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Abstract The authors carry out numerical experiments with regard to the Monte Carlo
integration method, using as input the pseudorandom vectors that are generated by the
algorithm proposed in [Mok, C. P., Pseudorandom Vector Generation Using Elliptic Curves
and Applications to Wiener Processes, Finite Fields and Their Applications, 85, 2023,
102129], which is based on the arithmetic theory of elliptic curves over finite fields. They
consider integration in the following two cases: The case of Lebesgue measure on the
unit hypercube [0, 1]d, and as well as the case of Wiener measure. In the case of Wiener
measure, the construction gives discrete time simulation of an independent sequence of
standard Wiener processes, which is then used for the numerical evaluation of Feynman-
Kac formulas.
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1 Introduction

In numerical integration via the Monte Carlo method, and in the simulation of stochastic

processes, an important role is played by the generation of pseudorandom numbers, and other

more general pseudorandom variables. The most basic one is that of sequence of uniform pseu-

dorandom numbers in unit interval [0, 1], that simulates a sample of a sequence of independent

identically distributed random variables, with values in [0, 1] with uniform distribution. The

linear congruential generator is an efficient algorithm to generate such a sequence of uniform

pseudorandom numbers. Similarly in the higher dimensional case, namely the case of unifor-

m pseudorandom vectors in the unit hypercube [0, 1]d, can be generated by using the matrix

version of the linear congruential generator. The high dimensional case is particularly signif-

icant from the perspective of Monte Carlo methods, as these are essentially the only proven

methods that could beat the curse of dimensionality. Nevertheless, it is well known that, in the

higher dimensional case, the sequence of pseudorandom vectors produced by using the linear
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congruential generator (or its matrix version thereof) could exhibit lattice structures, which

sometimes make them not suitable for use in Monte Carlo methods.

In [11], an algorithm is presented to construct sequence of uniform pseudorandom vectors

in the unit hypercube [0, 1]d, using the arithmetic of elliptic curves over finite fields, with the

aim of producing high dimensional pseudorandom vectors with good qualities of uniformity

and randomness, and to achieve high accuracy in applications to Monte Carlo integration and

simulation.

In this paper, we carry out numerical experiments with regard to Monte Carlo integration

and simulation, using as input the high dimensional uniform pseudorandom vectors generated

by the algorithm of loc. cit. The following cases are considered. First is the case of Monte Carlo

integration of functions on the unit hypercube [0, 1]d with respect to Lebesgue measure, which

is the subject of Sections 2–4. Secondly, these uniform pseudorandom vectors are employed to

construct discrete time simulation of an independent sequence of standard Wiener processes,

which is then applied to numerically solving stochastic ordinary differential equations (driven

by Wiener processes), and consequently used for the numerical evaluation of Feynman-Kac

formulas in Sections 5–6. The numerical experiments in this paper demonstrate that the high

dimensional pseudorandom vectors produced by the algorithm (cf. [11]) have good uniformity

and randomness properties, making them suitable for application in Monte Carlo methods.

2 Uniform Pseudorandom Vectors in the Unit Hypercube

We first recall the algorithm from Section 2 of [11] for the generation of uniform pseudo-

random vectors in [0, 1]d with respect to Lebesgue measure (and using the notations there),

referring to loc. cit. for its theoretical aspects.

Fix a, r, s ∈ Z≥1 with d ≤ 2rs (the fundamental case is s = 1). Put m = ar. Fix a prime

p and a finite field F with characteristic p whose cardinality is equal to pm. Denote by K the

subfield of F with cardinality pa. Fix a basis a′ = {κ′
1, · · · , κ′

a} of the extension K/Fp, and a

basis b′ = {λ′
1, · · · , λ′

r} of the extension F/K. In loc. cit, we fix a basis a for K/Fp and a basis

b for F/K. Then a
′ and b

′ are dual to a and b with respect to the trace TrK/Fp
and TrF/K ,

respectively. For any z ∈ F and 1 ≤ j ≤ r, define

〈z〉j = TrF/K(z · λ′
j) ∈ K.

We also define, for any w ∈ K,

Φ(w) =

a
∑

i=1

TrK/Fp
(w · κ′

i)

pi
∈ [0, 1),

where we regard the values of TrK/Fp
as elements of {0, 1, · · · , p− 1} ⊂ Z≥0. Thus the integer

a is the number of digits in the base p expansion of the number Φ(w) ∈ [0, 1).

Fix an elliptic curve E defined over F with identity element O, whose affine Weierstrass

coordinates are noted as x and y. We then have the finite abelian group E(F ) with identity
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element O. Fix a point Q ∈ E(F ) and also a nonzero integer e. The multiplication by e map

on E is noted as [e]. Given an initial state P0 ∈ E(F ), define {Pn}n≥0 ⊂ E(F ), by using the

recursion

Pn+1 = [e](Pn) +Q, n ≥ 0.

For n ≥ 0, define G(Pn) ∈ [0, 1]2r by the rule

G(Pn) = (Φ(〈x(Pn)〉1), · · · ,Φ(〈x(Pn)〉r),Φ(〈y(Pn)〉1), · · · ,Φ(〈y(Pn)〉r))

for Pn 6= O (thus in fact we have G(Pn) ∈ [0, 1)2r in this case), and define G(O) = (1, · · · , 1)
(all coordinates are equal to 1).

For n ≥ 0, define un ∈ [0, 1]2rs by the rule

un = (G(Pns), G(Pns+1), · · · , G(Pns+s−1))

regarded as vectors in [0, 1]2rs.

Finally fix a set injection π : {1, · · · , d} → {1, · · · , 2rs}, and define un ∈ [0, 1]d for n ≥ 0,

by the rule that for 1 ≤ i ≤ d, the i-th coordinate of un is equal to the π(i)-th coordinate of un.

The sequence {un}n≥0 ⊂ [0, 1]d is then, with respect to the choices made above, the sequence

of uniform pseudorandom vectors in [0, 1]d as defined by the algorithm of [11].

