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Abstract The results of this work deal with the existence and blow up of solutions for
the following damped extensible beam with degenerate nonlocal damping and source term
utt +∆2

u−M(‖∇u‖2)∆u+ ‖∆u‖2α|ut|
γ
ut = |u|ρu. It is regarded as the second part of

the paper by Narciso et al. (in 2023), where global existence, uniqueness and asymptotic
stability of strong solutions were obtained for regular initial data in the case |u|ρu ≡ 0.
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1 Introduction

Let Ω ⊂ R
n be a bounded domain with regular boundary Γ = ∂Ω. This work is dedicated

to the study of the existence and blow-up of solutions of the following class of extensible beams

{
utt +∆2u−M(‖∇u(t)‖2)∆u + ‖∆u(t)‖2α|ut|

γut = |u|ρu in Ω× R
+,

u|Γ = ∆u|Γ = 0, u(0) = u0, ut(0) = u1,
(1.1)

where α > 0, γ ≥ 0 and ρ > 0, the function M(‖∇u‖2) ≈ −̟+ ‖∇u‖2ζ, ̟, ζ > 0, corresponds

to a nonlocal function of extensibility which appears in the context of extensible beams (see

e.g. Woinowsky-Krieger [46] and Berger [5]), and ‖ · ‖ stands for the norm in L2(Ω). The great

novelty of the article is to consider the dissipative term given by the product of a nonlocal

degenerate term by a nonlinear function. This type of dissipativity is connected to the class

of nonlocal damping suggested by Balakrishnan-Taylor [1]. For more details on the model

formulation see [36, Section 1.1].

This work is the second part of Narciso et al. [36] where we consider model (1.1) without

the presence of the source term |u|ρu. Existence and uniqueness of regular global solutions

and stability for regular initial data were obtained. The main result in [36] was the stability

result which, due to the difficulties generated by the degenerate nonlocal term, was obtained

by a contradiction method without explaining the decay rate. As a complement to the results
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obtained in [36], in this work, we studied the changes generated in the results by the presence

of the term force |u|ρu in the model. Our main aim is to discuss the well-posedness of problem

(1.1), on a regular space H2. More specifically, we studied the existence and uniqueness of both

global and local solutions and also blow-up of the solutions.

Works associated with wave or plate models that consider dissipations given by the product

of a nonlocal degenerate term by a dissipative term are recent in the literature. A pioneering

work in this sense was the paper by Cavalcanti et al. [8] who considered the following wave

model

utt −∆u+ ‖∇u(t)‖2ut = 0 in Ω× R
+. (1.2)

The authors studied that the well-posedness and stability results were established through

contradiction arguments for regular initial data taken in bounded sets. Afterwards, Cavalcanti

et al. [7] considered the presence of a degenerate nonlocal damping for the following extensible

beam model

utt +∆2u−M(‖∇u(t)‖2)∆u+ ‖∆u(t)‖2Aut = 0 in Ω× R
+, (1.3)

where Ω is a bounded domain of Rn and A = −∆ or A = I. Also using arguments of con-

tradiction stability results were obtained for regular initial data taken in bounded sets. The

contradiction arguments were an appropriate way to show stability for problems with this class

of damping because techniques that are standard in the study of stability of second order evo-

lution equations are not applicable in this situation. For works dealing with nondegenerate

nonlocal damping, see [9, 11–12, 17, 24, 26, 28, 30, 34–35, 37] and its references. A model as-

sociated with (1.3) in the case where the damping coefficient is dependent on the linear energy

of the system was treated in [27].

When in (1.2) the nonlocal term ‖∇u(t)‖2 is replaced by a polynomial term of the form |u|r,

(1.2) is associated with the well-known polynomially-damped wave equation studied extensively

in the literature. See for example [43–44]. In this context, it is important to mention the work

of Barbu et al. [4] which considered the following wave model

utt −∆u+ |u|k∂j(ut) = |u|p−1u in Ω× R
+,

where j is a continuous convex function defined on R and ∂j is its sub-differential operator (in

particular, if j(s) = 1
γ+2 |s|

γ+2, then ∂j(s) = |s|γs). Under suitable conditions on function j and

parameters k, γ and p, several results on the existence of global solutions, uniqueness, nonex-

istence and propagation of regularity are obtained.With further restrictions on the parameters

they prove the existence and uniqueness of a global weak solution. In addition, they prove a

result on the nonexistence of global weak solutions to the equation whenever the exponent p is

greater than the critical value k +m, and the initial energy is negative. Recently, this type of
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dissipation |u|r∂j(ut) was considered for an extensible beam model by Ekinci and Pişkin [20].

They prove the nonexistence of global solutions with arbitrary positive initial energy.

This kind of (1.1) has its origin in the canonical model introduced by Woinowsky-Krieger

[46] which arises in the dynamic bucking of a hinged extensible beam of the length L whose

ends are attached at a fixed distance

∂ttu+
EI

ρ
∂xxxxu−

[H
ρ

+
EA

2ρL

∫ L

0

|∂xu|
2dx

]
∂xxu = 0, (1.4)

where E, I, ρ,H and A denote, respectively, the Young’s modulus, the cross sectional moment

of inertia, the mass density, the tension in the rest position and the cross-sectional area. The

modeling aspects were also discussed by Berger [5] and Eisley [19]. One of the first mathematical

analysis for global existence and asymptotic behavior of these extensible beams was investigated

by Ball [2–3], Dickey [16] and Medeiros [33]. Later, it was extensively studied by several

researchers in different contexts (see [6, 10, 13–15, 18, 20–23, 25, 29, 31–32, 38–42, 45, 47–48]).

1.1 Organization of the paper

Our paper is organized as follows: In Section 2, we establish the existence and uniqueness of

global regular solution for appropriate small initial data. In Section 3, we prove the existence

and uniqueness of a local solution without restriction on the initial data. We end this work by

proving that for appropriate conditions on the initial data and exponents α, γ, ρ, the solutions

blow up in finite time.

2 Existence and Uniqueness of Global Solution for Small Initial Data

This section is dedicated to the existence of a unique global solution to problem (1.1) under

conditions of small initial data.

