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Abstract Let (X , d, µ) be a space of homogeneous type, in the sense of Coifman and
Weiss, and ϕ : X × [0,∞) → [0,∞) satisfy that, for almost every x ∈ X , ϕ(x, ·) is an
Orlicz function and that ϕ(·, t) is a Muckenhoupt A∞(X ) weight uniformly in t ∈ [0,∞).
In this article, the authors first establish a new molecular characterization, associated
with admissible sequences of balls on X , of the Musielak-Orlicz Hardy space Hϕ(X ). As
an application, the authors also obtain the boundedness of Calderón-Zygmund operators
from Hϕ(X ) to Hϕ(X ) or to the Musielak-Orlicz space Lϕ(X ). The main novelty of these
results is that, in the proof of the boundedness of Calderón-Zygmund operators on Hϕ(X ),
the authors get rid of the dependence on the reverse doubling property of µ by using this
new molecular characterization of Hϕ(X ).
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1 Introduction

It is well known that the real-variable theory of Hardy-type spaces on Rn, including various

equivalent characterizations and the boundedness of singular integral operators, plays a funda-

mental role in harmonic analysis and partial differential equations (see, for instance, [56, 61]).

Recall that the classical Hardy space Hp(Rn) with p ∈ (0, 1] was originally introduced by Stein

and Weiss [62] which initiated the study of the real-variable theory of Hp(Rn). Fefferman and

Stein [21] characterized Hp(Rn) via several maximal functions and proved that the dual space

of H1(Rn) is just the space BMO(Rn) of bounded mean oscillation functions, which was intro-

duced by John and Nirenberg in [41]; Taibleson and Weiss [64] further established the molecular

characterization of Hp(Rn). Moreover, when p ∈ (0, 1], Hp(Rn) proves a suitable substitute

of the Lebesgue space Lp(Rn) in the study on the boundedness of operators. For instance,
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when p ∈ (0, 1], the Calderón-Zygmund operators, including Hilbert and Riesz transforms, are

bounded on Hp(Rn), but they are not bounded on Lp(Rn). Up to now, many new variants of

classical Hardy spaces have sprung up and their real-variable theories have been well developed

in order to meet the increasing demand from harmonic analysis, partial differential equations,

and geometric analysis (see, for instance, [1, 14, 32–33, 57, 59, 63, 68]).

The bilinear decomposition of the product of Hardy spaces and their dual spaces plays key

roles in improving the estimates of many nonlinear quantities such as div-curl products (see,

for instance, [4, 71]), weak Jacobians (see, for instance, [15, 38]), and commutators (see, for

instance, [42, 44, 54]). Bonami et al. [6] showed that, for any given f ∈ H1(Rn), there exist two

bounded linear operators Sf : BMO(Rn) → L1(Rn) and Tf : BMO(Rn) → HΦ
w (R

n) such that,

for any g ∈ BMO(Rn), f × g = Sfg + Tfg, where HΦ
w (R

n) denotes the weighted Orlicz-Hardy

space associated to the weight function w(x) := 1
log(e+|x|) for any x ∈ Rn and to the Orlicz

function

Φ(t) :=
t

log(e + t)
, ∀ t ∈ [0,∞).

This result was essentially improved by Bonami et al. [5], where they further proved the

following bilinear decomposition

H1(Rn)× BMO(Rn) ⊂ L1(Rn) +H log(Rn),

where H log(Rn) denotes the Musielak-Orlicz Hardy space related to the Musielak-Orlicz func-

tion

ϕ(x, t) :=
t

log(e + t) + log(e + |x|)
, ∀x ∈ R

n, ∀ t ∈ (0,∞).

Bonami et al. [5] also concluded that H log(Rn) is the smallest space in the dual sense. This

result was generalized to Hp(Rn), with p ∈ (0, 1), and its dual space in [3, 8] and also to the lo-

calized Hardy space and its dual space in [12, 71, 73]. Motivated by this, Ky [43] introduced the

Musielak-Orlicz Hardy space Hϕ(Rn) with ϕ being a Musielak-Orlicz function, which general-

izes both the Orlicz-Hardy space of Janson [40] and the weighted Hardy space of Strömberg and

Torchinsky [63], established both the grand maximal function and the atomic characterizations

ofHϕ(Rn), and obtained the boundedness of sublinear operators from Hϕ(Rn) to quasi-Banach

spaces. Since then, the real-variable theory of Musielak-Orlicz Hardy spaces has rapidly been

developed. Precisely, Hou et al. [34] characterized Hϕ(Rn) by the Lusin-area function and the

molecule; Liang et al. [51] introduced the weak Musielak-Orlicz Hardy space WHϕ(Rn) via the

grand maximal function and obtained the boundedness of Calderón-Zygmund operators from

Hϕ(Rn) to WHϕ(Rn) including the critical case. We refer the reader to [7, 11, 23, 36, 39,

48–50, 69] for more studies on the real-variable theory of Hϕ(Rn) and to [9–10, 13, 19, 65, 70]

for some recent progress on Musielak-Orlicz Hardy spaces associated with operators.

On the other hand, there has been an increasing interesting in extending the above results of

Musielak-Orlicz Hardy spaces from the Euclidean space to more general underlying spaces such
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as the anisotropic Euclidean space (see, for instance, [45–46, 52–53]). In particular, Coifman

and Weiss [16–17] originally introduced the concept of the space X of homogeneous type and

the atomic Hardy space Hp,q
cw (X ) with p ∈ (0, 1] and q ∈ (p,∞] ∩ [1,∞]. They also proved

that Hp,q
cw (X ) is independent of the choice of q in [17]. From then on, spaces of homogeneous

type have become the most natural and general underlying space to study the real-variable

theory of function spaces and the boundedness of operators (see, for instance, [18, 28, 47, 58]).

In [17], Coifman and Weiss also asked a question, that is, to what extent the geometrical

condition of X is necessary for the validity of the radial maximal function characterization of

H1
cw(X ). Since then, lots of efforts are made to establish various real-variable characterizations

of the atomic Hardy spaces on X with few geometrical assumptions. More precisely, under

the assumption that the equipped measure µ of X satisfying the Ahlfors-regularity condition,

Maćıas and Segovia [55] characterized Hp
cw(X ) via the grand maximal function when p ≤ 1

but near to 1; Duong and Yan [20] characterized Hardy spaces via the Lusin-area function

associated with certain semigroup.

However, due to the lack of Calderón reproducing formulae on X , many existing results

of both function spaces and boundedness of operators, including those in the aforementioned

articles [20, 55], require some additional geometrical assumptions on X such as the reverse

doubling property of µ (see, for instance, [24, 60]). Recently, a breakthrough on the analysis

over X without any additional geometrical assumptions was made by Auscher and Hytönen

[2] who constructed an orthonormal wavelet basis, with exponential decay, of L2(X ) by using

the system of random dyadic cubes established by Hytönen and Kairema [37]. Later, Han

et al. [25] established the wavelet reproducing formulae which hold true in the sense of both

spaces of test functions and distributions. Motivated by these, He et al. [30] first introduced a

kind of approximations of the identity with exponential decay and then obtained new Calderón

reproducing formulae on X . All of these provide elementary tools to further develop the real-

variable theories of function spaces on X .

Very recently, He et al. completely answered the aforementioned question of Coifman and

Weiss by developing a quite complete real-variable theory, including various equivalent char-

acterizations and the boundedness of sublinear operators, of the Hardy space and its localized

version on X , respectively, in [29] and [31]. Fu et al. [22] further generalized the corresponding

results in [29] to Musielak-Orlicz Hardy spaces Hϕ(X ). In particular, Fu et al. obtained the

boundedness of Calderón-Zygmund operators on Hϕ(X ) in [22, Theorem 9.2]. Indeed, let ω

be the upper dimension of X , s ∈ (0, 1), and T be an s-Calderón-Zygmund operator. Assume

that ϕ is a growth function, with uniformly upper type 1 and uniformly lower type p ∈ (0, 1],

satisfying that

p

q(ϕ)
∈
( ω

ω + s
, 1
]

(1.1)

and q ∈ (q(ϕ),∞), where q(ϕ) is the critical weight index of ϕ. Fu et al. proved [22, Theorem
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9.2] by two steps. In the first step, they showed that T is bounded from the finite atomic

Musielak-Orlicz Hardy space Hϕ,q
fin (X ) to Hϕ(X ) by using the molecular characterization of

Hϕ(X ) (see [22, Theorem 6.8]) and proving that T (a) is a (ϕ, r, s)-molecule for any (ϕ, q)-

atom a and some r ∈ (q(ϕ), q). In the second step, they further proved that T can uniquely

be extended to a bounded linear operator on Hϕ(X ) via the criterion on the boundedness of

sublinear operators from Hϕ,q
fin (X ) to quasi-Banach spaces (see [22, Theorem 7.7]). However,

there exist two gaps in the proof of [22, Theorem 9.2]. Indeed, from (1.1), it follows that

s > ω
[ q(ϕ)

p
− 1

]
. The first gap is that [22, Theorem 6.8] can not be applied to prove [22,

Theorem 9.2] because [22, Theorem 6.8] requires

s ∈
(
max

{
ω, ω

q(ϕ)

p

}
,∞

)

and s in (1.1) does not satisfy this requirement. This is essentially caused by the absence of the

reverse doubling condition of the equipped measure µ on X . Moreover, observe that Hϕ(X ) is a

p-quasi-Banach space now, where p ∈ (0, 1]. The second gap is that [22, Theorem 7.7] can also

not be applied to prove [22, Theorem 9.2] because [22, Theorem 7.7] requires that Hϕ(X ) is a

1-quasi-Banach space, but Hϕ(X ) is only known to be a p-quasi-Banach space with p ∈ (0, 1].

To seal these two gaps, in this article, we first establish a new molecular characterization of

Hϕ(X ), associated with sequences of admissible balls on X , and then obtain the boundedness

of Calderón-Zygmund operators from Hϕ(X ) to Hϕ(X ) or to the Musielak-Orlicz space Lϕ(X ).

In particular, since a sequence of admissible balls are both doubling and reverse doubling (see

Definition 3.1 below), we can use the new molecular characterization to get rid of the dependence

on the reverse doubling property of µ and seal the aforementioned first gap. Moreover, via the

finite atomic decomposition of Hϕ(X ) (see [22, Theorem 7.5]), by a standard density argument

instead of the criterion on the boundedness of sublinear operators, we then prove [22, Theorem

9.2] and hence seal the aforementioned second gap. These are the main novelties of this article.