3 An Illustration for the Unit Square

We take a = 9, r = 5, s = 1. The prime p is taken to be 17 and fix the finite field F with

cardinality equal to 1745. We fix a basis a′ for K/F17 and a basis b′ for F/K. The elliptic curve

E over F is taken to be the one given by the affine Weierstrass equation y2 = x3 + 1 (which is

a supersingular elliptic curve over F ). In this case, E(F ) is in fact cyclic with order equal to

1745 + 1. The point Q ∈ E(F ) is chosen to be a generator of E(F ), and we consider the cases

e = 1, 3, 5, 7.

The initial value P0 ∈ E(F ) is chosen arbitrarily, and we compute {G(Pn)}n≥0 ⊂ [0, 1]10

with respect to these choices (the explicit data for the choices of a′, b′, Q, P0 is given in Section

9, Appendix II). For n ≥ 0, we define the vector un in the unit square [0, 1]2, by taking the

first and second coordinates of G(Pn), namely Φ(〈x(Pn)〉1) and Φ(〈x(Pn)〉2), to be the first

and second coordinates of un, respectively. In Figure 1, we plot the first 3000 values of un,

when e = 1, 3, 5, 7, respectively. We cannot observe any obvious lattice structures or linear

correlations in these point distributions.

To test for the uniformity and pseudorandomness of the two dimensional vectors {un}n≥0 ⊂
[0, 1]2, we consider the oscillatory function f defined on [0, 1] with range in [0, 1],

f(x) =
1

2

(

sin
(1

x

)

+ 1
)

for x 6= 0, f(0) = 0.

We interpret the Lebesgue integral
∫ 1

0 f dx as the area of the open region M ⊂ [0, 1]2

bounded by the graph of f , and the lines y = 0, x = 0, x = 1 (see Figure 2). Then in terms
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Figure 1 The first 3000 values of un.

of Monte Carlo integration (which will be considered in more details in the next section), the

Monte Carlo estimator of the area of M is given by (when the first N samples of {un}n≥0 are

used):

1

N

N−1
∑

n=0

δM (un),
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Figure 2

where δM : [0, 1]2 → {0, 1} is the characteristic function of the region M . Taking the parameter
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e to be equal to 1 in the computations, the numerical results are tabulated in Table 1. Using the

command NIntegrate of Mathematica, the numerical value of the integral
∫ 1

0
f dx is computed

to be 0.752034, and we see an excellent agreement.

Table 1 Numerical results.

Methods # points Numerical results for
∫ 1

0 f dx

NIntegrate - 0.752034
MC 1000 0.752000
MC 5000 0.751000
MC 10000 0.752200
MC 15000 0.752467
MC 20000 0.751700

4 Monte Carlo Integration for [0, 1]d

Recall Kolmogorov’s Strong Law of Large Numbers. Let (X,µ) be a probability space.

Consider a sequence of independent and identically distributed X-valued random variables

{Un}n≥0, defined on a probability space (Ω,P), with distribution law being equal to µ. Given

f ∈ L1(X,µ), we have almost surely for ω ∈ Ω:

lim
N→∞

1

N

N−1
∑

n=0

f(Un(ω)) =

∫

X

f dµ. (4.1)

The quantity 1
N

N−1
∑

n=0
f(Un(ω)) is referred to as Monte Carlo estimator of the integral

∫

X
f dµ,

when the first N elements U0(ω), · · · , UN−1(ω) of the sample sequence {Un(ω)}n≥0 are used.

In addition, if we have f ∈ L1(X,µ) ∩ L2(X,µ), then

E
[∣

∣

∣

1

N

N−1
∑

n=0

f(Un(·))−
∫

X

f dµ
∣

∣

∣

2]

=
variance(f)

N
, (4.2)

where the expectation E is with respect to P.

In this section, we consider the case where X = [0, 1]d (for d ∈ Z≥1) with µ being equal

to the Lebesgue measure. The case of Wiener measure will be considered in more details in

Sections 5–6.

The uniform pseudorandom vectors of Section 2 act as simulation of sample sequences of

sequence of independent and identically distributed random variables with values in [0, 1]d,

with uniform distribution with respect to Lebesgue measure. We refer to [11] for theoretical

justification. In this section, we consider examples of Monte Carlo integration of functions on

[0, 1]d, using these uniform pseudorandom vectors. From (4.2), we have the well known fact

about the advantage of Monte Carlo integration, namely that on average the error is, in terms

of the number of samples used, independent of the dimension d.
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For d ∈ Z≥1 , we consider the function f defined on [0, 1]d, given by the formula

f(x1, · · · , xd) =

d
∏

i=1

exp
(

− xi

i

)

. (4.3)

By multivariable integration, we have

∫

[0,1]d
f(x1, · · · , xd) dx1 · · ·dxd =

d
∏

i=1

i ·
(

1− exp
(

− 1

i

))

. (4.4)

Similarly consider the function g defined on [0, 1]d, given by the formula

g(x1, · · · , xd) =
d
∏

i=1

cos
(πxi

2i

)

. (4.5)

Again by multivariable integration, we have

∫

[0,1]d
g(x1, · · · , xd) dx1 · · ·dxd =

d
∏

i=1

(2i

π
· sin

( π

2i

))

. (4.6)

We apply Monte Carlo integration to computing the numerical values of the integrals (4.4)

and (4.6), for a number of values of the dimension d.

We choose the finite fields K ⊂ F and the elliptic curve E over F as in Section 3. Thus

again a = 9, r = 5. The choices of a′, b′, Q, P0 are again as in Section 3. We take e = 3.

The sequence of ten dimensional uniform pseudorandom vectors {G(Pn)}n≥0 ⊂ [0, 1]10 is then

computed.

Below we consider d = 2rs = 10s, with s = 1, 5, 10, 50, 100, corresponding to the dimen-

sions d = 10, 50, 100, 500, 1000, respectively. The sequence of uniform pseudorandom vectors

{un}n≥0 ⊂ [0, 1]d is then defined to be

un = (G(Pns), G(Pns+1), · · · , G(Pns+s−1)), n ≥ 0,

regarded as vectors in [0, 1]d. The Monte Carlo estimators of the integrals (4.4) and (4.6) are

then given by 1
N

N−1
∑

n=0
f(un) and

1
N

N−1
∑

n=0
g(un), respectively, when the first N samples of {un}n≥0

are used. The number of samples N to be used for computations is taken to be 3000. The

numerical results for the integrals (4.4), (4.6), and the corresponding Monte Carlo estimators

are tabulated in Table 2 below.

