For a diffusion equation with time-fractional derivatives, in general, the decay rate is char-

acterized by the lowest fractional order of the derivatives (see e.g., [21]), which suggests that

t−α may be the best possible decay rate also for the general case in (2.1).

In this paper, we are devoted to the mixed-order case of orders 1 and α ∈ (0, 1), and we

obtain a similar result, that is, the decay rate is never exponential, unlike the case of only the

first-order time derivative, but is t−α as Theorem 2.2 proves. Moreover, if we consider (2.1)

with more than one time-fractional derivatives, then the decay rate is subject to the lowest

order, which we describe as a concluding remark in Section 5.

3 Unique Existence and Regularity of Solution

In this section, we first prove the unique existence of solution to the initial-boundary value

problem (2.1)–(2.2) in the space Hα1(0, T ;H−1(Ω)) with arbitrarily fixed 1 > α1 > max{α, 12}.

The proof is based on the classical unique existence of solution to parabolic equations and

the Fredholm alternative. Next we also propose some improved regularity of the solution and

establish the related estimates by employing the generalized Grönwall inequality.

3.1 Preliminary

Before giving the proofs of our main results, we start with some useful representations of

the solution u to the initial-boundary value problem (2.1)–(2.2).

Because of the conditions imposed on the elliptic operator A, there exists a system of

eigenfunctions: {ϕk}
∞
k=1, ϕk ∈ H2(Ω) ∩ H1

0 (Ω) which satisfy the relations Aϕk = λkϕk, k =

1, 2, · · · and form an orthonormal basis of L2(Ω). The corresponding eigenvalues λk, k =

1, 2, · · · are all positive: 0 < λ1 ≤ λ2 ≤ · · · and λk → ∞ as k → ∞. Henceforth, 〈·, ·〉 denotes

the duality pairing between H−1(Ω) and H1
0 (Ω).
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Moreover, we define the Mittag-Leffler function by

Eα,γ(z) :=

∞∑

k=0

zk

Γ(αk + γ)
, z ∈ C,

where α, γ > 0 are arbitrary constants. The following useful lemmas hold.

Lemma 3.1 Let the constants α ∈ (0, 1) and µ > 0 be given. Then the following equalities

∂tEα,1(−µt
α) = −µtα−1Eα,α(−µt

α) (3.1)

and

∂αt Eα,1(−µt
α) = −µEα,1(−µt

α) (3.2)

are valid for any t > 0.

We refer to Podlubny [30] for the proof.

Lemma 3.2 Let 0 < α < 2 and γ > 0. We suppose that πα2 < µ < min{π, πα}. Then there

exists a constant C = C(α, γ, µ) > 0 such that

|Eα,γ(z)| ≤
C

1 + |z|
, µ ≤ | arg z| ≤ π. (3.3)

The proof can be found in Gorenflo and Mainardi [7] or in Podlubny [30, p.35].

In view of {λk, ϕk}
∞
k=1, the solution u to (2.1) and (2.2) can be rewritten as follows:

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(s)ds

+

∫ t

0

e−(t−s)A(c(s)u(s)− q(s)∂αs u(s))ds, (3.4)

where the operator e−tA, t ≥ 0 is defined by

e−tAg :=

∞∑

k=1

e−λkt〈g, ϕk〉ϕk, g ∈ H−1(Ω). (3.5)

We denote

F (t) := e−tAu0 +

∫ t

0

e−(t−s)Af(s)ds

and

Ku(t) :=

∫ t

0

e−(t−s)A(c(s)u(s)− q(s)∂αs u(s))ds, u ∈ D(K), (3.6)

where D(K) := Hα1(0, T ;H−1(Ω)) with 1 > α1 > max
{
α, 12

}
. From (3.4), we obtain

u(t) = F (t) +Ku(t). (3.7)

Here and henceforth, the domain of the Caputo fractional derivative ∂αt is extended from

W 1,1(0, T ) to the fractional Sobolev space Hα(0, T ) in order to justify the calculation with

weak time regularity. For the detailed descriptions, we refer to Gorenflo, Luchko and Yamamo-

to [6] and Kubica and Yamamoto [19].
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3.2 Unique existence

In this subsection, we shall prove the unique existence of solution in Hα1(0, T ;V ) with

V = H−1(Ω). For the case where V = L2(Ω), we can apply a similar argument as follows.

Thus, for the sake of simplicity, we omit the proof of the case V = L2(Ω) in this paper.

According to the regularity assumptions on the coefficients c, q, we see that cu − q∂αt u ∈

L2(0, T ;H−1(Ω)) provided u ∈ D(K). It is readily to check that Ku is the solution to the

following parabolic equation






∂tKu+AKu = cu− q∂αt u in Ω× (0, T ),

Ku = 0 on ∂Ω× (0, T ),

Ku(·, 0) = 0 in Ω,

(3.8)

and then by the well-known regularity for parabolic equations (e.g., [22, Section 4.7.1, p.243]),

we have Ku ∈ H1(0, T ;H−1(Ω))∩L2(0, T ;H1
0 (Ω)). By [22, Theorem 16.2, Chapter 1] and [37,

Theorem 2.1], we find thatH1(0, T ;H−1(Ω))∩L2(0, T ;L2(Ω)) is compact inHα1(0, T ;H−1(Ω)),

which implies K : Hα1(0, T ;H−1(Ω)) → Hα1(0, T ;H−1(Ω)) is a compact operator. By the

Fredholm alternative, (3.7) admits a unique solution in Hα1(0, T ;H−1(Ω)) as long as

(i) F ∈ Hα1(0, T ;H−1(Ω)),

(ii) I −K is one-to-one on Hα1(0, T ;H−1(Ω)), that is,

(I −K)v = 0 implies v = 0

are valid. Here I denotes the identity operator. Noting that F is the solution to





∂tF (x, t) +AF (x, t) = f(x, t), (x, t) ∈ Ω× (0, T ),

F (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

F (x, 0) = u0, x ∈ Ω

(3.9)

by the regularity assumptions u0∈L
2(Ω),f ∈L2(0, T ;H−1(Ω)),we have F ∈H1(0, T ;H−1(Ω)) ⊂

Hα1(0, T ;H−1(Ω)). Thus, (i) is verified.

Next we check (ii). In other words, we show the following uniqueness result.

Lemma 3.3 Assume v ∈ D(K) satisfies the following integral equation

v = Kv,

where the operator K is defined in (3.6). Then

v = 0.

To prove this result, we need several lemmas.

