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Representation Functions on the Additive
Group of Residue Classes*

Cuifang SUN?

Abstract For any positive integer m, let Z,, be the additive group of residue classes
modulo m. For A C Z,, and T € Zn,, let the representation function Ra(7) denote the
number of solutions of the equation 7 = @ + a’ with unordered pairs (@,a’) € A x A. Let
m = 2°M > 2, where « is a positive integer and M is a positive odd integer. In this
paper, the author proves that if M > 3, then there exist two distinct sets A, B C Z,, with
|JAUB| =m—2,ANB = () and B # Z + A such that Ra(R) = Rg(n) for all @ € Z,,. The
author also proves that if M =1 and A, B C Z,, with [AUB| =m —2 and AN B = ),
then Ra(n) = Rp(7) for all B € Zy, if and only if B = Z + A.
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1 Introduction

Let N be the set of nonnegative integers. For S C N and n € N, the representation function
Ry (n) is the number of solutions of the equation s+ s" =n with s,s" € S and s < s'. Sérkézy
asked whether there exist two subsets A, B of N with [(A U B)\(A N B)| = oo such that
R',(n) = Rz(n) for all sufficiently large integers n. In the last few years, the partitions of N
with the same representation functions have been widely studied (see [3-10, 12-16]).

For any positive integer m, let Z,, = {0,1,--- ,m — 1} be the additive group of residue
classes modulo m. We define the ordering as 0 < T < --- < m — 1, and @ < b if and only if
@=bora<b. For AC Z,, and 7 € Z,,, let Ra(7) denote the number of solutions of @ = @+a’
with @,a’ € Aand @< a'. Forn € Z,, and AC Z,,,let n+A={n+a:ac A}.

In 2012, Yang and Chen [17] studied the analogue of Sarkozy’s problem in Z,,. They
determined the structure of A, B C Z,, with [(AU B)\(AN B)| = m such that R4(7) = Rp(7n)
for allm € Z,,.

Theorem A The equality R4(7) = Ry, \a(M) holds for all @ € Z,, if and only if m is even
andte Aot+2Z¢Afort=0T1,---, 2 -1

In 2017, Yang and Tang [18] determined all sets A, B C Z,,, with [(AUB)\(ANB)| =2 or
m — 1 such that Ra(7) = Rp(7m) for all m € Z,,.

Theorem B Let m > 2 be an integer and A, B,T C Zy, satisfy A =T U{a}, B =T U {b},
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where @,b & T and @ #b. Let d = m. Then Ra(m) = Rp(m) for all @ € Zy, if and only
if the following two conditions hold:

W) {@a+j-a—b:j=1,2,---,d—2}CT.

(ii) For any integer o’ with a’ # a (mod ged(a — b,m)), we have @/ +i-a—b € T &
o +j-a—beT for all integers i,j with 0 <i<j<d—1.

Theorem C Let m > 2 be an odd integer and A, B C Z, satisfying AUB = Zy,, ANB = {¢}
and |A| = |B|. Then Ra(R) = Rp(m) for all M € Zy, if and only if t € A< 2t —¢ € B for all
tE L.

Yang and Tang [18] also posed the following problem for further research.

Problem 1.1 Given a positive even integer m and an integer k£ with 2 < k < m — 1.

Do there exist two distinct sets A, B C Zj,, with |A| = |B| = k and B # % + A such that
Ra(m) = Rp(m) for all m € Z,,,7

For other related results about partitions of Z,, with the same representation functions,
please see [1-2] and the references therein.

In this paper, we consider for which positive even integers m there exist two distinct sets
A,B C Zy, with |[AUB| =m — 2 and AN B = () such that R4(7) = Rp(n) for all @ € Z,, and
obtain the following results.

Theorem 1.1 Let m = 2°M, where « s a positive integer and M is an odd integer with
M > 3. Then there exist two distinct sets A, B C Z,, with |[AUB| =m —2,ANB =10 and
B # @ + A such that Ra(n) = Rg(R) for all T € Zy,.

