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Abstract Cheng-Hu-Moruz (2017) completely classified the locally strongly convex cen-
troaffine hypersurfaces with parallel cubic form based on the Calabi product (called the
type I Calabi product for short) proposed by Li-Wang (1991).

In the present paper, the authors introduce the type II Calabi product (in case λ1 =
2λ2), complementing the type I Calabi product (in case λ1 6= 2λ2), and achieve a classi-
fication of the locally strongly convex centroaffine hypersurfaces in R

n+1 with vanishing
centroaffine shape operator and Weyl curvature tensor by virtue of the types I and II
Calabi product.

As a corollary, 3-dimensional complete locally strongly convex centroaffine hypersur-
faces with vanishing centroaffine shape operator are completely classified, which positively
answers the centroaffine Bernstein problems III and V by Li-Li-Simon (2004).
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1 Introduction

In centroaffine differential geometry, the centroaffine normalization induces the identity as

Weingarten operator, which contains no further geometric information. By calculating the

variation formula of the volume with respect to the centroaffine metric, Wang [22] reasonably

introduced an important self-adjoint operator T := ∇̂T , originally named as centroaffine shape

operator also called Tchebychev operator in [15], where T and ∇̂ denote the Tchebychev vector

field and the Levi-Civita connection with respect to the centroaffine metric. In addition, the

Euler-Lagrange equation of the volume variation with respect to the centroaffine metric is

geometrically equivalent to

TrT = divT = 0. (1.1)
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The centroaffine hypersurfaces satisfying (1.1) are called centroaffine minimal hypersurfaces in

[22], later also called centroaffine extremal hypersurfaces in [10]. For such hypersurfaces several

related versions of centroaffine Bernstein problems were listed in [10, Section 5]. It is well known

that the classification of centroaffine extremal hypersurfaces is very interesting and important

but it is rather difficult. This partially motivates us to consider the centroaffine hypersurfaces

with vanishing centroaffine shape operator, i.e.,

T = ∇̂T = 0. (1.2)

Noting that Liu-Wang [15] classified the non-degenerate centroaffine surfaces with vanish-

ing centroaffine shape operator. The classification of locally strongly convex flat centroaffine

hypersurfaces with vanishing centroaffine shape operator is equivalent to the classification of

the canonical centroaffine hypersurfaces, which has been investigated in [3, 13]. Here, a cen-

troaffine hypersurface is called canonical if its centroaffine metric is flat and its difference tensor

is parallel with respect to its centroaffine metric.

Theorem 1.1 (see [3]) Let x : Mn → R
n+1 be a locally strongly convex canonical

centroaffine hypersurface. Then it is locally centroaffinely equivalent to one of the following

hypersurfaces:

(i) xα1

1 xα2

2 · · ·xαn+1

n+1 = 1, where either αi > 0 (1 ≤ i ≤ n+1), or αj > 0 (2 ≤ j ≤ n+1) and
n+1∑
j=1

αj < 0;

(ii) xα1

1 xα2

2 · · ·xαn−1

n−1 (x2n+x
2
n+1)

αn exp
(
αn+1 arctan

xn

xn+1

)
= 1, where αi < 0 (1 ≤ i ≤ n−1)

and 2αn +
n−1∑
i=1

αi > 0;

(iii) xn+1 = 1
2x1

(x22+ · · ·+x2v−1)−x1(− lnx1+αv lnxv+ · · ·+αn lnxn), where 2 ≤ v ≤ n+1,

αi > 0 (v ≤ i ≤ n) are real numbers and
n∑
i=v

αi < 1.

Recently, Cheng-Hu-Xing [6] classified the locally strongly convex centroaffine hypersurfaces

with vanishing centroaffine shape operator and constant sectional curvature. More researches

on the centroaffine shape operator, we refer the readers to [1, 5, 7, 11, 14, 16, 21] etc.

The current paper concerns the locally strongly convex centroaffine hypersurfaces with van-

ishing centroaffine shape operator and Weyl curvature tensor. To state the main result, we need

to recall some facts about Calabi hypersurfaces from [2, 9, 19]. Let ϕ :M1 → R
n+1 be a locally

strongly convex hypersurface immersion of a smooth, connected manifold into real affine space

R
n+1. Assume that Y0 = (0, · · · , 0, 1) ∈ R

n+1 is a relative normalization of the hypersurface

M1, which is called the Calabi affine normalization. In the following, such immersion equipped

with the Calabi affine normalization is called Calabi hypersurface. Additionally, the main result

of this paper depends heavily on the (generalized) Calabi product shown in [3, 10, 13], and the

new type of (generalized) Calabi product presented in Section 3. In order to distinguish two

types of Calabi products, we call the Calabi products defined by (1.3)–(1.4) as the types I and II

Calabi product, respectively. Firstly, let ψ :M2 → R
n be a locally strongly convex centroaffine
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hypersurface of dimension n− 1. Then, for a constant λ 6= 0,−1, the type I Calabi product of

a point and M2 is defined by

ψ̃(t, p) := (etψ(p), e−λt) ∈ R
n+1, p ∈M2, t ∈ R. (1.3)

The hypersurface defined by (1.3) is a non-degenerate centroaffine hypersurface (see [3, Propo-

sition 3.2]). Secondly, let ϕ : M1 → R
n be a Calabi hypersurface of dimension n − 1 with

ϕ(p) = (ϕ1(p), · · · , ϕn−1(p), ϕn(p)) for p ∈M1. Then the type II Calabi product of a point and

M1 is defined by

x(t, p) := et(1, ϕ1(p), · · · , ϕn−1(p), ϕn(p) + t) ∈ R
n+1, p ∈M1, t ∈ R. (1.4)

The hypersurface defined by (1.4) is a locally strongly convex centroaffine hypersurface of elliptic

type (see Proposition 3.1 below). If we focus only on the locally strongly convex centroaffine

hypersurfaces, then the type II Calabi product complements the type I Calabi product, see

Remark 3.2 below for the precise details.