The organization of the remainder of this article is as follows.

In Section 2, we recall some notation and concepts which are used throughout this article.

More precisely, in Subsection 2.1, we recall the definition of a space X of homogeneous type and

state some basic properties of X . In Subsection 2.2, we introduce the concepts of the uniformly

Muckenhoupt condition, the uniformly reverse Hölder condition, and the Musielak-Orlicz space

Lϕ(X ). Some of their basic properties are also reviewed. In Subsection 2.3, we first recall the

concepts of both spaces of test functions and distributions, the system of dyadic cubes, and

approximations of the identity with exponential decay on X . Then, via the Lusin-area function

Sα with α ∈ (0,∞), we introduce the Musielak-Orlicz Hardy space Hϕ(X ).

In Section 3, we first recall the concept of admissible ball sequences on X and introduce the

admissible molecule of Hϕ(X ), which differs from the classical one in that it uses admissible

balls to replace the balls with radii {2k}k∈N. Then we introduce the molecular Musielak-

Orlicz Hardy space H̊ϕ,q,ε,c
mol (X ) and establish a new molecular characterization of Hϕ(X ) (see
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Theorem 3.1 below). Indeed, on the one hand, by both the fact that each (ϕ, q)-atom is also

an admissible molecule and the atomic characterization of Hϕ(X ) established in [22, Theorem

6.15] (see also Lemma 3.3 below), we prove Hϕ(X ) ⊂ H̊ϕ,q,ε,c
mol (X ). On the other hand, we

show that any admissible (ϕ, q, ε, c)-molecule can be divided into an infinite linear combination

of (ϕ, q)-atoms in Lemma 3.4, which, combined with Lemma 3.3 again, further implies that

H̊ϕ,q,ε,c
mol (X ) ⊂ Hϕ(X ) and hence completes the proof of Theorem 3.1.

In Section 4, we establish the boundedness of Calderón-Zygmund operators from Hϕ(X )

to Hϕ(X ) or to Lϕ(X ) (see Theorems 4.1–4.2 below, respectively). Indeed, by a standard

density argument, Theorem 3.1 and Lemmas 4.2–4.3, we first prove Theorem 4.1. Moreover,

by an argument similar to that used in the proof of Theorem 4.1, the boundedness of the

Hardy-Littlewood maximal operator M on Lϕ(X ) (see Lemma 4.5 below), the boundedness of

Calderón-Zygmund operators on weighted Lebesgue spaces, we further prove Theorem 4.2.

At the end of this section, we make some conventions on notation. Let N := {1, 2, · · · } and

Z+ := N∪{0}. We denote by C a positive constant which is independent of the main parameters,

but may vary from line to line. We use C(α,··· ) to denote a positive constant depending on the

indicated parameters α, · · · . The symbol f . g means f ≤ Cg and, if f . g . f , then we

write f ∼ g. If f ≤ Cg and g = h or g ≤ h, we then write f . g = h or f . g ≤ h, rather than

f . g ∼ h or f . g . h. If E is a subset of X , we denote by 1E its characteristic function and

by E∁ the set X \ E. For any x ∈ X and r ∈ (0,∞), we denote by B(x, r) the ball centered at

x with the radius r, that is, B(x, r) := {y ∈ X : d(x, y) < r}. For any ball B, we use xB to

denote its center and rB its radius, and denote by λB for any λ ∈ (0,∞) the ball concentric

with B having the radius λrB . For any α ∈ R, we denote by ⌊α⌋ the largest integer not greater

than α. For any index q ∈ [1,∞], we denote by q′ its conjugate index, that is, 1
q
+ 1

q′
= 1. For

any x, x0, y ∈ X and r, ϑ ∈ (0,∞), let Vr(x) := µ(B(x, r)),

V (x, y) :=

{
µ(B(x, d(x, y))) if x 6= y,

0 if x = y

and

Pϑ(x0, x; r) :=
1

Vr(x0) + V (x0, x)

[ r

r + d(x0, x)

]ϑ
. (1.2)

2 Preliminaries

In this section, we first recall some basic concepts about spaces X of homogeneous type and

Musielak-Orlicz spaces, respectively, in Subsections 2.1–2.2, which are used throughout this

article. Then we introduce the Musielak-Orlicz Hardy space on X via the Lusin-area function

in Subsection 2.3. The concepts of both spaces of test functions and distributions, the system of

dyadic cubes, and approximations of the identity with exponential decay on X are also stated

in Subsection 2.3.
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2.1 Spaces of homogeneous type

In this subsection, we recall the concept of spaces of homogeneous type and some related

basic estimates.

Definition 2.1 A quasi-metric space (X , d) is a non-empty set X equipped with a quasi-

metric d, namely a non-negative function defined on X ×X satisfying that, for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) there exists a constant A0 ∈ [1,∞), independent of x, y and z, such that

d(x, z) ≤ A0[d(x, y) + d(y, z)]. (2.1)

The ball B of X , centered at x0 ∈ X with radius r ∈ (0,∞), is defined by setting

B := B(x0, r) := {x ∈ X : d(x, x0) < r}.

For any ball B and any τ ∈ (0,∞), we denote B(x0, τr) by τB if B := B(x0, r) for some x0 ∈ X

and r ∈ (0,∞).

Definition 2.2 Let (X , d) be a quasi-metric space and µ be a non-negative measure on X .

The triple (X , d, µ) is called a space of homogeneous type if µ satisfies the following doubling

condition : There exists a constant C(µ) ∈ [1,∞) such that, for any ball B ⊂ X ,

µ(2B) ≤ C(µ)µ(B). (2.2)

The above doubling condition implies that, for any ball B ⊂ X and any λ ∈ [1,∞),

µ(λB) ≤ C(µ)λ
ωµ(B), (2.3)

where ω := log2 C(µ) is called the upper dimension of X . If A0 = 1, then (X , d, µ) is called a

metric measure space of homogeneous type or, simply, a doubling metric measure space.

Both spaces of homogeneous type, with some additional assumptions, and function spaces

on them have been extensively investigated in many articles. One special case of spaces of

homogeneous type is the RD-space, originally introduced in [27] (see also [26, 72]), which is a

doubling metric measure space satisfying the following additional reverse doubling condition:

There exist constants C̃(µ) ∈ (0, 1] and κ ∈ (0, ω] such that, for any ball B(x, r) with x ∈ X

and r ∈
(
0, diam X

2

)
and for any λ ∈

[
1, diam X

2r

)
,

C̃(µ)λ
κµ(B(x, r)) ≤ µ(B(x, λr)),

here and thereafter, diam X := sup
x, y∈X

d(x, y).

Throughout this article, according to [17, pp. 587–588], we always make the following as-

sumptions on (X , d, µ) :
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(i) For any x ∈ X , the balls {B(x, r)}r∈(0,∞) form a basis of open neighborhoods of x;

(ii) µ is Borel regular which means that all open sets are µ-measurable and every set A ⊂ X

is contained in a Borel set E such that µ(A) = µ(E);

(iii) for any x ∈ X and r ∈ (0,∞), µ(B(x, r)) ∈ (0,∞);

(iv) diam X = ∞ and (X , d, µ) is non-atomic, which means µ({x}) = 0 for any x ∈ X .

Note that diam X = ∞ implies that µ(X ) = ∞ (see [2, p. 284] or [58, Lemma 5.1]). From

this, it follows that, under the above assumptions, µ(X ) = ∞ if and only if diam X = ∞.

The following basic estimates are from [26, Lemma 2.1], which can be proved by using (2.3).

Lemma 2.1 Let x, y ∈ X and r ∈ (0,∞). Then V (x, y) ∼ V (y, x) and

Vr(x) + Vr(y) + V (x, y) ∼ Vr(x) + V (x, y) ∼ Vr(y) + V (x, y)

∼ µ(B(x, r + d(x, y))).

Moreover, if d(x, y) ≤ r, then Vr(x) ∼ Vr(y). Here the positive equivalence constants are

independent of x, y and r.

2.2 Musielak-Orlicz spaces

Throughout this article, we always let (X , d, µ) be a space of homogeneous type with µ(X ) =

∞. In this subsection, we recall the concept of Musielak-Orlicz spaces and state some known

results.

A function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is non-decreasing, Φ(0) = 0,

Φ(t) > 0 for any t ∈ (0,∞), and lim
t→∞

Φ(t) = ∞. Then Φ is said to be of upper (resp., lower)

type p for some p ∈ (0,∞) if there exists a positive constant C such that, for any s ∈ [1,∞)

(resp., s ∈ [0, 1]) and t ∈ [0,∞),

Φ(st) ≤ CspΦ(t).

Now, we recall the concept of uniformly upper and lower types, which was introduced in

[35].

Definition 2.3 For a given function ϕ : X × [0,∞) → [0,∞) such that, for almost every

x ∈ X , ϕ(x, ·) is an Orlicz function, ϕ is said to be of uniformly upper (resp., lower) type p for

some p ∈ (0,∞) if there exists a positive constant C(p), depending on p, such that, for almost

every x ∈ X , s ∈ [1,∞) (resp., s ∈ [0, 1]) and t ∈ [0,∞),

ϕ(x, st) ≤ C(p)s
pϕ(x, t).

The function ϕ is said to be of uniformly upper (resp., lower) type if it is of uniformly upper

(resp., lower) type p for some p ∈ (0,∞), and let

I(ϕ) := inf{p ∈ (0,∞) : ϕ is of uniformly upper type p}
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and

i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}. (2.4)

Next, we recall the concepts of both the uniformly Muckenhoupt condition and the uniformly

reverse Hölder condition from [35, Definition 2.6].

Definition 2.4 A function ϕ : X × [0,∞) → [0,∞) is said to satisfy the uniformly Muck-

enhoupt condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(X ), if, when q ∈ (1,∞),

[ϕ]Aq(X ) : = sup
t∈(0,∞)

sup
B⊂X

1

[µ(B)]q

∫

B

ϕ(x, t) dµ(x)

×
{∫

B

[ϕ(y, t)]−
1

q−1 dµ(y)
}q−1

< ∞

or

[ϕ]A1(X ) := sup
t∈(0,∞)

sup
B⊂X

1

µ(B)

∫

B

ϕ(x, t) dµ(x)
{
ess sup
y∈B

[ϕ(y, t)]−1
}
< ∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all balls B ⊂ X .