2.1 Notation and statement of results

We begin by introducing some notation that will be used throughout this work. In order,

with respect to the boundary condition u = ∆u = 0, we define W0 = L2(Ω),

W1 = H1
0 (Ω) and Wm =

{
H2(Ω) ∩H1

0 (Ω), if m = 2,

{u ∈ Hm(Ω) ∩H1
0 (Ω); ∆u ∈ H1

0 (Ω)}, if m = 3, 4.
(2.1)

Here the notation ( · , · ) stands for L2-inner product and ‖ · ‖p denotes Lp-norm. By simplicity

we will denote the standard L2(Ω) norm by ‖ · ‖ = ‖ · ‖2. Thus, ‖∇ · ‖ and ‖∆ · ‖ represent the

norms in W1 and W2, respectively. Denoting by λ1 > 0 the first eigenvalue of the bi-harmonic

operator ∆2 with boundary condition (1.1)2 then

λ1‖u‖
2 ≤ ‖∆u‖2, λ

1
2
1 ‖∇u‖

2 ≤ ‖∆u‖2, ∀u ∈ W2. (2.2)
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We also consider the following phase spaces Hj = Wj+2 ×Wj , j = 0, 1, 2, equipped with the

following standardized norms

‖(u, v)‖2H0
= ‖∆u‖2 + ‖v‖2, (u, v) ∈ H0 =W2 ×W0,

‖(u, v)‖2H1
= ‖∇(∆u)‖2 + ‖∇v‖2, (u, v) ∈ H1 =W3 ×W1,

‖(u, v)‖2H2
= ‖∆2u‖2 + ‖∆v‖2, (u, v) ∈ H2 =W4 ×W2.

From (2.2), we have

‖(u, v)‖2H0
≤

1

λ
1
2
1

‖(u, v)‖2H1
≤

1

λ1
‖(u, v)‖2H2

, (u, v) ∈ H2. (2.3)

To investigated the existence, uniqueness and regularity of solutions for the initial value problem

(1.1) we assume the following hypotheses.

Assumption 2.1 (I) M ∈ C1([0,∞)) with M(τ) ≥ −̟ for all τ ≥ 0, where 0 ≤ ̟ < λ
1
2
1 .

(II) The exponents ρ and γ satisfy the following growth conditions

ρ > 0, if 1 ≤ n ≤ 4 or 0 < ρ ≤
4

n− 4
, if n ≥ 5,

γ ≥ 0, if 1 ≤ n < 3 or 0 ≤ γ ≤
2

n− 2
, if n ≥ 3.

Note that Assumption 2.1(II) implies that W2 →֒ L2(ρ+1)(Ω) and W1 →֒ L2(γ+1)(Ω).

The energy associated with problem (1.1) is given by

EU (t) =
1

2
‖U(t)‖2H0

+
1

2
M̂(‖∇u(t)‖2)−

1

ρ+ 2
‖u(t)‖ρ+2

ρ+2, (2.4)

where U = (u, ut) and M̂(τ) =
∫ τ

0
M(s)ds.

2.2 Assumption on initial data

Let us consider a heuristic method in order to obtain an appropriate hypothesis on the

initial data (u0, u1). Multiplying (1.1) by ut and integrating over Ω we obtain the following

equality

d

dt
EU (t) + ‖∆uk(t)‖2α‖ut(t)‖

γ+2
γ+2 = 0. (2.5)

We define the functional J :W2 → R by

J(φ) :=
1

2
‖∆φ‖2 +

1

2
M̂(‖∇φ‖2)−

1

ρ+ 2
‖φ‖ρ+2

ρ+2.

From Assumption 2.1(I) and immersion W2 →֒W1, we get

1

2
M̂(‖∇u(t)‖2) =

1

2

∫ ‖∇u(t)‖2

0

M(s)ds ≥
−̟

2
‖∇u(t)‖2 ≥

−̟

2λ
1
2
1

‖∆u(t)‖2.
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From immersion W2 →֒ Lρ+2(Ω), we have

‖u(t)‖ρ+2
ρ+2 ≤ ̺‖∆u(t)‖ρ+2.

Then, taking ω := 1− ̟

λ
1
2
1

> 0, we obtain

J(u(t)) ≥
ω

2
‖∆u(t)‖2 −

̺

ρ+ 2
‖∆u(t)‖ρ+2 =: P (‖∆u(t)‖).

Note that, the polynomial function P (λ) = ω
2 λ

2 − ̺
ρ+2λ

ρ+2 has roots in zero and
(
ω(ρ+2)

2̺

) 1
ρ . It

has a minimum in zero and a maximum in d =
(
ω
̺

) 1
ρ . It is easy to see that P (s) is increasing

in the interval [0, d] from its minimum zero to its maximum ωρ
2(ρ+2)d

2 assumed at d. Thus, for

each 0 < µ < ωρ
2(ρ+2)d

2 there exists a unique 0 < β < d such that P (β) = µ.

2.3 Global solution

We will use the following definition of a regular (strong) solution to problem (1.1).

Definition 2.1 (Regular solution) A function u(t) ∈ C([0, T ],H0) possessing the properties

u(0) = u0 and ut(0) = u1 is said to be regular solution to problem (1.1) on the interval [0, T ],

if and only if

(1) U = (u, ut) ∈ L∞([0, T ],H2), utt ∈ L∞([0, T ],W0),

(2) (1.1) is satisfied in W ′
0 for almost all t ∈ [0, T ].

We are now in a position to state the following theorem of existence of global regular solution.

In order, we define the open bounded set

Vd :=
{
U = (u, v) ∈ H0 | EU <

ωρ

2(ρ+ 2)
d2 and ‖∆u‖ < d

}
.

Theorem 2.1 (Global solution) We assume the Assumption 2.1 holds with (u0, u1) ∈ Vd ∩

H2 with α ≥ 1
2 . Then problem (1.1) has a regular solution u according to the Definition 2.1.

Proof The proof relies on the Faedo-Galerkin method, where we use compactness argu-

ments.

Approximate problem Let us consider the spectral problem

(∆ωj ,∆v) = λj(ωj , v) for all v ∈ W2 and j = 1, 2, · · ·

with boundary condition u = ∆u = 0. We represent by Vk = span{ω1, · · · , ωk} the subspace of

W2 generated by vectors ω1, · · · , ωk. For every k ∈ N, we can find a function

uk(t) =
k∑

j=1

yjk(t)ωj , 0 ≤ t ≤ T,
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which is a solution to the approximate ODE system

(uktt(t), ωj) + (∆uk(t),∆ωj) +M(‖∇uk(t)‖2)(∇uk,∇ωj)

+ ‖∆uk(t)‖2α(|ukt |
γukt , ωj) = (|uk|ρuk, ωj) (2.6)

on [0, tk), tk > 0, 1 ≤ j ≤ k, with initial condition

(uk(0), ukt (0)) = (u0k, u1k) → (u0, u1) (2.7)

by using standard methods in ODE. We must obtain estimates to extend the solution to the

interval [0, T ].