Theorem 1.2 Let o be an integer with o > 2 and m = 2*. Let A, B C Z,, with |AU B| =
m —2 and AN B = 0. Then Ra(N) = Rp(n) for all M € Zy, if and only if B =2 + A.

Throughout this paper, for a property P, we define 0(P) = 1 if P is true, otherwise 6(P) = 0.
For any integer k and A C Z,,, let kA ={k-a:a € A}. For A,B C Z,, and T € Zy,, let
R p(M) be the number of solutions of @ = @+ b with @ € A and b € B. The characteristic
function of A C 7Z,, is denoted by

(n) = 1, meA,
XA =30, ne¢a.

2 Lemmas

Lemma 2.1 (see [11, Lemma 3]) Let m be a positive even integer and A C Z,. Then
_ m _ .
Rz, \a(m) = 5 = Al + Ra(m), if21n
and

n-+m
2

Ryz,\a(M) = % +1—|A] - XA(E) - XA(

> )+ Ram), 2] n.

Lemma 2.2 Let m be a positive even integer. Let A, B C Z, with AU B = Z,\{7T1,72},
ANB =10 and |A| = |B|. For allT € Zy,, we have

Rp(m) =14+ xa(n—r1) +xa(n —12) +0(m =71 +T72) + Ra(m), if21%n
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and

Rp(n) = XA(n_T1)+XA(n—T2)—XA(g) _XA(n_;m) +0(m=71+72)+Ra(m), if2]|

235

n.

Proof By AUB = Z,,\{71,72}, AN B =0 and |4| = |B|, we have B = Z,,,\(AU {71,72})

and [AU {71, 72}| = F + L.
If 21 n, then §(n = 2r;) = 0 and #(7 = 2ry) = 0. By Lemma 2.1, we have
Rp(M) = Ry, \(augrmh (M)
m _ __
=35 |AU {71, 72}] + RAU{TT,E}(”)
= —14 Ra rr75y (M) + Rg sy (W) + Ra (M)
=—1+xa(n—11)+xaln—re) +0(m =71 +72) + Ra(m).

If 2 | n, then

o(nzz_n)—o(gzr—i)—o(’”—mzr—i)zo

for i € {1,2}. By Lemma 2.1, we have

Rp(n) = Ry,\(augrmh (M)
m _ n n-+m _
= D) +1—[Au{r,ma}| — XAu{r1,73} (5) - XAu{ﬁﬁ}( D) ) + RAU{HE} (m)

0(§) (=) -0 ) (5) o (R -

n-—+m
_9( 2
+0m=71+72) + Ra(m)

=xa(n—r1) +xa(n—rz) — XA(g) - XA(n_;m) +0(m

:E)+XA(n_rl)+XA(n_r2)+9(ﬁ:ﬁ)+9(ﬁ:2_r2)

_1+ﬁ) + RA(ﬁ).

This completes the proof of Lemma 2.2.
3 Proof of Theorem 1.1
If « =1, then m =2M. Let 77 =0, 73 = 1 and
A={2,4,---,2M -2}, B={3,5,---,2M — 1}.

Clearly, AUB = Z,,\{r1,72},ANB =10, |A| = |B

=2 —1land B# Z + A. If 2¢{n, then
xa(n)+xan—1)+0m=1)=1.
By Lemma 2.2, we have
Rp(@) = -1+ xa(n) +xa(n —1)+0(m =1)+ Ra(n) = Ra(7).