The main result of this paper is as follows.

Theorem 1.2 Let Mn(n ≥ 3) be a locally strongly convex centroaffine hypersurface with

vanishing centroaffine shape operator and Weyl curvature tensor. Then one of the following

cases occurs:

(i) In case T = 0, then Mn is an open part of a proper affine hypersphere centered at origin

with vanishing Weyl curvature tensor.

(ii) In case T 6= 0, then

(ii-1) Mn is an open part of a canonical centroaffine hypersurface; or

(ii-2) n = 3, M3 is obtained as either the type I Calabi product (λ < −1; resp. λ > −1, λ 6=
0, 3) of a point and a non-flat locally strongly convex proper (elliptic; resp. hyperbolic) affine 2-

sphere centered at origin, or the type II Calabi product of a point and a non-flat locally strongly

convex improper affine 2-sphere; or

(ii-3) n ≥ 4, Mn is locally centroaffinely equivalent to the hypersurfaces

(x21 + · · ·+ x2n)
λx2n+1 = 1, λ < −1;

or

(x21 − x22 − · · · − x2n)
λx2n+1 = 1, λ > −1, λ 6= 0, n.

Remark 1.1 It is an open problem that how to classify all locally strongly convex affine

hyperspheres with affine metrics being locally conformally flat. There appeared some partial

results recently (see [4, 8, 23]).

Obviously, Theorem 1.2 generalizes [6, Theorem 1.1]. Moreover, the fact Weyl curvature

tensor vanishes automatically for the dimension n = 3 implies Theorem 1.2 completely classifies
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the 3-dimensional locally strongly convex centroaffine hypersurfaces with vanishing centroaffine

shape operator, which partially generalizes [15, Theorem 4.1]. From the proof of Theorem 1.2,

one can get the following consequence.

Corollary 1.1 Let M3 be a locally conformally flat, locally strongly convex centroaffine

hypersurface with vanishing centroaffine shape operator. Then M3 is locally centroaffinely e-

quivalent to

(i) a locally conformally flat proper affine hypersphere centered at origin; or

(ii) a locally strongly convex canonical centroaffine hypersurface with T 6= 0; or

(iii) the hypersurface (x21 + x22 + x23)
λx24 = 1 with λ < −1; or

(iv) the hypersurface (x21 − x22 − x23)
λx24 = 1 with λ > −1 and λ 6= 0, 3.

As a corollary of Theorem 1.2, the classification of 3-dimensional centroaffine hypersurfaces

with vanishing centroaffine shape operator and complete centroaffine metric is obtained.

Corollary 1.2 Let M3 be a complete locally strongly convex centroaffine hypersurface with

vanishing centroaffine shape operator. Then

(i) M3 is a complete proper affine hypersphere centered at origin; or

(ii) M3 is a complete canonical centroaffine hypersurface with T 6= 0, namely, it is cen-

troaffinely equivalent to one of the following hypersurfaces:

(ii-1) xα1

1 xα2

2 xα3

3 xα4

4 = 1, where either αi > 0 and αi 6= 1 (1 ≤ i ≤ 4), or αj > 0 (2 ≤ j ≤ 4)

and
4∑
j=1

αj < 0; or

(ii-2) x4 = 1
2x1

(x22 + x23) + x1 lnx1; or x4 =
x2
2

2x1
+ x1(lnx1 − α3 lnx3), 0 < α3 < 1; or

x4 = x1(lnx1 − α2 lnx2 − α3 lnx3), αi > 0 (2 ≤ i ≤ 3) and α2 + α3 < 1; or

(iii) M3 is centroaffinely equivalent to the hypersurface (x21 + x22 + x23)
λx24 = 1 with λ < −1;

or

(iv) M3 is obtained as the type I Calabi product (λ > −1, λ 6= 0, 3) of a point and a complete

non-flat locally strongly convex hyperbolic affine 2-sphere centered at origin.

Remark 1.2 Apart from hyperellipsoids, cases (ii-2) and (iii), parts of cases (ii-1) and (iv)

shown above are complete centroaffine extremal hypersurfaces of elliptic type. Corollary 1.2

positively answers the centroaffine Bernstein problems III and V in [10]. In particular, the

hypersurface x4 = 1
2x1

(x22 + x23) + x1 lnx1 has a Euclidean boundary point (0, 0, 0, 0), which

implies that it cannot be represented as graph over R3.

The remainder of this paper is organized as follows. Firstly, Section 2 presents some basic

facts of the centroaffine geometry and warped product manifold. In Section 3, a new type

of (generalized) Calabi product is introduced in centroaffine geometry and a decomposition

theorem is proved in terms of their centroaffine invariants, which will play a critical role in the

proof of main results. Finally, using the nice property (see Lemma 4.1 below) of the locally

strongly convex centroaffine hypersurface with vanishing centroaffine shape operator and Weyl
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curvature tensor, we complete the proofs of main results in Section 4.