A priori estimates

Estimate I We first consider the approximate system (2.6) with

Uk
0 = (u0k, u1k) → (u0, u1) = U0 strongly in Vd ∩H0.

Multiplying the approximate equation (2.6) by y′jk(t) with 1 ≤ j ≤ k and taking the sum from

j = 1 to k, we get

d

dt
EUk(t) + ‖∆uk(t)‖2α‖ukt (t)‖

γ+2
γ+2 = 0. (2.8)

Integrating (2.8) from 0 to t ≤ tk, we obtain

EUk(t) +

∫ t

0

‖∆uk(s)‖2α‖ukt (t)‖
γ+2
γ+2ds = EUk(0). (2.9)

Note that, from condition (2.7), if ‖∆u(0)‖ < d, then ‖∆u0k‖ ≤ d for large k. Let us prove, by

contradiction, that it implies ‖∆uk(t)‖ ≤ d in [0, tk). Indeed, let L := {t ∈ [0, tk); ‖∆u
k(t)‖ >

d}. If L is empty, the conclusion is true. Suppose L is not empty and let t∗ = inf L. Then,

since ‖∆uk(0)‖ = ‖∆u0k‖ ≤ d, we have t∗ > 0. By continuity of uk(t) in [0, t∗), we have

‖∆uk(t∗)‖ = d and ‖∆uk(t)‖ ≤ d in [0, t∗]. Thus, P (‖∆uk(t)‖) ≥ 0 in [0, t∗]. Consequently,

from (2.7) and (2.9) , we obtain

P (‖∆uk(t)‖) ≤
1

2
‖ukt (t)‖

2 + P (‖∆uk(t)‖)

≤
1

2
‖ukt (t)‖

2 + J(uk(t))

= EUk(t) ≤ EUk(0) <
ωρ

2(ρ+ 2)
d2

for all t ∈ [0, t∗]. Hence, there exists 0 < µ < ωρ
2(ρ+2)d

2 such that

P (‖∆uk(t)‖) ≤ µ on [0, t∗].

Note that P (β) = µ with 0 < β < d. Since P (λ) is increasing in [0, d], we get

‖∆uk(t)‖ ≤ β in [0, t∗].
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We found, by continuity of ‖∆uk(t)‖ on [0, tk), that ‖∆uk(t∗)‖ = d or d ≤ β, contradiction.

This implies that L is empty and we have

‖∆uk(t)‖ ≤ d in [0, tk).

Since ‖ukt (t)‖
2 ≤ ωρ

2(ρ+2)d
2 in [0, tk), we can extend the approximated solution uk(t) to [0, T ]

and we have the following estimate

‖Uk(t)‖2H0
= ‖ukt (t)‖

2 + ‖∆uk(t)‖2 ≤ R0 <∞ in [0, T ], ∀ k ∈ N, (2.10)

where R0 =
(

ωρ
2(ρ+2) + 1

)
d2. From (2.10), we have

Uk = (uk, ukt )⇀ (u, ut) = U weakly * in L∞(0, T ;H0). (2.11)

Estimate II We consider the approximate problem (2.6) with

Uk
0 → U0 strongly in Vd ∩H1.

We define the functional

FUk(t) :=
1

2
‖Uk(t)‖2H1

+
1

2
M(‖∇uk(t)‖2)‖∆uk(t)‖2.

Note that, from Assumption 2.1(I), immersion W1 →֒ W0 and using that ω = 1− 1

λ
1
2
1

, we get

ω

2
‖Uk(t)‖2H1

≤ FUk(t) ≤
1

2

(
1 +

M0

λ
1
2
1

)
‖Uk(t)‖2H1

,

where M0 := max
0≤τ≤ d2

λ

1
2
1

|M(τ)|. Now, let us consider ωj = −∆ukt in (2.6). Then, we obtain

d

dt
FUk(t) +

4(γ + 1)

(γ + 2)2
‖∆uk(t)‖2α

∫

Ω

[∇(|ukt |
γ
2 ukt )]

2dx =

2∑

i=1

Ii, (2.12)

where

I1 = (ρ+ 1)

∫

Ω

|uk|ρ∇uk∇ukt dx,

I2 =M ′(‖∇uk(t)‖2)

∫

Ω

∇uk∇ukt dx‖∆u
k(t)‖2.

In what follows we will estimate the terms I1 and I2. From Hölder inequality with ρ
2(ρ+1) +

1
2(ρ+1) +

1
2 = 1 and immersion W2 →֒ L2(ρ+1)(Ω) with ‖ · ‖2(ρ+1) ≤ ̺̂‖∆ · ‖, we have

I1 ≤ (ρ+ 1)‖uk(t)‖ρ2(ρ+1)‖∇u
k(t)‖2(ρ+1)‖∇u

k
t (t)‖ ≤

(ρ+ 1)̺̂ρ+1dρ

ω
FUk(t).
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SinceM ∈ C1([0,+∞)), takingM1 = max
0≤τ≤ d2

λ

1
2
1

|M ′(τ)|, from immersionW1 →֒ W0 and estimate

(2.10), we infer

I2 =M ′(‖∇uk(t)‖2)

∫

Ω

(−∆uk)ukt dx‖∆u
k(t)‖2

≤
M1

λ
1
2
1

‖∆uk(t)‖‖ukt (t)‖‖∇(∆uk(t))‖2 ≤
2M1d

2

ωλ
1
2
1

FUk(t).

Substituting I1 and I2 in (2.12), we obtain

d

dt
FUk(t) +

4p

(γ + 2)2
‖∆uk(t)‖2α

∫

Ω

[∇(|ukt |
γ
2 ukt )]

2dx ≤ R̂0FUk(t), (2.13)

where R̂0 =
(
q̺̂qdρ

ω
+ 2M1d

2

ωλ
1
2
1

)
. From Gronwall’s lemma, we obtain

FUk(t) ≤ eR̂0tFUk(0), ∀t ∈ [0, T ],

which implies that

‖Uk(t)‖2H1
≤ ω

(
1 +

M1

λ
1
2
1

)
eR̂0t‖Uk

0 ‖
2
H1

≤ R1 in [0, T ], ∀k ∈ N. (2.14)

From (2.14), we have

Uk = (uk, ukt )⇀ (u, ut) = U weakly * in L∞(0, T ;H1). (2.15)

Estimate III Now we consider the approximate problem (2.6) with

Uk → U0 strongly in Vd ∩H2. (2.16)

In order, let us define the functional

GUk (t) :=
1

2
‖Uk

t (t)‖
2
H0

+
1

2
M(‖∇uk(t)‖2)‖∇ukt (t)‖

2.