Lemma 3.4 Let 0 ≤ β < 1, 0 ≤ s ≤ t. Then

∫ t

s

(t− τ)−β

Γ(1− β)
e−λ(τ−s)dτ = (t− s)1−βE1,2−β(−λ(t− s)). (3.10)
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Proof From the series expansion of the exponential function, by a direct calculation, we

find
∫ t

s

(t− τ)−β

Γ(1− β)
e−λ(τ−s)dτ =

∫ t

s

(t− τ)−β

Γ(1− β)

∞∑

n=0

(−λ(τ − s))n

n!
dτ

=

∞∑

n=0

(−λ)n

n!Γ(1− β)

∫ t

s

(t− τ)−β(τ − s)ndτ

=

∞∑

n=0

(−λ)n

n!Γ(1− β)

∫ t−s

0

(t− s− τ)−βτndτ

=

∞∑

n=0

(−λ)n

n!Γ(1− β)
(t− s)n+1−βB(1 − β, n+ 1),

where B(a, b) denotes the beta function. Moreover, noting the relation between the beta func-

tion and the gamma function: B(a, b) = Γ(a)Γ(b)
Γ(a+b) and Γ(n+ 1) = n!, from the definition of the

Mittag-Leffler function we obtain (3.10).

On the basis of the above lemma, we further have the following lemma.

Lemma 3.5 Let 0 ≤ β < 1. Then there exists a constant C = C(β) > 0 such that the

following inequality

∥∥∥∂βt
∫ t

0

e−(t−s)Aw(s)ds
∥∥∥
H−1(Ω)

≤ C

∫ t

0

(t− s)−β‖w(s)‖H−1(Ω)ds (3.11)

holds true for any w ∈ L2(0, T ;H−1(Ω)).

Proof By (3.5), we divide ∂βt
∫ t
0
e−(t−s)Aw(s)ds into two parts:

I1 :=
1

Γ(1− β)

∫ t

0

(t− s)−βw(s)ds,

I2 :=
1

Γ(1− β)

∫ t

0

(t− τ)−β
∫ τ

0

∂τ

( ∞∑

k=1

e−λk(τ−s)〈w(s), ϕk〉ϕk

)
dsdτ.

For any ψ ∈ H1
0 (Ω),

|〈I1, ψ〉| =
∣∣∣

1

Γ(1− β)

∫ t

0

(t− s)−β〈w(s), ψ〉ds
∣∣∣

≤
1

Γ(1− β)

∫ t

0

(t− s)−β |〈w(s), ψ〉|ds.

Thus, we have

‖I1‖H−1(Ω) = sup
‖ψ‖

H1
0
(Ω)

=1

|〈I1, ψ〉|

≤
1

Γ(1− β)

∫ t

0

(t− s)−β‖w(s)‖H−1(Ω)ds.

On the other hand, by Fubini’s theorem, noting the identity (3.10), we calculate

I2 =

∞∑

k=1

−λk

∫ t

0

〈w(s), ϕk〉ϕk

∫ t

s

(t− τ)−β

Γ(1− β)
e−λk(τ−s)dτds
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=

∞∑

k=1

−λk

∫ t

0

(t− s)1−βE1,2−β(−λk(t− s))〈w(s), ϕk〉ϕkds.

Consequently, for any ψ ∈ H1
0 (Ω), we use the estimate (3.3) for the Mittag-Leffler functions to

derive

|〈I2, ψ〉| ≤

∞∑

k=1

∫ t

0

λk(t− s)1−β |E1,2−β(−λk(t− s))||〈w(s), ϕk〉||〈ϕk, ψ〉|ds

≤ C

∞∑

k=1

∫ t

0

(t− s)−β
λk(t− s)

1 + λk(t− s)
|λ

− 1
2

k 〈w(s), ϕk〉||λ
1
2

k 〈ϕk, ψ〉|ds,

which combined with Hölder’s inequality implies

|〈I2, ψ〉| ≤ C

∫ t

0

(t− s)−β
( ∞∑

k=1

λ−1
k |〈w(s), ϕk〉|

2
) 1

2
( ∞∑

k=1

λk|〈ϕk, ψ〉|
2
) 1

2

ds

= C‖ψ‖H1
0 (Ω)

∫ t

0

(t− s)−β‖w(s)‖H−1(Ω)ds.

Finally, we have

‖I2‖H−1(Ω) ≤ C

∫ t

0

(t− s)−β‖w(s)‖H−1(Ω)ds.

Thus, we complete the proof by the triangle inequality for the norm.

Proof of Lemma 3.3 According to the equation v = Kv, we find

‖∂βt v(t)‖H−1(Ω) = ‖∂βt Kv(t)‖H−1(Ω)

=
∥∥∥∂βt

∫ t

0

e−(t−s)A(c(s)v(s) − q(s)∂αs v(s))ds
∥∥∥
H−1(Ω)

for 0 ≤ β < 1. By taking β = α1, β = 0 in the estimate (3.11) separately, and noting that

c ∈ L∞(0, T ;W 2,∞(Ω)), q ∈ L∞(0, T ), we obtain

‖∂α1
t v(t)‖H−1(Ω) ≤ C

∫ t

0

(t− s)−α1‖v(s)‖H−1(Ω)ds

+ C

∫ t

0

(t− s)−α1‖∂αs v(s)‖H−1(Ω)ds

and

‖v(t)‖H−1(Ω) ≤ C

∫ t

0

‖v(s)‖H−1(Ω)ds+ C

∫ t

0

‖∂αs v(s)‖H−1(Ω)ds.

Moreover, by noting the semigroup property Jγ1+γ2 = Jγ1Jγ2 , γ1, γ2 > 0 of the Riemann-

Liouville fractional integral operator which is defined by

Jγg(t) :=
1

Γ(γ)

∫ t

0

(t− τ)γ−1g(τ)dτ, γ > 0,

we see that

‖∂αs v(s)‖H−1(Ω) ≤ CJα1−α‖∂α1
t v(s)‖H−1(Ω),
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from which we further obtain that

∫ t

0

‖∂αs v(s)‖H−1(Ω)ds ≤ CJ1+α1−α‖∂α1
t v(t)‖H−1(Ω)

≤ C

∫ t

0

(t− s)α1−α‖∂α1
t v(s)‖H−1(Ω)ds

and

∫ t

0

(t− s)−α1‖∂αs v(s)‖H−1(Ω)ds ≤ CJ1−α‖∂α1
t v(t)‖H−1(Ω)

≤ C

∫ t

0

(t− s)−α‖∂α1
t v(s)‖H−1(Ω)ds.

Finally, since 1, (t− s)−α, (t− s)α1−α ≤ C(t− s)−α1 for α1 > α, we obtain

‖v(t)‖H−1(Ω) + ‖∂α1
t v(t)‖H−1(Ω)

≤ C

∫ t

0

(t− s)−α1(‖v(s)‖H−1(Ω) + ‖∂α1
s v(s)‖H−1(Ω))ds

with a generic constant C > 0 which depends also on T . Therefore, the generalized Grönwall

inequality (see e.g., Henry [10, Lemma 7.1.1]) implies v = 0. We finish the proof of the lemma.

By the Fredholm alternative, we proved that the initial-boundary value problem (2.1)–(2.2)

admits a unique solution in Hα1(0, T ;H−1(Ω)) with 1 > α1 > max{α, 12}.

3.3 Improved regularity

Next we show the improved regularity and some estimates by using the integral form (3.4).