If 2| n, then d(m = 1) = 0 and

xa(m) +xa(n —1) = xa (5 ) = xa(
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By Lemma 2.2, we have

R (@) = xa(m) + xaln—1) = xa(5) = xa(552) + 60 = 1)+ Ra(@) = Ra(m)

2 2
Now we consider the case of @ > 2. Let 771 =0, 75 = 2>~ ! and
M-1
A= 2%, 29k + 1, -, 20k + 20T — 11\ {71}, (3.1)
k=0
M-1
B=|J{2%+20T, 20k +20"T+1, .-+, 29k 27 — 1}\{72}. (3.2)
k=0

It is clear that AU B = Z,\{T1,72},ANB =0,|A| = |B| =2 —1and B # Z' + A. By (3.1)
and (3.2), we have x4(0) = xa(27!) =0 and

xa(l) =xa2)=--=xa2*' =1 =1,
XA+ D) =xa2¥ T +2) = = xa2 1) =0
and
Xa(2%k) = xa(2%k + 1) = - = xa(2"k + 2771 1) = 1,
Xa@% +207) = xa% + 227+ ) = = xa(2% +27 - 1) =0

for k=1,---,M — 1. If 2% | n, then 7 = 2%s for s € {0,1,--- , M — 1}. Thus (7 =22"1) =0
and

xa() +xatn =227 —xa (5 ) = xa (P58 + o = 577)
=xa(2%) + xa(2%5 —2°71) = xa(2°7Ts) — xa(2°7 M 4277 1s)
= xa(2%) + xa(2%(s = 1) +2°71) — xa(2*71s) — xa(2*7H(M +9))

=0. (3.3)

If 2% { n, then 7 = 295 + 2Ut; for s € {0,1,--- , M —1}, 1€ {0,1,--- ,a—1}and t; € {2i — 1 :
i=1,2,---,207"1} If | = 0, then to € {1,3,---,2% —1}. Thus 2{n, (7 =22-1) =0 and
xa(n) 4+ xa(n —2°71) +0(a = 20-1) = 1. (3.4)
By Lemma 2.2 and (3.4), if 21 n, then
Rp(@) = =1+ xa(n) + xa(n — 271 407 = 22-1) + Rs(7) = Ra(7).

Ifle{l,---,a— 1}, then
a— n n-+m _ —
xa(n) +xa(n =27 = xa(5) = xa(5) + 0 =27
= xa(2% 4 2') + xa (2% + 21t — 2971 — x4 (297 s 4+ 2171y
_ XA(2Q_1(M+ S) + 21—1tl) + 6‘(20‘84- 2lt1 — 2a—1)

—0. (3.5)

By Lemma 2.2, (3.3) and (3.5), if 2 | n, then

n—+m
2

Rp(m) = xa(n) + xa(n —2°7") — XA(g) - XA(

This completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2

If B=" + A, then Rs(R) = Rp(n) for all m € Z,,. Now we suppose that R4 (n) = Rp(n)
for all m € Z,,. Then

(|A|) A=Y Ram) =Y Rp() = <|§|> +|B.

NELm NELm

Thus |A] = |B|. Noting that
|A|+|B|=|AUB|+|[ANB|=m -2,

we have |A| = |B| =2 — 1.

By [AUB| =m — 2 we may suppose that AU B = Z,,\{71,72}. It is clear that (—71 +
A U1+ B)=Z,\{0,712 =7}, (-T1 + A) N (=71 + B) =0 and R_744(M) = R_71+5(N)
for all m € Z,,. This allows us to consider 77 = 0. Moreover, if x is an odd integer, then
(zA) U (zB) = Zn\{0,773}, (xA) N (zB) = 0 and R, 4(n) = Ry () for all m € Z,,. Thus we
can suppose that ro | m. Clearly, the result is true for « = 2. Now we may assume that « > 3.
For all m € Z,,, by Lemma 2.2, we have

xA(n) +xan—ra)+0m=73)=1, if2¢tn (4.1)

and

xa@) +xat—r2) —xa(5) —xa(PED) +0m=T3) =0, i2[n  (42)

Case 1 ry = 1. By choosing n = 2k + 1 for k € {1,2,---,2°71 — 1} in (4.1), we have
f(m=1)=0and

Xa(2k 4+ 1) + xa(2k) = 1. (4.3)

By choosing n = 41,41+ 2 for [ € {1,2,---,2%72—1} in (4.2) respectively, we have §(m = 1) =0
and

xa(4l) + xa(4l — 1) — xa(20) — xa(2*7 " +20) =0,
XAl +2) +xa(4l4+1) = xa(2l+1) — x a2 1420+ 1) = 0.
By (4.3)—(4.5), we have
xa(dl—1)+xadl+2)=1

Again, by (4.3), we have
Xa(dl = 1) + ya(dl —2) = 1.