Table 2 Numerical results for f and g.

d
∫

[0,1]d f MC for
∫

[0,1]d f
∫

[0,1]d g MC for
∫

[0,1]d g

10 0.246528 0.248362 0.506345 0.514815
50 0.112786 0.11315 0.490888 0.495361
100 0.0799835 0.0799167 0.488904 0.491036
500 0.0358531 0.0359526 0.487307 0.490386
1000 0.0253593 0.0252431 0.487107 0.484721
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We also consider the following six integrals on [0, 1]10:

I1 =

∫

[0,1]10

exp
(

√

1 +
10
∏

i=1

xi

)

1 +
10
∑

i=1

x3
i

dx1 · · · dx10,

I2 =

∫

[0,1]10

1 + sin
( 10
∑

i=1

x2
i

)

√

1 +
10
∑

i=1

x2
i

dx1 · · ·dx10,

I3 =

∫

[0,1]10

ln
(

1 +
10
∑

i=1

x2
i

)

10
∏

i=1

√

1 + x2
i

dx1 · · · dx10,

I4 =

∫

[0,1]10

√

1 +
10
∑

i=1

x4
i

ln
(

2 +
10
∑

i=1

x2
i

)

dx1 · · · dx10,

I5 =

∫

[0,1]10

exp
(

√

10
∑

i=1

x2
i

)

1 +
10
∑

i=1

x5
i

dx1 · · · dx10,

I6 =

∫

[0,1]10

ln
(

2 +
10
∑

i=1

x3
i

)

1 + exp
(

√

10
∑

i=1

x4
i

)

dx1 · · · dx10.

The Monte Carlo estimators of the integrals I1, I2, I3, I4, I5, I6 are computed by using the ten

dimensional uniform pseudorandom vectors {G(Pn)}n≥0 ⊂ [0, 1]10 as above (i.e., taking un =

G(Pn) for n ≥ 0), with the number of samplesN being equal to 5000 in the computations. These

are compared with the values computed by using the ten-fold iteration of the one dimensional

Gauss-Legendre quadrature rule, with 5 sample points being used for each dimension . Thus the

number of sample points needed for the ten-fold iteration is 510 ≈ 9.766 million. Specifically,

with h(x1, · · · , x10) being any one of the integrands occurring in the above ten dimensional

integrals, the Gauss-Legendre approximation of the integral is computed as

1

210

5
∑

i1=1

· · ·
5

∑

i10=1

wi1 · · ·wi10 · h
(ui1 + 1

2
, · · · , ui10 + 1

2

)

,

where we have

u1 = 0, w1 =
128

225
,
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u2 =
1

3

√

5− 2

√

10

7
, w2 =

322 + 13
√
70

900
,

u3 = −1

3

√

5− 2

√

10

7
, w3 =

322 + 13
√
70

900
,

u4 =
1

3

√

5 + 2

√

10

7
, w4 =

322− 13
√
70

900
,

u5 = −1

3

√

5 + 2

√

10

7
, w5 =

322− 13
√
70

900
.

Finally, we also use the command NIntegrate of Mathematica (local adaptive method) to

compute the numerical values of the integrals I1, I2, I3, I4, I5, I6. The results are tabulated in

Table 3 below.

Table 3 Numerical results.

NIntegrate Gauss-Legendre MC
I1 0.660371 0.660371 0.663356
I2 0.472556 0.472556 0.478301
I3 0.386224 0.386224 0.386548
I4 1.03125 1.03125 1.03032
I5 7.2269 7.22908 7.30951
I6 0.294796 0.294796 0.295298

These numerical results demonstrate that the pseudorandom vectors {un}n≥0 ⊂ [0, 1]d have

good uniformity and pseudorandomness properties for Monte Carlo integration of functions on

[0, 1]d.

5 Simulation of Independent Sequence of Wiener Processes

We now consider the simulation of sample paths of an independent sequence of (one dimen-

sional) standard Wiener processes. Let T be a positive real number, and put

C0([0, T ]) = {c : [0, T ] → R, c is continuous and c(0) = 0}.

A Wiener process (or Brownian motion) on the time interval [0, T ] can be thought of as a

C0([0, T ])-valued random variable. More precisely let Ω be a probability space with probability

measure P. Then a map

b : Ω → C0([0, T ])

is a standard Wiener process on the time interval [0, T ], if it satisfies:

• For any 0 ≤ t ≤ T , the map bt : Ω → R, given by bt(ω) = (b(ω))(t) for ω ∈ Ω, is a

R-valued random variable on Ω (thus b corresponds to the stochastic process {bt}t∈[0,T ]).

• For any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn ≤ T , the R-valued random variables bt2 −
bt1 , · · · , btn − btn−1

on Ω are independent.
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• For any 0 ≤ s < t ≤ T , the R-valued random variable bt− bs on Ω is normally distributed

with mean zero and variance t− s.

• Thus, for any Borel measurable subset J of R, the probability

P({ω ∈ Ω, bt(ω)− bs(ω) ∈ J}) (5.1)

is given by

1
√

2π(t− s)

∫

J

exp
(

− x2

2(t− s)

)

dx. (5.2)

The push-forward of the probability measure P on Ω to C0([0, T ]), via the map b, is the

Wiener measure µW on C0([0, T ]). Thus, C0([0, T ]) equipped with the Wiener measure µW is

a probability space.

A sequence of Wiener processes on the time interval [0, T ] is said to be independent, if it is

independent as a sequence of C0([0, T ])-valued random variables.

Wiener process satisfies the scaling property: If b : Ω → C0([0, 1]) is a standard Wiener

process on the time interval [0, 1], then bT : Ω → C0([0, T ]) as given by

(bT (ω))(t) = T
1

2 · (b(ω))
( t

T

)

, ω ∈ Ω, t ∈ [0, T ]

is a standard Wiener process on the time interval [0, T ]. Hence without loss of generality, we

assume T = 1 in what follows.