Recalling that we rewrite (3.4) by (3.7), it is sufficient to discuss the regularity for F and

Ku, respectively. Since F is the solution to the parabolic equation (3.9), under the assumptions

that u0 ∈ L2(Ω), f ∈ L2(0, T ;H−1(Ω)), we obtain by the classical regularity for parabolic

equations that F ∈ H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1
0(Ω)) ∩ C([0, T ];L

2(Ω)) (e.g., [22, Example

4.7.1, Chapter 3]). Similarly, Ku is the solution to the parabolic equation (3.8) and we have

the same regularity for Ku. Therefore, we find the improved regularity

u ∈ H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1
0(Ω)) ∩C([0, T ];L

2(Ω)).

In order to establish the estimate for the solution u, we need the following lemmas.

Lemma 3.6 There exists a constant C = C(α, c, q, T ) > 0 such that

‖∂tKu(t)‖H−1(Ω) ≤ C‖u0‖L2(Ω) + C

∫ t

0

(t− τ)−α(‖u(τ)‖H1
0 (Ω) + ‖∂τu(τ)‖H−1(Ω))dτ.

Proof We divide ∂tKu(t) into three parts:

I0 := c(t)u(t)− q(t)∂αt u(t),

I1 :=

∫ t

0

∞∑

k=1

∂t(e
−λk(t−s)〈c(s)u(s), ϕk〉ϕk)ds,
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I2 :=

∫ t

0

∞∑

k=1

∂t(e
−λk(t−s)〈q(s)∂αs u(s), ϕk〉ϕk)ds.

Since c ∈ L∞(0, T ;W 2,∞(Ω)) and q ∈ L∞(0, T ), it follows that

‖I0‖H−1(Ω) ≤ C
∥∥∥u0 +

∫ t

0

∂τu(τ)dτ
∥∥∥
H−1(Ω)

+ C
∥∥∥
∫ t

0

(t− τ)−α∂τu(τ)dτ
∥∥∥
H−1(Ω)

≤ C
(
‖u0‖L2(Ω) +

∫ t

0

(t− τ)−α‖∂τu(τ)‖H−1(Ω)dτ
)
.

Here we used the triangle inequality and u(t) = u0+
∫ t
0 ∂τu(τ)dτ . Next we derive estimates for

I1 and I2. In fact, for any ψ ∈ H1
0 (Ω), we conclude from Hölder’s inequality that

|〈I1, ψ〉| ≤
∞∑

k=1

∫ t

0

λke
−λk(t−s)|〈c(s)u(s), ϕk〉||〈ϕk, ψ〉|ds

≤ C

∫ t

0

( ∞∑

k=1

λk|〈ϕk, ψ〉|
2ds

) 1
2
( ∞∑

k=1

λke
−2λk(t−s)|〈c(s)u(s), ϕk〉|

2
) 1

2

ds

≤ C‖ψ‖H1
0 (Ω)

∫ t

0

( ∞∑

k=1

λke
−2λk(t−s)|〈c(s)u(s), ϕk〉|

2
) 1

2

ds.

Moreover, noting that e−2λks ≤ 1 for s > 0, we see that

|〈I1, ψ〉| ≤ C‖ψ‖H1
0 (Ω)

∫ t

0

( ∞∑

k=1

λk|〈c(s)u(s), ϕk〉|
2
) 1

2

ds

≤ C‖ψ‖H1
0 (Ω)

∫ t

0

‖c(s)u(s)‖H1
0 (Ω)ds,

which combined with the assumption that c ∈ L∞(0, T ;W 2,∞(Ω)) implies

|〈I1, ψ〉| ≤ C‖ψ‖H1
0 (Ω)

∫ t

0

‖u(s)‖H1
0 (Ω)ds,

that is,

‖I1‖H−1(Ω) ≤ C

∫ t

0

‖u(s)‖H1
0(Ω)ds.

On the other hand, for any ψ ∈ H1
0 (Ω), we have

|〈I2, ψ〉| =
∣∣∣−

∞∑

k=1

∫ t

0

λke
−λk(t−s)q(s)〈∂αs u(s), ϕk〉〈ϕk, ψ〉ds

∣∣∣

≤
∞∑

k=1

∫ t

0

λke
−λk(t−s)|〈ϕk, ψ〉||q(s)|

∫ s

0

(s− τ)−α

Γ(1− α)
|〈∂τu(τ), ϕk〉|dτds

≤ C

∞∑

k=1

λk|〈ϕk, ψ〉|

∫ t

0

|〈∂τu(τ), ϕk〉|

∫ t

τ

(s− τ)−α

Γ(1 − α)
e−λk(t−s)dsdτ.

Here the last equality is due to Fubini’s theorem. Similarly to the proof of Lemma 3.5, we

obtain

‖I2‖H−1(Ω) ≤ C

∫ t

0

(t− τ)−α‖∂τu(τ)‖H−1(Ω)dτ.
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Collecting all the above estimates and noting that

1 ≤ Tαt−α ≤ Ct−α, 0 < t ≤ T,

we finish the proof of the lemma.

In a similar way, we can prove the following lemma.

Lemma 3.7 There exists a constant C = C(α, c, q, T ) > 0 such that

‖Ku(t)‖H1
0(Ω) ≤ C

∫ t

0

(t− τ)−α(‖u(τ)‖H1
0 (Ω) + ‖∂τu(τ)‖H−1(Ω))dτ.

Then by Lemmas 3.6–3.7 and (3.7), we obtain

v(t) ≤ a(t) + C

∫ t

0

(t− s)−αv(s)ds,

where

v(t) = ‖∂tu(t)‖H−1(Ω) + ‖u(t)‖H1
0(Ω),

a(t) = C‖u0‖L2(Ω) + ‖∂tF (t)‖H−1(Ω) + ‖F (t)‖H1
0 (Ω).

Here the generic constant C > 0 is independent of t, but may depend on α and T as well.

Finally, we employ the following generalized Grönwall inequality.

Lemma 3.8 (see [10, Lemma 7.1.1]) Suppose b ≥ 0, β > 0 and a(t) is a nonnegative

function locally integrable on 0 ≤ t < T , and suppose v(t) is nonnegative and locally integrable

on 0 ≤ t < T with

v(t) ≤ a(t) + b

∫ t

0

(t− s)β−1v(s)ds

on this interval. Then

v(t) ≤ a(t) + bΓ(β)

∫ t

0

(t− s)β−1Eβ,β(bΓ(β)(t − s)β)a(s)ds, 0 ≤ t < T.

In particular, there exists a constant C = C(b, β, T ) > 0 such that

v(t) ≤ a(t) + C

∫ t

0

(t− s)β−1a(s)ds, 0 ≤ t < T.