Throughout this article, let

A∞(X ) :=
⋃

q∈[1,∞)

Aq(X ). (2.5)

Definition 2.5 A function ϕ : X × [0,∞) → [0,∞) is said to satisfy the uniformly reverse

Hölder condition for some p ∈ (1,∞], denoted by ϕ ∈ RHp(X ), if, when p ∈ (1,∞),

[ϕ]RHp(X ) := sup
t∈(0,∞)

sup
B⊂X

{ 1

µ(B)

∫

B

[ϕ(x, t)]p dµ(x)
} 1

p

×
{ 1

µ(B)

∫

B

ϕ(y, t) dµ(y)
}−1

<∞

or

[ϕ]RH∞(X ) := sup
t∈(0,∞)

sup
B⊂X

{
ess sup
x∈B

ϕ(x, t)
}{ 1

µ(B)

∫

B

ϕ(y, t) dµ(y)
}−1

< ∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all balls B ⊂ X .

Throughout this article, for any given p ∈ (0,∞), a function f is said to be locally p-

integrable if, for any x ∈ X , there exists an r ∈ (0,∞) such that

∫

B(x,r)

|f(y)|p dµ(y) < ∞.
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Denote by Lp
loc(X ) the set of all the locally p-integrable functions on X . In what follows,

we always let M denote the Hardy-Littlewood maximal operator defined by setting, for any

f ∈ L1
loc(X ) and x ∈ X ,

M(f)(x) := sup
B∋x

1

µ(B)

∫

B

|f(y)| dµ(y), (2.6)

where the supremum is taken over all the balls B of X containing x.

Now, we state some basic properties of Aq(X ) with q ∈ [1,∞) and of RHp(X ) with

p ∈ (1,∞], which are just [22, Lemma 2.6] (see also [69, Lemma 1.1.3] for the correspond-

ing Euclidean case).

Lemma 2.2 The following conclusions hold true.

(i) A1(X ) ⊂ Ap(X ) ⊂ Aq(X ) for any p, q satisfying 1 ≤ p ≤ q < ∞.

(ii) RH∞(X ) ⊂ RHq(X ) ⊂ RHp(X ) for any p, q satisfying 1 < p ≤ q ≤ ∞.

(iii) If q ∈ [1,∞) and ϕ ∈ Aq(X ), then there exists a positive constant C such that, for any

ball B ⊂ X , any µ-measurable function f and any t ∈ (0,∞),

[ 1

µ(B)

∫

B

|f(x)| dµ(x)
]q

≤ C
1

ϕ(B, t)

∫

B

|f(x)|qϕ(x, t) dµ(x),

here and thereafter, for any µ-measurable set E ⊂ X and t ∈ [0,∞), let

ϕ(E, t) :=

∫

E

ϕ(x, t) dµ(x).

(iv) If q ∈ [1,∞) and ϕ ∈ Aq(X ), then there exists a positive constant C such that, for any

ball B ⊂ X , any µ-measurable set E ⊂ B and any t ∈ (0,∞),

ϕ(B, t)

ϕ(E, t)
≤ C

[µ(B)

µ(E)

]q
.

(v) A∞(X ) =
⋃

q∈[1,∞)

Aq(X ) =
⋃

p∈(1,∞]

RHp(X ).

The critical weight indices q(ϕ) and r(ϕ) of ϕ ∈ A∞(X ) are defined, respectively, by setting

q(ϕ) := inf{q ∈ [1,∞) : ϕ ∈ Aq(X )} (2.7)

and

r(ϕ) := sup{p ∈ (1,∞] : ϕ ∈ RHp(X )}. (2.8)

The following concept of growth functions was first introduced in [35, Definition 2.7].

Definition 2.6 A function ϕ : X × [0,∞) → [0,∞) is called a growth function if the

following conditions are satisfied :

(i) ϕ is a Musielak-Orlicz function, that is,

(i)1 the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for almost every x ∈ X ;
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(i)2 the function ϕ(·, t) is µ-measurable for any t ∈ [0,∞).

(ii) ϕ ∈ A∞(X ).

(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type 1.

Next, we recall the concept of Musielak-Orlicz spaces, which was first introduced in [35,

Definition 2.8].

Definition 2.7 Let ϕ be a growth function in Definition 2.6. The Musielak-Orlicz space

Lϕ(X ) is defined to be the set of all the µ-measurable functions f such that
∫

X

ϕ(x, |f(x)|) dµ(x) < ∞,

equipped with the Luxemburg (also called the Luxemburg-Nakano)(quasi-)norm

‖f‖Lϕ(X ) := inf
{
λ ∈ (0,∞) :

∫

X

ϕ
(
x,

|f(x)|

λ

)
dµ(x) ≤ 1

}
.

Remark 2.1 By both (2.5) and Definition 2.4, we find that, for any ball B ⊂ X ,

‖1B‖Lϕ(X ) < ∞.

Now, we recall some basic properties of Lϕ(X ), which were first given in [22, Lemma 2.8]

(see also [69, Lemmas 1.1.6 and 1.1.10] for the corresponding Euclidean case).

Lemma 2.3 Let ϕ be a growth function in Definition 2.6. Then the following conclusions

hold true.

(i) ϕ is uniformly σ-quasi-subadditive on X × [0,∞), that is, there exists a positive constant

C such that, for any (x, tj) ∈ X × [0,∞) with j ∈ N,

ϕ
(
x,

∑

j∈N

tj

)
≤ C

∑

j∈N

ϕ(x, tj).

(ii) For any f ∈ Lϕ(X )\{0},
∫

X

ϕ
(
x,

|f(x)|

‖f‖Lϕ(X )

)
dµ(x) = 1.

Let ϕ be a growth function in Definition 2.6. In what follows, we always let

m(ϕ) :=

⌊
ω
[q(ϕ)
i(ϕ)

− 1
]⌋

, (2.9)

where, for any α ∈ R, ⌊α⌋ denotes the largest integer not greater than α and ω, q(ϕ) and i(ϕ)

are the same, respectively, as in (2.3), (2.7) and (2.4).

2.3 Musielak-Orlicz Hardy spaces

In this subsection, we introduce the Musielak-Orlicz Hardy space defined via the Lusin-area

function. To this end, we first recall the concept of spaces of test functions on X , the following

version of which was originally introduced by Han et al. [26, Definition 2.2] (see also [27,

Definition 2.8]).
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Definition 2.8 Let x0 ∈ X , r ∈ (0,∞), ̺ ∈ (0, 1] and ϑ ∈ (0,∞). A function f on X is

called a test function of type (x0, r, ̺, ϑ), denoted by f ∈ G(x0, r, ̺, ϑ), if there exists a positive

constant C such that

(T1) for any x ∈ X ,

|f(x)| ≤ CPϑ(x0, x; r), (2.10)

here and thereafter, Pϑ is the same as in (1.2) ;

(T2) for any x, y ∈ X satisfying d(x, y) ≤ r+d(x0,x)
2A0

with A0 the same as in (2.1),

|f(x)− f(y)| ≤ C
[ d(x, y)

r + d(x0, x)

]̺
Pϑ(x0, x; r). (2.11)

Moreover, for any f ∈ G(x0, r, ̺, ϑ), define

‖f‖G(x0, r, ̺, ϑ) := inf{C : C satisfies (2.10)–(2.11)}.

The subspace G̊(x0, r, ̺, ϑ) is defined by setting

G̊(x0, r, ̺, ϑ) :=
{
f ∈ G(x0, r, ̺, ϑ) :

∫

X

f(x) dµ(x) = 0
}

equipped with the norm ‖ · ‖G̊(x0,r,̺,ϑ)
:= ‖ · ‖G(x0,r,̺,ϑ).

Fix an x0 ∈ X . We denote G̊(x0, 1, ̺, ϑ) simply by G̊(̺, ϑ). Obviously, G̊(̺, ϑ) is a Banach

space. Note that, for any fixed x ∈ X and r ∈ (0,∞), G̊(x, r, ̺, ϑ) = G̊(̺, ϑ) with equivalent

norms, but the positive equivalence constants may depend on both x and r.

Fix an ε ∈ (0, 1] and ̺, ϑ ∈ (0, ε]. Let G̊ε
0(̺, ϑ) be the completion of the set G̊(ε, ε) in

G̊(̺, ϑ). Furthermore, the norm of G̊ε
0(̺, ϑ) is defined by setting ‖ · ‖G̊ε

0(̺,ϑ)
:= ‖ · ‖G(̺,ϑ). The

space G̊ε
0(̺, ϑ) is called the space of test functions. The dual space (G̊ε

0(̺, ϑ))
′ is defined to

be the set of all continuous linear functionals from G̊ε
0(̺, ϑ) to C, equipped with the weak-∗

topology. The space (G̊ε
0(̺, ϑ))

′ is called the space of distributions.

The following system of dyadic cubes of (X , d, µ) was established by Hytönen and Kairema

in [37, Theorem 2.2].

Lemma 2.4 Suppose that constants 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1) satisfy 12A3
0C0δ ≤ c0

with A0 the same as in (2.1). Assume that a set of points, {zkα : k ∈ Z, α ∈ Ak} ⊂ X with Ak,

for any k ∈ Z, being a set of indices, has the following properties : For any k ∈ Z,

d(zkα, z
k
β) ≥ c0δ

k if α 6= β and min
α∈Ak

d(x, zkα) < C0δ
k for any x ∈ X .

Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, satisfying that

(i) for any k ∈ Z,
⋃

α∈Ak

Qk
α = X and {Qk

α : α ∈ Ak} is disjoint ;

(ii) if k, l ∈ Z and k ≤ l, then, for any α ∈ Ak and β ∈ Al, either Q
l
β ⊂ Qk

α or Ql
β∩Qk

α = ∅ ;

(iii) for any k ∈ Z and α ∈ Ak, B(zkα, (3A
2
0)

−1c0δ
k) ⊂ Qk

α ⊂ B(zkα, 2A0C0δ
k).
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Throughout this article, for any k ∈ Z, define

Gk := Ak+1 \ Ak and Yk :=
{
zk+1
α

}
α∈Gk

=:
{
ykα

}
α∈Gk

,

and for any x ∈ X , define

d(x,Yk) := inf
y∈Yk

d(x, y).