We follow Section 3 of [11] to simulate a sequence of independent standard Wiener processes

on the time interval [0, 1], or more precisely, discrete time simulation of sample path sequence

of a sequence of independent standard Wiener processes. We fix a large integer d which is

used for the discretization of the time interval [0, 1], and let {un}≥0 ⊂ [0, 1]d be a sequence

of uniform pseudorandom vectors as in Section 2. Discard un if any one of the coordinates of

un is equal to 0 or 1, and we may assume {un}n≥0 ⊂ (0, 1)d. By applying either the inverse

transform method or the Box-Muller method (in the Box-Muller case we assume d is even),

we transform {un}n≥0 into a sequence {vn}n≥0 ⊂ Rd of Gaussian pseudorandom vectors, with

the distribution being equal to the standard normal distribution of Rd (i.e., the mean is the

zero vector, and the variance is the identity matrix). We briefly recall the Box-Muller method:

Assume that d is even: d = 2g. Put for n ≥ 0 and j = 1, · · · , g:

v(2j−1)
n =

√

−2 ln(u
(2j−1)
n ) cos(2πu(2j)

n ),

v(2j)n =

√

−2 ln(u
(2j−1)
n ) sin(2πu(2j)

n ),

where un = (u
(1)
n , · · · , u(d)

n ). The sequence {vn}≥0, with vn = (v
(1)
n , · · · , v(d)n ), is then a sequence

of Gaussian pseudorandom vectors in Rd, with standard normal distribution on Rd.

Discard vn if it is equal to the zero vector. Normalize the vector vn by defining wn = vn
‖vn‖ .

Then {wn}n≥0 ⊂ Sd−1 is a sequence of pseudorandom vectors on the d − 1 dimensional unit



250 C. P. Mok and H. M. Zheng

hypersphere Sd−1 ⊂ Rd, with uniform distribution with respect to the rotationally invariant

probability measure on Sd−1.

Define the cumulative sum construction

Σd : Rd → C0([0, 1]),

where if w = (w(1), · · · , w(d)) ∈ Rd, then Σd(w) ∈ C0([0, 1]) is the piecewise linear function,

defined by the conditions that the values of Σd(w) at the discrete times 0, 1
d , · · · , d−1

d , 1 are

given by

(Σd(w))
( i

d

)

=

i
∑

k=1

w(k), i = 0, 1, · · · , d− 1, d

and linearly interpolated in between the times 0, 1
d , · · · , d−1

d , 1. Then with {wn}n≥0 ⊂ Sd−1

as above, put Bn = Σd(wn) ∈ C0([0, 1]) for n ≥ 0. In Section 3 of loc. cit. we have defined

the sequence {Bn}n≥0 ⊂ C0([0, 1]) as discrete time simulation of an independent sequence of

standard Wiener processes, with uniform distribution with respect to the discrete time simula-

tion of the Wiener measure (where as in loc. cit. the discrete time simulation of the Wiener

measure, is the measure on C0([0, 1]) given by the push-forward of the rotationally invariant

probability measure on Sd−1, via the map Σd|Sd−1 ; it converges weakly to the Wiener measure

µW as d → ∞).

We can also perform the cumulative sum construction with the Gaussian pseudorandom

vectors {vn}n≥0 multiplied by the factor 1√
d

(this construction appears more commonly in

the literature); to distinguish between these two constructions, we refer to the construction

{Σd(wn)}n≥0 above as the one with time direction normalization (TDN for short), and the

construction
{

1√
d
· Σd(vn)

}

n≥0
as the one without time direction normalization.

In the simulation below, we take d = 1000. The finite fields K ⊂ F and the elliptic

curve E over F are as in Sections 3–4. Thus again a = 9, r = 5. We take s = 100, and so

2rs = 1000 = d. The choices of a′, b′, Q, P0 are as before. We take e = 1, and the sequence of

uniform pseudorandom vectors {un}n≥0 ⊂ [0, 1]1000 is given by

un = (G(P100n), G(P100n+1), · · · , G(P100n+99)), n ≥ 0

(regarded as vectors in [0, 1]1000). Then with the Box-Muller method, the Gaussian pseudoran-

dom vectors {vn}n≥0 ⊂ R1000 and the pseudorandom vectors {wn}n≥0 on the unit hypersphere

S999 are obtained. In Figure 3 below, we plot the first fifteen sample paths of the simulation,

both in the case of construction with time direction normalization (Figure 3(a)) and in the case

of construction without time direction normalization (Figure 3(b)).

Using the first 5000 sample paths of the simulation, we compute the Monte Carlo estimators

of the quantity (5.1), for a number of choices of 0 ≤ s < t ≤ 1 and J ⊂ R (chosen to be an

interval). The results are tabulated in Table 4 below. Comparing with the theoretical value

(5.2), we again see excellent agreement.
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Figure 3 Fifteen sample paths of the simulation of sequence of independent

standard Wiener processes.

Table 4 Numerical results.

s t J Theoretical MC ( with TDN ) MC ( without TDN )

0.25 0.75 (0,∞) 0.5 0.5054 0.5054
0.25 0.75 (0, 1.5) 0.483053 0.4884 0.4888
0.4 0.5 (−1.1, 1.1) 0.999496 0.9998 0.9998
0.2 0.56 (−0.1, 0.2) 0.196742 0.2056 0.2066
0.1 0.35 (−1, 0.5) 0.818595 0.8186 0.8176
0.32 0.4 (0.7, 1.85) 0.00666416 0.006 0.006

6 Numerical Evaluation of Feynman-Kac Formulas

In this section, we use the discrete time simulation of sample path sequences of sequence of

independent standardWiener processes, to give numerical evaluation of Feynman-Kac formulas.

We recall the following special case of the Feynman-Kac formula, as given by [9, Chapter 5,

Theorem 7.6], which suffices for our purpose. Fix T > 0.