It follows from Assumption 2.1(I), embedding W2 →֒W1, and ω = 1− ̟

λ
1
2
1

that

ω

2
‖Uk

t (t)‖
2
H0

≤ GUk (t) ≤
1

2

(
1 +

M0

λ
1
2
1

)
‖Uk

t (t)‖
2
H0
. (2.17)

Next, deriving the approximate equation (2.6) with respect to variable t and substituting ωj =

uktt in the resulting expression, it results

1

2

d

dt
GUk(t) + (γ + 1)‖∆uk(t)‖2α

∫

Ω

|uk|γ(uktt)
2dx =

4∑

j=1

Jj, (2.18)
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where

J1 = 2M ′(‖∇uk(t)‖2)

∫

Ω

∇uk∇ukt dx

∫

Ω

∆ukukttdx,

J2 =M ′(‖∇uk(t)‖2)

∫

Ω

∇uk∇ukt dx‖∇u
k
t (t)‖

2,

J3 = −α‖∆uk(t)‖2(α−1)

∫

Ω

∆uk∆ukt dx

∫

Ω

|ukt |
γukt u

k
ttdx,

J4 = (ρ+ 1)

∫

Ω

|u|ρututtdx.

Now let us estimate the terms on the right-hand side of (2.18). First, using immersions W2 →֒

W1 →֒ W0, (2.10) and (2.17), we can estimate J1 + J2 as follows

J1 + J2 ≤
4M1

ωλ
1
2
1

‖∆uk‖2GUk (t) +
2M1

ωλ
1
2
1

‖∆uk(t)‖‖ukt (t)‖GUk(t) ≤
6M1R0

ωλ
1
2
1

GUk(t),

where M1 = max
0≤τ≤ d2

λ

1
2
1

|M ′(τ)|. From Hölder inequality with γ+1
2(γ+1) +

1
2 = 1, embedding W1 →֒

L2(γ+1)(Ω) with ‖ · ‖2(γ+1) ≤ cγ‖∇ · ‖, (2.10), (2.14) and (2.17), we can estimate the term J3

as follows

J3 ≤ α‖∆uk(t)‖2α−1‖∆ukt (t)‖‖u
k
t (t)‖

γ+1
2(γ+1)‖u

k
tt(t)‖ ≤

2αcγ+1
γ R

α−1
2

0 R
γ+1
2

1

ω
GUk(t).

Finally, from Hölder inequality with ρ
2(ρ+1) +

1
2(ρ+1) +

1
2 = 1, immersion W2 →֒ L2(ρ+1)(Ω) and

(2.10), we get

J4 ≤ C( 1 + ‖uk(t)‖ρ2(ρ+1))‖u
k
t (t)‖2(ρ+1)‖u

k
tt(t)‖ ≤ CR0GUk(t).

Returning to (2.18), we obtain

d

dt
GUk (t) ≤ CR0,R1GUk(t). (2.19)

Applying Gronwall’s lemma to (2.19), we get

GUk(t) ≤ eCR0,R1 tGUk(0).

To estimate the term GUk(0), first note that, taking t = 0 in the approximate equation (2.6)

and substituting ωj = uktt(0), it results that

‖uktt(0)‖ ≤ ‖∆2u0k‖+ |M(‖∇u0k‖
2)|‖∆u0k‖+ ‖∆u0k‖

2α‖u1k‖
γ+1
2(γ+1) + ‖u0k‖

ρ+1
2(ρ+1).

Thus, from the convergence (2.16), we have

GUk(0) ≤
1

2
‖Uk

t (0)‖
2
H0

+
1

2
|M(‖∇u0k‖

2)|‖∇u1k‖
2.
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Hence, from (2.17),

ω

2
‖Uk

t (t)‖
2
H0

≤ GUk(t) ≤ eCR0,R1 t. (2.20)

Moreover, taking ωj = ∆2uk in (2.6), there exists also a constant R2 > 0, such that

‖∆2uk(t)‖ ≤ ‖uktt(t)‖+M0‖∇u
k(t)‖ + ‖∆uk(t)‖2α‖ukt (t)‖

γ+1
2(γ+1) + ‖uk(t)‖ρ+1

2(ρ+1) ≤ R2 (2.21)

for all t ∈ [0, T ) and ∀k ∈ N. From (2.20)–(2.21), we obtain

‖Uk(t)‖H2 ≡ ‖∆2uk(t)‖2 + ‖∆ukt (t)‖
2 ≤ R3, (2.22)

where R3 = R3(T, ||U0||H2).

Therefore, from the estimates (2.11), (2.15), (2.20) and (2.22), we can pass the limit in the

approximated equation (2.6) for a subsequence of (uk), obtaining a function u : [0, T ] → R,

which is a regular solution claimed in Theorem 2.1.

2.4 Uniqueness

The uniqueness of solution for problem (1.1) under the conditions of Theorem 2.1 is an

immediate consequence of Theorem 2.2 below.

Theorem 2.2 Assume the Assumptions of Theorem 2.1 hold. If U1 = (u, ut), U2 = (v, vt)

are regular solutions of (1.1) corresponding to U1(0) = (u0, u1), U2(0) = (v0, v1), respectively.

Then

‖U1(t)− U2(t)‖H0 ≤ CT ‖U1(0)− U2(0)‖H0 , t ∈ [0, T ] (2.23)

for some constant CT > 0 depending on initial data in H2. In particular, problem (1.1) has a

unique regular solution.