Next, we recall the concept of approximations of the identity with exponential decay which

was introduced in [30, Definition 2.7].

Definition 2.9 Let δ be the same as in Lemma 2.4. A sequence {Qk}k∈Z of bounded linear

integral operators on L2(X ) is called an approximation of the identity with exponential decay

(for short, exp-ATI ) if there exist constants C, ν ∈ (0,∞), a ∈ (0, 1] and η ∈ (0, 1) such that,

for any k ∈ Z, the kernel of the operator Qk, a function on X × X , which is still denoted by

Qk, has the following properties:

(i) (The identity condition)
∑
k∈Z

Qk = I in L2(X ), where I denotes the identity operator on

L2(X ) ;

(ii) (The size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ CEk(x, y),

here and thereafter,

Ek(x, y) :=
1√

Vδk(x)Vδk (y)
exp

{
− ν

[d(x, y)
δk

]a}

× exp
{
− ν

[max{d(x,Yk), d(y,Yk)}

δk

]a}
;

(iii) (The regularity condition) for any x, x′, y ∈ X with d(x, x′) ≤ δk,

|Qk(x, y)−Qk(x
′, y)|+ |Qk(y, x)−Qk(y, x

′)| ≤ C
[d(x, x′)

δk

]η
Ek(x, y) ;

(iv) (The second difference regularity condition) for any x, x′, y, y′ ∈ X with d(x, x′) ≤ δk

and d(y, y′) ≤ δk,

|[Qk(x, y)−Qk(x
′, y)]− [Qk(x, y

′)−Qk(x
′, y′)]|

≤ C
[d(x, x′)

δk

]η[d(y, y′)
δk

]η
Ek(x, y) ;

(v) (The cancellation condition) for any x, y ∈ X ,

∫

X

Qk(x, y
′) dµ(y′) = 0 =

∫

X

Qk(x
′, y) dµ(x′).

Now, we recall the concept of the Lusin-area function (see, for instance, [29, Section 5]).
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Definition 2.10 Let δ and η be the same, respectively, as in Lemma 2.4 and Definition

2.9, and let ̺, ϑ ∈ (0, η). Assume that f ∈ (G̊η
0 (̺, ϑ))

′ and {Qk}k∈Z is an exp-ATI. For any

α ∈ (0,∞), the Lusin-area function Sα(f) of f with aperture α is defined by setting, for any

x ∈ X ,

Sα(f)(x) :=
{∑

k∈Z

∫

B(x,αδk)

|Qkf(y)|
2 dµ(y)

Vαδk(x)

} 1
2

.

When α := 1, we simply write S := S1.

Next, we recall the concept of Musielak-Orlicz Hardy spaces, which was first introduced in

[22, Definition 6.2].

Definition 2.11 Let η be the same as in Definition 2.9 and ϕ be a growth function in

Definition 2.6 with uniformly lower type p ∈ (0, 1] satisfying

p

q(ϕ)
∈
( ω

ω + η
, 1
]
, (2.12)

and let

̺, ϑ ∈
(
ω
[q(ϕ)

p
− 1

]
, η
)
, (2.13)

where q(ϕ) and ω are the same, respectively, as in (2.7) and (2.3). The Musielak-Orlicz Hardy

space Hϕ(X ) is defined by setting

Hϕ(X ) := {f ∈ (G̊η
0 (̺, ϑ))

′ : ‖S(f)‖Lϕ(X ) < ∞},

and moreover, for any f ∈ Hϕ(X ), let

‖f‖Hϕ(X ) := ‖S(f)‖Lϕ(X ).

Remark 2.2 (i) As it was proved in [22, Theorem 6.3], the space Hϕ(X ) in Definition 2.11

is independent of the choices of exp-ATIs in S(f).

(ii) Combining [67, Remark 3.17(iii)], [22, Theorems 5.4 and 6.15] and [22, Proposition 6.12],

we conclude that the space Hϕ(X ) in Definition 2.11 is independent of the choices of (G̊η
0 (̺, ϑ))

′,

whenever ̺, ϑ ∈
(
ω
[ q(ϕ)

p
− 1

]
, η
)
.

3 New Molecular Characterization of Hϕ(X )

In this section, we establish a new molecular characterization of Hϕ(X ). To this end, we

first recall the following conclusion which was obtained in [66, Lemma 6.10].

Lemma 3.1 Let X be a space of homogeneous type with µ(X ) = ∞, c ∈ (1,∞), x0 ∈ X

and r0 ∈ (0,∞). For any j ∈ N, define

rj := sup{r ∈ (0,∞) : µ(B(x0, r)) ≤ C(µ)[cC(µ)]
jµ(B(x0, r0))},
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where C(µ) is the same as in (2.2). Then, for any j ∈ N, it holds true that rj ∈ (0,∞),

[cC(µ)]
jµ(B(x0, r0)) ≤ µ(B(x0, rj)) ≤ C(µ)[cC(µ)]

jµ(B(x0, r0)), (3.1)

and lim
j→∞

rj = ∞.

Next, we recall the concept of admissible balls on X (see, for instance, [66, Definition 6.11]).

Definition 3.1 Let X be a space of homogeneous type with µ(X ) = ∞, A1, A2 ∈ (1,∞)

such that A1 < A2, and x0 ∈ X . A sequence {Bj}j∈Z+ of balls centered at x0 is said to be

(A1, A2)-admissible if it satisfies that, for any j ∈ N,

A1µ(Bj−1) < µ(Bj) ≤ A2µ(Bj−1).

Remark 3.1 Suppose that x0 ∈ X , r0 ∈ (0,∞), c ∈ (1,∞), and C(µ) is the same as in

(2.2). For any given j ∈ N, let rj be the same as in Lemma 3.1. By (3.1), Definition 3.1

and an elementary calculation, we easily find that the sequence {B(x0, rj)}j∈Z+ of balls is

(c, cC2
(µ))-admissible.

Now, we introduce the molecule and the molecular Hardy space associated with admissible

balls, which are called the admissible molecule and the admissible molecular Musielak-Orlicz

Hardy space, respectively.

Definition 3.2 Assume that η is the same as in Definition 2.9, ϕ is a growth function in

Definition 2.6 satisfying (2.12), q ∈ (1,∞], ε ∈ (0,∞) and c ∈ (1,∞).

(i) Let x0 ∈ X , r0 ∈ (0,∞), {rj}j∈N be the same as in Lemma 3.1, and

εj := [cC(µ)]
−ω+ε

ω
j , ∀ j ∈ Z+ (3.2)

with C(µ) and ω the same, respectively, as in (2.2) and (2.3). A µ-measurable function m on

X is called an admissible (ϕ, q, ε, c)-molecule centered at B(0) := B(x0, r0) if

(i)1 for any j ∈ Z+,

‖m‖Lq(Aj(B)) ≤ εj [µ(B
(j))]

1
q ‖1B(0)‖

−1
Lϕ(X ) , (3.3)

here and thereafter, B(j) := B(x0, rj) and

Aj(B) :=

{
B(0), if j = 0,

B(j)\B(j−1), if j ∈ N;
(3.4)

(i)2
∫
X m(x) dµ(x) = 0.

(ii) Let ̺, ϑ be the same as in (2.13). The admissible molecular Musielak-Orlicz Hardy

space H̊ϕ,q,ε,c
mol (X ) is defined to be the set of all the f ∈ (G̊η

0 (̺, ϑ))
′ satisfying that there exists

a sequence {mj}j∈N of admissible (ϕ, q, ε, c)-molecules centered, respectively, at balls {Bj}j∈N

and a sequence {λj}j∈N ⊂ C such that

∑

j∈N

ϕ
(
Bj ,

|λj |

‖1Bj
‖Lϕ(X )

)
< ∞
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and f =
∑
j∈N

λjmj in (G̊η
0 (̺, ϑ))

′. Moreover, let

Λq({λjmj}j∈N) := inf
{
λ ∈ (0,∞) :

∑

j∈N

ϕ
(
Bj ,

|λj |

λ‖1Bj
‖Lϕ(X )

)
≤ 1

}
(3.5)

and then define

‖f‖H̊ϕ,q,ε,c

mol (X ) := inf
{
Λq({λjmj}j∈N) : f =

∑

j∈N

λjmj in (G̊η
0 (̺, ϑ))

′
}
,

where the last infimum is taken over all the decompositions of f as above.

Next, we state the main results of this section as follows.

Theorem 3.1 Let η, ϕ, ̺, ϑ and c be the same as in Definition 3.2. Further assume that

q ∈ (q(ϕ)[r(ϕ)]′,∞) and

ε ∈
(
max

{
0, ω

[q(ϕ)
i(ϕ)

− 1
]}

,∞
)
,

where q(ϕ), r(ϕ) and i(ϕ) are the same, respectively, as in (2.7), (2.8) and (2.4). Then

Hϕ(X ) ∩ (G̊η
0 (̺, ϑ))

′ = H̊ϕ,q,ε,c
mol (X ) ∩ (G̊η

0 (̺, ϑ))
′

with equivalent quasi-norms.

To prove Theorem 3.1, we need more preparations. The following definition is a generaliza-

tion of [43, Definition 2.3] on Rn to X .

Definition 3.3 Let ϕ be a growth function in Definition 2.6 and q ∈ [1,∞]. For any µ-

measurable subset E of X , the space Lq
ϕ(E) is defined to be the set of all the µ-measurable

functions f on X , supported in E, such that

‖f‖Lq
ϕ(E) :=





sup
t∈(0,∞)

[ 1

ϕ(E, t)

∫

E

|f(x)|qϕ(x, t) dµ(x)
] 1

q

< ∞, if q ∈ [1,∞),

‖f‖L∞(E) < ∞, if q = ∞.

Now, we recall the concept of (ϕ, q)-atoms (see, for instance, [22, Definition 5.2]).