Let σ(x) and µ(x) be (globally) Lipschitz continuous functions on R. For each x ∈ R, let

{Xx
t }t∈[0,T ] be a stochastic process on the time interval [0, T ], defined on a probability space

(Ωx,Px), that is a solution to the stochastic ordinary differential equation

dXx
t = µ

(

Xx
t

)

dt+ σ
(

Xx
t

)

dbt,

Xx
0 = x, (6.1)

where b : Ωx → C0([0, T ]) is a standard Wiener process on the time interval [0, T ] (recall that

b corresponds to the stochastic process {bt}t∈[0,T ]).

Let V (x) be a nonnegative continuous function on R, and f(x) be a continuous functions

on R that is of (at most) polynomial growth. Then the unique solution u(x, t) to the following

Cauchy problem (6.2)–(6.3) that is of (at most) polynomial growth in the variable x (uniformly

in the time variable t):

∂

∂t
u(x, t) =

σ(x)2

2

∂2

∂x2
u(x, t) + µ(x)

∂

∂x
u(x, t)− V (x) · u(x, t), x ∈ R, t ∈ [0, T ], (6.2)
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u(x, 0) = f(x), x ∈ R (6.3)

is given by

u(x, t) = Ex
[

exp
(

−
∫ t

0

V (Xx
s (·)) ds

)

f(Xx
t (·))

]

, (6.4)

where the expectation Ex is defined with respect to Px.

The Feynman-Kac formula (6.4) can be evaluated numerically as a Monte Carlo estimator.

For simplicity we take T = 1. Fix a large integer d, which is used for the discretization of the

time interval [0, 1], and let {Bn}n≥0 ⊂ C0([0, 1]) be discrete time simulation of sample path

sequence of a sequence of independent standard Wiener processes, with uniform distribution

with respect to discrete time simulation of Wiener measure, as given by the construction in

Section 5 (specifically, the construction with time direction normalization).

For the first step, the stochastic ordinary differential equation (6.1) can be solved numeri-

cally, by using either the Euler-Maruyama scheme or the Milstein scheme (c.f. [5, Section 7.2]).

We illustrate with the latter.

Assume that the function σ is differentiable with derivative σ′. For x ∈ R and n ≥ 0,

define X x
n : [0, 1] → R to be the continuous function on the time interval [0, 1], specified by the

following conditions:

(i) X x
n (0) = x.

(ii) For i = 0, 1, · · · , d− 1, we have

X x
n

(( i+ 1

d

))

= X x
n

( i

d

)

+ µ
(

X x
n

( i

d

))

· 1
d
+ σ

(

X x
n

( i

d

))

·
(

Bn

(( i+ 1

d

))

− Bn

( i

d

))

+
1

2
σ
(

X x
n

( i

d

))

σ′
(

X x
n

( i

d

))

·
((

Bn

(( i+ 1

d

))

− Bn

( i

d

))2

− 1

d

)

.

(iii) For i = 0, 1, · · · , d− 1, and
i

d
≤ t ≤ i+ 1

d
, we have

X x
n (t) = X x

n

( i

d

)

+ µ
(

X x
n

( i

d

))

·
(

t− i

d

)

+ σ
(

X x
n

( i

d

))

·
(

Bn(t)− Bn

( i

d

))

+
1

2
σ
(

X x
n

( i

d

))

σ′
(

X x
n

( i

d

))

·
((

Bn(t)− Bn

( i

d

))2

−
(

t− i

d

))

.

Then {X x
n }n≥0 is the sequence of numerical solutions to the stochastic ODE (6.1) (with respect

to the sequence {Bn}n≥0), according to the Milstein scheme. Note that on each subinterval
[

i
d ,
(

i+1
d

)]

(here i = 0, 1, · · · , d − 1), the numerical solution X x
n is either a line segment or a

parabola segment.

The Monte Carlo estimator of (6.4) is then given by (when the firstN sample paths are-used)

1

N

N−1
∑

n=0

exp
(

−
∫ t

0

V (X x
n (s)) ds

)

f(X x
n (t)). (6.5)

In the examples below, we use the simulation of sample path sequence {Bn}n≥0 in Section

5. Thus d = 1000, and the number of sample paths N for computing the Monte Carlo estimator

is equal to 5000.
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Example 6.1 Take σ(x) ≡ 1, µ(x) ≡ 0, V (x) = 1
2x

2. By standard method of separation of

variables, the solution to the Cauchy problem

∂

∂t
u(x, t) =

1

2

∂2

∂x2
u(x, t)− 1

2
x2 · u(x, t),

u(x, 0) = x2 exp
(

− x2

2

)

is given by

u(x, t) =
(

x2 − 1

2

)

exp
(

− x2

2
− 5

2
t
)

+
1

2
exp

(

− x2

2
− 1

2
t
)

.

The solution to the stochastic ODE (6.1) in the present setting is simply Xx
t = x + bt for

0 ≤ t ≤ 1. And so for n ≥ 0, we have X x
n = x+ Bn.

In Table 5, the numerical results for u(x, t) and the Monte Carlo estimator, for a number of

values of (x, t), are tabulated.

Table 5 Numerical results for Example 6.1.

x t u(x, t) MC estimator

0.12 0.100473 0.100708
0.0 0.55 0.253366 0.25373

0.82 0.267458 0.269742
0.15 0.541075 0.540634

1.5 0.89 0.16542 0.1604
0.97 0.150212 0.146349
0.28 0.000271838 0.000271146

4.6 0.42 0.000194077 0.000201864
0.93 0.0000593357 0.0000574343

Example 6.2 Take σ(x) ≡ 1, µ(x) = −x, V (x) ≡ 0. By standard method of separation of

variables, the solution to the Cauchy problem

∂

∂t
u(x, t) =

1

2

∂2

∂x2
u(x, t)− x

∂

∂x
u(x, t),

u(x, 0) = x3

is given by

u(x, t) =
(

x3 − 3

2
x
)

exp(−3t) +
3

2
x exp(−t).

The stochastic ODE (6.1) in the present setting

dXx
t = −Xx

t dt+ dbt, Xx
0 = x

is known as the equation for Ornstein-Uhlenbeck process.