2 Preliminaries

In this section, we shall show some basic facts of the centroaffine geometry. For more details

see [17, 20]. Let Rn+1 be the (n+ 1)-dimensional affine space equipped with the standard flat

connection D. For an immersion x : Mn → R
n+1 of an n-dimensional smooth manifold Mn, if

the position vector x(p) (from the origin O) is transversal to x∗(TpM
n) at each point p ∈Mn,

then x : Mn → R
n+1 defines a centroaffine hypersurface and the position vector defines the

so-called centroaffine normalization modulo orientation.

For any vector fields X and Y tangent to Mn, the centroaffine formula of Gauss reads

DXx∗(Y ) = x∗(∇XY ) + h(X,Y )(−εx), (2.1)

where ε = ±1. Associated with (2.1), we call −εx, ∇ and h the centroaffine normal, the induced

connection and the centroaffine metric induced by −εx, respectively. Moreover, the centroaffine

hypersurface x : Mn → R
n+1 is called non-degenerate if the centroaffine metric h, defined by

(2.1), remains non-degenerate. In this paper, we always assume that x : Mn → R
n+1 is a

locally strongly convex centroaffine hypersurface, i.e., the centroaffine metric h induced by −εx
is positive definite. More precisely, if ε = 1, the centroaffine hypersurface is elliptic and if

ε = −1, the centroaffine hypersurface is hyperbolic.

For a given centroaffine hypersurface x :Mn → R
n+1, the difference tensor is defined by

K(X,Y ) := KXY := ∇XY − ∇̂XY, (2.2)

where ∇̂ is the Levi-Civita connection with respect to the centroaffine metric h. It follows

from both connections ∇ and ∇̂ are torsion free that K is symmetric. According to (2.2), the

Tchebychev vector field T is given by

h(T,X) =
1

n
Tr(KX). (2.3)

Noting that if T = 0, which is equivalent to Tr(KX) = 0 for any vector field X , then Mn is

reduced to be the so-called proper (equi-)affine hypersphere centered at the origin of Rn+1 (see

[12, p. 279]). Denote by R̂ the Riemannian curvature tensor of the centroaffine metric h. Then

the integrability conditions read

R̂(X,Y )Z = ε(h(Y, Z)X − h(X,Z)Y )− [KX ,KY ]Z, (2.4)

(∇̂ZK)(X,Y ) = (∇̂XK)(Z, Y ). (2.5)

By choosing an h-orthonormal tangential frame field {e1, · · · , en} on Mn, we have T =
∑
i

T iei =
1
n

∑
i,j

Ki
jjei, the Gauss equation and Codazzi equation

Rijkl = ε(δikδjl − δilδjk) +
∑

m

(Km
jkK

m
il −Km

ikK
m
jl ), (2.6)
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Kk
ij,l = Kk

il,j . (2.7)

From (2.6) the components of Ricci tensor are

Rij = ε(n− 1)δij +
∑

m,k

Km
jkK

m
ik − n

∑

m

TmKm
ij . (2.8)

Thus, the scalar curvature is given by

R = n(n− 1)(J + ε)− n2|T |2, (2.9)

where J := 1
n(n−1)Σ(K

k
ij)

2 is called the centroaffine Pick invariant. Additionally, a useful

formula can be concluded from (2.6)–(2.7) and the Ricci identity.

Lemma 2.1 (see [6, Lemma 4.2]) For a locally strongly convex centroaffine hypersurface of

dimension n, the following formula holds

n(n− 1)

2
∆J =

∑

i,j,k,l

(Kk
ij,l)

2 +
∑

i,j,k,l

(Rijkl)
2 +

∑

i,j

(Rij)
2 − ε(n+ 1)R

+ n
∑

i,j,k

Kk
ijRijT

k + n
∑

i,j,k

Kk
ijT

k
,ij. (2.10)

From (2.9)–(2.10), it is obvious that for a flat centroaffine hypersurface, the parallelism of

Tchebychev vector field is equivalent to the parallelism of difference tensor.

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f be a positive smooth function

defined onM1. The warped productM :=M1×fM2 is the product manifoldM1×M2 equipped

with the Riemannian metric g = g1 ⊕ f2g2. The function f is called the warping function of

the warped product. If X and Y are two linear independent vector fields on M2, then, by [18,

Chapter 7, Proposition 42], the sectional curvature of M satisfies

KM (X,Y ) = f−2(KM2(X,Y )− g(∇̂f, ∇̂f)),

where ∇̂ is the Levi-Civita connection of (M, g). Particularly, if f is a constant, then

KM (X,Y ) = f−2KM2 (X,Y ). (2.11)

3 Generalized Calabi Product and Decomposition Theorem

The purpose of this section is to introduce a new type of (generalized) Calabi product and

prove a decomposition theorem in centroaffine differential geometry. Firstly, by some elementary

calculations on the type II Calabi product, Proposition 3.1 is formulated. Then, considering

the converse of this proposition, we obtain Theorem 3.1.