Now we are ready to establish the estimates in Theorem 2.1. By Lemma 3.8, we have

v(t) ≤ C‖u0‖L2(Ω) + ‖∂tF (t)‖H−1(Ω) + ‖F (t)‖H1
0 (Ω)

+ C

∫ t

0

(t− s)−α(‖u0‖L2(Ω) + ‖∂sF (s)‖H−1(Ω) + ‖F (s)‖H1
0 (Ω))ds

with a generic constant C > 0. We take the L2-norm over t ∈ (0, T ) on both sides and by

Young’s convolution inequality, we obtain

‖v‖L2(0,T ) ≤ C(‖u0‖L2(Ω) + ‖∂tF‖L2(0,T ;H−1(Ω)) + ‖F‖L2(0,T ;H1
0 (Ω))).
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We complete the first statement (2.3) of Theorem 2.1 by noting that the following regularity

estimate

‖∂tF‖L2(0,T ;H−1(Ω)) + ‖F‖L2(0,T ;H1
0 (Ω)) ≤ C(‖u0‖L2(Ω) + ‖f‖L2(0,T ;H−1(Ω)))

is valid since F is the solution to parabolic problem (3.9) with f ∈ L2(0, T ;H−1(Ω)) and

u0 ∈ L2(Ω).

For the second statement (2.4), recall that we assume u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;L2(Ω)) and

c ∈ L∞(0, T ;W 2,∞(Ω)). By the well-known regularity for parabolic equations (e.g., Evans [5,

Chapter 7]), it is readily to see that

u = Ku+ F ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩ C([0, T ];H

1
0 (Ω)).

In a similar way, the second regularity estimate (2.4) follows immediately from

‖∂tF‖L2(0,T ;L2(Ω)) + ‖F‖L2(0,T ;H2(Ω)) ≤ C(‖u0‖H1
0 (Ω) + ‖f‖L2(0,T ;L2(Ω))),

the generalized Grönwall inequality (Lemma 3.8) and the next lemma.

Lemma 3.9 There exists a constant C = C(α, c, q, T ) > 0 such that

‖∂tKv(t)‖
2
L2(Ω) ≤ C‖v(0)‖2L2(Ω) + C

∫ t

0

‖v(τ)‖2H2(Ω)dτ

+ C

∫ t

0

(t− τ)−α‖∂τv(τ)‖
2
L2(Ω)dτ

and

‖Kv(t)‖2H2(Ω) ≤ C

∫ t

0

‖v(τ)‖2H2(Ω)dτ + C

∫ t

0

(t− τ)−α‖∂τv(τ)‖
2
L2(Ω)dτ

for all v ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

Here we omit the proof of the above lemma since it is similar to those of Lemmas 3.6–3.7,

while we note the equivalence of norms

‖w‖2H2(Ω) ∼ ‖w‖2H2(Ω)∩H1
0 (Ω) :=

∞∑

k=1

λ2k|(w,ϕk)|
2

for w ∈ H2(Ω) ∩H1
0 (Ω).

Finally, we further assume u0 ∈ H2(Ω) ∩H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)) and prove the third

statement of Theorem 2.1. By the repeated applications of (3.7), we obtain

u = KNu+
N−1∑

j=0

KjF,

where N ≥ 1
1−α . In order to argue the regularity of solution u, it is sufficient to deal with KNu

and KjF , j = 0, 1, · · · , N − 1, respectively. In terms of Lemma 3.9, we obtain

‖∂tK
ju(t)‖2L2(Ω) ≤ C‖Kj−1u(0)‖2L2(Ω) + C

∫ t

0

‖Kj−1u(τ)‖2H2(Ω)dτ
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+ C

∫ t

0

(t− τ)−α‖∂τK
j−1u(τ)‖2L2(Ω)dτ (3.12)

and

‖Kju(t)‖2H2(Ω) ≤ C

∫ t

0

‖Kj−1u(τ)‖2H2(Ω)dτ

+ C

∫ t

0

(t− τ)−α‖∂τK
j−1u(τ)‖2L2(Ω)dτ (3.13)

for j = 1, 2, · · · , N . By the definition of operator K, it is readily to see that Kj−1u(0) = 0,

j = 2, · · · , N . Then by (3.12)–(3.13) and (t− τ)α ≤ Tα, we obtain

‖∂tK
ju(t)‖2L2(Ω) + ‖Kju(t)‖2H2(Ω)

≤ C

∫ t

0

(t− τ)−α(‖∂τK
j−1u(τ)‖2L2(Ω) + ‖Kj−1u(τ)‖2H2(Ω))dτ (3.14)

for all j = 2, 3, · · · , N . Recall that C > 0 denotes a generic constant, which means that C can

change values in different lines. By using (3.14) with j = N,N − 1 and by a direct calculation,

we arrive at the following estimate

‖∂tK
Nu(t)‖2L2(Ω) + ‖KNu(t)‖2H2(Ω)

≤ C

∫ t

0

(t− τ)−α(‖∂τK
N−1u(τ)‖2L2(Ω) + ‖KN−1u(τ)‖2H2(Ω))dτ

≤ C

∫ t

0

(t− τ)−α
∫ τ

0

(τ − s)−α(‖∂sK
N−2u(s)‖2L2(Ω) + ‖KN−2u(s)‖2H2(Ω))dsdτ.

Moreover, by Fubini’s theorem, we see that

‖∂tK
Nu(t)‖2L2(Ω) + ‖KNu(t)‖2H2(Ω)

≤ C

∫ t

0

(‖∂sK
N−2u(s)‖2L2(Ω) + ‖KN−2u(s)‖2H2(Ω))

∫ t

s

(t− τ)−α(τ − s)−αdτds

≤ C

∫ t

0

(t− s)1−2α(‖∂sK
N−2u(s)‖2L2(Ω) + ‖KN−2u(s)‖2H2(Ω))ds.

We calculate by iterations and obtain

‖∂tK
Nu(t)‖2L2(Ω) + ‖KNu(t)‖2H2(Ω)

≤ C

∫ t

0

(t− s)−α+(N−2)(1−α)(‖∂sKu(s)‖
2
L2(Ω) + ‖Ku(s)‖2H2(Ω))ds

≤ C

∫ t

0

(t− s)−α+(N−2)(1−α)

∫ s

0

(s− τ)−α(‖∂τu(τ)‖
2
L2(Ω) + ‖u(τ)‖2H2(Ω))dτds

+ C

∫ t

0

(t− s)−α+(N−2)(1−α)‖u0‖
2
L2(Ω)ds

≤ C‖u0‖
2
L2(Ω) + C

∫ t

0

(t− τ)N(1−α)−1(‖∂τu(τ)‖
2
L2(Ω) + ‖u(τ)‖2H2(Ω))dτ.

Since N ≥ 1
1−α implies N(1− α) − 1 ≥ 0, the above inequalities yield

‖∂tK
Nu(t)‖2L2(Ω) + ‖KNu(t)‖2H2(Ω)
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≤ C‖u0‖
2
L2(Ω) + C

∫ t

0

(‖∂τu(τ)‖
2
L2(Ω) + ‖u(τ)‖2H2(Ω))dτ. (3.15)

Noting that we have proved u ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)∩H1
0 (Ω)), and for t ∈ (0, T ),

the right-hand side of (3.15) is finite, which leads to

KNu ∈W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)).