In Figure 4, we plot the first few sample paths of {X x
n }n≥0, where we take x = 0.5.

In Table 6, the numerical results for u(x, t) and the Monte Carlo estimator, for a number of

values of (x, t), are tabulated.



254 C. P. Mok and H. M. Zheng

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

Figure 4 Ornstein-Uhlenbeck Process.

Table 6 Numerical results for Example 6.2.

x t u(x, t) MC estimator

0.01 0.136009 0.138471
0.5 0.12 0.229143 0.23619

0.78 0.2836 0.283965
0.02 60.5035 60.6174

4.0 0.25 32.0701 32.4253
0.94 5.80091 5.88172
0.12 333.298 334.38

7.8 0.45 127.45 128.387
0.66 69.9528 70.3336

Example 6.3 Take σ = α · x, where α ∈ R>0 is a positive constant, and µ(x) = β · x,
V (x) ≡ β, where β ∈ R is a (nonnegative) constant. Then the equation

∂

∂t
u(x, t) =

1

2
α2x2 ∂2

∂x2
u(x, t) + βx

∂

∂x
u(x, t)− βu(x, t) (6.6)

(here we consider only the region x > 0) is the time-reversed Black-Scholes equation. Upon the

change of variables transformation

z = ln(x) +
(

β − α2

2

)

t,

v(z, t) = u(x, t) · exp(βt),

the time reversed Black-Scholes equation becomes the heat equation on R:

∂

∂t
v(z, t) =

1

2
α2 ∂2

∂z2
v(z, t),

which could be solved by standard method in terms of the heat kernel.

The stochastic ODE (6.1) in the present setting

dXx
t = βXx

t dt+ αXx
t dbt, Xx

0 = x

is known as the equation for geometric Brownian motion. The exact solution is given by

Xx
t = x exp

((

β − α2

2

)

t+ αbt

)

.
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Thus for n ≥ 0, we take X x
n as given by

X x
n (t) = x exp

((

β − α2

2

)

t+ αBn(t)
)

for 0 ≤ t ≤ 1.

Taking α = β = 1, in Figure 5, we plot the first few sample paths of {X x
n }n≥0, where we

take x = 0.2.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5 Geometric Brownian Motion.

Define f(x) = sin(ln(x)) for x ≥ 1 and f(x) = 0 for x ≤ 1. Consider the corresponding

Cauchy problem with the PDE given by (6.6), with α = β = 1. In terms of the change of

variables transformation as above

z = ln(x) +
1

2
t,

v(z, t) = u(x, t) · exp(t),

the Cauchy problem becomes

∂

∂t
v(z, t) =

1

2

∂2

∂z2
v(z, t),

v(z, 0) = g(z),

where g(z) = sin(z) for z ≥ 0 and g(z) = 0 for z ≤ 0. The solution is given by

v(z, t) =
1√
2πt

∫ ∞

−∞
g(y) exp

(

− (z − y)2

2t

)

dy

=
1√
2πt

∫ ∞

0

sin(y) · exp
(

− (z − y)2

2t

)

dy,

and so

u(x, t) =
exp(−t)√

2πt

∫ ∞

0

sin(y) · exp
(

−
(

ln(x) + t
2 − y

)2

2t

)

dy.

In Table 7, the numerical results for u(x, t) and the Monte Carlo estimator, for a number of

values of (x, t), are tabulated.
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Table 7 Numerical results for Example 6.3.

x t u(x, t) MC estimator

0.36 0.00116327 0.00125004
0.2 0.77 0.0134829 0.0138267

0.98 0.0204211 0.0206518
0.56 0.411061 0.414545

2.5 0.7 0.344585 0.345809
0.94 0.251402 0.251611
0.7 0.319492 0.315669

5.2 0.87 0.237883 0.232871
0.95 0.206465 0.202842

Remark 6.1 The construction given in Section 5 of discrete time simulation of sample path

sequences of sequence of independent standard Wiener processes, can be extended directly to

the higher dimensional case (cf. [11, Remark 3.3]). These could be employed for the numerical

evaluation of higher dimensional Feynman-Kac formulas. This is particularly significant from

the point of view of Monte Carlo methods, in view of the phenomenon of the curse of dimen-

sionality. We also refer to the papers [1, 3–4, 6–8] for the case of non-linear Feynman-Kac

formulas.

7 Conclusion

The numerical experiments that we have carried out demonstrate that the algorithm of [11]

is able to produce sequences of high dimensional pseudorandom vectors, with good uniformity

and randomness properties, making them suitable for application in Monte Carlo integration,

Monte Carlo simulation, stochastic optimization, sequential Monte Carlo, Markov chain Monte

Carlo, multilevel Monte Carlo, etc (for reference on Monte Carlo methods see for example (cf.

[2, 10, 13])). In the case of [0, 1]d, these sequences of pseudorandom vectors act as simulation

of sample sequences of a sequence of independent and identically distributed random variables

with values in [0, 1]d, with uniform distribution with respect to Lebesgue measure; in the case

of C0([0, T ]), these act as simulation of sample path sequences of a sequence of independent

standard Wiener processes, with uniform distribution with respect to (discrete time simulation

of) Wiener measure. In the latter case, these simulations could be employed for the numerical

evaluation of Feynman-Kac formulas.

For numerical integration, it is well known that, in moderate dimensions and for functions

of moderate variation with sufficient smoothness, Quasi-Monte Carlo methods (cf. [12]), that

are based on the use of quasi-random low discrepancy sequences, for example the Halton, Sobol,

Faure or Niederreiter sequences, etc, give better rates of convergence as compared to Monte

Carlo methods (with the latter being based on the use of sequences with strong randomness

properties). An interesting problem is to develop hybrid algorithms combining the pseudoran-
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dom sequence algorithm of [11] with Quasi-Monte Carlo methods (randomized Quasi-Monte

Carlo for example); this will be the subject of future investigation.