Proof Let U1 = (u, ut) and U
2 = (v, vt) be two regular solutions of (1.1) with initial data

U1
0 = (u0, u1) and U2

0 = (v0, v1), respectively. Setting w = u − v, the difference U1 − U2 =

(w,wt) =:W solves the following problem in the strong (or weak) sense

wtt +∆2w −M(‖∇u(t)‖2)∆w + ‖∆u(t)‖2α( |ut|
γut − |vt|

γvt)

= (|u|ρu− |v|ρv) + ∆M∆v −∆‖·‖2α |vt|
γvt (2.24)

with initial condition (w(0), wt(0)) = z10 − z20 , where

∆M :=M(‖∇u(t)‖2)−M(‖∇v(t)‖2) and ∆‖∆·‖2α := ‖∆u(t)‖2α − ‖∆v(t)‖2α.

Let the functional

EW (t) =
1

2
‖W (t)‖2H0

+
1

2
M(‖∇u(t)‖2)‖∇w(t)‖2.
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From Assumption 2.1(I), immersion W2 →֒W1, we have

ω

2
‖W (t)‖2H0

≤ EW (t) ≤
1

2

(
1 +

M0

λ
1
2
1

)
‖W (t)‖2H0

. (2.25)

Multiplying (2.24) by wt and integrating over Ω, we infer

d

dt
EW (t) + ‖∆u(t)‖2α

∫

Ω

(|ut|
γut − |vt|

γvt)wtdx =

4∑

i=1

Li, (2.26)

where

L1 =M ′(‖∇u(t)‖2)

∫

Ω

∇u∇utdx‖∇w(t)‖
2,

L2 = ∆M

∫

Ω

∆vwtdx,

L3 =

∫

Ω

(|u|ρu− |v|ρv)wtdx,

L4 = −∆‖∆·‖2α

∫

Ω

|vt|
γvtwtdx.

Firstly, using Mean Value Theorem (MVT for short), there exists Cγ > 0 such that

∫

Ω

(|ut|
γut − |vt|

γvt)wtdx ≥ Cγ

∫

Ω

(|ut|
γ + |vt|

γ)w2
t dx ≥ 0.

Now let us estimate the right-hand side of (2.26). Using that M ∈ C1(R+) and immersion

W2 →֒ W1, we have

L1 ≤ max
0≤τ≤ d2

λ

1
2
1

|M ′(τ)|‖∆u(t)‖‖ut(t)‖‖∇w(t)‖
2 ≤

M1R0

λ
1
2
1

‖∆w(t)‖2

and

L2 ≤M1[ ‖∆u(t)‖+ ‖∆v(t)‖]‖∆w(t)‖‖wt(t)‖ ≤
M1R

1
2
0

λ
1
4
1

‖W (t)‖2H0
.

Using MVT to ψ(s) = |s|ρs, Hölder’s inequality with ρ
2(ρ+1) + 1

2(ρ+1) + 1
2 = 1, embedding

W2 →֒ L2(ρ+1)(Ω) and Young’s inequality, one gets

L3 ≤ q

∫

Ω

|θu + (1− θ)v|ρ|w||wt|dx

≤ 2ρq[‖u(t)‖ρ2(ρ+1) + ‖v(t)‖ρ2(ρ+1)]‖w(t)‖2(ρ+1)‖wt(t)‖

≤ 2ρq ̺̂q[‖∆u(t)‖ρ + ‖∆v(t)‖ρ]‖∆w(t)‖‖wt(t)‖

≤ 2ρq ̺̂qR
ρ
2
0 ‖W (t)‖2H0

.

Finally, applying MVT to function |s|2α, α ≥ 1
2 , using Hölder inequality and immersion W1 →֒
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L2(γ+1)(Ω) with ‖ · ‖2(γ+1) ≤ ˜̺‖∇ · ‖, one has

L4 ≤ 2α[ ‖∆u(t)‖+ ‖∆v(t)‖]2α−1‖∆w(t)‖

∫

Ω

|vt|
γ+1|wt|dx

≤ 2α[ ‖∆u(t)‖+ ‖∆v(t)‖]2α−1‖∆w(t)‖‖vt(t)‖
γ+1
2(γ+1)‖wt(t)‖

≤ 2α˜̺γ+1[‖∆u(t)‖+ ‖∆v(t)‖]2α−1‖∇vt(t)‖
γ+1‖∆w(t)‖‖wt(t)‖

≤ α[2R
1
2
0 ]

2α−1 ˜̺γ+1R
γ+1
1,T ‖W (t)‖2H0

.

Replacing the last four estimates in (2.26) results

d

dt
EW (t) ≤ REW (t) (2.27)

for all t ∈ [0, T ] and some constant R = R(T, ‖U1
0‖H2 , ‖U

2
0‖H2) > 0. Integrating (2.27) on [0, t]

and applying Gronwall’s inequality, we arrive at

EW (t) ≤ EW (0)eRt, ∀ t ∈ [0, T ]. (2.28)

Thus, from (2.25), we obtain

‖W (t)‖2H0
≤

1

ω

(
1 +

M0

λ
1
2
1

)
eRt‖W (0)‖2H0

. (2.29)

Hence, taking CT = 1
ω

(
1 + M0

λ
1
2
1

)
eRT , from (2.29), we obtain (2.23). This shows that solutions

of (1.1) depend continuously on initial data. In particular, we have uniqueness of solution by

taking U1
0 = U2

0 . Therefore, this completes the proof of Theorem 2.2.

Remark 2.1 The proof of the existence and uniqueness of a weak solution remains open.

The difficulty arises in the estimation of the term L4 in Theorem 2.2 above. Because the

constant R1,T in the estimate L4 ≤ α[2R
1
2
0 ]

2α−1 ˜̺γ+1R
γ+1
1,T ‖W (t)‖2H0

depends on the regular

initial data in H2. As a consequence of this, the constant R in (2.29) also depends on the

strong initial data in H2, so it is not possible to apply density arguments to prove the existence

of a weak solution.

3 Local Existence and Blow-up

In this section, we deal with the local existence and blow-up properties of problem (1.1).

3.1 Local solution

Our next result shows that for initial data U0 ∈ H2, problem (1.1) has a local solution.

Theorem 3.1 We assume Assumption 2.1 holds with (u0, u1) ∈ H2 and α ≥ 1
2 . Then there

exists a T > 0 such that problem (1.1) has a unique regular solution u.
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Proof The proof can also be done through the Faedo-Galerkin method and compactness

arguments. Without restriction of initial data in (u0, u1) ∈ Vd ∩ H2, the proof changes (in

relation to proof of Theorem 2.1 for global solution) in Estimate I. Indeed, let approximate

problem (2.6) have initial condition

(uk(0), ukt (0)) = (u0k, u1k) → (u0, u1) strongly in H2. (3.1)

Estimate I in this case is established as follows. Let EUk be defined by

EUk =
1

2
‖Uk(t)‖2H0

+
1

2
M̂(‖∇uk(t)‖2).

From Assumption 2.1(I), we have

EUk (t) ≥
ω

2
‖∆uk(t)‖2 +

1

2
‖ukt (t)‖

2 ≥
ω

2
‖Uk(t)‖2H0

.