In the same way, we can prove

‖∂tK
jF (t)‖2L2(Ω) + ‖KjF (t)‖2H2(Ω)

≤ C‖F (0)‖2L2(Ω) + C

∫ t

0

(t− τ)j(1−α)−1(‖∂τF (τ)‖
2
L2(Ω) + ‖F (τ)‖2H2(Ω))dτ

for all j=1, 2, · · · , N−1. Moreover, under the assumptions

u0 ∈H2(Ω) ∩H1
0 (Ω) and f ∈ H1(0, T ;L2(Ω)),

the improved regularity for parabolic equations (e.g., [5]) yields that F ∈W 1,∞(0, T ; L2(Ω)) ∩

L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) and the regularity estimate

‖∂tF (t)‖
2
L2(Ω) + ‖F (t)‖2H2(Ω) ≤ C(‖u0‖

2
H2(Ω) + ‖f‖2H1(0,T ;L2(Ω)))

holds true for t ∈ (0, T ), which further implies that

‖∂tK
jF (t)‖2L2(Ω) + ‖KjF (t)‖2H2(Ω)

≤ C‖u0‖
2
L2(Ω) + C

∫ t

0

(t− τ)−α(‖∂τF (τ)‖
2
L2(Ω) + ‖F (τ)‖2H2(Ω))dτ

≤ C(1 + t1−α)(‖u0‖
2
H2(Ω) + ‖f‖2H1(0,T ;L2(Ω))).

Here in the first inequality we used F (0) = u0 from (3.9) and the estimate that (t−τ)(j−1)(1−α) ≤

T (j−1)(1−α) ≤ T (N−2)(1−α) for j = 1, 2, · · · , N − 1. Hence we obtain

esssup
0≤t≤T

(‖∂tK
jF (t)‖2L2(Ω) + ‖KjF (t)‖2H2(Ω))

≤ C(‖u0‖
2
H2(Ω) + ‖f‖2H1(0,T ;L2(Ω))), j = 0, 1, · · · , N − 1. (3.16)

In the end, collecting the above estimates (3.15)–(3.16) and recalling (2.4), we conclude that

u ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) with the estimate

esssup
0≤t≤T

(‖∂tu(t)‖
2
L2(Ω) + ‖u(t)‖2H2(Ω)) ≤ C(‖u0‖

2
H2(Ω) + ‖f‖2H1(0,T ;L2(Ω))).

We finish the last part of Theorem 2.1.

4 Long-Time Asymptotics

In this section, we establish the long-time asymptotic estimate for the solution to the initial-

boundary value problem (2.1)–(2.2). The proof relies on a suitable energy estimate and the use

of the asymptotic behavior for a related ordinary fractional differential equation.

To start with, some important auxiliary results as follows are established. Henceforth, (·, ·)

denotes the scalar product in L2(Ω). We have the following coercivity inequality for the Caputo

derivative.
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Lemma 4.1 Let y ∈ H1(0, T ;L2(Ω)). Then

(y(t), ∂αt y(t)) ≥ ‖y(t)‖L2(Ω) ∂
α
t ‖y(t)‖L2(Ω)

holds true for 0 < t < T .

Proof The proof is done by direct calculations. For simplicity, we set gα(t) :=
t−α

Γ(1−α) and

its derivative g′α(t) = −αt−α−1

Γ(1−α) , 0 < t < T , and we denote

I(t) := (y(t), ∂αt y(t))− ‖y(t)‖L2(Ω) ∂
α
t ‖y(t)‖L2(Ω).

Then it is sufficient to prove I ≥ 0. For this, we divide I(t) into two parts: I(t) = I1(t) + I2(t)

with

I1(t) := (y(t), ∂αt y(t))−
1

2
∂αt ‖y(t)‖

2
L2(Ω),

I2(t) :=
1

2
∂αt ‖y(t)‖

2
L2(Ω) − ‖y(t)‖L2(Ω) ∂

α
t ‖y(t)‖L2(Ω).

By Fubini’s theorem and the definition of Caputo fractional derivative, we find

I1(t) =

∫ t

0

gα(t− τ)(y(t), ∂τ y(τ))dτ −

∫ t

0

gα(t− τ)(y(τ), ∂τ y(τ))dτ

=

∫ t

0

gα(t− τ)(y(t) − y(τ), ∂τy(τ))dτ

= −
1

2

∫ t

0

gα(t− τ)∂τ‖y(t)− y(τ)‖2L2(Ω)dτ.

Then integration by parts yields

I1(t) =−
1

2
gα(t− τ)‖y(t)− y(τ)‖2L2(Ω)|

τ=t
τ=0 −

1

2

∫ t

0

g′α(t− τ)‖y(t)− y(τ)‖2L2(Ω)dτ.

Moreover, we claim that

lim
τ→t−

gα(t− τ)‖y(t)− y(τ)‖2L2(Ω) = 0. (4.1)

Indeed, by noting that

gα(t− τ)‖y(t)− y(τ)‖2L2(Ω)

≤ C(t− τ)−α
∥∥∥
∫ t

τ

|∂sy(s)|ds
∥∥∥
2

L2(Ω)

≤ C(t− τ)−α
∫ t

τ

‖∂sy(s)‖
2
L2(Ω)ds

∫ t

τ

12ds ≤ C(t− τ)1−α‖y‖2H1(0,T ;L2(Ω)),

where in the last line we used Hölder’s inequality and Fubini’s theorem. Thus the claim (4.1)

is true and we see that

I1(t) =
1

2
gα(t)‖y(t)− y(0)‖2L2(Ω) −

1

2

∫ t

0

g′α(t− τ)‖y(t)− y(τ)‖2L2(Ω)dτ.



130 Z. Y. Li, X. C. Huang and M. Yamamoto

For I2, we note that the triangle inequality ‖y(t)‖L2(Ω) − ‖y(τ)‖L2(Ω) ≤ ‖y(t)− y(τ)‖L2(Ω),

so that lim
τ→t−

gα(t − τ)(‖y(t)‖L2(Ω) − ‖y(τ)‖L2(Ω))
2 = 0, then by an argument similar to the

calculation for I1, we find

I2(t) =

∫ t

0

gα(t− τ)(‖y(τ)‖L2(Ω) − ‖y(t)‖L2(Ω))∂τ‖y(τ)‖L2(Ω)dτ

=
1

2

∫ t

0

gα(t− τ)∂τ (‖y(t)‖L2(Ω) − ‖y(τ)‖L2(Ω))
2dτ

= −
1

2
gα(t)(‖y(t)‖L2(Ω) − ‖y(0)‖L2(Ω))

2

+
1

2

∫ t

0

g′α(t− τ)(‖y(t)‖L2(Ω) − ‖y(τ)‖L2(Ω))
2dτ.

Therefore, by noting

‖y(t)− y(τ)‖2L2(Ω) = ‖y(t)‖2L2(Ω) + ‖y(τ)‖2L2(Ω) − 2(y(t), y(τ))

for 0 ≤ τ ≤ t, we obtain

I(t) = gα(t)(‖y(t)‖L2(Ω)‖y(0)‖L2(Ω) − (y(t), y(0)))

−

∫ t

0

g′α(t− τ)(‖y(t)‖L2(Ω)‖y(τ)‖L2(Ω) − (y(t), y(τ)))dτ.