8 Appendix I: An Illustration for the Unit Sphere

We give an illustration for the construction of pseudorandom vectors on the unit sphere

S2, with uniform distribution with respect to the rotationally invariant probability measure

on S2 (c.f. Section 5 and also [11, Section 3.1]). The sequence of uniform pseudorandom

vectors {G(Pn)}n≥0 ⊂ [0, 1]10 is as in Section 3 with e = 1. Apply the Box-Muller method

to {G(Pn)}n≥0 and obtain sequence of Gaussian pseudorandom vectors {vn}n≥0 ⊂ R10 (with

standard normal distribution on R10). Define {vn}n≥0 ⊂ R3 with the coordinates of vn being

given by the first three coordinates of vn. Then {vn}n≥0 is a sequence of Gaussian pseudoran-

dom vectors in R3 (with standard normal distribution on R3). Finally, define wn = vn

‖vn‖ ∈ S2.

Then {wn}n≥0 ⊂ S2 is a sequence of pseudorandom vectors on S2, with uniform distribution

with respect to the rotationally invariant probability measure on S2. In Figures 6–7 below,

we plot the first 3000 sample points of the Gaussian pseudorandom vectors {vn}n≥0, and the

uniform pseudorandom vectors {wn}n≥0 on S2.

-2

0

2

-2

0

2

-4

-2

0

2

Figure 6 Gaussian pseudorandom vectors in R3.

9 Appendix II: Some Data

Throughout this paper, the computations of points of elliptic curves over finite fields are

performed using the PARI/GP package. The rest of the computations are performed using

Mathematica 9.0. Starting from Section 3, we have taken the finite field F to be of characteristic

equal to 17, with cardinality equal to 1745. We fix a primitive element f of the finite field F ;

in particular {1, f, f2, · · · , f44} is a basis of F over F17, and we express the elements of F in

terms of this basis.
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Figure 7 Uniform pseudorandom vectors on S2.

The minimal polynomial of f over F17, which is thus a primitive polynomial over F17, is

given by (the coefficients are taken as elements in F17)

x45 +14x44 +14x43 +6x42 +6x41 +16x40 +4x39 +10x38 +10x37 +15x36 +12x35 +16x34 +

10x33+16x31 +2x30 + x29 +13x28 +14x27+5x26 +11x25+10x23 +7x21 +2x20 + x19 +6x18 +

6x17+13x16+15x14+2x13+6x12+12x11+12x10+13x9+14x8+2x7+x6+5x4+10x3+6x2+16.

With the elliptic curve E over F given by the affine Weierstrass equation y2 = x3 + 1, the

finite abelian group E(F ) is cyclic of order 1745 +1, and we take the point Q to be a generator

of E(F ), with affine Weierstrass coordinates given by

x(Q) = f44 + 13f43 + 10f42 + 9f41 + 15f40 + 16f39 + 14f38 + 14f37 + 8f36 + f35 + 14f34

+14f33 + 6f32 + 13f31 + f30 + 12f29 +12f28 + 16f27 + 5f26 + 12f25 +9f24 +9f23

+10f22 + 9f21 + 7f20 + 8f19 + 7f18 + 13f17 + 2f16 + 5f15 + 16f14 + 10f13 + 9f12

+5f11 + 4f10 + 2f9 + 4f8 + 5f7 + 14f6 + 12f5 + 4f4 + 15f3 + 7f2 + 14f + 4,

y(Q) = 3f44 + 9f43 + 3f42 + 11f41 + 6f40 + 9f39 + 13f38 + 3f37 + 13f36 + 14f35 + 14f34

+16f33+3f32+9f31+3f30+13f29+3f28+5f27+15f26+f25+9f24+12f23+10f22

+8f21+4f20+f18+2f17+12f16+9f15+12f14+12f13+8f12+13f11+3f10+6f8

+3f7 + 8f6 + 5f5 + 16f4 + 12f3 + 14f + 8.

The affine Weierstrass coordinates of the point P0 are given by

x(P0) = 9f44+5f43+12f41+10f40+4f39+5f38+4f37+8f36+7f35+6f34+14f33+3f32

+10f31+6f29+14f28+2f27+4f26+11f25+5f23+2f22+4f21+5f20+9f19+7f18

+4f17+14f16+8f15+6f14+13f13+13f12+9f11+9f10+16f9+13f8+14f7+16f6

+9f5 + 5f4 + 11f3 + 4f + 3,

y(P0) = 8f44 + 10f43 + 13f42 + 8f41 + 6f40 + 9f39 + 16f38 + 13f37 + 15f36 + 9f35 + 3f34

+f33+8f32+13f31+4f30+14f29+5f28+8f27+12f26+13f25+11f24+11f23+f22

+5f21+14f20+8f19+2f18+3f17+2f16+11f15+8f14+f13+16f12+3f11+11f10

+6f9 + 9f8 + 8f7 + 9f6 + 6f5 + 10f4 + 14f3 + 16f2 + 13f + 6.



Monte Carlo Integration Using Elliptic Curves 259

Finally, with K being equal to the unique subfield of F of cardinality equal to 179, the basis

a
′ for K/F17 is taken to be {κ′

1, · · · , κ′
9}, with

κ′
1 = 1,

κ′
2 = f43+6f41+14f40+8f39+16f38+4f37+5f36+4f35 +9f34+12f33+4f32+16f31

+4f30+10f29+8f28+12f27+14f26+3f25+14f24+11f23+11f22+16f21+8f19+14f17

+9f16 + 10f15 + f14 + 8f13 + 7f12 + 4f11 + 13f10 + 4f9 + 11f8 + 4f6 + 10f5 + 13f4

+2f3 + 14f2 + f + 12,

κ′
3 = 15f44+3f43+10f42+9f40+9f39+11f38+3f37+4f36+6f35+2f33+f32+f31+13f30

+10f29+15f28+15f27+14f26+16f25+6f24+8f23+11f22+9f21+f20+2f19+7f18

+8f17+8f16+11f14+14f13+15f12+16f11+12f10+6f9+7f8+11f7+4f6+10f5

+16f3 + 15f2 + 13f + 7,

κ′
4 = 4f43 + 7f42 + 7f41 + 13f40 + 2f39 + 15f38 + 12f36 + 3f35 + 14f34 + 11f33 + 11f32

