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Abstract For any positive integer m, let Zm be the additive group of residue classes
modulo m. For A ⊆ Zm and n ∈ Zm, let the representation function RA(n) denote the
number of solutions of the equation n = a+ a′ with unordered pairs (a, a′) ∈ A × A. Let
m = 2αM > 2, where α is a positive integer and M is a positive odd integer. In this
paper, the author proves that if M ≥ 3, then there exist two distinct sets A,B ⊆ Zm with
|A∪B| = m−2, A∩B = ∅ and B 6= m

2
+A such that RA(n) = RB(n) for all n ∈ Zm. The

author also proves that if M = 1 and A,B ⊆ Zm with |A ∪ B| = m − 2 and A ∩ B = ∅,
then RA(n) = RB(n) for all n ∈ Zm if and only if B = m

2
+ A.
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1 Introduction

Let N be the set of nonnegative integers. For S ⊆ N and n ∈ N, the representation function

R′
S(n) is the number of solutions of the equation s+ s′ = n with s, s′ ∈ S and s ≤ s′. Sárközy

asked whether there exist two subsets A,B of N with |(A ∪ B)\(A ∩ B)| = ∞ such that

R′
A(n) = R′

B(n) for all sufficiently large integers n. In the last few years, the partitions of N

with the same representation functions have been widely studied (see [3–10, 12–16]).

For any positive integer m, let Zm = {0, 1, · · · ,m− 1} be the additive group of residue

classes modulo m. We define the ordering as 0 < 1 < · · · < m− 1, and a ≤ b if and only if

a = b or a < b. For A ⊆ Zm and n ∈ Zm, let RA(n) denote the number of solutions of n = a+a′

with a, a′ ∈ A and a ≤ a′. For n ∈ Zm and A ⊆ Zm, let n+A = {n+ a : a ∈ A}.

In 2012, Yang and Chen [17] studied the analogue of Sárközy’s problem in Zm. They

determined the structure of A,B ⊆ Zm with |(A∪B)\(A∩B)| = m such that RA(n) = RB(n)

for all n ∈ Zm.

Theorem A The equality RA(n) = RZm\A(n) holds for all n ∈ Zm if and only if m is even

and t ∈ A ⇔ t+ m
2 6∈ A for t = 0, 1, · · · , m

2 − 1.

In 2017, Yang and Tang [18] determined all sets A,B ⊆ Zm with |(A ∪B)\(A ∩B)| = 2 or

m− 1 such that RA(n) = RB(n) for all n ∈ Zm.

Theorem B Let m ≥ 2 be an integer and A,B, T ⊆ Zm satisfy A = T ∪ {a}, B = T ∪ {b},
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where a, b 6∈ T and a 6= b. Let d = m
gcd(a−b,m) . Then RA(n) = RB(n) for all n ∈ Zm if and only

if the following two conditions hold:

(i) {a+ j · a− b : j = 1, 2, · · · , d− 2} ⊆ T .

(ii) For any integer a′ with a′ 6≡ a (mod gcd(a − b,m)), we have a′ + i · a− b ∈ T ⇔

a′ + j · a− b ∈ T for all integers i, j with 0 ≤ i ≤ j ≤ d− 1.

Theorem C Let m ≥ 2 be an odd integer and A,B ⊆ Zm satisfying A∪B = Zm, A∩B = {c}

and |A| = |B|. Then RA(n) = RB(n) for all n ∈ Zm if and only if t ∈ A ⇔ 2t− c ∈ B for all

t ∈ Zm.

Yang and Tang [18] also posed the following problem for further research.

Problem 1.1 Given a positive even integer m and an integer k with 2 ≤ k ≤ m − 1.

Do there exist two distinct sets A,B ⊆ Zm with |A| = |B| = k and B 6= m
2 + A such that

RA(n) = RB(n) for all n ∈ Zm?

For other related results about partitions of Zm with the same representation functions,

please see [1–2] and the references therein.

In this paper, we consider for which positive even integers m there exist two distinct sets

A,B ⊆ Zm with |A ∪B| = m− 2 and A ∩B = ∅ such that RA(n) = RB(n) for all n ∈ Zm and

obtain the following results.

Theorem 1.1 Let m = 2αM , where α is a positive integer and M is an odd integer with

M ≥ 3. Then there exist two distinct sets A,B ⊆ Zm with |A ∪ B| = m − 2, A ∩ B = ∅ and

B 6= m
2 +A such that RA(n) = RB(n) for all n ∈ Zm.