Definition 3.4 Let ϕ be a growth function in Definition 2.6 satisfying (2.12) and let q ∈

(q(ϕ),∞] with q(ϕ) the same as in (2.7). A µ-measurable function a is called a (ϕ, q)-atom

supported in a ball B ⊂ X if the following three conditions hold true :

(i) supp a := {x ∈ X : a(x) 6= 0} ⊂ B ;

(ii) a ∈ Lq
ϕ(B) and ‖a‖Lq

ϕ(B) ≤ ‖1B‖
−1
Lϕ(X ) ;

(iii)
∫
X a(x) dµ(x) = 0.

Remark 3.2 By (2.4), (2.9) and (2.12), we conclude that

m(ϕ) ≤
⌊
ω
[q(ϕ)

p
− 1

]⌋
≤

⌊
ω
(ω + η

ω
− 1

)⌋
= 0.

Thus, there is no need to add the additional assumption that m(ϕ) ≤ 0 in [22, Definition 5.2].
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The following atomic Musielak-Orlicz Hardy space was introduced in [22, Definition 6.9].

Definition 3.5 Let ϕ be a growth function in Definition 2.6 satisfying (2.12) and let q ∈

(q(ϕ),∞] with q(ϕ) the same as in (2.7). Assume that ̺, ϑ and η are the same, respectively, as

in (2.13) and Definition 2.9.

(i) The atomic Musielak-Orlicz Hardy space H̊ϕ,q
at (X ) is defined to be the set of all the

distributions f ∈ (G̊η
0 (̺, ϑ))

′ satisfying that there exists a sequence {bj}j∈N of multiples of

(ϕ, q)-atoms supported, respectively, in balls {Bj}j∈N such that

∑

j∈N

ϕ(Bj , ‖bj‖Lq
ϕ(Bj)) < ∞

and f =
∑
j∈N

bj in (G̊η
0 (̺, ϑ))

′. Moreover, let

Λ̃q({bj}j∈N) := inf
{
λ ∈ (0,∞) :

∑

j∈N

ϕ
(
Bj ,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1

}
(3.6)

and

‖f‖H̊ϕ,q
at (X ) := inf

{
Λ̃q({bj}j∈N) : f =

∑

j∈N

bj in (G̊η
0 (̺, ϑ))

′
}
,

where the last infimum is taken over all the decompositions of f as above.

(ii) The atomic Musielak-Orlicz Hardy space H̊ϕ,q
at,A(X ) is defined to be the set of all the

distributions f ∈ (G̊η
0 (̺, ϑ))

′ satisfying that there exists a sequence {λj}j∈N ⊂ C and a sequence

{aj}j∈N of (ϕ, q)-atoms supported, respectively, in balls {Bj}j∈N such that

∑

j∈N

ϕ
(
Bj ,

|λj |

‖1Bj
‖Lϕ(X )

)
< ∞

and f =
∑
j∈N

λjaj in (G̊η
0 (̺, ϑ))

′. Moreover, let

‖f‖H̊ϕ,q
at,A(X ) := inf

{
Λ̂q({λjaj}j∈N) : f =

∑

j∈N

λjaj in (G̊η
0 (̺, ϑ))

′
}
< ∞,

where the infimum is taken over all the admissible decompositions of f as above and

Λ̂q({λjaj}j∈N) := inf
{
λ ∈ (0,∞) :

∑

j∈N

ϕ
(
Bj ,

|λj |

λ‖1Bj
‖Lϕ(X )

)
≤ 1

}
. (3.7)

The following lemma is a generalization of [46, Remark 31(i)] on the anisotropic Euclidean

space to X , the proof of which is a slight modification of [46, Remark 31(i)], we omit the details

here.

Lemma 3.2 Let ϕ and q be the same as in Definition 3.5. Then the atomic Musielak-Orlicz

Hardy spaces H̊ϕ,q
at,A(X ) and H̊ϕ,q

at (X ) coincide with equivalent (quasi-)norms.



Musielak-Orlicz Hardy Spaces on Spaces of Homogeneous Type 217

The following atomic characterization of Hϕ(X ) is just [22, Theorem 6.15].

Lemma 3.3 Let η, ϕ, q, ̺ and ϑ be the same as in Definition 3.5. Then

Hϕ(X ) ∩ (G̊η
0 (̺, ϑ))

′ = H̊ϕ,q
at (X ) ∩ (G̊η

0 (̺, ϑ))
′

with equivalent quasi-norms.

Remark 3.3 From Remark 2.2(ii) and Lemma 3.3, we deduce that the space H̊ϕ,q
at (X ) in

Definition 3.5 is independent of the choices of (G̊η
0 (̺, ϑ))

′ whenever ̺, ϑ ∈
(
ω
[ q(ϕ)

p
− 1

]
, η
)
.

The following lemma shows that an admissible (ϕ, q, ε, c)-molecule can be decomposed into

a sum of a sequence of (ϕ, q)-atoms.

Lemma 3.4 Let η, ϕ, ̺ and ϑ be the same as in Definition 3.2. Further assume that

x0 ∈ X , r0 ∈ (0,∞), c ∈ (1,∞), q ∈ (q(ϕ)[r(ϕ)]′,∞) and

ε ∈
(
max

{
0, ω

[q(ϕ)
i(ϕ)

− 1
]}

,∞
)
,

where q(ϕ), r(ϕ) and i(ϕ) are the same, respectively, as in (2.7), (2.8) and (2.4). If m is an

admissible (ϕ, q, ε, c)-molecule centered at B(0) := B(x0, r0), then there exists a q̃ ∈ (q(ϕ),∞)

such that

m =
∞∑

j=0

Mj +
∞∑

j=1

∞∑

k=j

dj,k

in (G̊η
0 (̺, ϑ))

′, where, for any j ∈ Z+ and k ∈ [j,∞) ∩ Z, both Mj and dj,k are multiples of

(ϕ, q̃)-atoms supported in B(j) := B(x0, rj) with rj the same as in Lemma 3.1. Moreover, there

exists a positive constant C, independent of both j and k, such that

Λ̃q̃({Mj}j∈Z+ ∪ {dj,k}j∈N,k∈[j,∞)∩Z) ≤ CΛq({m}). (3.8)

Proof Let all the symbols be the same as in the present lemma. For any given j ∈ Z+, let

Aj(B) be the same as in (3.4),

mj :=
1B(j)

µ(B(j))

∫

X

m(y)1Aj(B)(y) dµ(y)

and

Mj := m1Aj(B) −mj .

Obviously,

m =

∞∑

j=0

Mj +

∞∑

j=0

mj (3.9)

pointwisely.
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Now, we consider the first sum of (3.9). Fix any j ∈ Z+. We claim that Mj is a multiple of

a (ϕ, q̃)-atom, where q̃ ∈ (q(ϕ),∞) is determined later. Indeed, it is easy to see that

supp Mj ⊂ B(j) and

∫

X

Mj(x) dµ(x) = 0. (3.10)

Moreover, by both the Minkowski and the Hölder inequalities and (3.3), we obtain

‖Mj‖Lq(X ) ≤ ‖m1Aj(B)‖Lq(X ) + [µ(B(j))]
− 1

q′ ‖m1Aj(B)‖L1(X )

≤ 2‖m1Aj(B)‖Lq(X ) ≤ 2εj[µ(B
(j))]

1
q ‖1B(0)‖−1

Lϕ(X ). (3.11)

Since q > q(ϕ)[r(ϕ)]′, it follows that there exists a q̃ ∈ (q(ϕ),∞) such that q > q̃[r(ϕ)]′,

which further implies that ϕ ∈ RH( q
q̃
)′(X ). From this, the Hölder inequality, (3.11) and Defini-

tion 2.5, we deduce that, for any t ∈ (0,∞),

{ 1

ϕ(B(j), t)

∫

B(j)

|Mj(y)|
q̃ ϕ(y, t) dµ(y)

} 1
q̃

≤
1

[ϕ(B(j), t)]
1
q̃

‖Mj‖Lq(X )

{∫

B(j)

[ϕ(y, t)](
q
q̃
)′ dµ(y)

} 1

q̃(
q
q̃
)′

.
1

[ϕ(B(j), t)]
1
q̃

εj [µ(B
(j))]

1
q ‖1B(0)‖

−1
Lϕ(X ) [µ(B

(j))]
[ 1

(
q
q̃
)′
−1] 1

q̃

[ϕ(B(j), t)]
1
q̃

= εj ‖1B(0)‖
−1
Lϕ(X ) ,

which, combined with Definition 3.3, further implies that there exists a positive constant C1,

independent of j, such that

‖Mj‖Lq̃
ϕ(B(j))

≤ C1εj ‖1B(0)‖
−1
Lϕ(X ) . (3.12)

Let

uj :=
C1εj‖1B(j)‖Lϕ(X )

‖1B(0)‖Lϕ(X )
and bj :=

Mj

uj

.

Then, by both (3.10) and (3.12), we find that bj is a (ϕ, q̃)-atom supported in B(j). Thus, Mj

is a multiple of a (ϕ, q̃)-atom. From the Hölder inequality, (3.10)–(3.11), (3.1)–(3.2), ε > 0 and

Remark 2.1, we deduce that

∞∑

j=0

‖Mj‖L1(X ) ≤
∞∑

j=0

‖Mj‖Lq(X ) [µ(B
(j))]

1
q′ .

∞∑

j=0

εjµ(B
(j)) ‖1B(0)‖

−1
Lϕ(X )

. µ(B(0)) ‖1B(0)‖
−1
Lϕ(X )

∞∑

j=0

[cC(µ)]
(1−ω+ε

ω
)j

∼ µ(B(0)) ‖1B(0)‖
−1
Lϕ(X ) < ∞.

Thus,
∞∑
j=0

Mj converges in L1(X ) and hence in (G̊η
0 (̺, ϑ))

′.