+4f31 +5f30 + 3f28 +2f27 +10f26 + f25 + 14f24 +7f23 + 7f22 +9f21 +3f20 +3f19

+12f18 + 16f17 + 6f15 + 6f14 + 11f12 + 10f11 + 9f10 + 14f9 + 12f8 + f7 + 2f5

+4f3 + 3f2 + 14,

κ′
5 = 15f44 + 6f43 + 12f42 + 14f41 + 13f40 + 3f39 + 6f38 + 15f37 + 3f36 + 14f35 + 15f34

+13f33+8f32+7f31+2f30+2f29+9f28+2f27+13f26+5f25+14f24+16f23+6f22

+f21 +16f20 + 4f19 +4f18 +4f17 +15f16 +5f15 + f14 +7f13 +2f12 + 4f11 +14f10

+6f9 + 15f8 + 6f7 + 11f6 + 12f5 + 16f4 + 2f3 + 2f2 + 8f + 5,

κ′
6 = 6f44 +11f43 +11f42 +10f41 +16f40 +11f39 +16f38 +13f37 +10f36 +16f35 +6f33

+6f32+8f31+11f30+3f29+6f28+12f27+13f26+8f25+3f24+11f23+16f22+5f21

+4f20+f19+4f18+12f17+14f16+f15+2f14+5f13+2f12+7f11+5f10+4f9+4f8

8f7 + 10f6 + 12f5 + 5f4 + 13f3 + 14f2 + 11f + 6,

κ′
7 = 12f44 +4f43 +5f41 +8f40 +2f38 +6f37 +16f36 +9f35 +10f34 +9f33 +7f32 +3f31

+9f30+14f29+5f27+5f26+6f25+12f24+14f23+f22+8f20+8f19+3f17+f16+3f15

+14f14 +3f13 +12f12+13f11 +7f10 +7f9 +14f8 +4f7 +10f6 +11f5 +16f4 +6f3

+7f2 + 9f + 14,

κ′
8 = 2f44+2f43+6f42+14f41+2f40+2f39+14f38+16f37+4f36+4f35+13f34+12f33

+3f32+11f31+6f30+2f29+4f28+12f27+11f26+3f25+3f24+15f23+11f22+15f21

+7f20+12f19+3f18+2f17+ f16+12f15+12f14+6f13+6f12+15f11+10f10+7f9

+3f8 + 14f7 + 5f6 + 4f5 + 13f4 + 15f3 + 8f2 + 2f + 14,

κ′
9 = 6f44 + 7f43 + f42 + 6f41 + 2f40 + 2f39 + 5f38 + 6f37 + 3f36 + 16f35 + 11f34 + 12f33

+14f32 + 15f31 +9f30 +10f29 + 15f28 + 13f27 +6f26 +4f25 +11f24 + 4f23 + 13f22

+3f21+6f20+7f19+12f18+6f17+15f16+8f15+4f14+12f13+14f12+10f11+11f10

+16f9 + 5f8 + 13f7 + 11f6 + 16f5 + 4f4 + 11f3 + 6f2 + f + 13

and the basis b′ for F/K is taken to be {1, f, f2, f3, f4}.



260 C. P. Mok and H. M. Zheng

Acknowledgments The authors would like to thank Professor Hourong Qin for encourage-

ments. We acknowledge the support of the Jiangsu National Center for Applied Mathematics,

where the research was conducted.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

[1] Beck, C., Hutzenthaler, M. and Jentzen, A., On nonlinear Feynman-Kac formulas for viscosity solutions
of semilinear parabolic partial differential equations, Stochastics and Dynamics, 21(8), 2021, 2150048.

[2] Barbu, A. and Zhu, S.-C., Monte Carlo Methods, Springer-Verlag, Springer Nature Singapore Pte Ltd.,
2020.

[3] E, W., Hutzenthaler, M., Jentzen, A. and Kruse, T., On multilevel Picard numerical approximations for
high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear back-
ward stochastic differential equations, Journal of Scientific Computing, 79(3), 2019, 1534–1571.

[4] E, W., Hutzenthaler, M., Jentzen, A. and Kruse, T., Multilevel Picard iterations for solving smooth
semilinear parabolic heat equations, Partial Differential Equations and Applications, 2(80), 2021.

[5] Graham, C. and Talay, D., Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations
of Stochastic Simulation, Stochastic Modelling and Applied Probability, 68, Springer-Verlag, Heidelberg,
2013.

[6] Hutzenthaler, M., Jentzen, A. and von Wurstemberger, P., Overcoming the curse of dimensionality in
the approximative pricing of financial derivatives with default risks, Electronic Journal of Probability, 25,
2020, 1–73.

[7] Hutzenthaler, M., Jentzen, A., Kruse, T., et al., Overcoming the curse of dimensionality in the numerical
approximation of semilinear parabolic partial differential equations, Proceedings of the Royal Society A,
476(2244), 2020, 20190630.

[8] Hutzenthaler, M. and Kruse, T., Multi-level Picard approximations of high dimensional semilinear parabol-
ic differential equations with gradient-dependent nonlinearities, SIAM Journal on Numerical Analysis,
58(2), 2020, 929–961.

[9] Karatzas, I. and Shreve, S., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics,
113, Springer-Verlag, New York, 1988.

[10] Kroese, D. P., Taimre, T. and Botev, A. I., Handbook of Monte Carlo Methods, Wiley Series in Probability
and Statistics, John Wiley & Sons, Inc. Hoboken, NJ, 2011.

[11] Mok, C. P., Pseudorandom Vector Generation Using Elliptic Curves and Applications to Wiener Processes,
Finite Fields and Their Applications, 85, 2023, 102129.

[12] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional
Conference Series in Applied Mathematics, 63, 1992.

[13] Rubinstein, R. Y. and Kroese, D. P., Simulation and the Monte Carlo Method, 3rd ed., Wiley Series in
Probability and Statistics, John Wiley & Sons, Inc. Hoboken, NJ, 2017.