Theorem 1.2 Let α be an integer with α ≥ 2 and m = 2α. Let A,B ⊆ Zm with |A ∪B| =

m− 2 and A ∩B = ∅. Then RA(n) = RB(n) for all n ∈ Zm if and only if B = m
2 +A.

Throughout this paper, for a property P , we define θ(P ) = 1 if P is true, otherwise θ(P ) = 0.

For any integer k and A ⊆ Zm, let kA = {k · a : a ∈ A}. For A,B ⊆ Zm and n ∈ Zm, let

RA,B(n) be the number of solutions of n = a + b with a ∈ A and b ∈ B. The characteristic

function of A ⊆ Zm is denoted by

χA(n) =

{

1, n ∈ A,

0, n 6∈ A.

2 Lemmas

Lemma 2.1 (see [11, Lemma 3]) Let m be a positive even integer and A ⊆ Zm. Then

RZm\A(n) =
m

2
− |A|+RA(n), if 2 ∤ n

and

RZm\A(n) =
m

2
+ 1− |A| − χA

(n

2

)

− χA

(n+m

2

)

+RA(n), if 2 | n.

Lemma 2.2 Let m be a positive even integer. Let A,B ⊆ Zm with A ∪ B = Zm\{r1, r2},

A ∩B = ∅ and |A| = |B|. For all n ∈ Zm, we have

RB(n) = −1 + χA(n− r1) + χA(n− r2) + θ(n = r1 + r2) +RA(n), if 2 ∤ n
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and

RB(n) = χA(n− r1)+χA(n− r2)−χA

(n

2

)

−χA

(n+m

2

)

+ θ(n = r1 + r2)+RA(n), if 2 | n.

Proof By A ∪B = Zm\{r1, r2}, A ∩B = ∅ and |A| = |B|, we have B = Zm\(A ∪ {r1, r2})

and |A ∪ {r1, r2}| =
m
2 + 1.

If 2 ∤ n, then θ(n = 2r1) = 0 and θ(n = 2r2) = 0. By Lemma 2.1, we have

RB(n) = RZm\(A∪{r1,r2})(n)

=
m

2
− |A ∪ {r1, r2}|+RA∪{r1,r2}(n)

= −1 +RA,{r1,r2}(n) +R{r1,r2}(n) +RA(n)

= −1 + χA(n− r1) + χA(n− r2) + θ(n = r1 + r2) +RA(n).

If 2 | n, then

θ(n = 2ri)− θ
(n

2
= ri

)

− θ
(n+m

2
= ri

)

= 0

for i ∈ {1, 2}. By Lemma 2.1, we have

RB(n) = RZm\(A∪{r1,r2})(n)

=
m

2
+ 1− |A ∪ {r1, r2}| − χA∪{r1,r2}

(n

2

)

− χA∪{r1,r2}

(n+m

2

)

+ RA∪{r1,r2}(n)

= −χA

(n

2

)

− θ
(n

2
= r1

)

− θ
(n

2
= r2

)

− χA

(n+m

2

)

− θ
(n+m

2
= r1

)

− θ
(n+m

2
= r2

)

+ χA(n− r1) + χA(n− r2) + θ(n = 2r1) + θ(n = 2r2)

+ θ(n = r1 + r2) +RA(n)

= χA(n− r1) + χA(n− r2)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = r1 + r2) +RA(n).

This completes the proof of Lemma 2.2.

3 Proof of Theorem 1.1

If α = 1, then m = 2M . Let r1 = 0, r2 = 1 and

A = {2, 4, · · · , 2M − 2}, B = {3, 5, · · · , 2M − 1}.

Clearly, A ∪B = Zm\{r1, r2}, A ∩B = ∅, |A| = |B| = m
2 − 1 and B 6= m

2 +A. If 2 ∤ n, then

χA(n) + χA(n− 1) + θ(n = 1) = 1.

By Lemma 2.2, we have

RB(n) = −1 + χA(n) + χA(n− 1) + θ(n = 1) +RA(n) = RA(n).

If 2 | n, then θ(n = 1) = 0 and

χA(n) + χA(n− 1)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = 1) = 0.
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By Lemma 2.2, we have

RB(n) = χA(n) + χA(n− 1)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = 1) +RA(n) = RA(n).