Next, we consider the second sum of (3.9). For any j ∈ Z+, let

1j :=
1B(j)

µ(B(j))
, m̃j :=

∫

X

m(y)1Aj(B)(y) dµ(y) and Nj :=
∞∑

k=j

m̃k.
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Then, by the cancellation of m (see Definition 3.2(i)2), we obtain

N0 =

∞∑

k=0

m̃k =

∞∑

k=0

∫

X

m(y)1Ak(B)(y) dµ(y) =

∫

X

m(y) dµ(y) = 0,

which further implies that

∞∑

j=0

mj =
∞∑

j=0

1jm̃j =
∞∑

j=0

1j(Nj −Nj+1) =
∞∑

j=1

(1j − 1j−1)Nj

=
∞∑

j=1

∞∑

k=j

(1j − 1j−1)m̃k =:
∞∑

j=1

∞∑

k=j

dj,k. (3.13)

Fix any j ∈ N and any k ∈ [j,∞)∩Z. We claim that dj,k is a multiple of a (ϕ, q̃)-atom. Indeed,

it is easy to show that

supp dj,k ⊂ B(j) and

∫

X

dj,k(x) dµ(x) = 0. (3.14)

Moreover, by both the Minkowski and the Hölder inequalities, (3.3) and (3.1), we conclude that

‖dj,k‖Lq̃
ϕ(B(j))

≤ ‖dj,k‖L∞(B(j)) .
1

µ(B(j−1))
‖m1Ak(B)‖L1(X )

≤
[µ(Ak(B))]

1
q′

µ(B(j−1))
‖m1Ak(B)‖Lq(X ) ≤

εkµ(B
(k))

µ(B(j−1))
‖1B(0)‖

−1
Lϕ(X )

≤ εk
C(µ)[cC(µ)]

kµ(B(x0, r0))

[cC(µ)]j−1µ(B(x0, r0))
‖1B(0)‖

−1
Lϕ(X )

. εk[cC(µ)]
k−j+1 ‖1B(0)‖

−1
Lϕ(X ) , (3.15)

which further implies that there exists a positive constant C2, independent of both j and k,

such that

‖dj,k‖Lq̃
ϕ(B(j)) ≤ C2εk[cC(µ)]

k−j+1 ‖1B(0)‖
−1
Lϕ(X ) . (3.16)

Define

vj,k :=
C2εk[cC(µ)]

k−j+1‖1B(j)‖Lϕ(X )

‖1B(0)‖Lϕ(X )
and cj,k :=

dj,k
vj,k

.

Then, by both (3.14) and (3.16), we find that cj,k is a (ϕ, q̃)-atom supported in B(j). Thus,

dj,k is a multiple of a (ϕ, q̃)-atom. From (3.14)–(3.15), (3.2), ε > 0 and Remark 2.1, we deduce

that

∞∑

j=1

∞∑

k=j

‖dj,k‖L∞(X ) .

∞∑

j=1

∞∑

k=j

εk[cC(µ)]
k−j+1 ‖1B(0)‖

−1
Lϕ(X )

. ‖1B(0)‖
−1
Lϕ(X )

∞∑

j=1

[cC(µ)]
−j

∞∑

k=j

[cC(µ)]
(1−ω+ε

ω
)k

∼ ‖1B(0)‖
−1
Lϕ(X ) < ∞.
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Thus,
∞∑
j=1

∞∑
k=j

dj,k converges in L∞(X ) and hence in (G̊η
0 (̺, ϑ))

′. By the convergence of both

∞∑
j=0

Mj and
∞∑
j=1

∞∑
k=j

dj,k, (3.9) and (3.13), we conclude that

m =
∞∑

j=0

Mj +
∞∑

j=1

∞∑

k=j

dj,k (3.17)

converges in (G̊η
0 (̺, ϑ))

′.

Moreover, by (2.7), (2.4) and

ε ∈
(
ω
[q(ϕ)
i(ϕ)

− 1
]
,∞

)
,

we find that there exists a q0 ∈ (q(ϕ),∞) and a p0 ∈ (0, i(ϕ)) such that ϕ ∈ Aq0(X ), ϕ is of

uniformly lower type p0, and

ε ∈
(
ω
[ q0
p0

− 1
]
,∞

)
.

From these, (3.12), (3.16), (3.1), Lemma 2.2(iv), (3.2) and ε > 0, we deduce that, for any

λ ∈ (0,∞),

∞∑

j=0

ϕ
(
B(j),

‖Mj‖Lq̃
ϕ(B(j))

λ

)
+

∞∑

j=1

∞∑

k=j

ϕ
(
B(j),

‖dj,k‖Lq̃
ϕ(B(j))

λ

)

.

∞∑

j=0

ϕ
(
B(j),

εj‖1B(0)‖−1
Lϕ(X )

λ

)

+
∞∑

j=1

∞∑

k=j

ϕ
(
B(j),

εk[cC(µ)]
k−j+1‖1B(0)‖−1

Lϕ(X )

λ

)

.

∞∑

j=0

εp0

j [cC(µ)]
jq0ϕ

(
B(0),

1

λ‖1B(0)‖Lϕ(X )

)

+

∞∑

j=1

∞∑

k=j

εp0

k [cC(µ)]
p0(k−j+1)+jq0ϕ

(
B(0),

1

λ‖1B(0)‖Lϕ(X )

)

∼
{ ∞∑

j=0

[cC(µ)]
j[q0−

(ω+ε)p0
ω

] +

∞∑

j=1

[cC(µ)]
j(q0−p0)

∞∑

k=j

[cC(µ)]
p0k(1−

ω+ε
ω

)
}

× ϕ
(
B(0),

1

λ‖1B(0)‖Lϕ(X )

)

.

∞∑

j=0

[cC(µ)]
j[q0−

(ω+ε)p0
ω

]ϕ
(
B(0),

1

λ‖1B(0)‖Lϕ(X )

)

∼ ϕ
(
B(0),

1

λ‖1B(0)‖Lϕ(X )

)
,

which, combined with (3.17) and (3.5)–(3.6), further implies that

Λ̃q̃({Mj}j∈Z+ ∪ {dj,k}j∈N,k∈[j,∞)∩Z) . Λq({m}).
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This finishes the proof of Lemma 3.4.

Next, we prove Theorem 3.1.

Proof of Theorem 3.1 Let all the symbols be the same as in the present theorem. It is

easy to show that any (ϕ,∞)-atom is an admissible (ϕ,∞, ε, c)-molecule. Thus, by Lemma 3.3,

we obtain

Hϕ(X ) ⊂ H̊ϕ,∞
at (X ) ⊂ H̊ϕ,∞,ε,c

mol (X ), (3.18)

and for any f ∈ Hϕ(X ),

‖f‖H̊ϕ,∞,ε,c

mol (X ) . ‖f‖H̊ϕ,∞
at (X ) . ‖f‖Hϕ(X ).

Now, we show that

H̊ϕ,q,ε,c
mol (X ) ⊂ H̊ϕ,q̃

at (X ), (3.19)

where q̃ is the same as in Lemma 3.4. To this end, let f ∈ H̊ϕ,q,ε,c
mol (X ). Then, by Definition

3.2(ii), we know that there exist sequences {λi}i∈N ⊂ C and {mi}i∈N of admissible (ϕ, q, ε, c)-

molecules centered, respectively, at balls {Bi}i∈N of X with Bi := B(xi, r
(0)
i ) for any i ∈ N such

that f =
∑
i∈N

λimi in (G̊η
0 (̺, ϑ))

′ and

Λq({λimi}i∈N) . ‖f‖H̊ϕ,q,ε,c

mol (X ), (3.20)

where, for any i ∈ N, xi ∈ X and r
(0)
i ∈ (0,∞). For any i ∈ N and j ∈ Z+, let r

(j)
i be defined

in Lemma 3.1 with x0 and r0 replaced, respectively, by xi and r
(0)
i and let B

(j)
i := B(xi, r

(j)
i ).

From these and Lemma 3.4, we deduce that

f =
∑

i∈N

∞∑

j=0

λiMi,j +
∑

i∈N

∞∑

j=1

∞∑

k=j

λidi,j,k

in (G̊η
0 (̺, ϑ))

′, where, for any i ∈ N, j ∈ Z+ and k ∈ [j,∞)∩Z, both Mi,j and di,j,k are multiples

of (ϕ, q̃)-atoms supported in B
(j)
i . Moreover, by Definition 3.5, (3.8) and (3.20), we obtain

‖f‖
H̊

ϕ,q̃
at (X ) ≤ Λ̃q̃({λiMi,j}i∈N,j∈Z+ ∪ {λidi,j,k}i∈N,j∈N,k∈[j,∞)∩Z)

. Λq({λimi}i∈N) . ‖f‖H̊ϕ,q,ε,c

mol (X ),

which further implies (3.19).

Combining (3.18)–(3.19) and Lemma 3.3, we have

Hϕ(X ) ⊂ H̊ϕ,∞,ε,c
mol (X ) ⊂ H̊ϕ,q,ε,c

mol (X ) ⊂ H̊ϕ,q̃
at (X ) ⊂ Hϕ(X ).

This finishes the proof of Theorem 3.1.

Remark 3.4 From Remark 2.2(ii) and Theorem 3.1, we deduce that the space H̊ϕ,q,ε,c
mol (X )

in Theorem 3.1 is independent of the choice of (G̊η
0 (̺, ϑ))

′ whenever ̺, ϑ ∈
(
ω
[ q(ϕ)

p
− 1

]
, η
)
.
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4 Boundedness of Calderón-Zygmund Operators

In this section, we establish the boundedness of Calderón-Zygmund operators on Hϕ(X ).

To this end, we first recall some concepts.

Definition 4.1 Let s ∈ (0, 1]. A function K : {X ×X}\{(x, x) : x ∈ X} → C is called an

s-Calderón-Zygmund kernel if there exists a positive constant C(K), depending on K, such that

(i) for any x, y ∈ X with x 6= y,

|K(x, y)| ≤
C(K)

V (x, y)
;

(ii) for any x, x̃, y ∈ X satisfying that 0 < 2A0d(x, x̃) ≤ d(x, y) with A0 the same as in (2.1),

|K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)| ≤ C(K)

[d(x, x̃)
d(x, y)

]s 1

V (x, y)
. (4.1)

In what follows, let C(X ) denote the space of all continuous functions on X and s ∈ (0, 1].

Recall that the space Cs(X ) is defined by setting

Cs(X ) := {f ∈ C(X ) : ‖f‖Cs(X ) < ∞}

with for any f ∈ Cs(X ),

‖f‖Cs(X ) := ‖f‖L∞(X ) + sup
x,y∈X , x 6=y

|f(x)− f(y)|

[d(x, y)]s
.

Throughout this article, denote by Cs
b (X ) the space of all functions in Cs(X ) with bounded

support, equipped with the strict inductive limit topology induced by ‖·‖Cs(X ) (see, for instance,

[55, p. 273] and [27, p. 23]), and denote by (Cs
b (X ))′ the space of all continuous linear functionals

on Cs
b (X ) equipped with the weak-∗ topology.