Let ϕ : M1 → R
n be a Calabi hypersurface relative to the Calabi affine normalization

Y0 = (0, · · · , 0, 1)t ∈ R
n. Denote by G the Calabi metric of ϕ(M1) and by {u1, · · · , un−1}

the local coordinates for M1. Then, the type II Calabi product of a point and the Calabi

hypersurface M1

x :Mn = R×M1 → R
n+1
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is defined by

x(t, p) := et(1, ϕ1(p), · · · , ϕn−1(p), ϕn(p) + t), p ∈M1, t ∈ R. (3.1)

Claim The hypersurface x(Mn) defined by (3.1) is a centroaffine hypersurface.

In fact, direct calculations show that

∂x

∂t
= et(1, ϕ1, · · · , ϕn−1, ϕn + t+ 1),

∂x

∂ui
= et

(
0,
∂ϕ1

∂ui
, · · · , ∂ϕn

∂ui

)
, 1 ≤ i ≤ n− 1.

It follows from ϕ(M1) being a Calabi hypersurface relative to the Calabi affine normalization

Y0 that

det
( ∂ϕ
∂u1

, · · · , ∂ϕ

∂un−1
, Y0

)
6= 0.

Thus

det
(
x,
∂x

∂t
,
∂x

∂u1
, · · · , ∂x

∂un−1

)
6= 0,

which indicates that x(Mn) is a centroaffine hypersurface. Hence, the Claim is demonstrated.

More precisely, the following result can be verified easily.

Proposition 3.1 The type II Calabi product of a point and the Calabi hypersurface M1 is a

locally strongly convex elliptic centroaffine hypersurface, and the centroaffine metric h induced

by −x is expressed as

h = dt2 ⊕G. (3.2)

The difference tensor K of x(Mn) takes the following form:

K(T̃ , T̃ ) = 2T̃ , K
(
T̃ ,

∂x

∂ui

)
=

∂x

∂ui
, 1 ≤ i ≤ n− 1, (3.3)

and the Tchebychev vector field of x(Mn) satisfies

T =
n+ 1

n
T̃ +

n− 1

n
· et(0, TM1), (3.4)

where T̃ := ∂x
∂t

is a unit vector field and TM1 denotes the Tchebychev vector field of ϕ(M1).

Moreover, x(Mn) is flat (resp. of parallel difference tensor) if and only if ϕ(M1) is flat (resp.

of parallel Fubini-Pick tensor).

Remark 3.1 It follows from (3.4) that the unit vector field T̃ of Mn is not necessarily

parallel to its Tchebychev vector field T . If it happens, then the immersion ϕ : M1 → R
n

reduces to the locally strongly convex improper affine hypersphere.

From (3.1), one can obtain a locally strongly convex elliptic centroaffine hypersurface by a

point and a lower dimensional Calabi hypersurface.
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Example 3.1 Let us write

x = (x1, · · · , xn+1) = (et, ety1, · · · , etyn−1, e
tyn + tet).

For n = 3, if ϕ(M1) in (3.1) is chosen to be, respectively, the canonical Calabi surfaces y3 =

−c1 ln y1 + 1
2y

2
2 (c1 > 0), y3 = −c1 ln y1 − c2 ln y2 (c1, c2 > 0) and y3 = 1

2y
2
1 + 1

2y
2
2 , then the

centroaffine hypersurface, obtained as the type II Calabi product of a point and ϕ(M1), is

locally centroaffinely equivalent to the hypersurfaces

x4 =
x22
2x1

+ x1

(
lnx1 −

c1

1 + c1
lnx3

)
, (3.5)

x4 = x1

(
lnx1 −

c1

1 + c1 + c2
lnx2 −

c2

1 + c1 + c2
lnx3

)
, (3.6)

x4 =
1

2x1
(x22 + x23) + x1 lnx1, (3.7)

respectively.

In fact, the centroaffine hypersurfaces defined by (3.5)–(3.7) are exactly the case of n =

3 for the canonical centroaffine hypersurfaces M
(3)
α(v), presented in [6, (3.9)], which can be

obtained as the type II Calabi product of a point and the canonical Calabi hypersurfaces

Q(c1, · · · , cr;n− 1), 1 ≤ r ≤ n− 2, Q(c1, · · · , cn−1;n− 1) and elliptic paraboloid, respectively.

Here, the definition of Calabi hypersurfaces Q(c1, · · · , cr;n− 1), 1 ≤ r ≤ n− 1 is given by [25,

Example 3.1].

Next, the following decomposition theorem is the converse of Proposition 3.1.

Theorem 3.1 Let x : Mn → R
n+1 be a locally strongly convex elliptic centroaffine hyper-

surface. Assume that there exist orthogonal distributions D1 (of dimension 1, spanned by a unit

vector field T̃ ), D2 (of dimension n− 1) with respect to the positive definite centroaffine metric

h induced by −x such that

(i) the unit vector field T̃ is parallel with respect to the Levi-Civita connection of the cen-

troaffine metric h;

(ii) the difference tensor takes the following form:

K(T̃ , T̃ ) = 2T̃ , K(T̃ , V ) = V, ∀V ∈ D2.

Then x : Mn → R
n+1 can be locally decomposed as the type II Calabi product of a point and a

Calabi hypersurface ϕ :Mn−1
1 → R

n with Calabi metric G = h|D2
.