Finally, Hölder’s inequality and gα > 0, g′α < 0 in (0, T ) imply I(t) ≥ 0 for 0 < t < T , which

completes the proof of the lemma.

Lemma 4.2 Let λ > 0 and p0 ≥ 0 be constants. Assume that w ∈ H1(0, T ) satisfies
{
∂tw(t) + p0∂

α
t w(t) + λw(t) ≤ 0, 0 < t < T,

w(0) ≤ 0.
(4.2)

Then w(t) ≤ 0 for 0 < t < T .

Proof We start the proof in the case of w ∈ C1[0, T ]. By continuity, we find (4.2) holds

true for t ∈ [0, T ]. We prove the lemma by contradiction. Assume that w is positive at some

point in (0, T ]. Then w attains its positive maximum in (0, T ], that is, there exists t0 ∈ (0, T ]

such that w(t0) > 0 and w(t0) ≥ w(t) for t ∈ [0, T ]. Immediately, we have ∂tw(t0) ≥ 0. With

reference to Luchko [24, Theorem 1], we find ∂αt w(t0) ≥ 0. Thus, we obtain

∂tw(t0) + p0∂
α
t w(t0) + λw(t0) > 0,

which is a contradiction to (4.2).

Next, we assume w ∈ H1(0, T ). For any nonnegative function ϕ ∈ C1[0, T ], we denote

w := w ∗ ϕ :=
∫ t
0
w(t− τ)ϕ(τ)dτ . It is not difficult to see that w ∈ C1[0, T ] and satisfies

{
∂tw(t) + p0∂

α
t w(t) + λw(t) ≤ 0, 0 < t < T,

w(0) = 0.

Therefore, from the above argument, it follows that w(t) ≤ 0 for any t ∈ (0, T ), that is,

∫ t

0

w(t− τ)ϕ(τ)dτ ≤ 0, 0 < t < T.
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Since ϕ ∈ C1[0, T ] is nonnegative and can be arbitrarily chosen, we must have w ≤ 0 in (0, T ).

Indeed, noting that w ∈ H1(0, T ) ⊂ C[0, T ], if w ≤ 0 fails in (0, T ), then we can choose

t0 ∈ (0, T ) and a sufficiently small constant ε > 0 such that w(t) > 0 for any t ∈ [t0 − ε, t0 + ε].

Then we can construct ϕ ∈ C1[0, T ] satisfying

ϕ(t) =

{
1, if t ∈

[
t0 −

ε

2
, t0 +

ε

2

]
,

0, if t ∈ (0, t0 − ε) ∪ (t0 + ε, T ).

In this case, we calculate the convolution w ∗ ϕ and find that

∫ t

0

w(t − τ)ϕ(τ)dτ ≥

∫ t0+
ε
2

t0−
ε
2

w(t− τ)dτ ≥ ε inf
(t0−

ε
2 ,t0+

ε
2 )
w(t) > 0,

which is a contradiction. This completes the proof of the lemma.

Lemma 4.3 Let λ > 0, p ∈ L∞(0, T ) and p0 ≤ p(t) ≤ p1, t ∈ (0, T ) for some positive

constants p0, p1 > 0. Assume that z ∈ W 1,∞(0, T ) satisfies z(t) ≥ 0 and

∂tz(t) + p(t)∂αt z(t) + λz(t) ≤ 0, 0 < t < T. (4.3)

Then ∂αt z(t) ≤ 0 for 0 < t < T .

Proof Step 1 We first assume z ∈ C2[0, T ] and we find ∂αt z(0) = 0, which can be easily

verified by the following estimate

|∂αt z(t)| ≤

∫ t

0

(t− s)−α

Γ(1 − α)
|∂sz(s)|ds ≤

‖z‖C1[0,T ]

Γ(2− α)
t1−α, t ∈ [0, T ].

Now we set z̃ := ∂αt z and find that Jαz̃ = z−z(0), where Jα denotes the Riemann-Liouville

integral operator. By (4.3), we obtain

{
∂tJ

αz̃(t) + p(t)z̃(t) ≤ −λz(t) ≤ 0, 0 < t < T,

z̃(0) = ∂αt z(0) = 0.
(4.4)

Then we claim that z̃(t) ≤ 0 for any t ∈ (0, T ). Otherwise, there exists t1 ∈ (0, T ] such

that z̃ attains its positive maximum z̃(t1) > 0 at point t1. By [1, Theorem 2.1], we have the

Riemann-Liouville fractional derivative at t = t1 satisfies

∂tJ
αz̃(t1) ≥

tα−1
1

Γ(α)
z̃(t1) > 0,

and hence ∂tJ
αz̃ > 0 in a neighborhood of t1, which yields a contraction to (4.4). Thus, z̃ is

non-positive and then we have ∂αt z(t) ≤ 0 for 0 < t < T .

Step 2 We assume z ∈ W 1,∞(0, T ). We denote zµ(t) := z(t) + µ−1Eα,1(−µt
α) with µ > 0.

Then we see that zµ is positive and satisfies the following equation

(∂t + p(t)∂αt + λ)zµ = (∂t + p(t)∂αt + λ)z +Rµ(t), (4.5)

where Rµ(t) := −tα−1Eα,α(−µt
α) − p(t)Eα,1(−µt

α) + λ
µ
Eα,1(−µt

α) can be easily derived by

differential properties (3.1) and (3.2) of the Mittag-Leffler function. Moreover, by the useful
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estimate (3.3) for the Mittag-Leffler functions, we can see that there exists a constant δµ > 0

such that the following inequality

−tα−1Eα,α(−µt
α)− p(t)Eα,1(−µt

α) +
λ

µ
Eα,1(−µt

α) < −δµ

is valid for any t ∈ (0, T ) and sufficiently large µ > 0, which combined with (4.5) and the

assumption (4.3) implies

(∂t + p(t)∂αt + λ)zµ ≤ −δµ, 0 < t < T.

Then for any ε > 0, we can choose zµ,ε ∈ C2[0, T ] such that zµ,ε ≥ 0 and

‖zµ,ε − zµ‖W 1,∞(0,T ) ≤ ε.

By a direct calculation, we see that

(∂t + p(t)∂αt + λ)zµ,ε = (∂t + p(t)∂αt + λ)zµ + (∂t + p(t)∂αt + λ)(zµ,ε − zµ)

≤ − δµ +
(
1 +

p1T
1−α

Γ(2− α)
+ λ

)
ε.

Consequently, for sufficiently small ε > 0, we see that

(∂t + p(t)∂αt + λ)zµ,ε ≤ 0.

Now by Step 1, it follows that ∂αt zµ,ε ≤ 0 for any sufficiently small ε > 0. Letting ε → 0 and

we have ∂αt zµ ≤ 0 for any sufficiently large µ. Finally, again from the estimate (3.3) for the

Mittag-Leffler functions, we see that Eα,1(−µt
α) tends to 0 as µ → ∞, hence that ∂αt z ≤ 0 by

letting µ→ ∞. We then finish the proof of the lemma.