Let T : Cs
b (X ) → (Cs

b (X ))′ be a linear continuous operator. Then T is called an s-Calderón-

Zygmund operator if T can be extended to a bounded linear operator on L2(X ) and if there

exists an s-Calderón-Zygmund kernel K such that, for any f ∈ L2(X ) and x /∈ supp f ,

T (f)(x) :=

∫

X

K(x, y)f(y) dµ(y). (4.2)

Recall that, for any given Calderón-Zygmund operator T , T ∗1 = 0 means that
∫

X

T (f)(x) dµ(x) = 0

for any f ∈ L2(X ) with bounded support and
∫
X f(x) dµ(x) = 0 (see, for instance, [74, p. 250]).

Then we state the first main result of this section as follows.

Theorem 4.1 Let s ∈ (0, η] with η the same as in Definition 2.9 and let T be an s-Calderón-

Zygmund operator satisfying that T ∗1 = 0. Suppose that ϕ is a growth function in Definition

2.6, with uniformly lower type p ∈ (0, 1] satisfying that

p

q(ϕ)
∈
( ω

ω + s
, 1
]
, (4.3)
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where q(ϕ) and ω are the same, respectively, as in (2.7) and (2.3). Then there exists a positive

constant C̃ such that, for any f ∈ Hϕ(X ),

‖T (f)‖Hϕ(X ) ≤ C̃‖f‖Hϕ(X ).

To prove Theorem 4.1, we need more preparations. The following lemma shows that the

Calderón-Zygmund operator T is bounded on Lq(X ) for any given q ∈ (1,∞), which is just [16,

Chapter III, Theorem 2.4].

Lemma 4.1 Let q ∈ (1,∞), s ∈ (0, η] with η the same as in Definition 2.9, and T be

an s-Calderón-Zygmund operator. Then there exists a positive constant C such that, for any

f ∈ Lq(X ),

‖T (f)‖Lq(X ) ≤ C‖f‖Lq(X ).

The following conclusion is just [22, Lemma 7.4] (see [69, Lemma 1.6.5] for the corresponding

Euclidean case and [52, Lemma 4.1] for the anisotropic Euclidean case).

Lemma 4.2 If ϕ is a growth function in Definition 2.6 satisfying (2.12) and if τ ∈(q(ϕ)[r(ϕ)]′,

∞], where q(ϕ) and r(ϕ) are the same, respectively, as in (2.7) and (2.8), then the space

Lτ
b,0(X ) :=

{
f ∈ Lτ (X ) : f has bounded support and

∫

X

f(x) dµ(x) = 0
}

is dense in Hϕ(X ).

The following conclusion is a simple application of both Lemma 3.2 and [22, Theorem 7.5],

we omit the details; see also [52, Theorem 4.2] for the anisotropic Euclidean case.

Lemma 4.3 Let ϕ and τ be the same as in Lemma 4.2. Then, for any q ∈ (q(ϕ), τ
[r(ϕ)]′ ),

where q(ϕ) and r(ϕ) are the same, respectively, as in (2.7) and (2.8), and for any f ∈ Lτ
b,0(X ),

there exists a finite sequence {aj}Nj=1(N ∈ N) of (ϕ, q)-atoms and {λj}Nj=1 ⊂ C such that

f =

N∑

j=1

λjaj .

Moreover, there exists a positive constant C such that, for any f ∈ Lτ
b,0(X ) with the decompo-

sition as above,

Λ̂q({λjaj}
N
j=1) ≤ C‖f‖Hϕ(X ).

The following lemma plays a key role in the proof of Theorem 4.1.

Lemma 4.4 Let q ∈ (1,∞) and ϕ ∈ Aq(X ) be a growth function in Definition 2.6 with

uniformly lower type p ∈ (0, 1]. Then there exists a positive constant C such that, for any ball

B ⊂ X and any µ-measurable set E ⊂ B,

‖1B‖Lϕ(X ) ≤ C
[µ(B)

µ(E)

] q
p

‖1E‖Lϕ(X ) .
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Proof Indeed, by the assumption that ϕ is of uniformly lower type p and Lemmas 2.2(iv)

and 2.3(ii), we conclude that

ϕ
(
B,

[µ(E)

µ(B)

] q
p

‖1E‖
−1
Lϕ(X )

)
.

[µ(E)

µ(B)

]q
ϕ(B, ‖1E‖

−1
Lϕ(X ))

≤ ϕ(E, ‖1E‖
−1
Lϕ(X )) ∼ 1 ∼ ϕ(B, ‖1B‖

−1
Lϕ(X )),

which, combined with the assumption that ϕ(x, ·) is non-decreasing for almost every x ∈ X ,

further implies that

‖1B‖Lϕ(X ) .
[µ(B)

µ(E)

] q
p

‖1E‖Lϕ(X ) ,

where the implicit positive constant is independent of both B and E. This finishes the proof

of Lemma 4.4.

Now, we prove Theorem 4.1.

Proof of Theorem 4.1 Let all the symbols be the same as in the present theorem. Assume

that c ∈ (1,∞), τ ∈ (max{2, q(ϕ)[r(ϕ)]′}q(ϕ)[r(ϕ)]′,∞),

r ∈
(
max{2, q(ϕ)[r(ϕ)]′},

τ

q(ϕ)[r(ϕ)]′

)
and q ∈

(
rq(ϕ),

τ

[r(ϕ)]′

)
,

where r(ϕ) is the same as in (2.8). Next, we prove this theorem by three steps.

Step 1 In this step, we prove that, for any (ϕ, q)-atom a supported in a ball B := B(xB , rB)

with xB ∈ X and rB ∈ (0,∞), T (a) is a harmless constant multiple of an admissible (ϕ, r, s, c)-

molecule centered at B̃(0) := 4A2
0B. First, by the Hölder inequality and q > rq(ϕ) ≥ r > 2, we

obtain a ∈ L2(X ). From this, Definition 3.4(iii) and T ∗1 = 0, we deduce that

∫

X

T (a)(x) dµ(x) = 0. (4.4)

Second, by q
r
∈ (q(ϕ),∞), we find that ϕ ∈ A q

r
(X ), which, combined with Lemma 2.2(iii) and

Definitions 3.3 and 3.4(ii), further implies that

{ 1

µ(B)

∫

B

|a(x)|r dµ(x)
} q

r

.
1

ϕ(B, 1)

∫

B

|a(x)|qϕ(x, 1) dµ(x)

≤ ‖a‖q
L

q
ϕ(B)

≤
1

‖1B‖
q

Lϕ(X )

. (4.5)

Moreover, from ϕ ∈ A q
r
(X ), Lemma 4.4 and (2.3), we deduce that

‖1
B̃(0)‖Lϕ(X ) .

[µ(B̃(0))

µ(B)

] q
rp

‖1B‖Lϕ(X ) =
[µ(B̃(0))

µ(B)

] q
rp

− 1
r
[µ(B̃(0))

µ(B)

] 1
r

‖1B‖Lϕ(X )

.
[µ(B̃(0))

µ(B)

] 1
r

‖1B‖Lϕ(X ) . (4.6)
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Combining this, Lemma 4.1 and (4.5), we obtain

‖T (a)‖
Lr(B̃(0)) ≤ ‖T (a)‖Lr(X ) . ‖a‖Lr(X ) .

[µ(B)]
1
r

‖1B‖Lϕ(X )
.

[µ(B̃(0))]
1
r

‖1
B̃(0)‖Lϕ(X )

. (4.7)

Finally, for any n ∈ N, let B̃(n) := B(xB , rn) and An(B̃) := B̃(n)\B̃(n−1), where rn is defined

the same as in Lemma 3.1 with x0 and r0 replaced, respectively, by xB and 4A2
0rB . Obviously,

for any y ∈ B, n ∈ N and x ∈ An(B̃), we have

d(xB , y) < rB ≤ (2A0)
−1d(xB , x).

From this, q > 2, (4.2), Definition 3.4(iii), (4.1), the Hölder inequality, (4.5) and (2.3), we

deduce that, for any n ∈ N and x ∈ An(B̃),

|T (a)(x)| =
∣∣∣
∫

B

K(x, y)a(y) dµ(y)
∣∣∣ ≤

∫

B

|K(x, y)−K(x, xB)| |a(y)| dµ(y)

.

∫

B

[d(xB , y)

d(xB , x)

]s 1

V (xB , x)
|a(y)| dµ(y)

≤
[ rB
d(xB , x)

]s 1

V (xB , x)

µ(B)

‖1B‖Lϕ(X )
.

[ µ(B)

V (xB , x)

]ω+s
ω 1

‖1B‖Lϕ(X )
, (4.8)

which, together with both (3.1) and (4.6), further implies that

‖T (a)‖
Lr(An(B̃)) .

1

‖1B‖Lϕ(X )

{∫

An(B̃)

[ µ(B)

V (xB , x)

] r(ω+s)
ω

dµ(x)
} 1

r

.
[ µ(B)

µ(B̃(n−1))

]ω+s
ω [µ(B̃(n))]

1
r

‖1B‖Lϕ(X )

. [cC(µ)]
−ω+s

ω
n[µ(B̃(n))]

1
r

∥∥1
B̃(0)

∥∥−1

Lϕ(X )
. (4.9)

Combining (4.4), (4.7) and (4.9), we conclude that T (a) is a harmless constant multiple of an

admissible (ϕ, r, s, c)-molecule centered at B̃(0).

Step 2 In this step, we prove the present theorem in the case when f ∈ Lτ
b,0(X ). Let

f ∈ Lτ
b,0(X ). By both q < τ

[r(ϕ)]′ and Lemma 4.3, we find that there exists an N ∈ N,

{λj}Nj=1 ⊂ C, and a sequence {aj}Nj=1 of (ϕ, q)-atoms supported, respectively, in the balls

{Bj}Nj=1 of X such that f =
N∑
j=1

λjaj and

Λ̂q({λjaj}
N
j=1) . ‖f‖Hϕ(X ). (4.10)

From this, the linearity of T and Step 1, we further deduce that

T (f) =

N∑

j=1

λjT (aj), (4.11)

where, for any j ∈ [1, N ]∩N, T (aj) is a harmless constant multiple of an admissible (ϕ, r, s, c)-

molecule centered at B̃j := 4A2
0Bj . Moreover, by ϕ ∈ A q

r
(X ), Lemma 2.2(iv), (2.3) and



226 X. J. Yan and D. C. Yang

the assumption that ϕ(x, ·) is non-decreasing for almost every x ∈ X , we find that, for any

λ ∈ (0,∞),

N∑

j=1

ϕ
(
B̃j ,

|λj |

λ‖1
B̃j

‖Lϕ(X )

)
.