Proof Firstly, for any vector X ∈ TM and V ∈ D2, the item (i) indicates

∇̂X T̃ = 0, ∇̂XV ∈ D2. (3.8)

It follows from de Rham decomposition theorem that (Mn, h) is locally isometric to R×Mn−1
1

such that T̃ is tangent to R and D2 is tangent to Mn−1
1 .
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Secondly, assume that T̃ = ∂
∂t

and U0 ∈ R
n+1 is a constant vector. Let

ϕ := (1 + t)e−tx− te−tT̃ − U0, ψ := e−t(T̃ − x). (3.9)

It follows that

D
T̃
ϕ = −te−tx+ (1 + t)e−tT̃ − (1 − t)e−tT̃ − te−tD

T̃
T̃

= e−t(−tx+ 2tT̃ − t(2T̃ − x)) = 0. (3.10)

Similarly,

D
T̃
ψ = DV ψ = 0,

dϕ(V ) = DV ϕ = e−tV. (3.11)

The above relations imply that ϕ reduces to a map ofMn−1
1 in R

n+1 and ψ is a constant vector

in R
n+1. Moreover, denoting by ∇1 the D2 component of induced connection ∇ and for any

V, Ṽ ∈ D2, we find that

DV dϕ(Ṽ ) = e−tDV Ṽ = e−t
(
∇1
V Ṽ + h(∇V Ṽ , T̃ )T̃ − h(V, Ṽ )x

)

= dϕ(∇1
V Ṽ ) + h(V, Ṽ )e−t(T̃ − x)

= dϕ(∇1
V Ṽ ) + h(V, Ṽ )ψ. (3.12)

Hence, the constant vector ψ is a relative normalization of the hypersurface Mn−1
1 contained

in an n-dimensional vector subspace of Rn+1 with induced connection ∇1 and positive definite

relative metric

G(V, Ṽ ) = h(V, Ṽ ), ∀V, Ṽ ∈ D2. (3.13)

Solving (3.9) for the immersion x, we have

x = etϕ+ tetψ + etU0. (3.14)

As the constant vector ψ is the relative normalization of ϕ, up to a centroaffine transformation,

one may assume that ϕ lies in the space spanned by the last n coordinates of Rn+1, whereas

ψ lies in the direction of (n + 1)-th coordinate with ψ = (0, · · · , 0, 1) ∈ R
n+1. Thus, ϕ can

be interpreted as an (n − 1)-dimensional Calabi hypersurface equipped with the Calabi affine

normalization (0, · · · , 0, 1) ∈ R
n. Since Mn is non-degenerate, x lies full in R

n+1. Suppose that

U0 = (1, 0, · · · , 0) ∈ R
n+1, then x can be written as

x = (et, etϕ) + tetψ,

namely,

x = et(1, ϕ1, · · · , ϕn−1, ϕn + t). (3.15)
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It completes the proof of Theorem 3.1.

We end this section by recalling some useful facts of the type I Calabi product given [3,

Section 3, 13] and stating the relationship between the types I and II Calabi product.

Let ψ̃ : Mn → R
n+1 be the non-degenerate centroaffine hypersurface obtained as the type

I Calabi product (λ 6= 0,−1) of a point and a locally strongly convex centroaffine hypersurface

ψ : M2 → R
n. Then, it follows from [3, Proposition 3.2] that the Tchebychev vector field of

ψ̃(Mn) takes the following form:

T =
sgnλ · (n− λ)

n
√
|λ|

T̂ +
(n− 1)(λ+ 1)

nλ
· et(TM2 , 0), (3.16)

where T̂ := 1√
|λ|

∂ψ̃
∂t

is a unit vector field with respect to the centroaffine metric h̃ shown in

[3, (3.7)], and TM2 is the Tchebychev vector field of ψ(M2). Moreover, we know from [3,

(3.8)] that, by suitably selecting the constant λ in (1.3), the type I Calabi product centroaffine

hypersurface is locally strongly convex. Conversely, if the type I Calabi product centroaffine

hypersurface ψ̃(Mn) is locally strongly convex, then λ < 0 (resp. λ > 0) as ψ̃(Mn) is of elliptic

(resp. hyperbolic) type. It follows that −sgnλ = ε holds in [3, (3.10)], where ε is chosen so that

the centroaffine metric induced by −εψ̃ is positive definite.

Thus, from the analysis above, we can get:

Remark 3.2 If a type I Calabi product centroaffine hypersurface is locally strongly convex,

then the constants λ1 and λ2 in [3, (3.9)] satisfy λ1λ2 − λ22 = ε and λ1 6= 2λ2. While the type

II Calabi product centroaffine hypersurface is the case of λ1λ2 − λ22 = ε and λ1 = 2λ2, namely,
1
2λ1 = λ2 = ε = 1 (see (3.3)). Hence, the type II Calabi product can be viewed as the

complementation of the type I Calabi product.

4 Proofs of the Main Results

Here and after, if there is no additional explanation, we shall use the following indices’

convention:

2 ≤ i, j, k, · · · ≤ n, 1 ≤ α, β, γ, · · · ≤ n.