Then
XA(4Z — 2) = XA(4Z + 2).

Thus

Xa(2) =xa(6) = =xa* ' +2) =+ = xa(m—2). (4.6)
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By choosing [ = 1 in (4.4), we have
xa(4) +xa(3) = xa(2) — xa(2*7! +2) =0.

By (4.6), we have xa(4) + xa(3) = 2xa(2). Then xa(4) = xa(3) = xa(2). However, by (4.3),
we have x4(3) + xa(2) = 1, a contradiction.

Case 2 7y = 27 with 1 < 3 < a —2. By choosing n = 2%k +1t, for k € {0,1,---,247F -1}
and tg € {2i —1:i=1,---,2°" 1} in (4.1), we have 8(n = 2%) = 0 and

Xa(2%k +t0) + xa(2”(k = 1) +10) = 1. (4.7)
By (4.7), we have
xa(to) = xa(2r2 +t9) = -+ = xa((2°77 = 2)r2 + 1) (4.8)
and
xa(rs +t0) = xa(Bra +to) = -+ = xa((2*7% = D)ra + o) = 1 — xa(to). (4.9)

If 8 =1, then « > 3 and ¢ty = 1. By choosing n = 2 in (4.2), we have
xa(2) +xa(0) = xa(l) =xa(* '+ 1) +1=0.

Noting that x4(2) = xa(0) = 0, we have xa(1) + xa(2°~! + 1) = 1. However, by (4.8), we
have xa(1) = xa(2%"! + 1), a contradiction.

If 3> 2, then o > 4. By choosing n = 2,2%%1 + 2,28 + 2 in (4.2) respectively, we have
0(m = 2°) = 0 and

xa(2) +xa2%4+2—-2%) —xa(1) = xa(2°7 1 +1) =0, (4.10)
xa(2PT +2) +xa (27 +2) = xa(2° +1) — xa(2* ' +2° + 1) =0, (4.11)
xa(2P +2) 4+ xa(2) = xa(2P7L+1) —ya(20 7 1257 4 ) =0. (4.12)

By (4.8)—(4.9), we have
xa(1) =xa*7'+1), xa@®+1) =xa@* 7 +27+1), xa@® T +1) = xa* +277 1),
By (4.10), we have x4(2) = xa(1). By (4.9) and (4.11), we have

xa(27+2) = xa(2® +1) =1—xa(1).

Then x4 (2)+xa(2%+2) = 1. However, by (4.12), we have y4(2) = x(2°+2), a contradiction.
Case 3 1, = 2%, Noting that

Z9a\{0,2071} = {2kt : k€ {0,1,--- ,a—2}, tp € {2 —1:i=1,2,--- ,207F~1}}
we should prove

xa(2Ft) + xa (297 + 28 =1 (4.13)
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for

ke{0,1,---,a—2}and ty € {2i —1:i=1,2,-.. 207F~11
By choosing n = tg in (4.1), we have (m = 22~1) = 0 and

xa(to) +xa(227 1+ t9) =1,

which is k = 0 in (4.13). Assume that 1 <k < a—2 and

By

By

a2 ) a2 ) = 1. (4.14)
choosing n = 2¥t;, in (4.2), we have (7 = 22~1) = 0 and
Xa(25tk) +xa (27 + 280) — xa (@8 M) — xa (207 42 ) = 0.

(4.14), we have
xa(28tk) + xa(2*7 +25,) = 1.

Thus B = Z + A.

This completes the proof of Theorem 1.2.
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