N∑

j=1

[µ(B̃j)

µ(Bj)

] q
r

ϕ
(
Bj ,

|λj |

λ‖1
B̃j

‖Lϕ(X )

)

.

N∑

j=1

ϕ
(
Bj ,

|λj |

λ‖1
B̃j

‖Lϕ(X )

)

≤
N∑

j=1

ϕ
(
Bj ,

|λj |

λ‖1Bj
‖Lϕ(X )

)
. (4.12)

Meanwhile, from (4.3), we deduce that

s > ω
[q(ϕ)

p
− 1

]
≥ ω

[q(ϕ)
i(ϕ)

− 1
]
,

which, combined with (4.11), r > q(ϕ)[r(ϕ)]′, Theorem 3.1, (4.12), (3.5), (3.7) and (4.10),

further implies that

‖T (f)‖Hϕ(X ) ∼
∥∥∥

N∑

j=1

λjT (aj)
∥∥∥
H̊

ϕ,r,s,c

mol (X )
. Λr({λjT (aj)}

N
j=1)

. Λ̂q({λjaj}
N
j=1) . ‖f‖Hϕ(X ). (4.13)

Step 3 Let f ∈ Hϕ(X ). Then, by Lemma 4.2, we find that there exists a Cauchy sequence

{fk}k∈N ⊂ Lτ
b,0(X ) such that

lim
k→∞

‖fk − f‖Hϕ(X ) = 0.

From this, the linearity of T and (4.13), it follows that, as k1, k2 → ∞,

‖T (fk1)− T (fk2)‖Hϕ(X ) = ‖T (fk1 − fk2)‖Hϕ(X ) . ‖fk1 − fk2‖Hϕ(X ) → 0,

which implies that {T (fk)}k∈N is a Cauchy sequence in Hϕ(X ). By this and the completeness of

Hϕ(X ) (see, for instance, [22, Remark 4.10(ii)]), we conclude that there exists some h ∈ Hϕ(X )

such that h = lim
k→∞

T (fk) in Hϕ(X ). Then let T (f) := h. From this and (4.13), it follows that

T (f) is well defined and, moreover, for any f ∈ Hϕ(X ),

‖T (f)‖Hϕ(X ) . lim sup
k→∞

[‖T (f)− T (fk)‖Hϕ(X ) + ‖T (fk)‖Hϕ(X )]

≤ lim sup
k→∞

‖T (fk)‖Hϕ(X ) . lim sup
k→∞

‖fk‖Hϕ(X ) = ‖f‖Hϕ(X ).

This finishes the proof of Theorem 4.1.

Next, we state the second main result of this section as follows.
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Theorem 4.2 Let s ∈ (0, η] with η the same as in Definition 2.9 and let T be an s-Calderón-

Zygmund operator. Suppose that ϕ is a growth function in Definition 2.6 with uniformly lower

type p ∈ (0, 1] satisfying

p

q(ϕ)
∈
( ω

ω + s
, 1
]
, (4.14)

where q(ϕ) and ω are the same, respectively, as in (2.7) and (2.3). Then there exists a positive

constant C such that, for any f ∈ Hϕ(X ),

‖T (f)‖Lϕ(X ) ≤ C‖f‖Hϕ(X ).

The following boundedness of the Hardy-Littlewood maximal operator M in (2.6) on Lϕ(X )

is just [22, Theorem 4.11] (see also [69, Corollary 2.1.2] for the corresponding Euclidean case).

Lemma 4.5 Assume that ϕ is a Musielak-Orlicz function of uniformly lower type p−ϕ and of

uniformly upper type p+ϕ with q(ϕ) < p−ϕ ≤ p+ϕ < ∞, where q(ϕ) is the same as in (2.7). Then

the Hardy-Littlewood maximal function M is bounded on Lϕ(X ), and moreover, there exists a

positive constant C such that, for any f ∈ Lϕ(X ),

∫

X

ϕ(x,M(f)(x)) dµ(x) ≤ C

∫

X

ϕ(x, |f(x)|) dµ(x).

Now, we prove Theorem 4.2.

Proof of Theorem 4.2 Let all the symbols be the same as in the present theorem. Assume

that τ ∈ (max{2, q(ϕ)[r(ϕ)]′}q(ϕ)[r(ϕ)]′,∞),

r ∈
(
max{2, q(ϕ)[r(ϕ)]′},

τ

q(ϕ)[r(ϕ)]′

)
and q ∈

(
rq(ϕ),

τ

[r(ϕ)]′

)
,

where r(ϕ) is the same as in (2.8). Next, we prove this theorem by two steps.

Step 1 Let a be a (ϕ, q)-atom supported in a ball B := B(xB , rB) with xB ∈ X and

rB ∈ (0,∞) and let B̃ := 4A2
0B. In this step, we prove that there exists a positive constant C,

independent of a, such that, for any λ ∈ (0,∞),

∫

X

ϕ(x, |T (λa)(x)|) dµ(x) ≤ Cϕ(B, λ‖1B‖
−1
Lϕ(X )). (4.15)

Indeed, on the one hand, by the assumptions that ϕ(x, ·) is non-decreasing for almost every

x ∈ X and of uniformly upper type 1, the Hölder inequality, the boundedness of T on Lq

ϕ(·,1)(X )

(a generalization of [63, p. 173, Theorem 10] on Rn to X ), Definitions 3.3 and 3.4(ii) and Lemma

2.2(iv), we conclude that, for any λ ∈ (0,∞),

∫

B̃

ϕ(x, |T (λa)(x)|) dµ(x)

.

∫

B̃

[ |T (a)(x)|

‖1B‖
−1
Lϕ(X )

+ 1
]
ϕ(x, λ‖1B‖

−1
Lϕ(X )) dµ(x)
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. ϕ(B̃, λ‖1B‖
−1
Lϕ(X )) + ‖1B‖Lϕ(X )

{∫

B̃

|T (a)(x)|q ϕ(x, λ‖1B‖
−1
Lϕ(X )) dµ(x)

} 1
q

× [ϕ(B̃, λ‖1B‖
−1
Lϕ(X ))]

1
q′

. ϕ(B̃, λ‖1B‖
−1
Lϕ(X )) + ‖1B‖Lϕ(X )

{∫

B̃

|a(x)|q ϕ(x, λ‖1B‖
−1
Lϕ(X )) dµ(x)

} 1
q

× [ϕ(B̃, λ‖1B‖
−1
Lϕ(X ))]

1
q′

≤ ϕ(B̃, λ‖1B‖
−1
Lϕ(X )) + ‖1B‖Lϕ(X )‖a‖Lq

ϕ(B̃)ϕ(B̃, λ‖1B‖
−1
Lϕ(X ))

. ϕ(B, λ‖1B‖
−1
Lϕ(X )). (4.16)

On the other hand, from an argument similar to that used in the estimation of (4.8) and from

(2.6), we deduce that, for any x ∈ B̃∁,

|T (a)(x)| .
[ µ(B)

V (xB , x)

]ω+s
ω 1

‖1B‖Lϕ(X )
≤

1

‖1B‖Lϕ(X )
[M(1B)(x)]

ω+s
ω ,

which, together with both (4.14) and Lemma 4.5, further implies that, for any λ ∈ (0,∞),
∫

B̃∁

ϕ(x, |T (λa)(x)|) dµ(x)

.

∫

B̃∁

ϕ
(
x,

λ[M(1B)(x)]
ω+s
ω

‖1B‖Lϕ(X )

)
dµ(x)

≤

∫

X

ϕ̃
(
x,M

([ λ

‖1B‖Lϕ(X )

] ω
ω+s

1B

)
(x)

)
dµ(x)

.

∫

X

ϕ̃
(
x,

[ λ

‖1B‖Lϕ(X )

] ω
ω+s

1B(x)
)
dµ(x)

=

∫

X

ϕ
(
x,

λ

‖1B‖Lϕ(X )
1B(x)

)
dµ(x) = ϕ(B, λ‖1B‖

−1
Lϕ(X )), (4.17)

where, for any x ∈ X and t ∈ (0,∞), ϕ̃(x, t) := ϕ(x, t
ω+s
ω ). Combining (4.16) and (4.17), we

obtain (4.15).

Step 2 Let f ∈ Lτ
b,0(X ). By q < τ

[r(ϕ)]′ and Lemma 4.3, we find that there exists an

N ∈ N, {λj}Nj=1 ⊂ C and a sequence {aj}Nj=1 of (ϕ, q)-atoms supported, respectively, in the

balls {Bj}Nj=1 of X such that f =
N∑
j=1

λjaj and

Λ̂q({λjaj}
N
j=1) . ‖f‖Hϕ(X ). (4.18)

From this and the linearity of T , we further deduce that

T (f) =

N∑

j=1

λjT (aj).

Thus, by the assumption that ϕ(x, ·) is non-decreasing for almost every x ∈ X , Lemma 2.3(i)

and (4.15), we find that, for any λ ∈ (0,∞),

∫

X

ϕ
(
x,

|T (f)(x)|

λ

)
dµ(x) ≤

∫

X

ϕ
(
x,

1

λ

N∑

j=1

|λj | |T (aj)(x)|
)
dµ(x)
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≤
N∑

j=1

∫

X

ϕ
(
x,

|λj ||T (aj)(x)|

λ

)
dµ(x)

.

N∑

j=1

ϕ
(
Bj ,

|λj |

λ‖1Bj
‖Lϕ(X )

)
.

This, combined with Definition 2.7, (3.7) and (4.18), further implies that,

‖T (f)‖Lϕ(X ) . Λ̂q({λjaj}
N
j=1) . ‖f‖Hϕ(X ). (4.19)

Finally, using Lemma 4.2, (4.19) and an argument similar to that used in the proof of

Theorem 4.1, we then complete the proof of Theorem 4.2.
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