Now we consider the case of α ≥ 2. Let r1 = 0, r2 = 2α−1 and

A =

M−1
⋃

k=0

{2αk, 2αk + 1, · · · , 2αk + 2α−1 − 1}\{r1}, (3.1)

B =

M−1
⋃

k=0

{2αk + 2α−1, 2αk + 2α−1 + 1, · · · , 2αk + 2α − 1}\{r2}. (3.2)

It is clear that A ∪ B = Zm\{r1, r2}, A ∩B = ∅, |A| = |B| = m
2 − 1 and B 6= m

2 + A. By (3.1)

and (3.2), we have χA(0) = χA(2
α−1) = 0 and

χA(1) = χA(2) = · · · = χA(2
α−1 − 1) = 1,

χA(2
α−1 + 1) = χA(2

α−1 + 2) = · · · = χA(2
α − 1) = 0

and

χA(2
αk) = χA(2

αk + 1) = · · · = χA(2
αk + 2α−1 − 1) = 1,

χA(2
αk + 2α−1) = χA(2

αk + 2α−1 + 1) = · · · = χA(2
αk + 2α − 1) = 0

for k = 1, · · · ,M − 1. If 2α | n, then n = 2αs for s ∈ {0, 1, · · · ,M − 1}. Thus θ(n = 2α−1) = 0

and

χA(n) + χA(n− 2α−1)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = 2α−1)

= χA(2
αs) + χA(2

αs− 2α−1)− χA(2
α−1s)− χA(2

α−1M + 2α−1s)

= χA(2
αs) + χA(2

α(s− 1) + 2α−1)− χA(2
α−1s)− χA(2

α−1(M + s))

= 0. (3.3)

If 2α ∤ n, then n = 2αs+ 2ltl for s ∈ {0, 1, · · · ,M − 1}, l ∈ {0, 1, · · · , α− 1} and tl ∈ {2i− 1 :

i = 1, 2, · · · , 2α−l−1}. If l = 0, then t0 ∈ {1, 3, · · · , 2α − 1}. Thus 2 ∤ n, θ(n = 2α−1) = 0 and

χA(n) + χA(n− 2α−1) + θ(n = 2α−1) = 1. (3.4)

By Lemma 2.2 and (3.4), if 2 ∤ n, then

RB(n) = −1 + χA(n) + χA(n− 2α−1) + θ(n = 2α−1) +RA(n) = RA(n).

If l ∈ {1, · · · , α− 1}, then

χA(n) + χA(n− 2α−1)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = 2α−1)

= χA(2
αs+ 2ltl) + χA(2

αs+ 2ltl − 2α−1)− χA(2
α−1s+ 2l−1tl)

− χA(2
α−1(M + s) + 2l−1tl) + θ(2αs+ 2ltl = 2α−1)

= 0. (3.5)

By Lemma 2.2, (3.3) and (3.5), if 2 | n, then

RB(n) = χA(n) + χA(n− 2α−1)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = 2α−1) +RA(n) = RA(n).

This completes the proof of Theorem 1.1.



Representation Functions on the Additive Group of Residue Classes 237

4 Proof of Theorem 1.2

If B = m
2 +A, then RA(n) = RB(n) for all n ∈ Zm. Now we suppose that RA(n) = RB(n)

for all n ∈ Zm. Then

(

|A|

2

)

+ |A| =
∑

n∈Zm

RA(n) =
∑

n∈Zm

RB(n) =

(

|B|

2

)

+ |B|.

Thus |A| = |B|. Noting that

|A|+ |B| = |A ∪B|+ |A ∩B| = m− 2,

we have |A| = |B| = m
2 − 1.

By |A ∪ B| = m − 2, we may suppose that A ∪ B = Zm\{r1, r2}. It is clear that (−r1 +

A) ∪ (−r1 + B) = Zm\{0, r2 − r1}, (−r1 + A) ∩ (−r1 + B) = ∅ and R−r1+A(n) = R−r1+B(n)

for all n ∈ Zm. This allows us to consider r1 = 0. Moreover, if x is an odd integer, then

(xA) ∪ (xB) = Zm\{0, xr2}, (xA) ∩ (xB) = ∅ and RxA(n) = RxB(n) for all n ∈ Zm. Thus we

can suppose that r2 | m. Clearly, the result is true for α = 2. Now we may assume that α ≥ 3.

For all n ∈ Zm, by Lemma 2.2, we have

χA(n) + χA(n− r2) + θ(n = r2) = 1, if 2 ∤ n (4.1)

and

χA(n) + χA(n− r2)− χA

(n

2

)

− χA

(n+m

2

)

+ θ(n = r2) = 0, if 2 | n. (4.2)

Case 1 r2 = 1. By choosing n = 2k + 1 for k ∈ {1, 2, · · · , 2α−1 − 1} in (4.1), we have

θ(n = 1) = 0 and

χA(2k + 1) + χA(2k) = 1. (4.3)

By choosing n = 4l, 4l+2 for l ∈ {1, 2, · · · , 2α−2−1} in (4.2) respectively, we have θ(n = 1) = 0

and

χA(4l) + χA(4l− 1)− χA(2l)− χA(2
α−1 + 2l) = 0, (4.4)

χA(4l+ 2) + χA(4l+ 1)− χA(2l+ 1)− χA(2
α−1 + 2l + 1) = 0. (4.5)

By (4.3)–(4.5), we have

χA(4l − 1) + χA(4l + 2) = 1.