Substituting ωj = ukt in (1.1), we obtain

d

dt
EUk(t) + ‖∆uk(t)‖2α‖ukt (t)‖

γ+2
γ+2 =

∫

Ω

|uk|ρukukt dx. (3.2)

From Hölder’s inequality with 1
2 + 1

2 = 1 and immersion W2 →֒ L2(ρ+1)(Ω), we get

∫

Ω

|uk|ρukukt dx ≤ ‖uk(t)‖ρ+1
2(ρ+1)‖u

k
t (t)‖ ≤ C‖∆uk(t)‖ρ+1‖ukt (t)‖ ≤

2
ρ+2
2 C

ω
ρ+1
2

[EUk(t)]
ρ+2
2 .

Returning to (3.2), we have

d

dt
EUk(t) ≤ L[EUk(t)]

ρ+2
2 , where L =

2
ρ+2
2 C

ω
ρ+1
2

. (3.3)

From (3.3),we get

d

dt
[EUk(t)][EUk (t)]−

ρ+2
2 ≤ L,

which implies that

d

dt
[EUk (t)]−

ρ
2 ≥ −

Lρ

2
.

Integrating from 0 to t we get

[EUk(t)]
ρ
2 ≤

1

[EUk(0)]−
ρ
2 − Lρ

2 t
.

Therefore

ω

2
‖Uk(t)‖2H0

≤ EUk (t) ≤
1

(
[EUk(0)]−

ρ
2 − Lρ

2 t
) 2

ρ

,

which implies that the approximate solution uk exists locally at [0, T ] with T < 2

Lρ(EU (0))
ρ
2
. To

show the regularity of the approximate solution uk and pass the limit on approximate problem

(2.6) the arguments are the same as in Estimate II and Estimate III. The uniqueness of the

solution is established analogously as in the proof of Theorem 2.2.
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3.2 Blow-up

We consider the polynomial function P (λ) = ω
2 λ

2 − ̺
ρ+2λ

ρ+2 defined in Subsection 2.2. We

have already seen that P has a maximum in d =
(
ω
̺

) 1
ρ and

P (d) =
ω

2
d2 −

̺

ρ+ 2
dρ+2 =

ωρ

2(ρ+ 2)
d2 > 0.

We set

Wd :=
{
U = (u, v) ∈ H0 | EU <

ωρ

2(ρ+ 2)
d2 and ‖∆u‖ > d

}
.

Our objective now is to study the behavior of solutions to problem (1.1) with U0 ∈ Wd ∩ H2.

Firstly, we observe that for data U0 ∈ Wd ∩ H2, repeating the proof of Theorem 3.1 with

‖∆u0‖ > d, the results are valid for α > 0. Then we have the following statement.

Theorem 3.2 We assume Assumption 2.1 holds with (u0, u1) ∈ Wd∩H2. Then there exists

a T > 0 such that problem (1.1) has a unique regular solution u.

Proposition 3.1 Let us assume the hypotheses of Theorem 3.2. Then, the following state-

ments are valid:

(i) EU (t) ≤ EU (0) for all t ∈ [0, T ],

(ii) ‖∆u(t)‖ ≥ d1 for all t ∈ [0, T ] for some d1 > d.

Proof Multiplying (1.1) by ut and integrating over Ω× [0, t] with t ≤ T , we obtain

EU (t) + ‖∆u(t)‖2α‖ut(t)‖
γ+2
γ+2 = EU (0), (3.4)

which implies (i).

From definition J(u(t)) given in Subsection 2.2, this yields

EU (t) =
1

2
‖ut(t)‖

2 + J(u(t)) ≥ P (‖∆u(t)‖). (3.5)

Note that, P takes its maximum for d =
(
ω
̺

) 1
ρ with P (d) = ωρ

2(ρ+2)d
2, being strictly decreasing

for λ ≥ d, and that P (λ) → −∞ as λ→ ∞. Then there exists d1 > d such that P (d1) = EU (0).

From (3.5), we have

P (‖∆u0‖) ≤ EU (0) = P (d1).

It follows that d1 ≤ ‖∆u0‖. Now suppose for contradiction that ‖∆u(t0)‖ < d1 for some

t0 ∈ (0, T ]. By continuity of ‖∆u(·)‖ we can suppose that d < ‖∆u(t0)‖. But then

EU (t0) ≥ P (‖∆u(t0)‖) > P (d1) = EU (0).

But this is a contradiction with (i). Therefore (ii) is valid.
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Remark 3.1 In what follows, for simplicity let us assume that

M(s) ≡ −̟ + sζ , ζ > 0 for all s ≥ 0.

Note that, M satisfies Assumption 2.1(I).

We are now in a position to establish the main result of this section given by Theorem 3.3

below.

Theorem 3.3 Suppose the hypotheses of Theorem 3.2 are valid with M given as in Remark

3.1. In addition, let α ∈ (0, 1) and ρ > max
{

2ζ
d2
1−d2 ,

γ+2α
1−α

}
. If U0 ∈ Wd ∩ H2, then T is

necessarily finite, i.e., u can not be continued for all t > 0.

Proof We assume the solution exists for all time and we arrive to a contradiction. We fix

E1 ∈
(
EU (0),

ωρ
2(ρ+2)d

2
)
and set

H(t) = E1 − EU (t).