Equipped with the above lemmas, we prove our main result by applying an energy estimate.

Proof of Theorem 2.2 According to the result of the forward problem (Theorem 2.1), we

note that u ∈ H1(0, T ;H−1(Ω))∩L2(0, T ;H1
0 (Ω))∩C([0, T ];L

2(Ω)) provided that u0 ∈ L2(Ω).

Since this regularity is not enough to guarantee the above lemmas that we will use in the proof,

we need to introduce the approximate solutions {uN}
∞
N=1 which solve





∂tuN + q(t)∂αt uN = −AuN + c(x, t)uN , (x, t) ∈ Ω× (0, T ),

uN (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

uN (x, 0) =

N∑

k=1

(u0, ϕk)L2(Ω)ϕk, x ∈ Ω

(4.6)

for eachN ∈ N. Here we recall that {ϕk}
∞
k=1 ⊂ H2(Ω)∩H1

0 (Ω) is the set of the eigenfunctions of

A with the homogeneous Dirichlet boundary condition and forms an orthonormal basis of L2(Ω).

By the third part of Theorem 2.1, we see that uN ∈ W 1,∞(0, T ;L2(Ω)), which guarantees the

regularity when we apply Lemmas 4.1–4.3 in the following context.

Now we multiply uN on both sides of the first equation of (4.6) and integrate over Ω.

Integration by parts yields

(∂tuN , uN) + q(t)(∂αt uN , uN) +

d∑

i,j=1

(aij∂xi
uN , ∂xj

uN)− (c(t)uN , uN ) = 0 (4.7)
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for 0 < t < T . Next we estimate the left-hand side of (4.7) from below.

The ellipticity of the operator A and the Poincaré inequality imply

d∑

i,j=1

(aij∂xi
uN (t), ∂xj

uN (t)) ≥ ν‖∇uN (t)‖2L2(Ω) ≥ λ‖uN(t)‖
2
L2(Ω) (4.8)

with some positive constant λ > 0, which depends only on ν and Ω. By Lemma 4.1, we have

(∂αt uN(t), uN (t)) ≥ ‖uN(t)‖L2(Ω) ∂
α
t ‖uN(t)‖L2(Ω) (4.9)

for 0 < t < T . Since c ≤ 0 in Ω× (0, T ) and

(∂tuN(t), uN (t)) =
1

2
∂t‖uN(t)‖

2
L2(Ω) = ‖uN(t)‖L2(Ω) ∂t‖uN(t)‖L2(Ω), (4.10)

we insert (4.8)–(4.10) into (4.7) and obtain

‖uN(t)‖L2(Ω)(∂t‖uN(t)‖L2(Ω) + q(t)∂αt ‖uN(t)‖L2(Ω) + λ‖uN(t)‖L2(Ω)) ≤ 0 (4.11)

for 0 < t < T . We assert that

∂t‖uN(t)‖L2(Ω) + q(t)∂αt ‖uN(t)‖L2(Ω) + λ‖uN(t)‖L2(Ω) ≤ 0 (4.12)

for 0 < t < T . If (4.12) does not hold, then there exist t2 ∈ (0, T ) and a small constant ε > 0

such that

∂t‖uN(t)‖L2(Ω) + q(t)∂αt ‖uN(t)‖L2(Ω) + λ‖uN(t)‖L2(Ω) > 0

for t ∈ (t2 − ε, t2 + ε). Then by (4.11), we see that ‖uN(t2)‖L2(Ω) = 0, which indicates that

‖uN(t)‖L2(Ω) attains its minimum at t = t2. Immediately we have ∂t‖uN(t2)‖L2(Ω) ≤ 0 and

∂αt ‖uN(t2)‖L2(Ω) ≤ 0 from [24, Theorem 1]. This yields a contradiction.

Next we estimate ‖uN(t)‖L2(Ω) by some function from above. We introduce an auxiliary

function v which solves the following fractional ordinary differential equation
{
∂tv(t) + q1∂

α
t v(t) + λv(t) = 0, t > 0,

v(0) = ‖u0‖L2(Ω).
(4.13)

Here we recall that q1 is a positive constant and q(t) ≤ q1 for t > 0. Let wN (t) = ‖uN(t)‖L2(Ω)−

v(t). Since T > 0 is arbitrary, by (2.2), (4.12)–(4.13) and

‖uN(0)‖L2(Ω) =
( N∑

k=1

(u0, ϕk)
2
L2(Ω)

) 1
2

≤ ‖u0‖L2(Ω) = v(0),

we obtain
{
∂twN + q1∂

α
t wN + λwN ≤ (q1 − q(t))∂αt ‖uN(t)‖L2(Ω), 0 < t < T,

wN (0) ≤ 0.
(4.14)

From (4.12), applying Lemma 4.3, we can see that ∂αt ‖uN(t)‖L2(Ω) ≤ 0, which means the right-

hand side of (4.14) is not positive. Now we can apply Lemma 4.2 for (4.14) to obtain wN (t) ≤ 0

for 0 < t < T , that is,

‖uN(t)‖L2(Ω) ≤ v(t) for 0 < t < T.
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By Theorem 2.1, we find that for arbitrarily fixed T > 0, the sequence uN(t) converges to

u(t) in L2(Ω) for any 0 < t < T . Moreover, we note that v is the solution to (4.13), which is

independent of N . Thus, we have

‖u(t)‖L2(Ω) ≤ v(t) for 0 < t < T.

Finally, since T > 0 can be arbitrarily fixed and v is also independent of T , it remains to discuss

the long-time asymptotic behavior of v.

By applying the Laplace transform to the fractional ordinary differential equation (4.13),

we can derive

|v(t)| ≤ C‖u0‖L2(Ω)t
−α, t ≥ t0

for arbitrarily fixed t0 > 0. We put the details in Lemma A.1 in the appendix. This completes

the proof of Theorem 2.2.

5 Conclusions and Open Problems

In this paper, we considered the diffusion equation with fractional derivative on a bounded

multi-dimensional domain subject to the homogeneous Dirichlet boundary condition. Firstly,

by regarding the fractional term as a source, we transferred the differential equation to an

equivalent integral form, and we used the Fredholm alternative for the compact operator to

show the well-posedness for the forward problem, which is essential for numerically analyzing

this type of problems and for dealing with the inverse problems for the fractional diffusion

equation. On the basis of the forward problem, the energy estimate and maximum principle

allow us to obtain the asymptotic decay in time for the solution to the initial-boundary value

problem (2.1)–(2.2).