Denote by {E1, · · · , En} the local orthonormal frame field of a locally strongly convex cen-

troaffine hypersurface (Mn, h) with ∇̂T = 0 and vanishing Weyl curvature tensor. If T 6= 0,

then we choose E1 = T
|T | . It follows that ∇̂E1 = 0 and

R1αβγ = 0. (4.1)

On the other hand, for any smooth tangent vector fields X,Y, Z, Weyl curvature tensor

W (X,Y )Z = R̂(X,Y )Z − {〈Y, Z〉P (X)− 〈X,Z〉P (Y ) + 〈P (Y ), Z〉X − 〈P (X), Z〉Y }

vanishes identically on Mn means that the Riemannian curvature tensor can be expressed as

R̂(X,Y )Z = 〈Y, Z〉P (X)− 〈X,Z〉P (Y ) + 〈P (Y ), Z〉X − 〈P (X), Z〉Y, (4.2)
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where P is the Schouten tensor of (1, 1) type and 〈·, ·〉 := h(·, ·). For any i, it concludes from

(4.1)–(4.2) that

0 = R̂(Ei, Ej)E1 = 〈P (Ej), E1〉Ei − 〈P (Ei), E1〉Ej , j 6= i,

which implies

〈P (Ei), E1〉 = 0, ∀i. (4.3)

Similarly, for any i and j, one can get

0 = R̂(E1, Ei)Ej = δijP (E1) + 〈P (Ei), Ej〉E1 − 〈P (E1), Ej〉Ei. (4.4)

Taking i 6= j in (4.4), we obtain

〈P (Ei), Ej〉 = 〈P (E1), Ej〉 = 0.

Thus {E1, · · · , En} as above is the eigenvector field of the self-adjoint operator P . Without

loss of generality, suppose that

P (Eα) = µαEα,

and denote by µ1, · · · , µs the distinct eigenvalues for the tensor P of multiplicity n1, · · · , ns,
respectively. It follows from taking i = j in (4.4) that

0 = µ1 + µi,

which means

µ2 = · · · = µn = −µ1.

In fact, it is easy to see from Lemma 2.1 that the following lemma holds.

Lemma 4.1 Let Mn(n ≥ 3) be a locally strongly convex centroaffine hypersurface with

vanishing centroaffine shape operator and Weyl curvature tensor. If T 6= 0, then the number of

distinct eigenvalues of the Schouten operator P is at most 2, namely, s ≤ 2. More precisely,

(i) if s = 1, then 0 is the only eigenvalue of P and Mn is flat. It follows that Mn is an

open part of a canonical centroaffine hypersurface;

(ii) if s = 2, let µ1, µ2 be the two distinct eigenvalues for P of multiplicity 1 and n − 1,

respectively, then µ2 = −µ1 6= 0.

Proof of Theorem 1.2 The proof of this Theorem is divided into two steps.

Step 1 From Lemma 4.1, for an n-dimensional locally strongly convex centroaffine hyper-

surface (Mn, h) with ∇̂T = 0 (T 6= 0) and vanishing Weyl curvature tensor, one only needs to

deal with two cases, namely, s = 1 and s = 2. Obviously, case (ii-1) in Theorem 1.2 occurs as

s = 1.

In the following, we are going to discuss s = 2. For this case, it is easy to conclude from

(4.2) that

R̂(Ei, Ej)Ek = 2µ2(δjkEi − δikEj),
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i.e.,

Rijkl = 2µ2(δjlδik − δilδjk). (4.5)

Direct computations get

R1α = 0, Rij = 2(n− 2)µ2δij (4.6)

and

R = 2(n− 1)(n− 2)µ2 6= 0. (4.7)

Obviously, the hypersurfaces occurring in this case are non-flat.

On the other hand, the Ricci identity and (4.1) indicate

Kαβγ,δ1 −Kαβγ,1δ = ΣKζβγRζαδ1 +ΣKαζγRζβδ1 +ΣKαβζRζγδ1 = 0.

It follows from the Codazzi equation (2.7) that K1αβ,γδ are totally symmetric for all indices.

For any j, by taking i 6= j, we have

0 = K11i,ij −K11i,ji = 2ΣK1iαRα1ij +ΣK11αRαiij = K11jRjiij .

From (4.5), one can get

K11j = 0. (4.8)

Similarly, for any i 6= j,

0 = K1ii,ij −K1ii,ji = 2ΣK1iαRαiij +ΣKiiαRα1ij = 2K1ijRjiij .

Then

K1ij = 0. (4.9)

Finally, for any i 6= j,

0 = K1ij,ij −K1ij,ji = (K1ii −K1jj)Rijij ,

which shows

K1ii = K1jj . (4.10)

Accordingly, the following result can be obtained from (4.8)–(4.10).

Lemma 4.2 With respect to the local orthonormal frame field {E1, · · · , En} as above, the

difference tensor takes the following form

K(E1, E1) = λ1E1, K(E1, Ei) = λ2Ei. (4.11)

In addition, the fact T = |T |E1 shows that

λ1 + (n− 1)λ2 = n|T | = const. > 0. (4.12)
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A straightforward computation shows

R11 = (n− 1)(ε+ λ22 − λ1λ2), (4.13)

where ε = ±1. It follows from (4.6) that

ε+ λ22 − λ1λ2 = 0, (4.14)

which implies

λ1 6= λ2, λ2 6= 0. (4.15)

On the other hand, note that

(∇̂K)(Ei, E1, E1) = ∇̂Ei
K(E1, E1)− 2K(∇̂Ei

E1, E1) = Ei(λ1)E1 (4.16)

and

(∇̂K)(E1, Ei, E1) = ∇̂E1
K(Ei, E1)−K(∇̂E1

Ei, E1) = E1(λ2)Ei. (4.17)

Taking inner product of the right-hand sides of (4.16) and (4.17) with E1 (resp. Ei) and using

the Codazzi equation, we obtain

E1(λ2) = Ei(λ1) = 0. (4.18)

It follows from (4.14) and (4.18) that

E1(λ1) = E1

(
λ2 +

ε

λ2

)
= 0, (4.19)

which shows that both λ1 and λ2 are constants. Associated with (4.14), we have if λ1 = 2λ2

then, up to a direction of E1, λ1 = 2 and λ2 = ε = 1. Thus, one can get either 1
2λ1 = λ2 = ε = 1

or λ1 6= 2λ2, ε+ λ22 − λ1λ2 = 0.