Deriving H(t) with respect to t, we obtain

d

dt
H(t) = −

d

dt
EU (t) = ‖∆u(t)‖2α‖ut(t)‖

γ+2
γ+2 ≥ 0. (3.6)

This shows that H is an increasing function, so that

H(t) ≥ H(0) = E1 − EU (0) > 0, t ≥ 0. (3.7)

On the other hand, by using Proposition 3.1 and the definition of EU (t),

H(t) ≤ E1 −
1

2
(‖U(t)‖2H0

+ M̂(‖∇u(t)‖2)) +
1

ρ+ 2
‖u(t)‖ρ+2

ρ+2

≤ E1 −
1

2
‖ut(t)‖

2 −
ω

2
‖∆u(t)‖2 +

1

ρ+ 2
‖u(t)‖ρ+2

ρ+2

≤
ωρ

2(ρ+ 2)
d21 −

ω

2
d21 +

1

ρ+ 2
‖u(t)‖ρ+2

ρ+2

≤ −
ω

ρ+ 2
d21 +

1

ρ+ 2
‖u(t)‖ρ+2

ρ+2, t ≥ 0. (3.8)

From (3.7)–(3.8) and immersion W2 →֒ Lρ+2(Ω), we have

‖u(t)‖ρ+2
ρ+2 ≥ ωd21 and ‖∆u(t)‖ρ+2 ≥

ω

̺
d21, t ≥ 0. (3.9)

Now, we define the perturbed functional

Ψ(t) = H1−ν(t) + δ

∫

Ω

uutdx, (3.10)

where δ > 0 is small enough and will be specified later and

0 < ν ≤ ν0 = min
{2ρ(1− α)− 2(γ + 2α)

(γ + 1)(ρ+ 2)2
,

ρ

2(ρ+ 2)

}
<

1

2
.
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Taking the derivative of Ψ with respect to t we obtain

d

dt
Ψ(t) = (1 − ν)H−ν(t)

d

dt
H(t) + δ‖ut(t)‖

2 + δ

∫

Ω

uuttdx. (3.11)

From (3.6), we have

(1− ν)H−ν(t)
d

dt
H(t) = (1− ν)H−ν(t)‖∆u(t)‖2α‖ut(t)‖

γ+2
γ+2 ≥ 0. (3.12)

Let

χ(t) = ‖∆u(t)‖2α
∫

Ω

|ut|
γutudx.

Using (1.1) and adding the term 2(ζ + 1)(H(t)− E1 + EU (t)) we find the following equality
∫

Ω

uuttdx = (ζ + 1)‖ut(t)‖
2 + ζ‖∆u(t)‖2 +̟(ζ + 2)‖∇u(t)‖2

+
ρ− 2ζ

ρ+ 2
‖u(t)‖ρ+2

ρ+2 + 2(ζ + 1)H(t)− 2(ζ + 1)E1 − χ(t). (3.13)

Substituting (3.12)–(3.13) in (3.11), we obtain

d

dt
Ψ(t) ≥ (1− ν)H−ν(t)‖∆u(t)‖2α‖ut(t)‖

γ+2
γ+2 + δ(ζ + 2)‖ut(t)‖

2

+ δζ(ω‖∆u(t)‖2 − 2E1) + δ
( ρ

ρ+ 2
‖u(t)‖ρ+2

ρ+2 − 2E1

)

+ δζ(1 − ω)‖∆u(t)‖2 + δ̟(ζ + 2)‖∇u(t)‖2 +
−2δζ

ρ+ 2
‖u(t)‖ρ+2

ρ+2

+ 2δ(ζ + 1)H(t)− δχ(t). (3.14)

Using that ‖∆u‖2

d2
1

≥ 1 and E1 <
ωρ

2(ρ+2))d
2, we have

δζ(ω‖∆u(t)‖2 − 2E1) ≥ δζ
(
ω −

2E1

d21

)
‖∆u(t)‖2

≥ δζω
(
1−

ρd2

(ρ+ 2)d21

)
‖∆u(t)‖2

= δζω
(ρ(d21 − d2)

ρ+ 2
+

2

ρ+ 2

)
‖∆u(t)‖2.

Now, using that
‖u‖ρ+2

ρ+2

ωd2
1

≥ 1 and E1 <
ωρ

2(ρ+2))d
2, we have

δ
( ρ

ρ+ 2
‖u(t)‖ρ+2

ρ+2 − 2E1

)
≥ δ

( ρ

ρ+ 2
‖u(t)‖ρ+2

ρ+2 −
2E1

ωd21

)
‖u(t)‖ρ+2

ρ+2

≥
δρ(d21 − d2)

ρ+ 2
‖u(t)‖ρ+2

ρ+2.

Returning to (3.14), we get

d

dt
Ψ(t) ≥ (1 − ν)H−ν(t)‖∆u(t)‖2α‖ut(t)‖

γ+2
γ+2 + δ(ζ + 2)‖ut(t)‖

2

+ δζω
(ρ(d21 − d2) + 2

ρ+ 2
+

1− ω

ω

)
‖∆u(t)‖2 + δ̟(ζ + 2)‖∇u(t)‖2

+ δ
(ρ(d21 − d2)− 2ζ

ρ+ 2

)
‖u(t)‖ρ+2

ρ+2 + 2δ(ζ + 1)H(t)− δχ(t). (3.15)
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From Holder’s and Young’s inequalities with γ+1
γ+2 + 1

γ+2 = 1, we have

|δχ(t)| ≤ δ‖∆u(t)‖2α
∫

Ω

|ut|
γ |ut||u|dx

≤ δ‖∆u(t)‖2α‖ut(t)‖
γ+1
γ+2‖u(t)‖γ+2

≤
γ + 1

γ + 2
(1 − ν)H−ν(t)H ′(t) +

δγ+2Hν(γ+1)(t)

(1− ν)γ+1(γ + 2)
‖∆u(t)‖2α‖u(t)‖γ+2

γ+2

︸ ︷︷ ︸
χ1(t)

.

From immersion Lρ+2(Ω) →֒ Lγ+2(Ω), using H(t) ≤ ̺
ρ+2‖∆u(t)‖

ρ+2 and Young’s inequality

with ρ−γ
ρ+2 + γ+2

ρ+2 = 1, we obtain

χ1(t) ≤ δγ+2 ̺ν(γ+1)|Ω|
ρ−γ
ρ+2

(1− ν)γ+1(γ + 2)(ρ+ 2)ν(γ+1)
‖∆u(t)‖ν(γ+1)(ρ+2)+2α‖u(t)‖γ+2

ρ+2

≤ δγ+2K0

(ρ− γ

ρ+ 2
‖∆u(t)‖[ν(γ+1)(ρ+2)+2α] ρ+2

ρ−γ +
γ + 2

ρ+ 2
‖u(t)‖ρ+2

ρ+2

)
,

where K0 = ̺ν(γ+1)|Ω|
ρ−γ
ρ+2

(1−ν)γ+1(γ+2)(ρ+2)ν(γ+1) . Note that, using that ν ≤ 2ρ(1−α)−2(γ+2α)
(γ+1)(ρ+2)2 , we have

P := [ν(γ + 1)(ρ+ 2) + 2α]
ρ+ 2

ρ− γ
≤ 2.