Again, by (4.3), we have

χA(4l − 1) + χA(4l − 2) = 1.

Then

χA(4l− 2) = χA(4l + 2).

Thus

χA(2) = χA(6) = · · · = χA(2
α−1 + 2) = · · · = χA(m− 2). (4.6)
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By choosing l = 1 in (4.4), we have

χA(4) + χA(3)− χA(2)− χA(2
α−1 + 2) = 0.

By (4.6), we have χA(4) + χA(3) = 2χA(2). Then χA(4) = χA(3) = χA(2). However, by (4.3),

we have χA(3) + χA(2) = 1, a contradiction.

Case 2 r2 = 2β with 1 ≤ β ≤ α− 2. By choosing n = 2βk+ t0 for k ∈ {0, 1, · · · , 2α−β − 1}

and t0 ∈ {2i− 1 : i = 1, · · · , 2β−1} in (4.1), we have θ(n = 2β) = 0 and

χA(2
βk + t0) + χA(2

β(k − 1) + t0) = 1. (4.7)

By (4.7), we have

χA(t0) = χA(2r2 + t0) = · · · = χA((2
α−β − 2)r2 + t0) (4.8)

and

χA(r2 + t0) = χA(3r2 + t0) = · · · = χA((2
α−β − 1)r2 + t0) = 1− χA(t0). (4.9)

If β = 1, then α ≥ 3 and t0 = 1. By choosing n = 2 in (4.2), we have

χA(2) + χA(0)− χA(1)− χA(2
α−1 + 1) + 1 = 0.

Noting that χA(2) = χA(0) = 0, we have χA(1) + χA(2
α−1 + 1) = 1. However, by (4.8), we

have χA(1) = χA(2
α−1 + 1), a contradiction.

If β ≥ 2, then α ≥ 4. By choosing n = 2, 2β+1 + 2, 2β + 2 in (4.2) respectively, we have

θ(n = 2β) = 0 and

χA(2) + χA(2
α + 2− 2β)− χA(1)− χA(2

α−1 + 1) = 0, (4.10)

χA(2
β+1 + 2) + χA(2

β + 2)− χA(2
β + 1)− χA(2

α−1 + 2β + 1) = 0, (4.11)

χA(2
β + 2) + χA(2)− χA(2

β−1 + 1)− χA(2
α−1 + 2β−1 + 1) = 0. (4.12)

By (4.8)–(4.9), we have

χA(1) = χA(2
α−1 +1), χA(2

β +1) = χA(2
α−1+2β +1), χA(2

β−1+1) = χA(2
α−1 +2β−1+1).

By (4.10), we have χA(2) = χA(1). By (4.9) and (4.11), we have

χA(2
β + 2) = χA(2

β + 1) = 1− χA(1).

Then χA(2)+χA(2
β+2) = 1. However, by (4.12), we have χA(2) = χA(2

β+2), a contradiction.

Case 3 r2 = 2α−1. Noting that

Z2α\{0, 2α−1} = {2ktk : k ∈ {0, 1, · · · , α− 2}, tk ∈ {2i− 1 : i = 1, 2, · · · , 2α−k−1}},

we should prove

χA(2
ktk) + χA(2

α−1 + 2ktk) = 1 (4.13)
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for k ∈ {0, 1, · · · , α− 2} and tk ∈ {2i− 1 : i = 1, 2, · · · , 2α−k−1}.

By choosing n = t0 in (4.1), we have θ(n = 2α−1) = 0 and

χA(t0) + χA(2
α−1 + t0) = 1,

which is k = 0 in (4.13). Assume that 1 ≤ k ≤ α− 2 and

χA(2
k−1tk−1) + χA(2

α−1 + 2k−1tk−1) = 1. (4.14)

By choosing n = 2ktk in (4.2), we have θ(n = 2α−1) = 0 and

χA(2
ktk) + χA(2

α−1 + 2ktk)− χA(2
k−1tk)− χA(2

α−1 + 2k−1tk) = 0.

By (4.14), we have

χA(2
ktk) + χA(2

α−1 + 2ktk) = 1.

Thus B = m
2 +A.

This completes the proof of Theorem 1.2.
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