Case C1 λ2(λ1 − λ2) = ε and λ1 = 2λ2, i.e.,
1
2λ1 = λ2 = ε = 1.

For this case, Theorem 3.1 and Lemma 4.2 imply (Mn, h) can be locally decomposed as the

type II Calabi product of a point and an (n − 1)-dimensional Calabi hypersurface Nn−1 with

Calabi metric G = h|D2
, where D2 = span{E2, · · · , En}. More precisely, Remark 3.1 indicates

Nn−1 reduces to a locally strongly convex improper affine hypersphere. Proposition 3.1 and

the fact (Mn, h) is non-flat imply (Nn−1, G) is also not flat.

Case C2 λ2(λ1 − λ2) = ε and λ1 6= 2λ2.

Similarly, by the fact λ1, λ2 in Lemma 4.2 are constants and [3, Theorem 3.3], (Mn, h)

can be locally decomposed as the type I Calabi product of a point and an (n− 1)-dimensional

locally strongly convex centroaffine hypersurface ψ : N
n−1 → R

n with centroaffine metric

h = λ2(2λ2 − λ1)h|D2
(4.20)
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induced by the position vector ψ. It follows from (3.16) that N
n−1

reduces to a locally strongly

convex proper affine hypersphere centered at origin. [3, Proposition 3.2] and the fact (Mn, h)

is non-flat imply (N
n−1

, h) is also not flat.

Recall that, for the locally strongly convex centroaffine hypersurface (N
n−1

, h), one can

choose ε = ±1 such that the centroaffine metric h is positive definite. Namely, if λ2(2λ2−λ1) is
negative (resp. positive) then we choose ε = 1 (resp. ε = −1) and say N

n−1
is of elliptic (resp.

hyperbolic). To ensure the centroaffine hypersurface obtained as the type I Calabi product of a

point and N
n−1

is locally strongly convex, one shall restrict the constant λ in (1.3) as following:

(i) if N
n−1

is elliptic, then λ < −1;

(ii) if N
n−1

is hyperbolic, then λ > −1 and λ 6= 0,

where [3, (3.8)] is used by taking n1 = n − 1. Additionally, it follows from (3.16) and T 6= 0

that λ 6= n holds in this case.

Thus, taking account what we have discussed above, we get the following result.

Proposition 4.1 Let Mn(n ≥ 3) be a locally strongly convex centroaffine hypersurface with

∇̂T = 0 and vanishing Weyl curvature tensor. If T 6= 0, then

(i) Mn is an open part of a canonical centroaffine hypersurface; or

(ii) Mn is obtained as the type II Calabi product of a point and an (n − 1)-dimensional

non-flat locally strongly convex improper affine hypersphere; or

(iii) Mn is obtained as the type I Calabi product (λ < −1; resp. λ > −1, λ 6= 0, n) of a point

and an (n − 1)-dimensional non-flat locally strongly convex proper (elliptic; resp. hyperbolic)

affine hypersphere centered at origin.

Step 2 Furthermore, we proceed to discuss cases (ii)–(iii) of Proposition 4.1 as n ≥ 4 in

this step.

Firstly, from case (ii) of Proposition 4.1, (Mn, h) can be obtained as the type II Calabi

product of a point and an (n−1)-dimensional non-flat Calabi hypersurface Nn−1 with vanishing

Tchebychev vector field. In this case, by employing (2.11), (3.13) and (4.5), we have the sectional

curvature of Nn−1 (n ≥ 4) is constant. Thus, the following equation [24, (2.10)]

(n− 1)(n− 2)JN = RN

shows JN is also a constant. Here and after, denote by ⋆N the geometric invariants of Calabi

hypersurface Nn−1. It follows from [24, (2.9)] that

RNij =
∑

k,l

ANiklA
N
jkl.

Then, for the Calabi hypersurface Nn−1, [24, (2.12)] becomes

(n− 1)(n− 2)

2
∆NJN = Σ(ANijk,l)

2 +Σ(RNijkl)
2 +Σ(RNij )

2 > 0,

where we have used Nn−1 is non-flat in the last step. This is a contradiction to JN = const.
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Secondly, by case (iii) of Proposition 4.1, (Mn, h) can be obtained as the type I Calabi

product of a point and a non-flat locally strongly convex proper affine hypersphere N
n−1

centered at origin. Similarly, combining (2.11), (4.5) and (4.20), we have the sectional curvature

of N
n−1

(n ≥ 4) is a non-zero constant. It follows from [12, Theorem 3.11] that N
n−1

must be

contained in either the hyperellipsoid

y21 + · · ·+ y2n = c2

or the hyperboloid

y21 + · · ·+ y2n−1 − y2n = −c2,

where c > 0. Hence, by the type I Calabi product defined by (1.3), Mn is locally centroaffinely

equivalent to the locally strongly convex centroaffine hypersurfaces

(x21 + · · ·+ x2n)
λx2n+1 = 1, λ < −1 (4.21)

or

(x2n − x21 − · · · − x2n−1)
λx2n+1 = 1, λ > −1, λ 6= 0, n. (4.22)

The proof of Theorem 1.2 is complete finished.