For the sake of simplicity, we consider the case of only one fractional derivative in this

paper. As one can see from the proof, we can similarly prove Theorem 2.1 for a multi-term

time-fractional diffusion equation

∂tu+

ℓ∑

j=1

qj(t)∂
αj

t u = −Au+ c(x, t)u + f(x, t), (x, t) ∈ Ω× (0, T ),

where ℓ ∈ N is given and we assume 0 < α1 < α2 < · · · < αℓ < 1. Moreover, if we further

assume f = 0, c ≤ 0 and qj(t) = qj ≥ 0, j = 2, · · · , ℓ, p0 ≤ q1(t) ≤ p1 with some positive

constants p1 ≥ p0 > 0, then by following the proof in Section 4 and Appendix, Theorem 2.2

can be immediately generalized in the multi-term case with the following long-time asymptotic

estimate

‖u( · , t)‖L2(Ω) ≤ C‖u0‖L2(Ω)t
−α1 ,

which indicates that the asymptotic behavior of the solution depends on the lowest order of the

fractional derivatives. The assumption that qj , j = 2, · · · , ℓ are constants may be relaxed by

modifying the argument we used in this paper but here we do not discuss more details.

As for the open problems related to the initial-boundary value problems for the fractional

diffusion equations, let us mention the following ones: Our proof for the well-posedness of the

problem (2.1)–(2.2) heavily relies on the eigenfunction expansion and the properties of the

Mittag-Leffler functions. If the coefficients in the elliptic operator A are also t-varying, one
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cannot directly use the above argument to prove the well-posedness. However, the asymptotics

of the solution in the case when the elliptic operator is also t-dependent can be obtained by

following the strategy in Section 4, provided that the solution is sufficiently smooth. On the

other hand, in the proof of the asymptotics, we need the assumption that q is independent of x,

which is necessary for deriving Lemma 4.1. It would be interesting to investigate what happens

with the asymptotic properties of the solution if this assumption is relaxed. Another interesting

direction of the research would be that whether the estimate is valid for the fractional diffusion

equation with nonlinearity. It still remains open and should be investigated.

A Asymptotics for a Fractional Ordinary Differential Equation

In this part, we will follow the argument used in Gorenflo and Mainardi [7, Section 4] to

give the proof for the long-time asymptotic behavior of the solution v to the following fractional

ordinary differential equation
{
∂tv(t) + q1∂

α
t v(t) + λv(t) = 0, t > 0,

v(0) = v0.
(A.1)

Lemma A.1 Assume q1 > 0, λ > 0 and v0 6= 0 are given constants. Then the solution v

to the problem (A.1) admits the following long-time asymptotic estimate

|v(t)| ≤ C|v0|t
−α, t ≥ t0

for any t0 > 0. Here the order α is sharp and the constant C depends only on q1, α, λ and t0.

Proof By applying the Laplace transform to the ordinary fractional differential equation

(A.1), we find that

L[v](s) =
1 + q1s

α−1

s+ q1sα + λ
v0, s > 0,

where L[v] denotes the Laplace transform of the function v. Then we get v(t) by the Fourier-

Mellin transform of L[v](s). Since it is readily to see that s + q1s
α + λ has no zero in the

main sheet of the Riemann surface including the negative real axis, we can deform the original

Bromwich path into the Hankel path Ha(ε) and obtain

v(t) =
1

2πi
v0

∫

Ha(ε)

est
1 + q1s

α−1

s+ q1sα + λ
ds.

Here the Hankel path Ha(ε) is the loop which starts from −∞ along the lower side of the

negative real axis, encircles the circular disc |s| = ε and ends at −∞ along the upper side of

the negative real axis. Letting ε→ 0 yields

v(t) = v0

∫ ∞

0

e−rtH
(1)
α,0(r; q1, λ)dr

with

H
(1)
α,0(r; q1, λ) = −

1

π
ℑ
{ 1 + q1s

α−1

s+ q1sα + λ
|s=reiπ

}

=
1

π

λq1r
α−1 sin (απ)

(λ− r)2 + q21r
2α + 2(λ− r)q1rα cos (απ)

,
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where ℑz denotes the imaginary part of z ∈ C. We break the above integral into two parts as

follows

v(t) = v0

∫ δ

0

e−rtH
(1)
α,0(r; q1, λ)dr + v0

∫ ∞

δ

e−rtH
(1)
α,0(r; q1, λ)dr =: I1 + I2,

where 0 < δ ≤ λ will be chosen later. We will estimate I1 and I2 separately. For I1, in view of

the inequality that

(λ− r)2 + q21r
2α + 2(λ− r)q1r

α cos (απ)

≥ (λ− r)2 + q21r
2α − 2(λ− r)q1r

α = (λ− r − q1r
α)2, 0 < r < δ,

we can choose δ > 0 sufficiently small such that λ−r−q1r
α ≥ λ

2 for any 0 < r < δ. Consequently,

we arrive at the following inequalities

|I1(t)| ≤
2|v0|q1 sin(απ)

π

∫ δ

0

e−rtrα−1dr

≤
2

π
q1 sin(απ)Γ(α)|v0 |t

−α, t > 0.

Next, we estimate I2. Firstly, for any s = reiπ with r > 0, a direct calculation yields

|s+ q1s
α + λ| ≥ ℑs+ q1ℑs

α = |s| sinπ + q1|s|
α sin(απ) = q1 sin(απ)r

α > 0.

Hence we see that

|H
(1)
α,0(r; q1, λ)| ≤

1

π

∣∣∣
1 + q1s

α−1

s+ q1sα + λ

∣∣∣
s=reiπ

∣∣∣ ≤
1 + q1r

α−1

πq1 sin(απ)rα
≤

1 + q1r
α−1

πq1 sin(απ)δα

holds true for any r ≥ δ. Therefore, we obtain

|I2(t)| ≤
|v0|

πq1 sin(απ)δα

∫ ∞

δ

e−rt(1 + q1r
α−1)dr

≤
|v0|

πq1 sin(απ)δα

(1
t
+ q1Γ(α)t

−α
)
, t > 0.

Finally, collecting all the above estimates for I1 and I2, we arrive at the inequality

|v(t)| ≤ C|v0|(t
−1 + t−α), t > 0,

and thus, by noting t−1 = tα−1t−α ≤ tα−1
0 t−α for t ≥ t0, we have

|v(t)| ≤ C|v0|t
−α, t ≥ t0,

where the constant C > 0 depends only on q1, λ, α and t0. Moreover, for any r > 0, we have

H
(1)
α,0(r; q1, λ) > 0 and for any 0 ≤ r ≤ 1, we have the inequality

(λ− r)2 + q21r
2α + 2(λ− r)q1r

α cos(απ) ≤ (|λ− r|+ q1r
α)2 ≤ (λ+ q1)

2,

which implies

|v(t)| ≥ |v0|

∫ 1

0

e−rtH
(1)
α,0(r; q1, λ)dr
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≥ |v0|
λq1 sin(απ)

π(λ + q1)2

∫ 1

0

e−rtrα−1dr

= |v0|t
−αλq1 sin(απ)

π(λ+ q1)2

∫ t

0

e−rrα−1dr

≥ |v0|t
−αλq1 sin(απ)

π(λ+ q1)2

∫ t0

0

e−rrα−1dr, t ≥ t0.

Thus, we find that the decay rate t−α is sharp and we finish the proof of the lemma.
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