Then, substituting −χ(t) in (3.15) and using ‖∆u‖ ≥ d1, we obtain

d

dt
Ψ(t) ≥

(ν + 1)

γ + 2
Hν(t)‖∆u(t)‖2α‖ut(t)‖

γ+2
γ+2 + δ(ζ + 2)‖ut(t)‖

2

+ δζω
(ρ(d21 − d2)

ρ+ 2
+

2

ρ+ 2

)
‖∆u(t)‖2 + δ(ζ(1 − ω)d2−P

1 − δγ+1K0)‖∆u(t)‖
P

+ δ̟(ζ + 2)‖∇u(t)‖2 + δ
(ρ(d21 − d2)− 2ζ

ρ+ 2
− δγ+1K0

)
‖u(t)‖ρ+2

ρ+2

+ 2δ(ζ + 1)H(t). (3.16)

From (3.16), taking

δ < δ0 = min
{ζ(1 − ω)d2−P

1

K0
,
ρ(d21 − d2)− 2ζ

K0(ρ+ 2)

} 1
γ+1

,

there exists Q0 > 0 that does not depend on δ such that

d

dt
Ψ(t) ≥ δQ0(‖ut(t)‖

2 + ‖∆u(t)‖2 + ‖u(t)‖ρ+2
ρ+2 +H(t)) ≥ 0. (3.17)

Especially, (3.17) means that Ψ(t) is increasing on (0, T ), with

Ψ(t) = H1−ν(t) + δ

∫

Ω

utudx ≥ H1−ν(0) + δ

∫

Ω

ut(0)u(0)dx.

We further choose δ to be sufficiently small such that Ψ(0) > 0, so Ψ(t) ≥ Ψ(0) > 0 for t ≥ 0.
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On the other hand, using (a+ b)
1

1−ν ≤ 2
1

1−ν (a
1

1−ν + b
1

1−ν ), Young’s inequality with 1
2(1−ν) +

1−2ν
2(1−ν) = 1 and immersion W0 →֒W2, we obtain

Ψ
1

1−ν (t) ≤ 2
1

1−ν (H(t) + δ
1

1−ν ‖u(t)‖
1

1−ν ‖ut(t)‖
1

1−ν )

≤ 2
1

ν+1

(
H(t) +

δ
1

1−ν

2(1− ν)
‖ut(t)‖

2 +
δ

1
1−ν (1− 2ν)

2(1− ν)
‖u(t)‖

2
1−2ν

)
.

Note that, using that ν ≤ ρ
2(ρ+2) , we have 2

1−2ν ≤ ρ+ 2. Since 1 ≤
‖u‖ρ+2

[ωd2
1]

1
ρ+2

, we obtain

‖u(t)‖
2

1−2ν

ρ+2 ≤ ‖u(t)‖
2

1−2ν

ρ+2 · 1 ≤ ‖u(t)‖
2

1−2ν

ρ+2

‖u(t)‖
(ρ+2)− 2

1−2ν

ρ+2

[ωd21]
1− 2

(ρ+2)(1−2ν)

=
1

[ωd21]
1− 2

(ρ+2)(1−2ν)

‖u(t)‖ρ+2
ρ+2.

Thus, there exists Q1 > 0 such that

Ψ
1

1−ν (t) ≤ Q1[‖ut(t)‖
2 + ‖∆u(t)‖2 + ‖u(t)‖ρ+2

ρ+2 +H(t)]. (3.18)

Combining (3.17)–(3.18) we get that

d

dt
Ψ(t) ≥ QΨ

1
1−ν (t), where Q =

δQ0

Q1
.

This implies that

d

dt
Ψ(t)Ψ

−1
1−ν (t) ≥ Q ⇒

1− ν

−ν

d

dt
[Ψ(t)]

−ν
1−ν ≥ Q ⇒

d

dt
[Ψ(t)]

−ν
1−ν ≤

−ν

1− ν
Q.

Integrating from 0 to t, we get

1

[Ψ(t)]
ν

1−ν

≤ [Ψ(0)]
−ν
1−ν −

ν

1− ν
Qt. (3.19)

Therefore

Ψ(t) ≥
1

([Ψ(0)]
−ν
1−ν − ν

1−ν
Qt)

1−ν
ν

, (3.20)

which implies that the solution blows up in a finite time T , with T ≤ 1−ν

ν[Ψ(0)]
ν

1−ν
. But this is a

contradiction to the assertion that the solution exists for all time. This completes the proof of

Theorem 3.3.
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[26] Jorge Silva, M. A. and Narciso, V., Long-time dynamics for a class of extensible beams with nonlocal
nonlinear damping, Evol. Eq. Control Theory, 6(6), 2017, 437–470.

[27] Jorge Silva, M. A., Narciso, V. and Vicente, A., On a beam model related to flight structures with nonlocal
energy damping, Disc. Contin. Dyn. System, Series B, 24(7), 2019, 3281–3298.

[28] Lange, H. and Perla Menzala, G., Rates of decay of a nonlocal beam equation, Diff. Integ. Eq., 10(6),
1997, 1075–1092.

[29] Limaco, J., Clark, H. R. and Feitosa, A. J., Beam evolution equation with variable coeficients, Math. Meth.

Appl. Sci., 28, 2005, 457–478.

[30] Liu, G. and Jorge Silva, M. A., Attractor and their properties for a class of Kirchhoff models with integro-
differential damping, Appl. Anal., 101(9), 2020, 3284–3307.

[31] Ma, T. F. and Narciso, V., Global attractor for a model of extensible beam with nonlinear damping and
source terms, Nonlinear Anal., 73(10), 2010, 3402–3412.

[32] Ma, T. F., Narciso, V. and Pelicer, M. L., Long-time behavior of a model of extensible beams with nonlinear
boundary dissipations, J. Math. Anal. Appl., 396, 2012, 694–703.

[33] Medeiros, L. A., On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69, 1979, 252–262.

[34] Narciso, V., Attractors for a plate equation with nonlocal nonlinearities, Math. Meth. Appl. Sci., 40(11),
2017, 3937–3954.

[35] Narciso, V., On a Kirchhoff wave model with nonlocal nonlinear damping, Evol. Eq. Control Theory, 9(2),
2020, 487–508.
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