Proof of Corollary 1.1 As is well known, the Weyl curvature tensor vanishes automati-

cally on 3-dimensional Riemannian manifolds. Accordingly, Proposition 4.1 still holds and we

only need to consider the last two cases. In the following, we are going to prove the Gauss curva-

tures of the non-flat locally strongly convex improper affine sphere N2 and the non-flat locally

strongly convex proper affine sphere N
2
centered at origin are constants, which is equivalent to

the eigenvalues of the Schouten tensor are constants.

Denote by {ωβα} the Levi-Civita connection forms with respect to the orthonormal frame

field {E1, E2, E3}, where E1 = T
|T | as before. Recall from Lemma 4.1 and suppose that

P11 = −P22 = −P33 =: µ (6= 0). (4.23)

Noting from

ΣPαβ,γω
γ = d(Pαβ) + (Pαα − Pββ)ω

β
α,

the fact ωβ1 ≡ 0 and (4.23) that

Pαβ,γ = 0, α 6= β. (4.24)

Recall that M3 is locally conformally flat means P is a Codazzi tensor. It follows from (4.24)

that

−E1(µ) = E1(P22) = P22,1 = P12,2 = 0.

Similarly, for i > 1, one can get

Ei(µ) = Ei(P11) = 0.
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Hence

µ = const. 6= 0. (4.25)

Then the Gauss curvatures of N2 and N
2
are non-zero constants, and the remaining process

closely follows Step 2 of Theorem 1.2.

Thus, the proof of Corollary 1.1 is finished.

Proof of Corollary 1.2 Let M3 be a complete locally strongly convex centroaffine hy-

persurface with vanishing centroaffine shape operator. As |T | is a constant, we consider the

following two subcases.

Case C1 |T | = 0.

In this case, the completeness ofM3 shows it is either a hyperellipsoid centered at origin, or

a complete hyperbolic affine hypersphere centered at origin. This proves case (i) of Corollary

1.2.

Case C2 |T | = const. > 0.

In this case, Proposition 4.1 is still available.

Firstly, case (i) of Proposition 4.1 indicates M3 is a locally strongly convex canonical cen-

troaffine hypersurface with T 6= 0. Obviously, such hypersurfaces are included in the three

types of hypersurfaces given in Theorem 1.1. In the following, we are going to discuss the

completeness of the canonical centroaffine hypersurfaces shown in Theorem 1.1 as n = 3.

(i) For the hypersurfaces in case (i) of Theorem 1.1, by taking xi = eui (2 ≤ i ≤ 4), we get the

components of flat centroaffine metric are constants in terms of the new coordinates (u2, u3, u4),

where −∞ < ui < +∞, 2 ≤ i ≤ 4, see the proof of [6, Claim 3.1] for details. Therefore, the

hypersurfaces in case (i) of Theorem 1.1 are complete with respect to its centroaffine metric.

Additionally, noting that x1x2x3x4 = 1 is a hyperbolic affine hypersphere included in case (i)

of Corollary 1.2. Thus, case (ii-1) of Corollary 1.2 is demonstrated.

(ii) For the hypersurfaces in case (ii) of Theorem 1.1, by taking x2 = eu2 , x3 = eu3 sinu4

and x4 = eu3 cosu4, we have the components of flat centroaffine metric h = hijduiduj are also

constants in terms of the new coordinates (u2, u3, u4), where −∞ < ui < +∞ (2 ≤ i ≤ 3) and

kπ − π
2 < u4 < kπ + π

2 , k ∈ N . For more details see the proof of [6, Claim 3.2]. Consider the

curve

u2(t) = u3(t) = 0, u4(t) = t, −π
2
< t <

π

2
,

whose centroaffine arc length is given by

l =

∫ π

2

−π

2

√
h44(t)dt <∞.

Thus, the hypersurfaces in case (ii) of Theorem 1.1 are not complete with respect to its cen-

troaffine metric.

(iii) Noting that the centroaffine hypersurfaces in case (iii) of Theorem 1.1 can be obtained

as the type II Calabi product of a point and a canonical Calabi surface, see Example 3.1. Note
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that elliptic paraboloid, the Calabi surfaces Q(c1; 2) and Q(c1, c2; 2) are all Calabi complete,

for details see [25], which indicates that the centroaffine hypersurfaces in case (iii) of Theorem

1.1 are centroaffine complete. This proves case (ii-2) of Corollary 1.2.

Secondly, case (ii) of Proposition 4.1 shows that (M3, h) can be obtained as the type II

Calabi product of a point and a non-flat Calabi surface N2 with vanishing Tchebychev vector

field. It follows from the relationship of metrics shown in Theorem 3.1 that N2 is complete with

respect to its Calabi metric G. The fact complete Calabi surface with vanishing Tchebychev

vector field is an elliptic paraboloid shows that N2 is flat, which is a contradiction.

Finally, it follows from case (iii) of Proposition 4.1 and the relationship of metrics shown in

(4.20) that N
2
is a complete non-flat locally strongly convex proper affine 2-sphere centered at

origin. Then, the last two cases (iii) and (iv) of Corollary 1.2 are demonstrated.

Thus, the proof of Corollary 1.2 is finished.
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